人教版七年级上册数学课时跟踪训练:第2章 整式的加减 培优练习
人教版七年级数学上新课标数学核心素养 第二章《整式的加减》课时达标全能提升培优高效训练(含答案)
人教版数学七年级上册课时同步练2018年8月整式的加减能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.多项式8x2-3x+5与多项式3x3+2mx2-5x+3相加后不含二次项,则m等于()A.2B.-2C.-4D.-84.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,空格的地方被钢笔弄污了,则空格中的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2 015=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若A=3a2-5b+4,B=3a2-5b+7,则A B.(填“>”“<”或“=”)8.小雄的储蓄罐里存放着家长平时给他的零用钱,这些钱全是硬币,为了支援贫困地区的小朋友读书,他将储蓄罐里所存的钱都捐献出来.经清点,一角钱的硬币有a枚,五角钱的硬币比一角钱的3倍多7枚,一元钱的硬币有b枚,则小雄一共捐献了元.9.先化简,再求值.2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.★10.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1”.甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出这个结果.★11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.创新应用★12.已知实数a,b,c的大小关系如图所示:求|2a-b|+3(c-a)-2|b-c|.★13.试说明7+a-{8a-[a+5-(4-6a)]}的值与a的取值无关.参考答案能力提升1.A由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B3.C4.C=-x2+3xy-y2+x2-4xy-=-x2-xy-y2-=-x2-xy+y2,故空格中的这一项应是-y2.5.2 016由a3-a-1=0,得a3-a=1,整体代入a3-a+2015=1+2015=2016.6.x因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2,所以多项式的值与x无关.7.<因为A-B=(3a2-5b+4)-(3a2-5b+7)=3a2-5b+4-3a2+5b-7=-3,所以A<B.8.1.6a+b+3.5一角钱的硬币有a枚,共0.1a元;五角钱的硬币比一角钱的3倍多7枚,共0.5(3a+7)元;一元钱的硬币有b枚,共b元,所以共(1.6a+b+3.5)元.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.可以看出化简后的式子与x的值无关.故甲同学把“x=”错抄成“x=-”,计算的结果也是正确的.当y=-1时,原式=-2×(-1)3=-2×(-1)=2.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.创新应用12.解:由数轴上a,b,c的位置可知,a<0<b<c,则2a-b<0,b-c<0.所以|2a-b|=b-2a,|b-c|=c-b.所以|2a-b|+3(c-a)-2|b-c|=(b-2a)+3(c-a)-2(c-b)=b-2a+3c-3a-2c+2b=(-2a-3a)+(b+2b)+(3c-2c)=-5a+3b+c.13.解:原式=7+a-8a+[a+5-(4-6a)]=7+a-8a+a+5-(4-6a)=7+a-8a+a+5-4+6a=8,故原式的值与a的值无关.。
人教版2020七年级数学上册第二章整式的加减培优提升训练题2(附答案详解)
人教版2020七年级数学上册第二章整式的加减培优提升训练题2(附答案详解) 1.下列运算正确的是( )A .43m m -=B .33323a a a -=-C .220a b ab -=D .2yx xy xy -= 2.若323m a b --与12n b a +是同类项,则m 、n 的值分别为( )A .1,1B .5,3C .5,1D .-1,-1 3.在式子1x ,a ,25x y +,0.9,132-,2a -,23x y -,13x + 中,单项式的个数是( )A .5个B .4个C .3个D .2个 4.若代数式6a x b 6与a 5b y 是同类项,则x ﹣y 的值是( )A .11B .﹣11C .1D .﹣15.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定 6.下列式子:2a 2b ,3xy -2y 2,2a b +,4,-m ,2x yz x +,ab c π-,其中多项式有( )A .2个B .3个C .4个D .5个7.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式 8.小雨写了几个多项式,其中是五次三项式的是( )A .y 5-1B .5x 2y 2-x+yC .3a 2b 2c-ab+1D .3a 5b-b+c9.用黑白两种颜色的正六边形地砖按如图所示的规律拼成若干图案,第n 个图案中,白色地砖共( )块.A .4n+2B .5n+2C .6n ﹣2D .6n10.下列说法正确的是()A .单项式x 3yz 4系数是1,次数是7B .x 2y+1是三次二项式C .单项式232a b π-的系数是12-,次数是6D .多项式223++x xy 是四次三项式 11.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O上的点1A 处,再向左沿着与射线1A O 夹角为60︒的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60︒的方向运动到O 上的点4A 处;…按此规律运动到点A 2018处,则点A 2018与点0A 间的距离是( )A .4B .23C .2D .012.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:_____.13.如果x 123a b +与32y 7a b -是同类项,那么合并的结果是________.14.下列图形由正六边形、正方形和等边三角形组成,自左向右,第1个图中有6个等边三角形;第2个图中有10个等边三角形;第3个图中有14个等边三角形组成;…按照此规律,第n 个图中等边三角形的个数为_____个.15.一个只含有字母a 的二次三项式,它的二次项系数,一次项系数均为﹣3,常数项为1,则这个多项式为______16.多项式2231x y xy -+的次数是__________,常数项是__________.17.-2x 2y 的系数是_____________.18.一辆客车上原有(6a ﹣2b )人,中途下车一半人数,又上车若干人,这时车上共有(12a ﹣5b )人.则中途上车的乘客是_____人.19.若与所得的差是单项式,则m = ______ n = ______.20.一列式子:-x ,2x 2,-3x 3,…,-9x 9,10x 10,……,按照这列数排列规律,你认为第n 个数为______21.若3a 2bc m 为七次单项式,则m 的值为___.22.如图1,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为_____.(用含a ,b 的代数式表示)23.设22132A x xy y =--,22242B x xy y =--,那么,2 1.5A B -=________. 24.观察图形,解答问题(1)按下表已填写的形式填写表中的空格; 图① 图②图③三个角上三个数的积 1×(-1)×2=-2(-3)×(-4)×(-5)=-60 三个角上三个数的和 1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商 (-2)+2=-1 (2)请用你发现的规律求出图④中的数x .25.化简:(1)12x ﹣20x+10x(2)2(2a ﹣3b )﹣3(2b ﹣3a )26.先化简,再求值:5ab-a 3b 2-ab+12a 3b 2-32ab-a 3b 2+2,其中a=-1,b=2. 27.计算某个整式减去多项式238ab bc a bc ac -+++时,一个同学误认为是加上此多项式,结果得到的答案是28ab bc ac -++.请你求出原题的正确答案.28.化简:﹣2x 2﹣5x +3﹣3x 2+6x ﹣1.29.阅读材料:计算1+2+22+23+24+…+22017+22018.解:设S =1+2+22+23+24+…+22017+22018,①将等式两边同时乘2,得2S =2+22+23+24+25+…+22018+22019,②由②-①,得2S -S =22019-1,即S =22019-1,即1+2+22+23+24+…+22017+22018=22019-1.请你仿照此法回答下列问题:(1)填空:1+2+22+23=________;(2)计算:1+2+22+23+24+…+29+210;(3)计算:1+13+(13)2+(13)3+(13)4+…+(13)n (其中n 为正整数). 30.已知多项式mx 5+nx 3+px ﹣7=y ,当x=﹣2时,y=5,当x=2时,求y 的值.31.已知2220a a +-=,求代数式()()()3232241a a a a +---的值.32.化简:(1)221232x xy x xy ⎛⎫---+⎪⎝⎭ (2)()()222222132a b ab a b ab +----33.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.如图1是一个长为2a 、宽为2b 的长方形(其中a ,b 均为正数,且a b >),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.()1你认为图2中大正方形的边长为________;小正方形(阴影部分)的边长为________.(用含a 、b 的代数式表示)()2仔细观察图2,请你写出下列三个代数式:2()a b +,2()a b -,ab 所表示的图形面积之间的相等关系,并选取适合a 、b 的数值加以验证.()3已知7a b +=,6ab =.求代数式()a b -的值.34.(1)化简:3a 3﹣(3a 2+b 2﹣5b )+a 2﹣5b+b 2(2)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=2,y=﹣2 335.先化简,再求值,x2- 3(2x2- 4 y) + 2(x2-y) ,其中| x + 2 | +(5 y -1)2 = 0.参考答案1.B【解析】A. 43m m m -= ,错误;B. 33323a a a -=- ,正确;C. 22a b ab 与 不是同类项,不能合并,故错误;D. 2yx xy xy -=-,错误,故选B.2.C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值.【详解】∵323m a b --与12n b a +是同类项,∴m -3=2,2=n+1,∴m=5,n=1.故选C.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.3.A【解析】【分析】根据单项式的定义进行解答即可.【详解】解:0.9,a,1 32-是单独的一个数,故是单项式;2a -,23x y -是数与字母的积,故是单项式. 所以A 选项是正确的.【点睛】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.4.D【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得x、y的值,进而解答即可.【详解】因为代数式6a x b6与a5b y是同类项,可得:x=5,y=6,所以x-y=5-6=-1,故选D.【点睛】本题考查了同类项,关键是根据同类项是字母相同,且相同的字母的指数也相同解答.5.A【解析】【分析】设重叠部分的面积为x,由题意可得m=7﹣x,n=3﹣x,两式相减即可.【详解】解:设重叠部分的面积为x.由题意得,m=7﹣x,n=3﹣x,∴m﹣n=(7﹣x)﹣(3﹣x)=4,故选A.【点睛】利用面积分别列出两个等量关系是本题的关键.6.B【解析】2a2是单项式,3xy−2y2是多项式,a b2+是多项式,4是单项式,−m是单项式,x yz2x+不是多项式,ab cπ-是多项式.故选:B. 7.B 【解析】【分析】本题考查多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】根据多项式的定义,多项式3x3−2x2y2+x+3有4项,最高项的指数是4,因此是四次四项式. 故答案选B.【点睛】本题考查了多项式的定义,解题的关键是熟练的掌握多项式的定义.8.C【解析】【分析】利用多项式的系数与次数的定义解答即可.【详解】A.中的多项式是五次二项式,B.中的多项式是四次三项式,D.中的多项式是六次三项式.故选C.【点睛】本题考查了多项式的次数和系数,几个单项式的和叫做多项式,一个多项式中,次数最高的项的次数,叫做这个多项式的次数.9.A【解析】【分析】根据已知图形得出每个图形都比其前一个图形多4个白色地砖,据此可得答案.【详解】∵每个图形都比其前一个图形多4个白色地砖,∴可得规律为:第n个图形中有白色地砖6+4(n﹣1)=4n+2(块),故选A.【点睛】此题主要考查图形的变化类问题,重点考查了学生通过特例分析从而归纳总结出一般结论的能力.10.B【解析】【分析】分别利用单项式中的数字因数叫做单项式的系数,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:A、单项式x3yz4系数是1,次数是8,错误;B、x2y+1是三次二项式,正确;C、单项式-232a bπ的系数是-2π,次数是5,错误;D、多项式2x2+xy+3是二次三项式,错误;故选B.【点睛】此题主要考查了单项式与多项式,正确把握相关定义是解题关键.11.B【解析】试题解析:解:如图.∵⊙O的半径=2,由题意得,A0A1=4,A0A2=23,A0A3=2,A0A4=23,A0A5=2,A0A6=0,A0A7=4,…∵2018÷6=336…2,∴按此规律运动到点A2018处,A2018与A2重合,∴A0A2018=A0A2=23.故选B.点睛:本题考查了图形的变化类,正确的作出图形是解题的关键.12.﹣2x3(答案不唯一).【解析】【分析】根据单项式系数、次数的定义来求解即可.【详解】单项式的次数是指单项式中所有字母因数的指数和,所以符合条件单项式可为﹣2x3,故答案为﹣2x3(答案不唯一).【点睛】本题考查了单项式的概念和单项式的次数的概念,单项式的次数是指单项式中所有字母因数的指数和.熟记概念是解题关键.13.324a b-【解析】【分析】同类项是指所含字母相同,且相同字母的指数也相同的单项式.根据定义即可求出答案.【详解】根据定义可得:1322xy+=⎧⎨=⎩,解得:21xy=⎧⎨=⎩,则323232374a b a b a b-=-.【点睛】本题主要考查的是同类项的定义以及合并同类项的法则,属于基础题型.理解同类项的定义是解决这个问题的关键.14.4n+2【解析】【分析】根据题中等边三角形的个数找出规律,进而得到结论.【详解】解:∵第1个图由6=4+2个等边三角形组成,∵第二个图由10=4×2+2等边三角形组成,∵第三个图由14=3×4+2个等边三角形组成,∴第n个等边三角形的个数之和4n+2.故答案为:4n+2.【点睛】本题考查的是图形规律的变化类题目,根据图形找出规律是解答此题的关键.15.﹣3a2﹣3a+1.【解析】解:由题意得:该多项式为:﹣3a 2﹣3a +1.故答案为:﹣3a 2﹣3a +1.点睛:此题考查的是多项式的性质,根据条件及多项式的项及次数的定义可以得出所求的多项式.16.3, 1【解析】【分析】根据多项式的系数和项的定义得出即可.【详解】多项式2231x y xy -+的次数是3,常数项是1,故答案为:3,1【点睛】本题考查了多项式,掌握多项式中最高次项的次数叫多项式的次数,不含字母的项叫多项式的常数项是解题的关键.17.-2.【解析】解:-2x 2y 的系数是-2.故答案为:-2.18.(9a ﹣4b ).【解析】【分析】先求出中途下车后车上剩余的人数,然后用最后车上的人数减去中途下车后剩余的人数就是上车的人数.【详解】解:根据题意,中途下车后车上剩余的人数为: 12×(6a-2b )=3a-b , (12a-5b )-(3a-b )=12a-5b-3a+b=9a-4b .故答案为(9a-4b ).【点睛】本题主要考查了整式的加减,求出中途下车后剩余的人数是解题的关键,计算时要注意符号的处理,这是本题容易出错的地方.19.2 4【解析】【分析】根据差是单项式,可得同类项,根据合并同类项,可得答案.【详解】由3a2b n与-5a m b4所得的差是单项式,得与,故m=2,n=4,故答案为:2,4.【点睛】本题考查了合并同类项,系数相加字母及指数不变是解题关键.-20.()1n n nx【解析】【分析】从系数、指数分别进行分析即可.【详解】解:观察系数可知,每奇数项的符号均为“-”,系数数字以及指数均同于序号数,由此可得-.第n个数为()1n n nx【点睛】本题考察了数字规律的探索.21.4.【解析】【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为:4.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.5a ﹣9b【解析】【分析】剪下的上面一个小矩形的长为a ﹣b ,下面一个小矩形的长为a ﹣2b ,宽都是()132a b -,所以这两个小矩形拼成的新矩形的长为a ﹣b+a ﹣2b ,宽为()132a b -,然后计算这个新矩形的周长.【详解】新矩形的周长为 ()()()12[23]592a b a b a b a b .-+-+-=- 故答案为5a ﹣9b .【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a 和b 表示出剪下的两个小矩形的长与宽. 23.2225x y -+-【解析】【分析】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,然后去括号合并同类项即可. 【详解】 把22132A x xy y =--,22242B x xy y =--代入2 1.5A B -,得 2222123 1.52422x xy y x xy y -----()() 222262363x xy y x xy y =---++222262363x xy y x xy y =---++=2225x y -+-.故答案为:2225x y -+-.本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.24.(1)5;170;10;17(2)x =-30【解析】试题分析:(1)仔细观察图形和表格中的数据变化,发现规律并利用规律分别写出即可; (2)根据发现的规律直接写成即可.试题解析:(1)图②.()()60125-÷-=图③(﹣2)×17×(﹣5)=170 (﹣2)+17+(﹣5)=101701017÷=(2)()()589360⨯-⨯-=()()58912+-+-=-()3601230÷-=-所以x=﹣30.25.(1)2x (2)13a-12b【解析】试题分下:(1)直接合并同类型即可,即把系数相加,字母和字母的指数不变; (2)先去括号,然后合并同类项,去括号时一是要注意不要漏乘括号内的项,二是注意括号前是“-”时,去掉括号和“-”后括号内各项的符号都要变号.解:(1)12x ﹣20x+10x原式=(12-20+10)x=2x(2)2(2a ﹣3b )﹣3(2b ﹣3a )原式 =4a-6b-6b+9a=13a-12b26.52ab-32a 3b 2+2,3.【分析】原式去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.【详解】原式=35--ab 2ab ab ⎛⎫ ⎪⎝⎭+3232321--2a b a b a b ⎛⎫+ ⎪⎝⎭+2 =52ab-32a 3b 2+2. 当a=-1,b=2时,原式=52×(-1)×2-32×(-1)3×22+2 =-5+6+2=3.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.4368ab bc a ac -+--.【解析】【分析】设该整式为A ,根据题意求出A 的表达式,再进行正确的计算即可.【详解】设该整式为A ,∵A+(b ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ,∴A=(﹣2ab+bc+8ac)﹣(ab ﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣3ab+2bc ﹣3a ,∴A ﹣(ab ﹣2bc+3a+bc+8ac )=(﹣3ab+2bc ﹣3a)﹣(ab ﹣2bc+3a+bc+8ac)=﹣3ab+2bc ﹣3a ﹣ab+2bc ﹣3a ﹣bc ﹣8ac=﹣4ab+3bc ﹣6a ﹣8ac .28.252x x -++.【解析】试题分析:先找出题目中的同类项,再根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.试题解析:解:原式=(﹣2﹣3)x2+(﹣5+6)x+(3﹣1)=﹣5x2+x+2.点睛:本题主要考查合并同类项的法则.关键是掌握系数相加作为系数,字母和字母的指数不变.合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.29.(1)15;(2) 211-1;(3) 32-12×(13)n【解析】【分析】(1)分别计算出各数,然后求和即可;(2)设S=1+2+22+23+24+…+210,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(3)同理即可得到所求式子的值.【详解】(1)1+2+22+23=1+2+4+8=15.故答案为15.(2)设S=1+2+22+23+24+…+29+210,①等式两边同时乘2,得2S=2+22+23+24+…+210+211,②由②-①,得S=211-1,即1+2+22+23+24+…+21032=211-1.(3)设S=1+13+(13)2+(13)3+(13)4+…+(13)n,等式两边同时乘13,得13S=13+(13)2+(13)3+(13)4+…+(13)n+1,两式相减,得23S=1-(13)n+1,则S=32-32×(13)n+1=32-12×(13)n,即1+13+(13)2+(13)3+(13)4+…+(13)n=-12×(13)n.【点睛】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.30.-19【解析】先把x =﹣2时,y =5代入,整理得25m +23n +2p =-12①,把代入mx 5+nx 3+px ﹣7=y ,得y =25m +23•n +2p ﹣7②,然后把①代入②即可.【详解】当x=﹣2时,y=m×(﹣2)5+n•(﹣2)3+p (﹣2)﹣7=5,则﹣25m ﹣23n ﹣2p ﹣7=5,﹣25m ﹣23n ﹣2p=12,25m+23n+2p=-12①,当x=2时,y=25m+23•n+2p ﹣7②,把①代入②得:y=﹣12﹣7=﹣19.【点睛】本题考查了整体代入法求代数式的值,解答本题的关键是观察题目的特点,整体代入求解. 31.-2【解析】【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并后将已知等式变形代入计算即可求出值.【详解】2220a a +-=,222a a ∴+=,则原式222948224242a a a a a =--+=+-=-=-.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.32.(1)2332x -;(2)2ab -. 【解析】【分析】(1)先去括号后再合并同类项即可.(2)先去括号后再合并同类项即可.(1)原式2221323 3.22x xy x xy x =--+-=- (2)原式22222222232.a b ab a b ab ab =+-+--=-【点睛】考查整式的化简,掌握去括号法则以及合并同类项法则是解题的关键.33.(1)a +b ;a -b ;(2)(a +b )2=(a -b )2+4ab (3)a -b =5【解析】【分析】()1观察图形的出图2中大小正方形的边长;()2 由()1可得大正方形的面积2()a b +,减去阴影部分的小正方形的面积2()a b -,等于4块小长方形的面积4ab ,即22()()4a b a b ab +=-+; () 3由()2可以求出222()()474625a b a b ab -=+-=-⨯=,进一步开方得出答案即可.【详解】()1大正方形的边长为+a b ;小正方形的边长(阴影部分)为-a b ;()2 22()()4a b a b ab +=-+.例如:当5a =,2b =时,22()(52)49a b +=+=,()()2245245249a b ab -+=--⨯⨯=, 22()()4a b a b ab ∴+=-+.()3 22()()4a b a b ab +=-+,222()()474625a b a b ab ∴-=+-=-⨯=,5a b ∴-=或5a b -=-,a b >,5a b ∴-=.【点睛】本题主要考查列代数式,完全平方公式的实际应用,掌握图形与代数式的关系是解题的关键.34.(1)3a3﹣2a2;(2)﹣2x+3y2,﹣8 3【解析】【分析】(1)直接利用去括号,进而合并同类项得出答案;(2)直接利用去括号,进而合并同类项,把已知代入得出答案.【详解】(1)原式=3a3-3a2-b2+5b+a2-5b+b2,=3a3-2a2;(2)原式=x-2x+2y2-x+y2,=-2x+3y2,当x=2,y=-23时,原式=-2×2+3×(-23)2,=-4+43,=-83.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.35.-3x2+10y,-10.【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】原式=x2-6x2+12y+2x2-2y=-3x2+10y,∵|x+2|+(5y-1)2=0,∴x=-2,y=15,则原式=-12+2=-10.【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。
(人教版)南京七年级数学上册第二章《整式的加减》测试题(培优)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.3.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.4.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.6.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.8.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D【分析】 利用大正方形的周长减去4个小正方形的周长即可求解.【详解】 解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b -, ∴大正方形的周长与小正方形的周长的差是:2a b +×4-4a b -×4=a+3b. 故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.11.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.12.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.13.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.14.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31,9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.2.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次 解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.4.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.6.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.7.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.8.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b+【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.9.如果13kx y与213x y-是同类项,则k=______,21133kx y x y⎛⎫+-=⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 1.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.2.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.3.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键. 4.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。
人教版七年级数学上册课时练 第二章 整式的加减 2.2整式的加减
人教版七年级数学上册课时练 第二章 整式的加减 2.2整式的加减一、选择题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=22.下列计算正确的是( )A .224x x x +=B .2352x x x +=C .3x ﹣2x=1D .2222x y x y x y -=-3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --4.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .325.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( )A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔6.某天数学课上老师讲了整式的加减运算,小颖回家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:5(2a 2+3ab-b 2)-(-3+ab+5a 2+b 2)=5a 2■-6b 2+3被墨水弄脏了,请问被墨水遮盖住的一项是()A .+14abB .+3abC .+16abD .+2ab 7.有两桶水,甲桶装有a 升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的13倒给甲桶,假定桶足够大,水不会溢岀.我们将上述两个步骤称为一次操作,进行重复操作,则( ) A .每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B .每操作一次,甲桶中的水量都会减小,但永远倒不完C .每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D .每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少8.已知m)n 为常数,代数式2x 4y)mx |5-n|y)xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个9.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x )y 有关B .与x 有关C .与y 有关D .与x )y 无关10.有理数m)n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A .mB .2n -mC .-mD .m -2n 二、填空题11.给定一列按规律排列的数:32-,1,710-,917,…,根据前4个数的规律,第2020个数是_____. 12.若(x -1)4(x+2)5=a 0+a 1x+a 2x 2+…+ a 9x 9,求:a 1+a 3+a 5+a 7+a 9=________.13.观察下列单项式:0,23x -,38x ,415x -,524x ⋯按规律写出第n 个单项式是________.14.若3132m a b -与52114n a b +的和仍是单项式,则56m n +的值为______ ) 15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12)16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3)5)7)8)9)11)12)13)15)16)17)19)20)21)23)24)25)…则第2 013个“智慧数”是______.三、解答题16.已知关于,x y 的多项式212x my +-与多项式36nx y -+的差中不含有关于,x y 的一次项,求m n mn ++的值. 17.有这样一道题“计算:(2m 4-4m 3n -2m 2n 2)-)m 4-2m 2n 2)+)-m 4+4m 3n -n 3)的值,其中14m =)n=-1.”小强不小心把14m =错抄成了14m =-,但他的计算结果却也是正确的,你能说出这是为什么吗? 18.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x 条(x >2).(1)若该客户按方式一购买,需付款 元(用含x 的式子表示);若该客户按方式二购买,需付款 元.(用含x 的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.19.如图,数轴上有三个点A ,B ,C ,表示的数分别是﹣4,﹣2,3.(1)若使C 、B 两点的距离是A 、B 两点的距离的2倍,则需将点C 向左移动 个单位;(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒a 个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t 秒:①点A 、B 、C 表示的数分别是 、 、 (用含a 、t 的代数式表示);②若点B 与点C 之间的距离表示为d 1,点A 与点B 之间的距离表示为d 2,当a 为何值时,5d 1﹣3d 2的值不会随着时间t 的变化而改变,并求此时5d 1﹣3d 2的值.20.已知210x x +-=,求322002200120032007x x x +--的值.21.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.22.有一道题目,是一个多项式减去2146x x +-,小强误当成了加法计算,结果得到223x x -+,正确的结果应该是多少?23.在数学中,有许多关系都是在不经意间被发现的.当然,没有敏锐的观察力是做不到的.数学家们往往是这样来研究问题的:特值探究–猜想归纳–逻辑证明–总结应用.下面我们也来像数学家们那样分四步找出这两个代数式的关系:对于代数式()()a b a b +-与22a b -)()1特值探究)当2a =)0b =时,()()a b a b +-=________)22a b -=________当5a =-)3b =时,()()a b a b +-=________)22a b -=________()2猜想归纳:观察()1的结果,写出()()a b a b +-与22a b -的关系:________)()3逻辑证明:如图,边长为a 的正方形纸片剪出一个边长为b 的小正方形之后,剩余部分(即阴影部分)又剪拼成一个矩形(不重叠无缝隙),请你说说是如何用这个图来得出()2中的关系?()4总结应用:利用你发现的关系,求:①若226a b -=,且2a b +=,则a b -=________)②()()()()()248162121212121+++++的值.(提示:你可能要用到公式()m n mn a a =) 【参考答案】1.B 2.D 3.C 4.A 5.D 6.A 7.D 8.C 9.D 10.C 11.4041408040112.-813.()()1(1)11n n n n x ---+14.1615.2 68716.-717.才会出现小强计算结果也是正确的18.(1)200x+1200;180x+1440;(2)按方案一购买较合算;(3)先按方案一购买2套西装获赠送2条领带,再按方案二购买3条领带. 所需费用为1600+200×3×90%=2140(元),是最省钱的购买方案.19.(1)1或9(2)①﹣4﹣at ;﹣2+2t ;3+5t ;②19.20.-2008.21.(1)8b 2+4ab ;(2)422.2915x -+)23.()14)4)16)16) ()2 ()()22a b a b a b +-=-)()3 略;()4①3)②3221-.。
部编数学七年级上册第二章整式的加减(培优)(解析版)含答案
人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .﹣5,5C .5,5D .﹣5,﹣5【答案】B3.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b−1)(1−a−b )的值为A .− 16B .− 8C .8D .16【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x+C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题11.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y-1可合并为12a 2b 4,则xy-mn=___________.【答案】-3三、解答题16.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b-+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。
新人教版数学七年级上册第二章整式的加减2.2《整式的加减》课时练习.doc
新人教版数学七年级上册2.2整式的加减课时练习一、选择题(共15小题)1.下列叙述式子2m 的意义的句子中,不正确的是( ) A .m 除2 B .m 除以2 C .m 的21 D .21与m 积 答案:A知识点:列代数式解析:解答:m 除2可列的式子为2m,所以答案为A . 分析:一个数“除以”另一个数,则前数是被除数,后数是除数; 一个数“除”另一个数,则前数是除数,后数是被除数.2.下列各式中,正确的是( )A .ab b a 33=+B .x x 27423=+C .42)4(2+-=--x xD .)23(32--=-x x答案:D知识点:整式的加减解析:解答: A 与B 中的两项均不是同类项,所以不能进行合并;C 应该为2(4)28x x --=-+. 分析:同类项是所含的字母相同,并且各字母的指数也分别相同的单项式;去括号的实质是分配律,在应用时要将括号前的数字因数与括号内的各项相乘.3.下列各组式子中,是同类项的是( )A .y x 23与23xy -B .xy 3与yx 2-C .x 2与22x D .xy 5与yz 5 答案:B知识点:同类项解析:解答:同类项是所含的字母相同,并且各字母的指数也分别相同的单项式,所以选B . 分析:同类项必须含的字母相同,并且各字母的指数也分别相同;但是字母的排列顺序及系数是可以不同的.4.下列说法中正确的是( )A .单项式x 的系数和次数都是零B .343x 是7次单项式C .25R π的系数是5D .0是单项式答案:D知识点:单项式解析:解答:A 中单项式x 的系数和次数都是1;B 中433x 是三次单项式;25R π的系数是5π;D 中单独的一个数也是单项式,所以D 选项正确.分析:在单项式中系数与次数中的1通常省略不写;单项式的次数是所以字母的指数和与数字因数的指数无关;π是数字不是字母.5.将多项式a a a -++-132按字母a 升幂排列正确的是( )A .123+--a a aB .132++--a a aC .a a a --+231D .321a a a +--答案:D知识点:多项式解析:解答:为了书写的美观与今后计算的方便将多项式各项的位置按某个字母的指数从小到大的顺序来排列叫做按该字母的升幂排列,若是从大到小的排列就叫做按该字母的降幂排列. 分析:多项式重新排列时,每一项一定要连同它的符号一起移动.6.右图是一个数值转换机,若输入的x 为–7,则输出的结果是( )A .12B .–14C .27D .21答案:C知识点:代数式求值解析:解答:根据图示可列出一个关于x 的代数式()23--x ,根据题意将7-=x 代入该式的到结果27所以C 选项正确.分析:本类型题目也可以直接将数字代入“转换机”中进行运算.7.)]([n m ---去括号得 ( )A .n m -B .n m --C .n m +-D .n m +答案:A知识点:去括号法则解析:解答:()[()]m n m n m n ---=--+=-;或因为负负得正,所以 [()]m n m n ---=-. 分析:①括号外的因数是负数时,去括号后原括号内各项要变号;②有多重括号时,一般按先去小括号,再去中括号,最后去大括号的顺序进行.8.将)(4)(2)(y x y x y x +-+++合并同类项得( )A .)(y x +B .)(y x +-C .y x +-D .y x -答案:B知识点:合并同类项解析:解答:将x +y 看作一个整体进行合并同类项,那么x +y 的系数和为1+2-4=-1,所以B 选项正确.分析:整体的思想是数学中一种比较重要的思想,可以使得题目更容易解决.9.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8答案:B知识点:合并同类项;多项式解析:解答:根据题意可得:()()2322323283532578353257382812x x x mx x x x x mx x x m x x -+++-+=-+++-+=++-+ 又因为两个多项式相加后不含二次项所以820m +=即4m =-.分析:本题考查了合并同类项与多项式中不含某次项即某次项的系数为0.10.下列说法正确的是( )A .0不是单项式B .a b 是单项式 C .2x y 的系数是0 D .32x -是整式 答案:D知识点:多项式;单项式;整式的定义解析:解答:A 中单独的一个数也是单项式;B 中单项式的分母中不含有字母;C 中2x y 的系数是1;D 中的代数式是整式中的多项式.分析:整式的概念中关键概念是单项式的概念,其中易错的地方是:单独的一个数或字母是单项式;单项式中系数与次数中的1时可以省略不写;单项式的分母中不能含有字母.11.把多项式34223-++-x y x xy x 按x 的降幂排列是( )A .22343xy y x x x --++B .33422-+++-x x y x xyC .43223x x y x xy +++--D .32234--++xy y x x x答案:D知识点:多项式解析:解答:为了书写的美观与今后计算的方便将多项式各项的位置按某个字母的指数从大到小的排列就叫做按该字母的降幂排列.分析:多项式重新排列时,每一项一定要连同它的符号一起移动.12.已知2514y x 和2331y x m -是同类项,则代数式2412-m 的值是( )A .-3B .-5C .-4D .-6答案:C知识点:同类项解析:解答:因为5214x y 和3231m x y -是同类项,所以35m =即53m =,所以 42435122412-=-⨯=-m .分析:同类项是所含字母相同,并且相同字母的指数也分别相同的项,由此可知字母x 的次数相等即的35m =.13.下列判断:(1)π2xy -不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)xx +1是整式,其中正确的有( ) A .1个 B .2个 C .3个 D .4个答案:A知识点:单项式;多项式;整式的定义解析:解答:其中只有(2)正确,所以A 选项正确.分析:整式的概念中关键概念是单项式的概念,其中易错的地方是:单独的一个数或字母是单项式;单项式中系数与次数中的1时可以省略不写;单项式的分母中不能含有字母,特别的π是一个数字.14.下列说法正确的是( )A .32xyz 与32xy 是同类项B .x 1和21x 是同类项 C .0.523y x 和732y x 是同类项 D .5n m 2与-42nm 是同类项答案:D知识点:同类项解析:解答:A 中所含字母不是完全相同;B 中实质为相同字母的指数不相同,x1的指数实际上为-1;C 中相同字母的指数不相同;D 中符合同类项的定义,因此为正确选项.分析:判断是否是同类项,要从同类项的定义出发;特别的字母的排列顺序与系数可以不同.15.已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( ) A .-1 B .-2 C .-3 D .-4答案:A知识点:同类项;代数式求值解析:解答:由题意可知:2,62==n m 即2,2==n m ;所以22951792522171m mn --=⨯-⨯⨯-=-.分析:紧扣同类项的定义求得m 与n 的值,再将其代入代数式即可求得结果.二、填空题(共5小题)1.化简3x -2(x -3y )的结果是 .答案:y x 6+-知识点:合并同类项;去括号法则解析:解答:()y x y x x y x x 6623323+-=+-=-- .分析:合并同类项在去括号的时候一定要把括号外的因数与括号内的每一项相乘,而且要记得括号外的因数是负因数时要变号.2.一个三位数,个位上的数x 为,十位上的数比个位上的数大2,百位上的数是个位上数的5倍,则这个三位数是 ,当1=x 时,它是 .答案:51120x +;531知识点:列代数式;合并同类项;与代数式求值解析:解答:由题意可知:()1005102500102051120x x x x x xx ⨯+++=+++=+所以当1x =时原式511120531=⨯+=.分析:一个三位数的表示方法是百位上的数字乘以100加十位上的数字乘以10加个位上的数字乘以1,如一个三位数个位、十位、百位上的数字分别为 a 、b 、c ,则这个三位数为10b 100c a ++.3.三个连续偶数的和为零,它们是 .答案:-2,0,2知识点:合并同类项解析:解答:设第一个偶数为x 则其余两个偶数为2x +与4x +,故有()()240;240;360;2x x x x x x x x ++++=++++=+==-所以它们分别是-2,0,2. 分析:连续偶数之间相差2,所以设出其中的一个即可用它来表示其他的数.4.若n m y x y x 3253与+的和是单项式,则=n m .答案:D知识点:同类项解析:解答:n m y x y x 3253与+的和是单项式即53,2m n +==,所以2,2m n =-=,所以()224n m =-=. 分析:两个单项式的和为单项式即这两个单项式是同类项.5.观察下列算式:;52323;31212;10101222222=+=-=+=-=+=- 2243437-=+=;2254549-=+=;...若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来 .答案:()()121122-=-+=--n n n n n知识点:探索数与式的规律解析:解答:○1观察等式左边的式子,发现被减数一次为1、2、3…n 的平方发现被减数为()21-n ;○2观察中间的式子发现为()1++n n ;○3最后由中间的式子合并同类项即可得到右边的式子.分析:根据题目所给信息,将代数式分解成各种组合形式,从中找出式子的变化规律.三、解答题(共5小题)1.已知041|2|2=⎪⎭⎫ ⎝⎛-++b a ,求)43()2(22ab ab ab b a +--的值. 答案:1知识点:整式的加减;代数式求值;绝对值的非负数;平方的非负性解析: 解答:解:因为21|2|04a b ⎛⎫++-= ⎪⎝⎭,又因为|2|0a +≥,2104b ⎛⎫-≥ ⎪⎝⎭所以20a +=,104b -=即 12,4a b =-=, 所以原式()()22222222(2)(34)234361112326(2)4441a b ab ab ab a b ab ab aba b ab ab=--+=---=--⎛⎫=-⨯-⨯-⨯-⨯-⨯ ⎪⎝⎭=分析:遇此类题应先化解再代入求值以减少计算量.2.当31,1,2=-=-=z y x 时,求)]}2(3[2{3222y x xy xyz y x yz ----的值. 答案:9知识点:整式加减;代数式求值解析:解答:解:原式()()()222222222232323232332332yz x y xyz xy x y yz x y xyz xy x y yz x y xyz xy yz x y xyz xy ⎡⎤=---+⎣⎦=--+-=--+=-+-当12,1,3x y z =-=-=时, 原式()()()()()()()22113121321221933=⨯-⨯--⨯-+⨯-⨯-⨯-⨯-⨯-=. 分析:有多重括号时,一般先去小括号,再去中括号,最后去大括号的顺序进行.3、化简求值:()()222234,1,1x y xy x y xy x y x y +---==-其中. 答案:0知识点:整式的加减;代数式求值解析:解答:解: 原式()()2222222223342342355x y xy x y xy x yx y x y x y xy xy x y xy=+-+-=--++=-+ 当1,1x y ==-时, 原式()()251151(1)0=-⨯⨯-+⨯⨯-=.分析:去括号时,应将括号前面的因数带着性质符号一起与括号内的各项相乘,再直接去掉括号.4、已知22222,3A a ab b B a ab b =-+=---,求:23A B -.答案:22555a ab b ++知识点:整式的加减;去括号法则解析:解答:解:原式()()()()()222222222222222233242393234923555a ab b a ab b a ab b a ab b a a ab ab b b a ab b =-+----=-++++=++-+++=++ 分析:在将A 、B 换成它们所代表的多项式时要加括号.5、5a -{-3b +[6c -2a -(a -c)]}-[9a -(7b +c)]. 答案:108a a c -+-知识点:整式的加减;去括号法则解析:解答:解:原式()()()()()()()536297536297536297529376108a b c a a c a b c a b c a a c a b c a b c a a c a b ca a a ab bc c c a a c⎡⎤=--+--+---⎣⎦=--+--+---=+-++--++=++-+++--+=-+- 分析:有多重括号时,一般先去小括号,再去中括号,最后去大括号的顺序进行.。
最新人教版七年级上册数学同步培优训练第二章整式的加减 整式的加减 第3课时 整式的加减
20.先化简,再求值: 3x2y-[2xy2-2(xy-32 x2y)+xy]+3xy2,其中 x=3,y=-13 .
解:原式=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy. 当 x=3,y=-13 时,原式=-23
21.已知小明的年龄是 m 岁,小红的年龄比小明的年龄的 2 倍少 4 岁, 小华的年龄比小红年龄的12 还多 1 岁,求这三名同学的年龄之和是多少?
解:答案不唯一,如选择 x2-12 x+2 与 x2-32 x-1 进行减法运算, 即 x2-12 x+2-(x2-32 x-1)=x2-12 x+2-x2+32 x+1=x+3
9.化简求值: (x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2. 解:原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x, 当x=-2时,原式=-(-2)3-3×(-2)=14
6.化简(x2+y2)-2(x2-2y2)=__-__x_2+__5_y_2___. 7.多项式__-__3_m__+__2__与m2+m-2的和是m2-2m.
8.给出三个多项式:x2-12 x+2,x2-32 x-1,x2-12 x, 请你选择其中的两个多项式进行加法或减法运算.(只选择其中的两个进行一种运算)
数学 七年级上册 人教版
第二章 整式的加减
2.2 整式的加减
第3课时 整式的加减
1.多项式3a-a2与单项式2a2的和等于( B )
A.3a
B.3a+a2
C.3a+2a2 D.4a2
2.化简a-(5a-3b)+(2b-a)的结果是( B) A.7a-b B.-5a+5b
C.7a+5b D.-5a-b
12.某客车上原有(4a-2b)人,中途有一半人下车,又上来若干人, 这时车上共有乘客(10a-6b)人, 则中途上车的乘客有___(_8_a_-__5_b_)____人. 13.一根铁丝正好可以围成一个长是2a+3b,宽是a+b的长方形, 把它剪去可围成一个长是a,宽是b的长方形的一段铁丝, 剩下的铁丝长是___4_a_+__6_b_.(均不计接缝)
人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)
人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。
第二章整式加减培优训练人教版七年级数学上册
人教版七年级上整式加减培优训练一.选择题1.代数式1x , 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个2.下列说法中正确的是( )A .不是单项式B .﹣23xy 的系数是﹣2,次数是5C .﹣3ab 2和b 2a 是同类项D .多项式﹣x 7y +4x 5﹣2的次数是7,项数是33.下列代数式中,互为同类项的是( )A .22a b -与23abB .2218x y 与2292x y +C .()n a b +与()3a b +D .2xy -与2y x4.下列各式可以写成a b c -+-的形式的是( )A .()()a b c -----B .()()a b c ---+-C .()()a b c -+-++D .()()a b c --++-5.下列各式中运算正确的是A .B .C .D .6.按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果是()A .156B .231C .6D .217.若A =x 2﹣2xy ,B =xy +y 2,则A ﹣2B 为( )A .3x 2﹣2y 2﹣5xyB .x 2﹣2y 2﹣3xyC .﹣5xy ﹣2y 2D .3x 2+2y 28.长方形的周长为8,其中一边为-a -2,则邻边边长为( ) ()22234a b ba a b -=-224a a a +=651a a -=235325a a a +=A.6-aB.10-aC.6+aD.12-2a9.有理数a ,b 在数轴上的位置如图所示,则|a +b|-2|a -b|化简后为( )A.b -3aB.-2a -bC.2a +bD.-a -b10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n )D .4(m -n )二.填空题11.单项式222310x y z -⨯的次数是______.13.计算:3a a -=_____________.14.多项式A 减去21x x -+的差是2x ,则A =____16.形如d cb a 的式子叫做二阶行列式,它的运算法则为d cb a =ad -bc ,依此法则计算4132-的结果为____,若x x -123=2,则_____=x . 三.解答题17.化简:(1)22213725x x x x +-+-+; (2)224(6)3(2)x xy x xy -+-+18.已知()20||3213x m n y mn -+++-=(1)用含m ,n 的式子表示x ,y ;(2)若2x y +的值与m 的取值无关,求2x y +的值;(3)若4x y +=,求582m mn ++与24m mn n -++差的值.19.(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-; (2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.20.(1)如图:化简|b ﹣a |+|a +c |﹣|a +b +c |.(2)已知:ax 2+2xy ﹣y ﹣3x 2+bxy +x 是关于x ,y 的多项式,如果该多项式不含二次项,求代数式3ab 2﹣{2a 2b +[4ab 2﹣(6a 2b ﹣9a 2)]}﹣(﹣a 2b ﹣3a 2)的值.21.小明为一个矩形娱乐场所提供了如下的设计方案,其中半圆形了休息区和矩形游泳区以外都是绿地。
最新人教版七年级上册数学同步培优训练第二章整式的加减 整式 第3课时 多项式
11.已知a是两位数,b是一位数,把a写在b的后面,就成为一个三位数. 这个三位数可表示成( C) A.10b+a B.ba C.100b+a D.b+10a 12.对于多项式a2+b2的意义解释不恰当的是( C ) A.a,b两数的平方和 B.边长分别是a,b的两个正方形的面积和 C.买a支单价a元的钢笔和买b支单价b元的铅笔的总价钱 D.边长是a+b的正方形的面积
次数m
(2)利用上述公式,计算乘车13次后还剩多少元?
1
2
3
4 … 解:(1)n=50-0.8m
(2)当m=13时,n=50-0.8×13=39.6(元).
答:乘车13次后还剩39.6元
余额n(元) 50-0.8 50-1.6 50-2.4 50-3.2
…
20.已知多项式 a3+12 ab4-am+1b-6 是六次四项式, 单项式 2x7-my3n 与该多项式的次数相同. (1)求 m2+n2 的值; (2)若 a=-1,b=-2,求多项式的值.
(1)把多项式3x2y-4xy2+x3-5y3按字母y的升幂排列;
(2)请补入多项式-x+x4+1的缺项,并按x的降幂排列.
解:(1)x3+3x2y-4xy2-5y3
(2)x4+0·x3+0·x2-x+1
9.下列各式中是整式的有(B ) 1-2x2,-13 x3,3x ,-x4 ,π+12 a,0,-x2-y2-1. A.7 个 B.6 个 C.5 个 D.4 个
10.下列代数式:-13 ,3a ,-π,-5x2y3,2x3y2 ,a+2 b ,12 -x,x+5 3 .
其中属于单项式的有_____-__13__,__-__π___,__-__5_x_2_y3_,__2_x_3y_2________; 属 属于 于多 整项 式式 的的 有_有_-____13____,__a__+-2____bπ____,__,__12__-__-__5__xx__2_y_3__,____2__x__3y__2____,_;_a_+_2_b__,__12___-__x____.
最新人教版七年级上册数学培优训练第二章第24课时整式的加减(三)
典例精析
【例1】计算:(2a2-1+2a)-3(a-1+a2). 解:原式=2a2-1+2a-3a+3-3a2 =-a2-a+2.
思路点拨:先去括号,再合并同类项即可.
返回目录
举一反三
1. 计算:-7a2+ (6a2-4ab)-(3b2+ab-a2). 解:原式=-7a2+3a2-2ab-3b2-ab+a2
返回目录
举一反三
2. 化简求值:7ab+(-4a2b+5ab2)-(2a2b-3ab2), 其中a=-1,b=2.
解:原式=7a2b-4a2b+5ab2-2a2b+3ab2
=(7-4-2)a2b+(5+3)ab2
=a2b+8ab2.
当a=-1,b=2时,
原式=(-1)2×2+8×(-1)×22
=2-32
返回目录
对点范例
1. 计算: (1)4a-(3a-b)= ____a_+_b___; (2)2x2+3(2x-x2)= __-_x_2_+_6_x__.
返回目录
知识重点
知识点二 整式的化简求值 整式的求值,应该先___化__简____,然后将给定字母的值代入
进行计算.
返回目录
对点范例
2. 如果m=-3,那么式子3(m-n+2)-m2+3n-1的值是 -13 _________.
=-3a2-3ab-3b2.
返回目录
典例精析
【例2】先化简,后求值:4x2+2xy-4y2-2(3xy-2y2+2x2), 其中x=1,y=-2. 解:原式=4x2+2xy-4y2-6xy+4y2-4x2=-4xy. 当x=1,y=-2时,原式=8.
最新人教版七年级上册数学同步培优训练第二章整式的加减 整式 第2课时 单项式
3.下列判断正确的是( C ) A.a 的系数为 0
C.12 πxy3 的系数为12 π
B.ab2c 的次数是 2 D.-5 是一次单项式
4.如果 x3yn+2 与 xy6 的次数相等,那么 n 的值为_2___.
5.(教材P57练习1变式)填表:
单项式 系数 次数
0.2n
0.2 1
-x2
-1 2
(2)学校购买了a箱图书,每箱有b册,将这批图书的一半捐给社区, ab
则捐给社区的图书为_2___册;
(3)若一个圆柱形蓄水池,底面半径为r,高为h, 则这个蓄水池最多可蓄水__π_r_2_h_____.
8.已知一个长方体的长、宽、高分别为a,b,c, 则这个长方体的体积为_a_b_c_,这个式子的系数为__1__,次数为__3__.
20.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…. 写出第n个单项式.为了解决这个问题,提供下面解题思路: (1)这组单项式的系数的符号规律是__(-__1_)_n__, 系数的绝对值规律是_____2_n_-__1__; (2)这组单项式的次数的规律是___从__1_开__始__的__连__续__自__然__数_______; (3)根据上面的归纳,可以猜想第n个单项式是_(-__1_)_n_(2_n_-__1_)_x_n__;(只能填写一个代数式) (4)请你根据猜想,写出第2022个,第2023个单项式, 它们分别是___4_0_4_3_x_2_0_22___,__-__4_0_4_5_x_20_2_3 .
解:按单项式的次数分:①④⑥与②③⑤ 按单项式的系数正负性分:①③⑤⑥与②④
18.已知(a-2)x2y|a|+1是关于x,y的五次单项式,求a的值. 小明的解答过程是这样的:因为|a|+1+2=5,所以|a|=2,所以a=±2,即a的值为±2. 上述解答过程有没有错误?若有错误,错在哪里?并说明理由. 解:有错误.当a=2时,a-2=0,而这个单项式的系数不能为0,小明没有舍去a=2
【教师卷】初中数学七年级数学上册第二章《整式的加减》经典练习卷(培优)
1.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 3.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .46A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1D解析:D【分析】 根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.7.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C【分析】 由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.10.已知多项式()210m x m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A【分析】 根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 11.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.12.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.13.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n .∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的A.31,63,64 B.31,32,33 C.31,62,63 D.31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A.3a B.6a+b C.6a D.10a-b C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.1.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n -. 【点睛】 本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.2.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n n x -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a .考点:列代数式.5.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.在整式:32x y -,98b -,336b y -,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.1.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.2.有一长方体形状的物体,它的长,宽,高分别为a,b,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a+4b+8c,方式乙所用绳长为4a+6b+6c,方式丙所用绳长为6a+6b+4c,因为a>b>c,所以方式乙比方式甲多用绳(4a+6b+6c)-(4a+4b+8c)=2b-2c,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.3.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.4.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.。
七年级数学上册 整式的加减 第2课时跟踪练习 新人教版
整式的加减 第2 课时跟踪练习1.下列各组中的两个单项式能合并的是() A .4和4x B .32323x y y x -和 C .c ab ab 221002和 D .2m m 和 2.下面计算正确的是( )A .2233x x -= B.235325a a a +=C .10.2504ab ab -+= D. 33x x += 3.下列各组中的两个单项式能合并的是() A .4和4x B .32323x y y x -和 C .2222ab ab 和 D .2nm m 和 4.下列计算正确的是( )A 、4x-9x+6x=-xB 、12 a - 12a = 0 C 、x 3 – x 2 = x D 、-4xy - 2xy = -2xy5.已知一个两位数的个位数字为a,十位数字是b,交换个位与十位数字后,得到一个新数,原数与新数的和为6.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需 元钱.7.若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为_____.8.计算:222252214.041ab b a ab b a +--9.把(2a+ b )、( 2a + b)2 各当作一个因式,化简求值:2 (2a +b)2 — 3(2a + b) + 8(2a + b)2 — 6(2a + b),其中a=—, b =10.已知有理数a 、b 、c 在数轴上的位置如图所示,试化简: |2|||||a b c b c a -+--+.答案:1. D 2. C 3. C 4. B 5.11a+11b 6.150 7..11 8.略 9.略 10.略。
七年级数学上册第二章《整式的加减》复习题(培优练)
1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .11A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100C .101x 100D .﹣101x 100C解析:C 【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100. 【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得, 单项式的系数的绝对值为序数加1, 系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6n B .8+6nC .4+4nD .8n A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2- B .13C .23D .32A 解析:A 【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值. 【详解】∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期 ∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A. 【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键. 10.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大. 11.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C解析:C 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值. 【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C 【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可. 【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -. ∴第5个树枝为15+42=31,第6个树枝为:31+52=63, ∴第(6)个图比第(2)个图多63−3=60个 故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 15.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式C .三次二项式D .四次三项式D解析:D 【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了. 【详解】 解:由题意,得该多项式有3项,最高项的次数为4, 该多项式为:四次三项式. 故选:D . 【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2). 【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答. 【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子, ∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子. 故答案为:(4n+2). 【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.已知等式:2222233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可. 【详解】解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10 ∴a+b=10+99=109. 故答案为109. 【点睛】本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0 【解析】 由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.5.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 6.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.-1029【分析】由题意根据图中排列规律得出每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝对值为以此进行分析即可【详解】解:由图可知每5个数为一组依次排列所以峰n 中峰顶C 的位置的有理数的绝解析:-1029 【分析】由题意根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,以此进行分析即可. 【详解】解:由图可知,每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -,当206n =时,52061103011029⨯-=-=,因为1029是奇数,所以“峰206”中C 的位置的有理数是1029-. 故答案为:1029-. 【点睛】本题考查图形的数字规律,熟练掌握根据图中排列规律得出每5个数为一组依次排列,所以“峰n”中峰顶C 的位置的有理数的绝对值为51n -是解题的关键.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 9.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.10.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ;∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.2.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值. 解析:(1)2222a b ab abc -++;(2)小强的说法对,正确结果的取值与c 无关,理由见解析;(3)0.【分析】(1)由2A+B=C 得B=C-2A ,将C 、A 代入根据整式的乘法计算可得B ;(2)将A 、B 代入2A-B ,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c 可知其值与c 无关;(3)将a 、b 的值代入计算即可.【详解】解:(1)∵2A B C +=,∴2B C A =-.B 22224342(32)a b ab abc a b ab abc =-+--+2222434642a b ab abc a b ab abc =-+-+-2222a b ab abc =-++;(2)222222(32)(22)A B a b ab abc a b ab abc -=-+--++222264222a b ab abc a b ab abc =-++--2285a b ab =-.因正确结果中不含c ,所以小强的说法对,正确结果的取值与c 无关;(3)将18a =, 15b =代入(2)中的代数式,得: 22221111858()5()8585a b ab -=⨯⨯-⨯⨯0= .【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.3.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 4.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.。
第2章 整式的加减(培优卷)
B. 3x2-5y2-z2
C. 3x2-y2-3z2
D. 3x2-5y2+z2
10. 观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有 19个点,…按此规律第5个图中共有点的个数是( )
A. 31
B. 46
C. 51
D. 66
二、填空题 (8小题 , 共16分)
8. 问题解决: 一张长方形桌子可坐6人,按如图方式将桌子拼在一起.
(1)2张桌子拼在一起可坐_____人,3张桌子拼在一起可坐_____人,…n张桌子拼在一起可坐_____人. (2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8 张大桌子,共可坐_____人. 三、解答题 (7小题 , 共64分) 1. 化简:
2. 两个三次多项式的和的次数一定是( )
A. 3
B. 6
C. 大于3
D. 不大于3
3. 某市某种出租车收费标准为:起步价6元(3千米以内),3千米后每千米加收1.5元,某人乘坐x(x > 3)
千米,应付费( )元.
A. 6 + 1.5x
B. 1.5x + 1.5
C. 6 + 3x
D. 1.5x + 3
C. 2x2 − 3(x − 5) = 2x2 − 3x + 15
D. -a3-[-4a2+(1-3a)]=-a3+4a2-1+3a
6. 已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a-b的值为( )
A. 1或7
B. 1或-7
C. -1或-7
D. ±1或±7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练:第2章整式的加减培优练习一.选择题1.下列各式中运算正确的是()A.4a﹣3a=1 B.a3+a3=a6C.2a3+6a2=8a5D.5a3b2﹣6b2a3=﹣a3b22.下列各组中的两项,属于同类项的有()①2x2y与﹣x2y;②3a2bc与a2cb;③x3与x;④1与;⑤m2n与mn2.A.2组B.3组C.4组D.5组3.如果整式x n﹣3﹣5x2+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.64.下列判断错误的是()A.多项式5x2﹣2x+4是二次三项式B.单项式﹣3a2b3c4的系数是﹣3,次数是9C.式子m+5,ab,6(a﹣1)2,﹣2,都是代数式D.若a为有理数,则9a一定大于a5.已知:当x=1时,代数式ax3﹣3bx+4的值是7,那么,当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣76.如图是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.a2+b2B.4ab C.(b+a)2﹣4ab D.b2﹣a27.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元8.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4 B.3 C.2 D.19.如果一个数的十位数字是a,个位数字是b,则这个两位数用代数式表示为()A.ab B.ba C.10a+b D.10ab10.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S2),则S1﹣S2的值为()A.5 B.4 C.3 D.2二.填空题11.单项式﹣的系数是,次数是.12.多项式8x2﹣3x+5与3x3+2mx2﹣5x+7相加后不含x的二次项,则常数m的值等于.13.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2013次输出的结果为.14.已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是.15.用代数式表示“m的3倍与n的差的平方”为.16.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三.解答题17.先化简,再求值(3x2y﹣2xy2)﹣(xy2﹣2x2y),其中x=﹣1,y=2.18.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+2B的值”.小红误将A+2B看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+2B的正确结果;(2)求出当x=3时A+2B的值.19.如图,某长方形广场长为a米,宽为b米.广场的中间圆形绿地的半径为米,广场的四角都有一块半径相同的四分之一圆形的绿地,且圆形绿地的半径也为米.(1)请用代数式分别表示绿地的总面积和空地的面积.(2)若长方形长为300米,宽为200米,求广场的绿地面积和空地的面积.(计算结果保留π)20.某水泥仓库3天内进出库的吨数记录如下(“+”表示进库,“﹣”表示出库):+24,﹣30,﹣13,+32,﹣36,﹣18.(1)经过这3天,水泥仓库里的水泥是增多了还是减少了?增多或减少了多少吨?(2)经过这3天,水泥仓库管理员结算时发现还库存有470吨水泥,那么3天前水泥仓库里存有水泥多少吨?(3)如果进仓库的水泥每吨运费为a元,出仓库的水泥每吨运费为b元,那么这3天共要付多少元运费?21.某人去水果批发市场采购苹果,他看中了A、B两家苹果.这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0﹣500 500以上﹣1500 1500以上﹣2500以上2500价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70% 表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100﹣1500)(1)如果他批发600千克苹果,则他在A家批发需要元,在B家批发需要元;(2)如果他批发x千克苹果(1500<x<2000),则他在A家批发需要元,在B家批发需要元(用含x的代数式表示);(3)现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.参考答案一.选择题1.解:A、系数相加字母及指数不变,故A错误;B、系数相加字母及指数不变,故B错误;C、不是同类项的不能合并,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.2.解:①2x2y与﹣x2y是同类项;②3a2bc与a2cb是同类项;③x3与x相同字母的指数不同不是同类项;④1与是同类项;⑤m2n与mn2相同字母的指数不同不是同类项,故选:B.3.解:∵整式x n﹣3﹣5x2+2是关于x的三次三项式,∴n﹣3=3,解得:n=6.故选:D.4.解:A、多项式5x2﹣2x+4是二次三项式,正确,B、单项式﹣3a2b3c4的系数是﹣3,次数是9,正确,C、式子m+5,ab,6(a﹣1)2,﹣2,都是代数式,正确,D、若a为有理数,则9a不一定大于a,故错误,故选:D.5.解:把x=1代入得:a﹣3b=3,则x=﹣1时,代数式=﹣a+3b+4=﹣3+4=1,故选:C.6.解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab.故选:C.7.解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选:C.8.解:由题意可知:a+b=2,3=b,∴a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故选:A.9.解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故选:C.10.解:设空白部分的面积是S,∵两个正方形的面积分别为9,4,∴S1=9﹣S,S2=4﹣S,∴S1﹣S2=(9﹣S)﹣(4﹣S)=9﹣S﹣4+S=5.故选:A.二.填空题(共6小题)11.解:∵单项式﹣的数字因数是﹣,所有字母指数的和=3+1=4,∴此单项式的系数是﹣,次数是4,故答案为:﹣,4.12.解:∵多项式8x2﹣3x+5与3x3+2mx2﹣5x+7相加后不含x的二次项,∴8x2+2mx2=(2m+8)x2,∴2m+8=0,解得m=﹣4.故答案为﹣4.13.解:将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6,依此类推,得到第2013次输出结果为6.故答案为:6.14.解:∵x﹣3y=4,∴(x﹣3y)2﹣2x+6y﹣1=(x﹣3y)2﹣2(x﹣3y)﹣1,=42﹣2×4﹣1,=16﹣8﹣1,=7.故答案为:7.15.解:m的3倍与n的差的平方是(3m﹣n)2.故答案是:(3m﹣n)2.16.解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•x n,故答案为:(﹣1)n+1•2n•x n.三.解答题(共5小题)17.解:(3x2y﹣2xy2)﹣(xy2﹣2x2y)=3x2y﹣2xy2﹣xy2+2x2y=5x2y﹣3xy2当x=﹣1,y=2时,原式=5×(﹣1)2×2﹣3×(﹣1)×22=10+12=22.18.解:(1)∵A﹣2B=﹣7x2+10x+12,B=4x2﹣5x﹣6,∴A=﹣7x2+10x+12+2(4x2﹣5x﹣6)=x2,∴A+2B=x2+2(4x2﹣5x﹣6)=9x2﹣10x﹣12;(2)当x=3时,A+2B=9×32﹣10×3﹣12=39;19.解:依题意得:(1)绿地的面积为:+4×=+=(平方米)空地的面积为:()平方米(2)当a=300,b=200时,绿地的面积为:=(平方米)空地的面积为:答:广场的绿地面积是5000π平方米,空地面积是(60000﹣5000π)平方米.20.解:(1)+24+(﹣30)+(﹣13)+(+32)+(﹣36)+(﹣18),=56+(﹣97),=﹣41,答:粮库里的水泥减少了,减少了41吨;(2)470﹣(﹣41)=511(吨),答:3天前水泥库里存水泥有511吨;(3)(|+24|+|+32|)a+(|﹣30|+|﹣13|+|﹣36|+|﹣18|)b=56a+97b(元),答:这3天要付(56a+97b)元装卸费.21.解:(1)如果在A家批发则600×92%×6=3312(元)如果在B家批发则500×95%×6+100×85%×6=2850+510=3360(元)答:在A家批发为3312元,在B家批发为3360元;(2)如果他批发x千克苹果(1500<x<2000),在A家批发需要90%x×6=5.4x元,在B家批发需要500×95%×6+1000×85%×6+(x﹣500﹣1000)×75%×6=(4.5x+1200)元;(3)在A家则90%×6×1800=9720(元)在B家则500×95%×6+1000×85%×6+300×75%×6=9300(元)所以选择B家更优惠.。