工业机器人机械结构模块化设计

合集下载

工业机器人机械结构模块化设计

工业机器人机械结构模块化设计

工业机器人机械结构模块化设计工业机器人的机械结构模块化设计是指将其机械结构分为若干个模块,每个模块具有独立的功能和特点,并能够相互组装和拆卸,以适应不同的工作环境和任务要求。

其目的是提高机器人的灵活性、可扩展性和可维修性,同时降低设计和制造成本。

模块化设计一般包括机器人的基座、臂架、关节、手爪等部分。

基座是机器人的底座或平台,用于支撑机器人的其他部件。

臂架是机器人的运动部分,可以通过关节连接进行伸缩和旋转,实现机器人的多自由度运动。

关节是连接臂架和基座的枢纽部件,允许机器人进行多轴关节运动。

手爪是机器人的末端执行器,用于捕捉或操纵物体。

在实际设计中,可以根据不同的工作需求和任务特点将机器人的机械结构划分为几个模块。

每个模块都具有独立的结构和功能,可以进行自主设计和制造。

同时,这些模块之间应具有一定的标准接口和连接方式,以方便组装和更换。

模块化设计的一个重要优势是可以根据具体任务的需要对机器人的结构进行快速定制和扩展。

例如,如果一些任务需要机器人具有更大的工作范围和精度,可以通过增加臂架或关节的数量来实现。

如果需要机器人具有更强的抓取能力,可以根据任务需求更换不同类型的手爪。

另一个优势是模块化设计可以简化机器人的维修和维护工作。

由于机器人的各个模块相对独立,当一些模块发生故障或需要维修时,只需要更换或修复该模块,而不会影响其他部分的正常运行。

这大大减少了维修时间和成本。

此外,模块化设计还可以降低机器人的制造成本。

由于机器人的各个模块可以根据不同的需求进行重新组合和配置,可以实现多样化、灵活化的生产。

这样可以有效降低生产线的设备投资和维护成本。

同时,模块化设计还有利于机器人的标准化生产和批量生产,提高了生产效率和产品质量。

总之,工业机器人的机械结构模块化设计可以提高机器人的灵活性、可扩展性和可维修性,降低设计和制造成本。

它是实现机器人个性化定制和智能制造的重要手段,对于推动工业4.0的发展具有重要意义。

机器人模块化设计的说明书

机器人模块化设计的说明书

机器人模块化设计的说明书1. 引言机器人技术的不断发展,为工业生产、医疗保健、家庭服务等领域带来了巨大的便利性和效率提升。

而机器人的模块化设计则是实现机器人多功能、多样化应用的关键之一。

本说明书将详细介绍机器人模块化设计的原理、方法和实施步骤,旨在帮助用户理解和应用这一理念。

2. 理论基础2.1 模块化概念模块化是指将一个系统或产品划分为相对独立的模块,每个模块完成特定的功能。

这种设计理念使得模块可以独立开发、测试和维护,同时也方便了模块的替换和升级。

在机器人设计中,模块化设计能够使机器人的功能、结构和性能更加灵活可变。

2.2 机器人模块化设计的优势机器人的模块化设计具有以下优势:- 可扩展性强:通过添加、替换或调整模块,机器人可以实现各种不同的功能和应用。

- 维修和升级便捷:模块化设计使得机器人的维修和升级更加方便,只需更换故障模块或升级模块即可。

- 技术共享和复用性高:模块化设计促进了不同机器人之间的技术共享和模块的复用,提高了资源利用效率。

3. 模块化设计原则在进行机器人的模块化设计时,需要遵循以下原则:- 功能独立性:每个模块应具备独立的功能,能够直接实现一项或多项任务。

- 接口标准化:模块之间的接口应定义清晰,遵循标准化的接口规范,确保模块的互换性。

- 通信协议一致性:各个模块之间的通信协议应保持一致,以实现信息的传递和共享。

- 硬件兼容性:模块化设计中应考虑到硬件的兼容性,以便不同模块可以互相匹配使用。

- 模块尺寸统一:模块的尺寸应统一规范,以方便组装和替换。

4. 模块化设计步骤4.1 分析需求:首先,对机器人的功能和应用进行全面分析,明确需要哪些模块来实现这些功能。

4.2 划分模块:根据需求分析的结果,将机器人分解为若干个相对独立的模块,每个模块负责实现一个或多个功能。

4.3 设计接口:为每个模块设计清晰的接口,明确输入输出的接口规范和数据格式。

4.4 开发模块:根据模块设计的接口规范,分别开发各个模块,确保模块能够独立运行和通信。

模块化机器人的设计与实现

模块化机器人的设计与实现

模块化机器人的设计与实现近年来,随着科技的不断进步和人们对智能机器人需求的提高,模块化机器人成为了研究和开发的热点。

模块化机器人具有可拆卸、可组合的特点,使得机器人可以根据不同的任务需求进行灵活的组装。

本文将探讨模块化机器人的设计原理和实现方法。

一、模块化机器人的设计原理模块化机器人的设计原理基于模块化思维和模块化技术。

模块化思维强调将机器人的各个部分划分为相互独立的模块,每个模块具有特定的功能,模块之间可以进行组合和替换。

这种思维方式有利于提高机器人的灵活性和可维护性。

模块化技术是实现模块化机器人设计的基础。

主要包括模块标准化、接口设计和通信协议等方面。

模块标准化是指将机器人的各个模块进行统一的尺寸、接口和电气连接方式设计,以便于模块之间的组装和替换。

接口设计是指为每个模块设计合适的接口,使得模块之间可以进行有效的通信和数据交换。

通信协议是指定义模块之间的通信规则和数据格式,以保证模块之间的协同工作。

二、模块化机器人的实现方法模块化机器人的实现方法主要包括硬件设计和软件设计两个方面。

在硬件设计方面,需要注意以下几点。

首先,需要选择适合模块化设计的硬件结构,例如模块化机械臂、模块化传感器等。

其次,需要进行模块标准化设计,确保各个模块之间的尺寸和接口兼容。

此外,还需要考虑模块之间的电源供给和电气连接方式,以确保模块之间的正常工作和通信。

在软件设计方面,需要考虑以下几点。

首先,需要设计一个适合模块化机器人的操作系统,以管理模块之间的通信和协作。

其次,需要设计模块之间的通信协议,以确保模块之间的正确交互。

此外,还需要设计模块化机器人的控制算法和路径规划算法,以实现机器人的智能化操作和任务执行。

三、模块化机器人的应用前景模块化机器人的研究和应用前景广阔。

首先,模块化机器人可以应用于工业生产线上,实现自动化生产和灵活的任务分配。

其次,模块化机器人可以应用于医疗领域,实现手术机器人和康复机器人的定制化设计和灵活组装。

工业机器人的可扩展性与模块化设计

工业机器人的可扩展性与模块化设计

工业机器人的可扩展性与模块化设计工业机器人在现代制造业中起着至关重要的作用。

随着制造业的不断发展和变化,工业机器人的可扩展性和模块化设计变得越来越重要。

本文将探讨工业机器人的可扩展性和模块化设计对于制造业的意义以及如何实现这些特性。

一、工业机器人的可扩展性可扩展性是指工业机器人能够适应不同任务和需求的能力。

在不同的生产线上,需求和任务可能会发生变化,因此工业机器人需要能够适应这些变化。

可扩展性包括硬件和软件两个方面。

1. 硬件可扩展性硬件可扩展性指的是工业机器人的硬件结构能够方便地进行扩展和修改。

为了达到这个目标,工业机器人应该采用模块化设计,即将机器人的各个部件拆分为独立的模块,每个模块都可以独立修改和升级。

例如,可以将机器人的机械臂、控制系统、传感器等部件设计为独立模块,这样在需要扩展或升级时可以只更换或添加相应的模块,而无需对整个机器人进行改造。

2. 软件可扩展性软件可扩展性指的是工业机器人的控制软件能够方便地进行扩展和修改。

工业机器人的控制软件应该具备灵活性和可定制性,以应对不同的任务需求。

通过采用开放式的软件平台和标准化接口,可以使不同厂商的软件能够互相兼容和集成。

此外,软件的架构应该具备良好的模块化设计,使得不同的功能模块可以独立开发和修改。

二、工业机器人的模块化设计模块化设计是实现机器人可扩展性的关键。

模块化设计将机器人的各个部件拆分为独立的模块,每个模块都具有一定的功能和接口。

模块化设计具有以下优势:1. 易于修改和维护模块化设计使得机器人的各个部件独立存在,因此在需要修改或维护某个部件时,可以只处理该部件而不影响其他部件。

这大大提高了机器人的可维护性和可靠性。

2. 提高生产效率模块化设计使得机器人的部件可以独立生产和测试,然后再进行组装。

这样可以并行进行生产和测试,提高了生产效率,并且降低了生产成本。

3. 客制化生产模块化设计使得机器人可以灵活地根据客户需求进行配置和定制。

客户可以根据自己的需求选择不同的模块组合,从而实现个性化的生产。

工业机器人组合式模块化结构设计研究

工业机器人组合式模块化结构设计研究
用 的、满 足 用户要 求 的机器 人 。为 此 ,应 强调 功能
实用 性 ,不 片 面追 求 所谓 的高 科 技和 全 面 先进 性 , 先进并 不 等于 实用 。
我 国机器 人技 术 的研 究 工作起 步 较晚 ,虽 已取
得 较大进 展 , 较之 发达 国家 的水 平仍 有较 大距 离 , 但 应 积 极探 索 适合 我 国 国情 的工 业机 器 人应 用 思路 ,
u e d sr Iob t e ini to u e ep p rTh h r c r  ̄ sa dt c nq e s d i i u ti o sg i rd c di t a e . ec a a  ̄ i c n h iu s nn ar d Sn nh s e
ZHANG n — o. I n Xig gu L U Mig
( h o fMe h ia gie ig, non ie st , no g, 2 01 Chn ) Sc o l c anc l o En n er n Na t g Unv r i Na tn 2 6 y 9, ia
o e d sgn m e h d a e e p n e n d t i A e wa fp o u i g a idu ti l o o f h e i t o r x ou d d i e a l n w y o r d c n n s r b t t . a r r p d y i u r r e . e Ro o s ma e i hs me h d c n b s d i h a k u h a i l p t o wa d h r Th b t d t i S f e n t o a e u e t e t s ss c n a r d c vn , s e spo u t mo ig a s mb ig a d s r y n c a ia d sr l h d s r , lc r ia l n p a ig i me h nc l u t i tn u t ee t n n i n y, g i y onc l id s r , n O o n u t a d S n. y Ke y wor s i d s r l o o ; o bn t n mO u a i a i n g o p t c n o y d : n u ti b t c m i a i ; a r o d I t : r u e h olg r z O

机器人结构设计

机器人结构设计
总体设计的步骤
*
2、技术设计
(1)机器人基本参数的确定。臂力、工作节拍、工作范围、运动速度及定位精度等。 举例:定位精度的确定 机器人或机械手的定位精度是根据使用要求确定的,而机器人或机械手本身所能达到的定位精度取决于定位方式、运动速度、控制方式、臂部刚性、驱动方式、缓冲方式等。 工艺过程的不同,对机器人或机械手重复定位精度的要求也不同,不同工艺过程所要求的定位精度如下: 金属切削机床上下料:±(0.05-1.00) mm 冲床上下料:±1 mm 模锻: ±(0.1-2.0) mm 点焊: ±1 mm 装配、测量: ±(0.01-0.50) mm 喷涂: ±3 mm 当机器人或机械手本身所能达到的定位精度有困难时,可采用辅助工夹具协助定位的办法,即机器人实现粗定位、工夹具实现精定位。
传动方式选择 (1)选择驱动源和传动装置与关节部件的连接、驱动方式 (2)工业机器人的传动形式
传动形式
特征
优点
缺点
直接连结传动
直接装在关节上
结构紧凑
需考虑电机自重,转动惯量大,能耗大
远距离连结传动经远距离传动置与关节相连不需考虑电机自重,平衡性良好
额外的间隙和柔性,结构庞大,能耗大
间接传动
减速比远>1的传动装置与关节相连
3.模块化工业机器人所存在的问题 (1)模块化工业机器人整个机械系统的刚度比较差。因为模块之间的结合是可方便拆卸的,尽管在设计上已经注意到了标准机械接口的高精度要求,但实际制造仍会存在误差,所以与整体结构相比刚度相对地差些。 (2)因为有许多机械接口及其它连接附件,所以模块化工业机器人的整体重量有可能增加。 (3)虽然功能模块的形式有多种多样,但是尚未真正做到根据作业对象就可以合理进行模块化分析和设计。

工业机器人第四章-工业机器人结构设计

工业机器人第四章-工业机器人结构设计
优点
缺点
直接连结传动
直接装在关节上
结构紧凑
需考虑电机自重,转动惯量大,能耗大
远距离连结传动
经远距离传动装置与关节相连
不需考虑电机自重,平衡性良好
额外的间隙和柔性,结构庞大,能耗大
间接传动
经速比远>1的传动装置与关节相连
经济、对载荷变化不敏感、便于制动设计、方便一些运动转换
传动精度低、结构不紧凑、引入误差,降低可靠性
直接驱动
不经中间关节或经速比=1的传动装置与关节相连
传动精度高,振动小,传动损耗小,可靠性高,响应快
控制系统设计困难,对传感元件要求高,成本高
一 工业机器人总体设计
模块化结构设计 模块化工业机器人 由一些标准化、系列化的模块件通过具有特殊功能的结合部用积木拼搭方式组成的工业机器人系统。 模块化工业机器人的特点 经济性 灵活性 存在的问题 刚度比较差 整体重量偏重 模块针对性待提高
谐波齿轮传动是靠柔性齿轮(柔轮)所产生的可控弹性变形来实现传递运动和动力的。它的基本构件有:柔轮、波发生器和刚轮。三个构件中可任意固定一个,其余两个一为主动、一为从动,可实现减速或增速(固定传动比),也可变换成两个输入,一个输出 ,组成差动传动。
当刚轮固定,波发生器为主动,柔轮为从动时,柔轮在椭圆凸轮作用下产生变形,在波发生器长轴两端处的柔轮轮齿与刚轮轮齿完全啮合;在短轴两端处的柔轮轮齿与刚轮轮齿完全脱开;在波发生器长轴与短轴区间,柔轮轮齿与刚轮轮齿有的处于半啮合状态,称为啮入;有的则逐渐退出啮合处于半脱开状态,称为啮出。由于波发生器的连续转动,使得啮入、完全啮合、啮出、完全脱开这四种情况依次变化,循环不已。由于柔轮比刚轮的齿数少2 ,所以当波发生器转动一周时,柔轮向相反方向转过两个齿的角度,从而实现了大的减速比。

机械产品模块化设计方法研究

机械产品模块化设计方法研究

机械产品模块化设计方法研究一、本文概述随着科技的不断进步和工业的快速发展,机械产品的设计与制造面临着越来越高的要求。

模块化设计作为一种先进的设计理念,已经成为提高机械产品设计效率、优化资源配置、降低生产成本并满足市场快速响应需求的重要手段。

本文旨在探讨机械产品模块化设计方法的研究现状和发展趋势,分析模块化设计的理论框架和关键技术,并通过实例分析模块化设计在机械产品中的应用效果。

通过对模块化设计方法的深入研究,本文旨在为机械产品的设计提供理论支持和实践指导,推动机械产品设计向更高层次、更广领域发展。

二、模块化设计理论基础模块化设计是一种先进的产品设计方法,其核心理念在于将复杂的产品系统分解为若干个独立且可互换的模块,以便进行独立设计、制造和维护。

模块化设计不仅提高了设计的灵活性,也便于产品的升级和个性化定制。

本节将详细介绍模块化设计的基础理论,包括模块化设计的原则、模块划分的方法以及模块接口的设计。

模块化设计的核心原则包括独立性、互换性、通用性和标准化。

独立性原则要求每个模块在功能、结构和制造上都是独立的,以便进行单独的设计、制造和测试。

互换性原则意味着不同模块之间可以相互替换,以满足不同的功能需求。

通用性原则强调模块应具有一定的通用性,可以在不同产品或系统中重复使用。

标准化原则则要求模块的设计应遵循统一的标准和规范,以便于模块的生产、管理和维护。

模块划分是模块化设计的关键环节,其目的是将产品系统分解为若干个功能独立、结构合理的模块。

常见的模块划分方法包括功能划分、结构划分和混合划分。

功能划分是根据产品的功能需求,将具有相似功能的部分划分为同一模块。

结构划分则是根据产品的结构特点,将具有相似结构或制造工艺的部分划分为同一模块。

混合划分则是综合考虑功能和结构因素,进行模块划分。

在实际应用中,应根据产品的具体情况选择合适的模块划分方法。

模块接口是模块之间相互连接和通信的桥梁,其设计对于产品的整体性能和可靠性至关重要。

工业机器人设计方案

工业机器人设计方案

工业机器人设计方案一、引言随着工业的发展和技术的进步,工业机器人在生产线上扮演着越来越重要的角色。

为了提高生产效率和质量,减少人力成本和劳动强度,设计一套高效稳定的工业机器人成为了当今的迫切需求。

本文将根据实际需求,提出一种工业机器人的设计方案。

二、方案概述本方案的工业机器人主要应用于组装生产线上的重复性工作,如螺丝拧紧、零件装配等。

该机器人将采用多关节设计,以实现多方向运动和灵活操作。

同时,为了实现高效稳定的工作,机器人将配置感知技术和控制系统,以及安全保护系统。

三、机器人结构设计1.机械结构设计机器人采用多关节结构设计,以实现多方向运动和灵活操作。

机器人的机械结构由支架、关节机构和工具端构成。

支架选择高强度的材料,以保证机器人的稳定性和承载能力;关节机构采用高精度的电机和减速器,以实现精确的运动控制;工具端根据实际需要设计相应的装配工具。

2.动力系统设计机器人的动力系统由电机、减速器和传动系统组成。

电机选择高性能的伺服电机,以实现快速精确的控制;减速器采用高精度的行星齿轮减速器,以提供足够的扭矩和速度;传动系统根据实际需要选择齿轮传动、皮带传动或直线传动等。

3.传感器和感知系统设计机器人配备各种传感器和感知系统,以实现环境感知和物体检测。

其中包括视觉传感器、力传感器、触觉传感器等。

视觉传感器用于检测工件的位置和姿态,力传感器用于检测工具与工件之间的受力情况,触觉传感器用于检测机器人与环境之间的接触。

四、控制系统设计1.控制算法设计机器人的控制系统采用基于模型的控制算法,以实现精确控制和运动规划。

通过对机器人模型进行数学建模和控制分析,设计合适的控制算法,以满足各种工作场景的需求。

2.控制器和接口设计机器人的控制系统采用计算机控制,通过控制器和接口与各个子系统进行通信和控制。

控制器选择高性能的工控机,具有强大的计算和控制能力;接口采用标准化的接口协议,以实现与各个子系统的连接和数据传输。

五、安全保护系统设计对于工业机器人来说,安全问题是至关重要的。

串联工业机器人机械臂的模块化组合式设计方法

串联工业机器人机械臂的模块化组合式设计方法

串联工业机器人机械臂的模块化组合式设计方法随着工业自动化的不断发展,工业机器人已经成为了现代工厂中不可或缺的一部分。

而机器人的核心部件——机械臂,也在不断地发展和完善。

为了满足不同工厂的需求,机械臂的设计也越来越趋向于模块化和组合式。

本文将介绍串联工业机器人机械臂的模块化组合式设计方法。

一、模块化设计模块化设计是指将机械臂的各个部件分解成不同的模块,每个模块都有自己的功能和特点。

这样设计的好处在于,可以根据不同的需求,选择不同的模块进行组合,从而实现机械臂的定制化设计。

同时,模块化设计也方便了机械臂的维护和升级。

在模块化设计中,需要考虑的因素有很多,比如模块之间的接口设计、模块的尺寸和重量、模块的材料等。

这些因素都需要在设计之初就考虑到,以确保模块化设计的顺利实施。

二、组合式设计组合式设计是指将不同的模块进行组合,从而实现机械臂的定制化设计。

在组合式设计中,需要考虑的因素有很多,比如不同模块之间的兼容性、组合后机械臂的稳定性和精度等。

在组合式设计中,需要注意的是,不同模块之间的接口设计要尽量简单明了,以方便组合。

同时,组合后机械臂的稳定性和精度也是需要考虑的重要因素。

为了确保机械臂的稳定性和精度,需要对组合后的机械臂进行严格的测试和验证。

三、模块化组合式设计方法模块化组合式设计方法是将模块化设计和组合式设计相结合的一种设计方法。

在这种设计方法中,首先将机械臂的各个部件分解成不同的模块,然后根据不同的需求,选择不同的模块进行组合,从而实现机械臂的定制化设计。

在模块化组合式设计方法中,需要考虑的因素有很多,比如模块之间的接口设计、模块的尺寸和重量、模块的材料、不同模块之间的兼容性、组合后机械臂的稳定性和精度等。

这些因素都需要在设计之初就考虑到,以确保模块化组合式设计的顺利实施。

总之,串联工业机器人机械臂的模块化组合式设计方法是一种非常有效的设计方法。

通过模块化设计和组合式设计相结合,可以实现机械臂的定制化设计,同时也方便了机械臂的维护和升级。

机械设计中的模块化设计理念探讨

机械设计中的模块化设计理念探讨

机械设计中的模块化设计理念探讨在当今的机械设计领域,模块化设计理念正逐渐成为一种主流趋势。

它为机械产品的设计、制造和维护带来了诸多优势,不仅提高了生产效率,降低了成本,还增强了产品的灵活性和可扩展性。

接下来,让我们深入探讨一下这一重要的设计理念。

模块化设计的核心思想是将一个复杂的机械系统分解为若干个相对独立的模块,每个模块都具有特定的功能和接口。

这些模块可以在不同的产品中重复使用,或者根据具体需求进行组合和调整。

这种设计方法类似于搭积木,通过选择和组合不同的模块,可以快速构建出满足各种需求的机械产品。

首先,模块化设计能够显著提高设计效率。

在传统的设计过程中,设计师需要从零开始构思整个产品的结构和功能,这往往需要耗费大量的时间和精力。

而采用模块化设计,设计师可以直接从现有的模块库中选择合适的模块,然后进行组合和优化,大大缩短了设计周期。

此外,模块的标准化和规范化设计也减少了设计过程中的错误和不确定性,提高了设计质量。

其次,模块化设计有助于降低生产成本。

由于模块可以大规模生产,能够实现规模经济,从而降低单个模块的生产成本。

同时,模块化的产品结构也便于生产过程的组织和管理,减少了生产中的工艺切换和调整,提高了生产效率,进一步降低了生产成本。

再者,模块化设计增强了产品的灵活性和可扩展性。

当市场需求发生变化时,只需对部分模块进行修改或替换,就可以快速推出新的产品型号,满足不同用户的需求。

这种灵活性使得企业能够更好地适应市场的动态变化,提高市场竞争力。

在实际的机械设计中,实现模块化设计需要遵循一定的原则和方法。

首先,要明确产品的功能需求和性能指标,将其分解为若干个子功能,并为每个子功能设计相应的模块。

模块的划分应该遵循功能独立、结构合理、接口标准化等原则,确保模块之间能够良好地协同工作。

其次,要建立完善的模块库,对模块进行分类、编码和管理,方便设计师查询和调用。

同时,要不断对模块库进行更新和优化,以适应技术的发展和市场的需求。

(完整word版)工业机器人结构设计

(完整word版)工业机器人结构设计

1绪论1.1工业机器人概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。

特别适合于多品种、变批量的柔性生产。

它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。

机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域.机器人应用情况,是一个国家工业自动化水平的重要标志。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。

从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

在工业生产中应用的机械手被称为“工业机械手”。

工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大.因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用.工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。

1.2工业机器人的组成和分类1。

工业机器人组合模块化系统设计——自动运料小车结构模块设计

工业机器人组合模块化系统设计——自动运料小车结构模块设计

工业机器人组合模块化系统设计——自动运料小车结构模块设计Design of Modular System to an Industrial Robot ——design on automatic feeding dolly structuralmodule shipped专业班级:学生姓名:指导教师:系别:20**年 6 月摘要传统工业机器人的结构造型一经设计就不可改变,在工作环境和给定任务发生改变的情况下,传统工业机器人的固定构型显现出了很大的局限性。

随着生产的发展和自动化程度的提高,传统制造业的生产方式发生了深刻的变化,同时对生产车间物料搬运作业自动化、柔性(即可调整性)和准时性提出了更高的要求,自动运料小车的路径规划正是在此背景下发展起来的一个重要研究领域。

本文在对一个生产车间的制造工艺和物流系统分析后,设计了该车间的平面布局图;抽象出基于后桥机加工车间平面布局的自动运料小车路径图,利用图论原理表达自动运料小车的路径;在研究了各种路径规划方法和遗传算法的基本理论基础上,运用遗传算法来对一个具体的例子进行求解,从而对自动运料小车结构模块进行模块化设计。

关键词: 柔性;工业机器人;模块设计ABSTRACTWhen the working place is or the given task is changed, the limitation of the traditional industrial robot is obviously increased. With the manuafcturing’s development of production and automatization, the tradition manufacturing way have changed deeply. At the same time, the material conveyance system should meet those demands automatization, flexibility (adjustable) and just in time. Automatic transport machine has been developing into an important research field under sach back ground. The paper analyzes workshop’s manuafeturing proeess and logisties system and designs the work shop plan; Abstraets a utomatic transport machine based on workshop’layout, uses Graphies theory to deseribe Automatic transport machine: after analyzes all kinds of ways of Path Planning, design on automatic feeding dolly structural module shipped by the way of applieation of Automatic transport machine.Key Words: Flexibility;Industrial robot; Modular design目录1 绪论 (1)1.1工业机器人发展现状 (1)1.2工业机器人应用领域及范围 (2)2 模块化工业机器人 (4)2.1组合式模块化工业机器人设计思路 (4)2.2工业机器人结构配置方式及分析 (5)2.3工业机器人组合式模块化结构设计 (6)2.4功能模块的整体集成 (7)2.4.1 以功能模块有机集成为前提的模块组合 (7)2.4.2 执行模块的概念 (7)2.4.3 控制模块和伺服模块的研究 (8)3设计方案 (9)3.1设计方案的概述 (9)3.2组合模块 (12)4 技术参数与计算 (14)5 结论 (21)参考文献 (22)附录1:英文资料 (23)附录2:中文翻译 (34)致谢 (43)1 绪论1.1工业机器人发展现状自从20世纪60年代初人类制造出第一台工业机器人以后,机器人就显示出了极强的生命力。

利用CAD进行工业机器人设计的专业技巧

利用CAD进行工业机器人设计的专业技巧

利用CAD进行工业机器人设计的专业技巧工业机器人是现代工厂中不可或缺的重要设备,其高效准确的操作能力为生产线的自动化提供了有力的支持。

在机器人设计中,计算机辅助设计(CAD)软件发挥着重要的作用。

本文将介绍一些利用CAD 进行工业机器人设计的专业技巧,帮助工程师们更好地完成他们的工作。

首先,合理的机器人模型设计是一个成功项目的基础。

在CAD软件中,根据工作需求和工作环境,绘制机器人的草图。

通过草图可以确定机器人的尺寸、关节结构、驱动方式等重要参数。

在进行机器人模型设计时,应考虑到机器人的运动范围、负载能力、精度要求等方面,以确保机器人能够满足实际的工作需求。

其次,模块化设计是工业机器人设计过程中的一个重要原则。

借助CAD软件的模块化设计功能,可以将机器人划分为不同的模块,如机械结构模块、电气模块和控制模块等。

这种分模块的设计能够提高机器人的灵活性和可维护性,同时也方便后续的调试和维修工作。

第三,力学仿真和运动学分析是CAD软件中强大的功能之一。

力学仿真可以帮助工程师在设计阶段对机器人的运动进行模拟和评估,以确保机器人的稳定性和正常运行。

运动学分析则可以用于确定机器人的关节角度、终端执行器的位置朝向等参数,为后续的控制程序开发提供重要的参考。

另外,协作式工作空间规划也是一个重要的设计环节。

通过CAD 软件,可以对机器人在工作空间内的运动进行三维可视化展示,以便更好地规划机器人的工作轨迹和避免碰撞。

在规划工作空间时,应考虑到机器人的运动距离、速度和加速度等因素,确保机器人能够高效稳定地完成任务。

最后,配合CAD软件中的渲染功能,可以为设计的工业机器人添加真实感的外观。

通过使用合适的材质和光照效果,使机器人的外观更加逼真,为产品展示和报告制作提供更好的视觉效果。

综上所述,利用CAD进行工业机器人设计的专业技巧主要包括合理的机器人模型设计、模块化设计、力学仿真和运动学分析、协作式工作空间规划以及外观渲染等方面。

机器人结构设计

机器人结构设计

3.模块化工业机器人所存在的问题
(1) 模块化工业机器人整个机械系统的刚度比较差。因为
模块之间的结合是可方便拆卸的,尽管在设计上已经注意到了
标准机械接口的高精度要求,但实际制造仍会存在误差,所以 与整体结构相比刚度相对地差些。 (2)因为有许多机械接口及其它连接附件,所以模块化工业 机器人的整体重量有可能增加。 (3)虽然功能模块的形式有多种多样,但是尚未真正做到根 据作业对象就可以合理进行模块化分析和设计。
3
2、技术设计
(1)机器人基本参数的确定。臂力、工作节拍、工作范围、 运动速度及定位精度等。
举例:定位精度的确定
机器人或机械手的定位精度是根据使用要求确定的,而机器人或机械 手本身所能达到的定位精度取决于定位方式、运动速度、控制方式、臂 部刚性、驱动方式、缓冲方式等。 工艺过程的不同,对机器人或机械手重复定位精度的要求也不同,不 同工艺过程所要求的定位精度如下:
传动方式选择
(1)选择驱动源和传动装臵与关节部件的连接、驱动方式 (2)工业机器人的传动形式
传动形式 直接连结传动 特征 优点 缺点 需考虑电机自重,转 动惯量大,能耗大
直接装在关节上 结构紧凑
远距离连结传动
经远距离传动装 不需考虑电机自重, 额外的间隙和柔性, 臵与关节相连 平衡性良好 结构庞大,能耗大
齿轮链机构
使用齿轮链机构应注意的问题
齿轮链的引入会改变系统的等效转动惯量 , 从而使驱动电机 的响应时间减小, 这样伺服系统就更加容易控制。 输出轴转动惯量转换到驱动电机上 , 等效转动惯量的下降与
减速比远 >1 的传 经济、对载荷变化不 传动精度低、结构不 动装臵与关节相 敏感、便于制动设计、 紧凑、引入误差,降 连 方便一些运动转换 低可靠性 不经中间关节或 传动精度高,振动小, 控制系统设计困难, 经速比 =1 的传动 传动损耗小,可靠性 对传感元件要求高, 装臵与关节相连 高,响应快 成本高

模块化机器人设计

模块化机器人设计

模块化机器人设计摘要如今,机器人的发展突飞猛进,机器人服务已经覆盖了人们生活、工作、娱乐的方方方面。

随着人类的需求的不断增加,对机器人领域的探索也越走越远,机器人模块化技术已在各个领域的产品研究和开发中广泛应用。

于传统机器人相对比,模块化机器人柔性更好,自修复能力强柔性高,且容错性强、成本较低。

模块化结构较简单,便于加工,各模块能互相替换,组装快捷简便。

由于模块化机器人结构和功能的可重组性,对任务和环境有很强的适应能力。

采用模块化技术,有利于机器人的维护和保养,缩短了机器人设计的时间。

因此,本文将采用模块化的方法开发一种新机器人系统,希望有利于改善目前机器人控制复杂、通用性差和操作繁琐等问题。

本文一共分为六个部分,第一部分绪论主要概括模块化机器人的研究背景、意义和国内外模块化机器人研究现状,第二部分探讨了机器人模块化的设计原理和方法,第三部分主要讨论了机器人控制系统设计,第四部分分析机器人主从控制策略。

第五部分概述了机器人构型,最后进行了小结。

关键词:机器人;模块化;系统设计;构型Nowadays, the development of robots is advancing by leaps and bounds. Robot service has covered all aspects of people's life, work and entertainment. With the increasing demand of human beings, the exploration of robot field is more and more far away. Robot modularization technology has been widely used in product research and development in various fields. Compared with the traditional robot, modular robot is more flexible, self repairing ability, high flexibility, and good fault tolerance and low cost. The modular structure is simple, easy to process, each module can replace each other, and the assembly is quick and easy. Because of the reconfiguration of modular robot structure and function, it has a strong adaptability to task and environment. Modular technology is beneficial to the maintenance and maintenance of robots, and shortens the time of robot design. Therefore, this paper will use modular method to develop a new robot system, in the hope of improving the complexity of robot control, low universality and tedious operation. This paper is divided into six parts, the first part is the introduction mainly summarizes the modular robot research background, significance and research status quo of inside and outside of the modular robot, the second part discusses the design principle and method of modular robot, the third part mainly discusses the design of robot control system, the fourth part of the analysis of the master-slave robot control strategy. In the fifth part, the configuration of robot is summarized, and finally a brief summary is made.Key words: robot; modularization; system design; configuration摘要 (1)Abstract (2)第一章绪论 (4)1.1研究背景及意义 (4)1.2国内外研究现状 (4)第二章机器人模块化设计原理及设计方法 (5)2.1模块的划分 (5)2.1.1模块化思想概述 (5)2.1.2模块划分原理 (6)2.2模块化设计方法 (6)2.3随遇平衡的实现 (6)2.3主机器人模块 (8)2.3.1 I模块 (8)2.3.2 T模块 (9)2.3.3 应用模块化方法的效果 (10)3.1控制系统硬件设计 (10)3.2单片机最小系统模块 (11)3.3 CAN通信模块设计 (11)3.4控制器设计 (12)第四章机器人主从控制策略 (12)4.1从机器人系统搭建 (12)4.2同构型主从控制策略 (13)4.3镜像同构型主从控制策略 (14)第五章机器人构型 (16)第六章结论 (18)参考文献 (19)第一章绪论1.1研究背景及意义机器人结构不同,通用性也不一样。

工业机器人集成应用(机构设计篇)

工业机器人集成应用(机构设计篇)

工业机器人集成应用(机构设计篇)1. 引言1.1 概述工业机器人是指具备自主控制能力、用于执行各类操作任务的智能化设备,广泛应用于制造业领域。

随着科技的不断进步和工业自动化水平的提高,工业机器人集成应用在生产线上扮演着越来越重要的角色。

机构设计作为其中至关重要的一环,对机器人的运动性能和功能实现起着决定性作用。

1.2 文章结构本文将围绕工业机器人集成应用中的机构设计展开论述。

首先介绍了引言部分,然后在接下来的章节中逐步深入探讨了机构设计理论、设计方法与标准以及常见案例分析等内容。

最后,通过总结已经探讨的主题点和结果展示,并对未来发展进行展望和建议。

1.3 目的本文旨在全面而系统地介绍工业机器人集成应用中机构设计理论与方法,并结合实际案例进行分析。

通过深入研究不同类型工业机器人的结构设计,可以帮助读者更好地理解机器人运动学和动力学基础,并提供一些标准化与规范化的要求。

此外,本文将对常见的工业机器人案例进行具体分析,以提供读者关于不同机构设计方案实际应用的启示。

通过本文的阅读,读者将能够更好地理解工业机器人集成应用中机构设计的重要性和挑战,并为未来该领域的发展提供有益参考。

2. 机构设计理论:2.1 功能需求分析:在进行工业机器人的机构设计之前,首先需要进行功能需求分析。

这包括确定机器人所需具备的基本功能,例如运动范围、负载能力、精度要求以及速度等。

通过对工作环境和任务要求的全面了解,可以确定机器人需要哪些关键性能指标。

功能需求分析为后续的机构设计提供了重要依据。

2.2 运动学基础:运动学是研究物体在空间中运动状态的学科。

在工业机器人的机构设计中,必须深入了解运动学基础知识。

这包括旋转和平移的数学描述方法、坐标系与坐标变换理论等内容。

掌握这些基础知识可以帮助我们更好地理解和描述机器人在三维空间中的姿态和位置变化。

2.3 动力学基础:动力学是研究物体受到力或力矩作用下产生加速度和角加速度变化规律的学科。

2.1 工业机器人的总体设计

2.1 工业机器人的总体设计
机器人一般有两种运动关节——转动关节和移(直)动 关节。 为了进行位置和速度控制,驱动系统中还包括位置和 速度检测元件。检测元件类型很多,但都要求有合适的精 度、连接方式以及有利于控制的输出方式。对于伺服电机 驱动,检测元件常与电机直接相联;对于液压驱动,则常 通过联轴器或销轴与被驱动的杆件相联。
1—码盘; 2 —测速机; 3 —电机; 4 —联轴器; 5 —传动装置; 6 —转动关节; 7 —杆
间接驱动方式图例
间接驱动方式图例
间接驱动方式图例
间接驱动方式图例
气动肌肉
3.材料的选择:
选择机器人本体的材料,应从机器人的性能要 求出发,满足机器人的设计和制造要求。如: 机器人的臂和机器人整体是运动的,则要求采 用轻质材料。 精密机器人,则要求材料具有较好的刚性。 还要考虑材料的可加工性等。 机器人常用的材料有:碳素结构钢、铝合金、 硼纤维增强合金、陶瓷等。
结构简单,刚度高。 关节之间运动相互 独立,没有耦合作 用。 占地面积大,导轨 面防护比较困难。


2 圆柱坐标型: 圆柱坐标式机器人 主体结构具有三个 自由度:腰转、升 降和伸缩。亦即具 有一个旋转运动和 两个直线运动。 特点:



通用性较强; 结构紧凑; 机器人腰转时将手 臂缩回,减少了转 动惯量。 受结构限制,手臂 不能抵达底部,减 少了工作范围。


4.平衡系统的设计
平衡系统 的设计是机器人设计中一个不可忽视



的问题。平衡系统具有以下作用: 安全:防止机器人在切断电源后因重力而失去 稳定。 借助平衡系统能降低机器人的构形变化。 借助平衡系统能降低因机器人运动,导致惯性 力矩引起关节驱动力矩峰值的变化。 借助平衡系统能减小机械臂结构柔性所引起的 不良影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业机器人机械结构模块化设计
发表时间:2019-08-05T15:48:34.500Z 来源:《基层建设》2019年第15期作者:林积新
[导读] 摘要:本文在对市场上常见的各种工业机器人进行功能分析前提下,根据其结构不同进行模块化划分,将工业机器人按通用模块的不同划分为六种模块,分别是终端执行器、绕z轴旋转臂、绕x(y)轴俯摆臂、沿X轴平移、平移转动、升降底座、AGV移动平台六种模块。

身份证号码:44098219890928XXXX
摘要:本文在对市场上常见的各种工业机器人进行功能分析前提下,根据其结构不同进行模块化划分,将工业机器人按通用模块的不同划分为六种模块,分别是终端执行器、绕z轴旋转臂、绕x(y)轴俯摆臂、沿X轴平移、平移转动、升降底座、AGV移动平台六种模块。

当客户提出不同的机器人设计需求时,仅需按照其实际工况和技术要求来对接合适的模块种类,然后按照相关的技术标准完成模块装配,可以迅速完成客户所需的工业机器人设计。

本文结合实际应用例子,论述了工业机器人模块化设计在提升设计效率的作用,为以后的工业机器人在生产应用中提供了一定的借鉴和参考价值。

关键词:工业机器人;模块化设计;效率
引言
随着中国的“中国制造2025”目标的提出,很多研发企业都围绕工业机器人的实际应用需求,在开发新的复合市场需要的工业机器人产品加大投入。

随着设计技术的进步,设计机器人时标准化、模块化也是必不可少的内容,为机器人快速响应多样化需求打下基础。

同时,也有利于进一步扩大机器人的实际应用市场。

根据现今工业机器人的发展推测,将来的30年工业机器人技术都将是一个高速增长时期,任何一个企业只要能够设计制造出符合当今社会迅速变化的工业机器人,将占领大量的未来市场,赢得丰厚的市场回报。

但是就目前而言,工业机器人的设计周期长、投资成本太高,其对应的应用范围局限性较大,以上这些限制因素都使的它们难以适应当今速变化的市场需求。

所以工业机器人模块化设计在未来提供设计效率上尤为重要。

一工业机器人模块化划分
(一)模块划分的方法和理论
本文在讲过长期的市场调查以及工业机器人的功能分析过程中,通过大数据分析以及总结,将机器人产品详细的划分成了具有特定作用的但又相对通用的功能模块,同时也根据相关的标准确定了其对应的定义模块接口和要求。

因此模块化划分工业机器人,需要考虑到以下三点因素:第一,模块划分的基本原则就是用最少的模块组合最多的产品;第二,所划分的模块其结构和功能都是独立以及完整的;第三,为了使同功能的模块可以互换以及不同的模块可以组合,所以所划分的模块其组合性以及互换性都要较高。

(二)模块划分及其功能
本文这次就以关节型机器人为例,进行相关的论述和分析,关节型机器人其主要的工作原理就是连杆利用关节交替连接而成。

通过大数据对其的总结分析,可以将其分成六个模块,所划分的各模块以及其对应的解析如下图1所示。

通过图一中的解析,可以确定其和机器人连杆平行的轴是z轴,而对应的垂直于机器人连杆的轴则是z、y轴。

图1 机器人模块
图1中的AGV智能移动模块(序号),已经成熟应用到工业生产和物流业中,能自主导向运载机器人移动特定区域;升降平台模块(序号2)则安装在AGV模块上,支撑机器人增大其在垂直方向的工作空间;绕Z轴旋转模块(序号3)则提供机器人在水平方向的圆周运动;平移模块(序号4)增加机器人在同一垂直面上的运动空间;绕X、Y以及在X轴的平移模块(序号5、6、7)增加了机器人在微小空间的自由度,更好地满足工作需求。

终端执行器(序号8)可以分为吸附式、机械夹持式、其他三种类型,可以执行直接作业的功能。

通过分析可以得出,工业机器人不同功能均可分解为以上若干模块的组合,为模块化设计提供依据。

二、如何实现模块化设计
(一)模块化设计流程
想要进行工业机器人的模块化、数字化、参数化设计,那么就要先有足够的符合用户需求的并且根据实际工况来划分完美的模块种类、数量和装配方式,这样才可以根据客户的需要来逐项确定各模块的尺寸和布置形式,而其尺寸和布置形式确定后,工业机器人的机械本体结构也就是设计完成了。

本文提供如图3图示模块化工业机器人的设计流程。

图3 机器人模块化参数化设计流程
(二)实际实现案例
本文以工业生产线上一个搬运机器人作为分析案例,对其进行模块化设计。

本文这次所设计工业机器人尺寸参数如下:AGV小车停止时空间为长为1500mm、高为1500 mm,其最大工作半径是1 610 mm。

目标负载:5 kg。

AGV移动速度为5 M/s。

1. 模块选择
为使该工业机器人能够完成在车间完成搬运必要任务,设计由六个模块来实现,达到七自由度作业,包括AGV移动平台、升降平台、末端执行器、绕z轴旋转关节和两个绕z(y)轴俯摆关节、沿X轴平移模块。

2. 参数确定
根据搬运机器人技术参数设计要求,建立搬运机器人D-H参数表
表2.1 例2.19机器人的参数
根据表2.1得到搬运机器人各模块的外形尺寸如下表
图4 俯摆关节模块各部件参数
3.机器人总图设计
所构建的搬运机器人其对应的各模块部件的组成零件就要如下表1所示的那样,要严格按照相关的标准来组装机器的各模块,最终使其可以完美的装配起来,所装配好的搬运机器人其对应的装配图如下图5所示。

表1 搬运机器人各模块组成零件
结论
本文在根据市场上常见工业机器人种类以及其结构特点,总结前人经验以及教训的基础上,提出了一种全新的模块化、参数化、信息化的高效设计方法,以迅速满足客户多样化的需求。

当客户想要设计工业机器人时,只需要通过对应的模块选择以及其尺寸和布局确定后,完成选择好的模块装配,即可快速完成其机器人的设计。

这样的设计具备如下三个优点:
1可以利用当今常用的工业机器人结构,满足其实际的工况要求,设计方法变得更加的简单,
2缩短相应的加工周期,并且保证其产品的品质,同时因为是模块化设计,所以的日常维护保养也就更加的方便快捷,
3产品的成本也就随之降低了,同时其模块化设计方法经验证,也是
切实可行的。

综述,本文提出的模块化设计工业机器人具有广泛的市场潜力和开发前景,对未来工业机器人发展方向也提供了一定的借鉴意义。

相关文档
最新文档