不等式的性质
不等式的基本性质总结
不等式的基本性质是高中数学中一个重难点,下面查字典高中数学网为大家总结了不等式的基本性质知识点,希望对大家所有帮助。
1.不等式的定义:a-b0ab, a-b=0a=b, a-b0a
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:
①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1) abb
(2) ab, bcac (传递性)
(3) aba+cb+c (cR)
(4) c0时,abacbc
c0时,abac
运算性质有:
(1) ab, cda+cb+d。
(2) ab0, cd0acbd。
(3) ab0anbn (nN, n1)。
(4) ab0(nN, n1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
不等式的性质
不等式的性质不等式是数学中一种重要的关系表达方式。
它描述了数值大小之间的关系,常用于解决优化问题、证明数学定理等。
在学习不等式的过程中,我们需要了解不等式的性质,这有助于我们更好地理解和应用不等式。
1. 不等式的传递性不等式的传递性是指,如果一个不等式A > B成立并且B > C成立,那么A > C 也一定成立。
同样地,如果A < B成立并且B < C成立,那么A < C也一定成立。
传递性在解决不等式问题时起到了重要的作用。
通过利用不等式的传递性,我们可以将一个复杂的不等式问题转化为一系列简单的不等式问题,从而更容易求解。
2. 不等式的加法性和减法性不等式的加法性是指,如果一个不等式A > B成立,那么A + C > B + C也一定成立。
类似地,不等式的减法性是指,如果一个不等式A > B成立,那么A - C > B - C也一定成立。
加法性和减法性使得我们可以在不等式两边加上或减去相同的数,从而得到等效的不等式,方便我们进行问题的变形和求解。
3. 不等式的乘法性和除法性不等式的乘法性是指,如果一个不等式A > B成立,并且C > 0,那么A * C >B * C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A * C < B * C也一定成立。
乘法性使得我们可以在不等式两边乘以正数或负数,从而改变不等式的方向。
需要注意的是,当乘以负数时,不等式的方向会颠倒。
除法性是乘法性的逆运算。
不等式的除法性是指,如果一个不等式A > B成立,并且C > 0,那么A / C > B / C也一定成立。
类似地,如果A > B成立,并且C < 0,那么A / C < B / C也一定成立。
乘法性和除法性在求解不等式时起到了重要的作用。
它允许我们在不改变不等式的基本性质的情况下,对不等式进行一些操作,从而得到更简单的形式。
不等式的性质
【解】 (1)∵a>b,c>0.∴ac>bc, ∴-ac<-bc.∵f<e,∴f-ac<e-bc. (2)∵bc-ad≥0,∴ad≤bc,bd>0. ∴ab≤dc, ∴ab+1≤dc+1. ∴a+b b≤c+d d.
变式练习 3 已知 a>b>0,c<d<0,e<0.求证:a-e c>b-e d.
证明:∵c<d<0,∴-c>-d>0. ∵a>b>0,∴a-c>b-d>0. ∴0<a-1 c<b-1 d. 又∵e<0,∴a-e c>b-e d.
要点三 利用不等式性质求范围 利用几个不等式的范围来确定某个不等式的范围是一 类常见的问题,对于这类问题要注意:同向(异向)不等式的 两边可以相加(相减),这种转化不是等价变形,如果在解题 过程中多次使用这种转化,就有可能扩大其取值范围,所 以我们在解题时务必小心谨慎.
整体法:
先建立待求范围的整体与范围的整体的等量关系,最后利 用一次不等式的性质进展运算,求得待求的范围,这是防止犯错 误的一条有效途径.
例 4 已知 12<a<60,15<b<36,则 a-b 的取值范 围为________,ba的取值范围为________.
【解析】 ∵15<b<36⇒ -36<-b<-15⇒-24<a
1≤a-b≤2, ① 2≤a+b≤4. ② 两式相加得32≤a≤3,又-2≤b-a≤1. ③
不等式的基本性质
4
3
2
= 2x (x -1)+(1- x)(1+ x) 3 =(x -1)(2x - x -1) 2 = (x 1)(x 1)(2x 2x 1) 1 1 = (x -1) 2(x + 2) + 2 > 0
2 2
3
∴A>B
1、不等式的基本性质: ①对称性: a b b a
考点突破 利用不等式性质判断命题真假 运用不等式的性质判断时,要注意不等式成立的 条件,不要弱化条件,尤其是不能凭想当然随意 捏造性质.解有关不等式的简单判断和选择题时,
也可采用特殊值法进行排除,注意取值一定要遵
循如下原则:一是满足题设条件;二是取值要简
单,便于验证计算.
对于实数 a,b,c,下列命题中的真命题 是( ) A.若 a>b,则 ac2>bc2 1 1 B.若 a>b>0,则a>b b a C.若 a<b<0,则 > a b 1 1 D.若 a>b,a>b,则 a>0,b<0
本专题知识结构
第一讲 不等式和绝对值不等式
不 等 式 选 讲
第二讲 证明不等式的基本方法 第三讲 柯西不等式与排序不等式 第四讲 数学归纳法证明不等式
第一讲
不等式和绝对值不等式
1.不等式的基本性质
知识回顾
A B a b b>a B b
a>b
A a
a>b a-b>0
解:
2
2
2 2 2
4 2 4
4
,
4
不等式的定义与性质
不等式的定义与性质不等式是数学中常见的一种关系表达式,用来表示两个数、变量或数与变量之间的大小关系。
在代数学和几何学中,不等式具有重要的作用,而理解不等式的定义与性质对于解决各种数学问题至关重要。
一、不等式的定义在数学中,不等式是指通过不等号(<,>,≤,≥)来表示两个数或表达式之间的大小关系。
一个基本的不等式方程形式为:a > b,其中a和b是两个数或表达式。
不等式的表示方式可以分为两种形式:严格不等式和非严格不等式。
严格不等式使用大于号(>)或小于号(<)来表示,表示不等式两边的值不相等;非严格不等式使用大于等于号(≥)或小于等于号(≤)来表示,表示不等式两边的值可以相等。
二、不等式的性质1. 反身性质:对于任意实数a,a≥a或a≤a是成立的,即任何数与自身相等或小于等于自身。
2. 传递性质:如果a>b且b>c,则a>c。
也就是说,如果一个数大于另一个数,而这个数又大于另一个数,那么第一个数一定大于最后一个数。
3. 相加性质:对于任意实数a,b和c,如果a>b,则a+c>b+c。
也就是说,对不等式两边同时加上相同的数,不等式的大小关系保持不变。
4. 相乘性质:对于任意实数a,b和c,如果a>b且c>0,则ac>bc。
也就是说,如果一个数大于另一个数,而且还与一个正数相乘,那么乘积的大小关系保持不变。
以上性质在解决不等式问题时经常会使用,可以帮助我们推导和证明不等式的结果。
三、解不等式的方法解不等式是求解满足给定条件的变量范围。
常用的解不等式的方法包括移项法、分段法和因式法等。
1. 移项法:将含有未知数的项移到一边,常用于解一元一次不等式。
例如,对于不等式3x+5>7,我们可以通过将5移到不等式的右边,得到3x>2,再将不等式两边同时除以3,得到x>2/3。
2. 分段法:将不等式根据不同的条件范围进行分段,进而分别求解不等式。
不等式的性质及应用
反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。
不等式及其基本性质
不等式及其基本性质不等式的基本性质:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,用式子表示:如果a > b ,c>0,那么ac > bc 或 a c > b c. 3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或a c < b c. 一、填空1.在式子①224>+x ②412≤-x ③43<x ④0162≥-x ⑤32-x ⑥33<+b a 中属于不等式的有 .(只填序号)2.如果0,<>c b a ,那么ac bc .3.若b a <,用“<”“>”填空.⑴ 6-a 6-b ⑵ a 5- b 5-⑶ k a 3- k b 3- ⑷ c a + c b +⑸5+-c a c b -+5二、选择4.x 的3倍减5的差不大于1,那么列出不等式正确的是( )A . 153≤-x B.153≥-xC .153<-x D.153>-x5.已知b a >,则下列不等式正确的是( )A .b a 33->- B.33b a ->- C.b a ->-33 D.33->-b a三、解答题6.用不等式表示下列句子的含义.⑴ 2x 是非负数.⑵ 老师的年龄x 比赵刚的年龄y 的2倍还大.⑶ x 的相反数是正数.⑷y 的3倍与8的差不小于4.7.用不等式表示下列关系.⑴x 与3的和的2倍不大于-5.⑵a 除以2的商加上4至多为6.⑶a 与b 两数的平方和为非负数.8、解方程(1)(x-1)—(3x+2)= —(x-1). (2)3y-2=5y-2(3)--23x 514+x =1x 3- (4)20328x y x y -=⎧⎨+=⎩9.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.。
不等式的基本性质
(a b)( a b ) ( a b )( a b )2 ab ab 2 1 2 1 a 2 b 2 (定号) 0 ( ) ( ) a b b a
三、例题分析:
a b 例4:已知a 0, b 0,比较 ( ) ( ) b a 与 a b 的大小。
变式练习
已知 3≤a+b≤4,1≤4a-2b≤2,求 4a
+2b 的取值范围.
解:方法 1:(方程组思想) 1 1 x= a+ b a=3x+6y 令 ,则 y= 4a- 2b b=2x- 1y 3 6
.
1 1 2 1 8 1 ∴ 4a+2b=4( x+ y)+ 2( x- y)= x+ y, 3 6 3 6 3 3 8 32 3≤ x≤ 4 8≤3x≤ 3 又 ⇒ 1≤ y≤ 2 1≤1y≤2 3 3 3 25 8 1 34 ⇒ ≤ x+ y≤ , 3 3 3 3
1 2 2 a, b, , 2ab, a b 从小到大的顺序是 2
1 2 2 a 2ab a b b ______________________ 2 1 3 特殊值法: 取 a , b 4 4
三、例题分析:
2 2 2 x 4 y 1 x y 例2:(2)已知 ,比较
方法 2:(待定系数法)设 f(3)=λf(1)+μf(2), ∴9a-c=λ(a-c)+μ(4a-c). 5 λ =- 3 9=λ+4μ ∴ ,解得 -1=-λ-μ μ=8. 3 5 8 ∴f(3)=- f(1)+ f(2).下同方法 1,略. 3 3
• 【方法总结】 本题把所求的问题用已 知不等式表示,然后利用同向不等式性 质解决.本题常用待定系数法解决,设 出方程,求出待定系数即可.
1.1.1不等式的基本性质
性质 6 开方性质 如果 a>b>0,那么n a > n b(n∈N,n≥2)
【练习】 判断下列命题是否正确,并说明理由. (1)若 a>b,则 ac2>bc2; (2)若ca2>cb2,则 a>b; (3)若 a>b,ab≠0,则1a<1b; (4)若 a>b,c>d,则 ac>bd. [自主解答] (1)错误.当 c=0 时不成立. (2)正确.∵c2≠0 且 c2>0,在ca2>cb2两边同乘以 c2, ∴a>b. (3)错误.a>b⇒1a<1b成立的条件是 ab>0. (4)错误.a>b,c>d⇒ac>bd,当 a,b,c,d 为正数时成立.
即α+β∈
-π,π 22
,α-β∈
-π2,0
.
2
2
利用性质证明简单不等式
【例 3】 已知 c>a>b>0,求证:c-a a>c-b b. [精彩点拨] 构造分母关系 → 构造分子关系 → 证明不等式
[自主解答] ∵a>b,∴-a<-b. 又 c>a>b>0, ∴0<1.c-在a<证c-明b本,例∴时c-,1 a连>c续-1用b>到0.不等式的三个性质,一是不等式的 乘法性质:a>b,则-a<-b;二是不等式的加法性质:c>a>b>0,又 -又a∵<-a>bb,>则0,0∴<c-a a<>c-b b;. 三是倒数性质.最后再次用到不等式的 乘法性质.
五、不等式的基本性质的应用
比较大小
【例 1】 设 A=x3+3,B=3x2+x,且 x>3,试比较 A 与 B 的
简述不等式的4个基本性质
简述不等式的4个基本性质不等式是数学中一类非常重要的结构,其中内容涉及多个知识点,为研究和应用这类结构提供了有效的框架。
其中,不等式的4个基本性质是很重要的,它们是:(1)不等式的交换性;(2)不等式的可分解性;(3)不等式的传递性;(4)不等式的联合性。
本文旨在阐述这4个基本性质,并通过实例阐释它们的作用。
首先,让我们讨论不等式的交换性。
它的定义是:对于任一不等式,如果其双边都是相同的,那么可以交换左右两边。
比如,a>b,b<c,那么有a>c的结果,即a>b,b<c的结果等价于a>c的结果。
交换性的作用是,当某一不等式的两边均有相同的运算符时,可以通过交换左右两边,得到一个不同的不等式,而其结果也是完全相同的。
其次,让我们讨论不等式的可分解性。
它的定义是:对于一个不等式,可以将其分解成几个不等式的乘积,且其中的乘法操作不会改变其结果。
比如,有一个不等式x>2,那么,可以将其分解成x+1>3和x-3>-1两个不等式的乘积,且两边乘积的结果是不变的。
可分解性的作用是,可以将一个复杂的不等式,分解成若干个相对简单的不等式,有效拆解复杂问题,达到简化分析过程的目的。
第三,让我们讨论不等式的传递性。
它的定义是:如果某一不等式的两边都有相同的运算符,并且有一个中间变量,那么这个不等式的结果可以从左到右或者从右到左传递。
比如,a>b,b>c,那么可以得到a>c的结果。
传递性的作用是,当某一不等式的两边均有相同的运算符,并且有一个中间变量时,可以以中间变量为准,从左到右或者从右到左传递这个不等式的结果,从而可以得到更精确的结果。
最后,让我们讨论不等式的联合性。
它的定义是:当不等式上有满足某一条件的两个变量时,可以联合这两个变量,形成一个更大的范围。
比如,x>2,y>3,那么有x和y同时大于2和3,即x、y>2、3。
联合性的作用是,当不等式上有满足某一条件的两个变量时,可以将其联合,得到一个更大的范围,从而可以获得更精确的结果。
不等式的基本性质
不等式的基本性质【知识要点】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb ). 3.不等式的解与解集:4.一元一次不等式:一元一次不等式的标准形式:)0(≠><a b ax b ax 或一元一次不等式的步骤:①去分母;②去括号;③移项变号;④合并同类项;⑤系数化为1. 【典型例题】例1 指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a +3>0,得a >-3; (3)由-2a <1,得a >-21; (4)由3a >2a +1,得a >1.例2 用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b __________0.例3 指出下列各题中不等式变形的依据.(1)由21a >3,得a >6.(2)由a -5>0,得a >5.(3)由-3a <2,得a >-32.例4 根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52(4)-32x >-1例5 如果a >ab ,且a 是负数,那么b 的取值范围是什么?* 例6 已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.【大展身手】1.填空:(1)若3x>4,两边都除以3,得__________,依据是____________.(2)若x+6≤5,两边都减6,得__________,依据是_____________.(3)若-4y≥1,两边都除以-4,得__________,依据是____________.(4)若-23y<-2,两边都乘-32,得___________,依据是____________. 2.若a<b ,用不等号填空: (1)a -5_______b -5;(2)a+m_______b+m ; (3)-2a ______-2b ; (4)6-a_______6-b ;(5)-1+2a_______-1+2b ;(6)ac 2_______bc 2.3.(1)已知a<b ,b<c ,则a_______c ;(2)已知a<b ,则b________a .4.若a <b ,则-3a +1________-3b +1.5.若-35x >5,则x ________-3. 6.若a >b ,c ≤0,则ac ________bc .7.若ba b a --||=-1,则a -b ________0. 8.若ax >b ,ac 2<0,则x ________ab . 9.若a +3>b +3,则下列不等式中错误的是( )A.-55b a -<B.-2a <-2bC.a -2<b -2D.-(-a )>-(-b )10.若a >b ,c <0,则下列不等式成立的是( )A.ac >bcB.c b c a <C.a -c <b -cD.a +c <b +c11.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A.b -a >0B.ab >0C.c -b <c -aD.a b 11>图112.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③13.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 14.已知x>y ,则下列不等中不成立的是( )A .x -4>y -4B .-2x>-2yC .33x y >D .-13x<-13y 15.下列不等式的变形中,正确的是( )A .∵-3x>4,∴x>-43B .∵-3x>4,∴x>-34C .∵-3x>4,∴x<-43D .∵-3x>4,∴x<-3416.已知x<y ,要使mx>my 成立,则( )A .m>0B .m<0C .m=0D .m 是任意实数17.如果x<3,则下列不等式错误..的是( ) A .x -3<0 B .2x<6 C .-x>-3 D .x+2008>018.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 19.不等式3(x -2)≤x +4的非负整数解有几个.( )A.4B.5C.6D.无数个 20.不等式4x -41141+<x 的最大的整数解为( ) A.1 B.0 C.-1 D.不存在21.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-622.用不等式的基本性质,试将下列不等式化为x>a或x<a的形式:(1)x-1>3;(2)4x<6;(3)-2x>8.23.如果a<b,则下列不等式必定成立的是()A.am>bm B.am<bm C.am2<bm2D.am2≤bm2 24.如果a<0,则不等式ax>2可化为()A.x<2aB.x>2aC.x<-2aD.x>-2a25.已知关于x的不等式x>32a,表示在数轴上知图,则a的值为()A.1 B.2 C.-1 D.-226.已知a>b,比较12-3a与12-3b的大小.27.试比较a与2a的大小.。
不等式及其性质与解法
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
不等式的性质是什么
不等式的性质是什么?不等式的性质是什么?不等式的性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
一、不等式的基本性质1.如果x>y,那么y<X;如果Yy;(对称性)2.如果x>y,y>z;那么x>z;(传递性)3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;<>6.如果x>y,m>n,那么x+m>y+n;7.如果x>y>0,m>n>0,那么xm>yn;8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N 次幂(N为负数)。
< p>二、不等式的基本性质的另一种表达方式有1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方;7.正值不等式可开方;8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
三、不等式的特殊性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
不等式的四个基本性质
不等式的四个基本性质
《不等式的四个基本性质》
不等式是数学中一个重要的概念,它是用来判断两个数大小关系的符号表达式,用於限定变量的一系列值范围,是数学中重要的研究问题,涉及到许多数学应用,如优化问题等。
一般而言,不等式的四个基本性质是指:互换律、结合律、抵消律和对称性。
首先,不等式的互换律指的是变量在不等式中的顺序不会造成结论的改变,也就是说如果“x > y”,那么“y < x”也是成立的,数学上就满足交换律,所以这也是
不等式的一个基本性质。
其次,不等式的结合律是指可以在不等式的右边或左边添加同号的数,而不会改变不等式的结果,也就是说,“x > y”,当把m+n(m和n为正数)添加到右边时,“x > y + m+n ”也同样成立,所以这也是不等式的一个基本性质。
此外,不等式的抵消律指的是在不等式式左右加上少量
同号的数,可以抵消掉它们,也就是将等式变成不等式。
比如,“x = y + m+n”时,可以令“x > y+m-n”成立,因此抵消律也是不等式的一个基本性质。
最后一个不等式的基本性质是对称性,指的是不等式可以将大于(>)和小于(<)符号进行互换,使得其结果改变,而不必改变数字部分。
如“x > 2”,可以将大
于号换成小于号,得“x < 2”,所以对称性也是不等
式的一个基本性质。
总之,不等式的四个基本性质分别是:互换律、结合律、抵消律和对称性,是在探究不等式时需要遵循的基本性质,是研究不等式的前提。
理解并熟练掌握这四个性质有利于解决更多复杂不等式。
不等式的基本性质知识点总结
4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章不等式本章知识结构图第一节不等式的性质考纲解读1. 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景•2. 掌握不等式的性质及其应用,明确各个性质中结论成立的前提条件,理解绝对值不等式的性质命题趋势探究高考中单纯考查不等式性质的题目不多,但不等式知识几乎可以渗透到高考的每一个考点•不等式的性质是知识点精讲进行不等式变形、证明以及解不等式的依据,所以它仍是高考的一个重点内容.主要考查一下几点:①依据给定的条件,利用不等式的性质判断不等式或与证明不等式有关的结论是否成立; ②利用不等式的性质与实数和函数的性质相结合,进行大小比较;③判断不等式中条件与结论之间的关系,是充分条件、必要条件还是充要条件;④求参数的取值范围;⑤证明不等式时往往使用不等式的推出特征,而解不等式时,则要求同解变形•从命题的趋势来看,预测2019年本专题在高考中会有如下动向:(1)对不等式性质的考查一般不会直接命题,往往与其他知识相结合,如与指数函数、对数函数、数列等结合•(2)若直接命题,则通常比较容易,会出现在选择题或填空题中,若与其他知识相结合,则有可能在解答题中出现,作为求解或证明的一个步骤,为中档难度题.—、基本概念不等关系与等量关系一样,也是自然界中存在的基本数量关系,他们在现实世界和日常生活中大量存在•不等关系建立在表示数量的代数式之间,可以是常量、变量及稍复杂的代数式•用不等号(如“”, “乞”“ _”,“ ”等)连接的式子叫做不等式,其中“ 或“连接的不等式叫做严格不等式;用“—'或“连接的不等式叫做非严格的不等式•不等式可分为绝对值不等式(不论用什么实数代替不等式中的字母,不等式都成立)、条件不等式(只能用某些范围内的实数代替不等式中的字母,不等式才能够成立)和矛盾不等式(不论用什么样的实数代替不等式中的字母,不等式都不能成立)•二、基本性质不等式的性质是证明和解不等式的主要依据•运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误•1. 两个不等式的同向合成,一律为“”(充分不必要条件)(1)a b,b .c= a c (传递性,注意找中间量)(2)a b,c ^= a c b d (同向可加性)(3)a d,d 0,c d,d .0= ac . bd 0 (同正可乘性,注意条件为正)注:如{漓={品"其逆命题不成立如{100爲需2但是{0嘴1.2. 一个不等式的等价变形,一律为“=”(充要条件),这是不等式解法的理论依据(1)a -b =0 := a 二b;a -b ::0 := a ::b; a -b 0= a b.(2)a b = a :b.(对称性)(3)a b,c 0 = ac bc(c 0).(乘正保号性)(4)a b,c :::0 := ac :::bc(c :::0).(5)a・b,c・R= a+c b c.(不等量加等量)(6)a b 0,N .= a n b n 0.(乘方保号性,注意条件为正)(7)a b 0, N.= n a n b0.(开方保号性,注意条件为正)11 11(8)a b, ab 0 (同号可倒性);ab:::0, a ・b ..a a a b最为重要的3条不等式性质为:① a b,c a c b d ;1 1②a b 0,c d 0= ac bd 0 :③a b,ab 0 ,在不等式问题中都有重要的应用但应a b注意他们的适用条件,可以用口诀“同向同正可乘;同号取倒需反向”来记忆.题型归纳及思路提示题型88不等式的性质思路提示应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.例7.1对于实数a,b,c ,有以下命题:①若a • b,则ac :::bc;②若ac2・bc2,则a b;③若a b :::0则2 2 a b 1 1a ab b ;④若c a b 0,则;⑤若a b, ,则a • 0,b :::0.其中真命题的个数c-a c-b a b是()A. 2个B. 3个C. 4个D. 5个变式1设a,bwR,若a-b>0,则下列不等式中正确的是()3 3 2 2A. b - a 0B. a b :: 0C. b a 0D. a b :: 0变式2设a,b是非零实数若a :::b,则下列不等式中成立的是()2 ‘ 2 2 21 1 b aA. a ::: bB.ab ::: a bC. 2 '、、 2D.ab a b a b变式3若a : b ::: 0,则下列结论中正确的是()A.和A:1>厂[均不成立a b l a lB.11>-和-1二1> 77均不成立a —b a a||b|C.不等式1 .1>1 2和(a +—)>1 2 、—)均不成立a —b a a aD.不等式1 1n >T一和(a十丄『〉(b+1)2均不成立|a| t) a a变式4若0 eq <a2,0 vb, <4,,且ai +a2 =b +bz =1,则下列代数式中值最大的是()A.吐a2b iB. da? b|b2C. dS a2b21 D.-2题型89 比较数(式)的大小与比较法证明不等式思路提示比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性•比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幕或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:K k K若a 0,b 0,则一.1 = b a ;—::1 = b ::a ;—=1 = b=a ;a a a若a ::: 0,b ::: 0,则一.1= b :: a ; - ::1,b a ;—=1 = b=a ;a a a33 2 2例7.2若a b 0且a = b試比较a • b与a b ab的大小.变式 1 若x ::: y ::: 0 試比较(x2• y2)(x - y)与(x2 - y2)(x • y)的大小变式2设a b • 0 a = b且试比较a a b b与a b b a的大小例7.3在锐角:ABC中,若函数y = f(x)在[0,1]上单调递减,则下列命题中正确的是(A. f (cos A) f (cos B)B. f (sin A) f (sin B)C. f (sin A)f(cos B)D. f(cosB) f (sin A)变式1已知函数f (x)是R上的偶函数,且在区间[0, •::)上是增函数,令a 二f (sin ),b 二f (cos ),c 二f (tan 〒),则()A. b :: a :: cB. c b :: aC. b c aD. a :: b :: c、. 3变式 2 已知函数f (x)二x x,)^,x2, x^ R, x, x2:: 0,x2x3:: 0, X3 ' :::f (X1)f(X2) f(X3)的值()A. 一定大于0B. 一定小于0C.等于0D.确定题型90 已知不等式的关系,求目标式的取值范围思路提示在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围则会导致范围扩大而只能建立已知与未知的直接关系•例7.4已知_1 ::: x y ::: 4,且2 ..x - y .■ 3则z = 2x _3y的取值范围是__________ .2变式1已知f -ax -c且,-4 <f (1)乞-1, -1乞f(2) <5,求f(3)的范围.2 3变式2设x,y为实数,满足3岂xy2< 8,4 _仝一9,,则勺的最大值是 _________y y1 b , ,b 2a 却’ 1 , , b C. a log 2 a b ab2 b ,, 1B.歹::log 2 a b :: a -b1 1 1 ;③a +bab1 17. 已知四个条件:a :::0 ::: b,b ::: a ::: 0,0 ::: b ■ a 能推出 成立的有 _________ 个.a b8. 若1 :::「:: 3,-4 • I— 2,,则,--的取值范围是 ___________ .9. 已知下列三个不等式:① ab 0 :②— d :③bc bd ,以其中两个作为条件,余下一个作为结论,则可a b能成 _______ 个正确命题.10. 已知1 : a b 2且2 :::a-b :::4,求2a ' 3b 的取值范围.211. 设 f (x)二 ax bx,且 1 < f (-1)乞 2,2 乞 f (1)乞 4,求 f (-2)的取值范围.2 212. 若实数 a,b,c 满足 b+c =5a -8a ,11,b-c=a -6a+9,试比较 a,b,c 的大小.1. 2. 3. 4. 最有效训练题26 (限时45分钟)(2016年北京高考)已知 x ,y R ,且x ■ y ■ 0,则() A.1-1 0x y1 x 1B.sin x —sin y • 0C.( )x -( )y ::: 0 2 2设0 ::: b ::: a ::: 1,则下列不等式中成立的是( ) 2b aab ::: b ::: 1 B. log2 b ::: log [ a ::: 0 C.2 ::: 22 2A.<1已知 A.D.ln x +ln y =02 , ‘D. a ::: ab ::: 1a,b,m R ,并且a ::: b,那么一定成立的是( a m a a m aB.b m bb ma - m aC. --------- > —b b - m bD.(2017山东理7)若a b 0 , 且ab =1,则下列不等式成立的是(5. 若 a ::b :: 0,给出下列不等式其中正确的个数是(A. B. 1C. 2D.36.已知 a, b R, F 列四个条件中A. a b -1B. a b 1,使得a b 成立的必要而不充分条件是D. 2a2bc. a a bD. log 2 a b ::: a2 2a 1b ;② 1 —a > b —1。