三极管工作原理(详解)ppt课件

合集下载

《晶体三极管》课件

《晶体三极管》课件

晶体三极管的分类
有两种主要的晶体三极管 类型:PNP和NPN。
2. 晶体三极管的工作原理
1
简单电路
晶体三极管可以作为放大器、开关和振荡器在各种电路中发挥作用。
2
放大器电路
晶体三极管可以放大信号的幅度,使其更适合其他电路的输入。
3
开关电路
晶体三极管可以控制电流的通断,用于构建开关电路。
3. 晶体三极管的应用
5. 晶体三极管的优缺点
1 优点
小巧、高频响应、低功耗、可靠性高、成 本低。
2 缺点
温度敏感、容易受到噪声干扰、容易烧毁。
6. 结论
总结
晶体三极管是一种重要的电子元器件,广泛应用于各种电路和电子设备中。
展望
随着科技的发展,晶体三极管不断改进,将在更广泛的领域发挥作用。
《晶体三极管》PPT课件
晶体三极管是电子学中重要的元器件之一,本课件将介绍晶体三极管的结构、 工作原理、应用、特性以及优缺点,帮助您全面了解晶体三极管。
1. 介绍晶体三极管
ห้องสมุดไป่ตู้
什么是晶体三极管?
晶体三极管是一种半导体 器件,可用作放大,开关 和振荡器。
晶体三极管的结构
晶体三极管由三个不同掺 杂的半导体区域构成:发 射区,基区和集电区。
放大器
晶体三极管可用于构建各类放 大器,如音频放大器、射频放 大器等。
开关
晶体三极管可以用于构建数字 电路和模拟电路中的开关。
振荡器
晶体三极管可以作为振荡器的 关键元件,产生无线电频率信 号。
4. 晶体三极管的特性
基本参数
• 电流放大倍数 • 最大可承受电压 • 最大可承受功率
变化规律
• 输入特性曲线 • 输出特性曲线 • 电流-电压关系

三极管 教学ppt课件

三极管 教学ppt课件

+++
c + + +
++++ -
++++
+++
b
UBB RB UCC RC
5
1、发射区的电子大量地扩散注 入到基区,基区空穴的扩散可
忽略。
发射结正偏
集电结反偏
外电场方向
NP
N
++++
e ++++ ++++
+++
c + + +
++++ -
++++
IE
b
+++
UBB RB UCC RC
6
1、大量电子N2通过很 薄1、的发射基区极的被电子集大电量极地扩吸散注 收入忽到略,基。少区量,基电区子空穴N的1在扩基散可 极与空穴复合。N2和 N2、1的电子比扩例散由的同三时极,在管基内区将 部与空结穴构相决遇产定生。复合在。不由考于基 虑区薄空,IC穴因BO浓此时度,低复:,合且的基电区子做是得极很 少 数。 IC/IB=N2/N1=β 2、以上公式是右方电 路3扩、散满绝到大足集多发电数结射到处基结,区并正的在偏电集子、电均结能 集电场电作结用反下到偏达时集电得区到。的,
工作状态
放大 截止 饱和 倒置
发射结电压
正向 反向 正向 反向
集电结电压
反向 反向 正向 正向
• 由放大状态进入截止状态 的临界情况是发射结电压 为零,此时基区的反向电 流分别流入发射极和集电 极。

三极管PPT课件

三极管PPT课件

一、三极管的基本结构
2021/6/24
它是通过一定的制作工艺,将两 个PN结结合在一起的器件,两个PN结 相互作用,使三极管成为一个具有控制 电流作用的半导体器件。
三极管可以用来放大微弱的信号
和作为无触点开关。
4
2.1.1 三极管的结构
2021/6/24
三极管的结构模型和符号
5
2.1.1 三极管的结构
2021/6/24
12
2.1.3 三极管的电流分配关系 和电流放大作用
二、三极管的电流分配关系
(1)IC与IE的关系
α
=
IC IE
α 称为共基极直流电流放大系数 ,是
小于1且接近于1的值,一般为0.9-
0.99。
2021/6/24
13
2.1.3 三极管的电流分配关系 和电流放大作用
(2)IC与IB的关系
2021/6/24
24
2.1.4 三极管的伏安特性曲线
二、输出特性曲线
iCf uCEIB常数
2021/6/24
21 25
2.1.4 三极管的伏安特性曲线
(3)饱和区
工作条件:发射结正偏,集电结正偏。
工作特点:
① iC几乎不随iB变化,uCE略有增加,iC迅速上升。
②UCE很小,称之为饱和电压,用UCES表示。
19
2.1.4 三极管的伏安特性曲线
输入特性曲线的讨论:
(1)当UCE<1V时
三极管的发射结、集电结均正偏,此时的三极 管相当于两个PN结的并联,曲线与二极管相似, 所以增大UCE时,输入曲线明显右移。
(2)当UCE≥1V时
发射结正偏、集电结反偏,此时再继续增大
UCE特性曲线右移不明显,不同的UCE输入曲线

三极管经典教程PPT课件

三极管经典教程PPT课件

2021
电流放大系数
共 射 电 流 放 大 系 数
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
直流电流放大系数
=IC / IB | vCE =const 交流电流放大系数 =IC/IBvCE=const
2021
电流放大系数




直流电流放大系数
放 大
α=IC/IE
vCCEE = 0V vCE
0V
1V
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
2021
BJT的特性曲线
2. 输出特性曲线 输出电流与输出电压间的关系曲线
iCv=CfB(vCEvC )EiB=vcBoE nst
输饱出和特区性:曲vCE线<v的BE 三的个区区域域,: 发射结正偏,集电结正 偏。 iC明显受vCE控制 的截区放止域大区,区:但:i不此B=随时0的i,B的输发增出射曲结线正以 加下而偏的增,区大集域。电。在结此饱反时和偏,区。,i发C不射随结 可和近vC集似E变电认化结为,均v但C反E随保偏i持B。的不i增C只大有而很
V C1.3V,V B0.6V
V CV B1.30.60.7V A -集电极
VA6VVB,VC
管子为NPN管
C-基极,B-发射极
另一例题参见P30 2.2.2-1
2021
§2.2.3 三极管的主要参数
三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
电流放大系数 极间反向电流 极限参数

三极管PPT教学讲义

三极管PPT教学讲义

收集 载流
基区的少数载流子——ICBO

VBB
VCC
电流分配与控制 IE= IEN+ IEP 且有IEN>>IEP IEN=ICN+ IBN 且有ICN>>IBN IC=ICN+ ICBO
IB=IEP+ IBN-ICBO
IE =IC+IB
VBB
VCC
电流分配与控制
• 使晶体管具有电流分配与控制能力的两个重要条件
– ③集电结对非平衡载流子的收集作用漂移为主
4.1.3 三极管各电极的电流关系
集电极电流IC和发射极电流IE之间的关系定义:
ICN/IE
称为共基极直流电流放大系数。
表示集电极收集到的电子电流ICN与总发射极电流IE的比
值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小
于1, 但接近1,一般为0.98~0.999 。
BJT 结构
从外表上看两个N区,或两个P区是对称的,实际上: 发射区的掺杂浓度大,发射载流子 集电区掺杂浓度低,且集电结面积大,收集载流子 基区得很薄,控制载流子分配,其厚度一般在几个微米至几十
个微米.
+
BJT的三种组态
CB Common Base :共基极,基 极为公共电极
CE Common Emitter :共发射极, 发射极为公共电极
强,IC增大. JC和JE都正偏, VCES约等于0.3V,
ic VCE=VBE

6和 放
区 4


2
IC< IB 0
饱和时c、e间电压记为VCES,深 度饱和时VCES约等于0.3V.
截止区
246

优秀实用的三极管精品PPT课件

优秀实用的三极管精品PPT课件
好。
• 2.三极管实现电流分配的原理

上述实验结论可以用载流子在
三极管内部的运动规律来解释。图1.29
为三极管内部载流子的传输与电流分配
示意图。
图1.29 三极管内部载流子的传输与电流分配示意图

(1)发射区向基区发射自由电
子,形成发射极电流IE。

(2)自由电子在基区与空穴复
合,形成基极电流IB。
极最大电流、最大反向电压等,这些参
数可以通过查半导体手册来得到。三极
管的参数是正确选定三极管的重要依据,
下面介绍三极管的几个主要参数。
• (1)共发射极电流放大系数β和β

它是指从基极输入信号,从集
电极输出信号,此种接法(共发射极)
下的电流放大系数。
–(2)极间反向电流
• ① 集电极基极间的反向饱和电流ICBO • ② 集电极发射极间的穿透电流ICEO
(d)三极管的集电极和发射极
近似短接,三极管类似于一个开关导通。

三极管作为开关使用时,通常
工作在截止和饱和导通状态;作为放大
元件使用时,一般要工作在放大状态。
SUCCESS
THANK YOU
2020/12/13
可编辑
26
• 2.三极管的主要参数

三极管的参数有很多,如电流
放大系数、反向电流、耗散功率、集电
这是三极管实现电流放大的内部条件。

三极管可以是由半导体硅材
料制成,称为硅三极管;也可以由锗
材料制成,称为锗三极管。

三极管从应用的角度讲,种
类很多。根据工作频率分为高频管、
低频管和开关管;根据工作功率分为
大功率管、中功率管和小功率管。常

三极管ppt课件完整版

三极管ppt课件完整版

常见故障现象及诊断方法
诊断方法
测量三极管的耐压值是否降低,观察电路是否有过载现象,若确认 损坏则更换三极管。
故障现象3
三极管漏电流过大。
诊断方法
测量三极管的漏电流是否超过规定值,若过大则检查电路是否存在漏 电现象,并更换三极管。
常见故障现象及诊断方法
故障现象4
三极管热稳定性差。
诊断方法
检查三极管的散热条件是否良好,测量其热稳定性参数是否在规定范围内,若异常则改善散热条件或 更换适合的三极管型号。
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
共基放大电路的特点是输入回路与输出回路共用一个电极,即基极。输入信号加在三极管的发射极和基极之间, 输出信号从集电极取出。由于共基放大电路的输入阻抗低,输出阻抗高,因此具有电压放大倍数大、频带宽等优 点。
共集放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源 。
真加剧。而截止频率则限制了三极管能够放大的信号频率范围。
03
三极管基本放大电路分析
共射放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
利用三极管的电流放大作用,将输入信号放大并输出。输入信号加在三极管的基 极和发射极之间,输出信号从集电极取出,经过耦合电容与负载相连。
共基放大电路组成及工作原理
偏置电路类型及其作用
固定偏置电路
01
提供稳定的基极电流,使三极管工作在放大区。
分压式偏置电路
02
通过电阻分压为基极提供合适的偏置电压,使三极管具有稳定
的静态工作点。
集电极-基极偏置电路
03
利用集电极电阻的压降为基极提供偏置电压,适用于某些特殊

三极管ppt课件

三极管ppt课件
生变化。
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源

《三极管基本知识》PPT课件

《三极管基本知识》PPT课件
背景
三极管是电子电路中的重要元件,广泛应用于放大、开关、振荡等电路中。随 着电子技术的发展,三极管的应用领域不断扩大,对电子工程师的要求也越来 越高。
课程内容和结构
课程内容
本课程将介绍三极管的基本原理、结构、特性、参数以及应用等方面的知识。
课程结构
本课程将按照“由浅入深、循序渐进”的原则,先介绍三极管的基本概念和原理,然后逐步深入讲解三极管的特 性和应用。具体内容包括:三极管的基本原理、结构和分类;三极管的放大原理和特性;三极管的参数和选型; 三极管的应用电路和实例等。
输入特性曲线
输入特性曲线表示三极管在放 大状态下,基极电流(Ib)与 基极-发射极电压(Vbe)之
间的关系。
输入特性曲线与二极管的伏 安特性曲线类似,呈指数关
系。
当Vbe较小时,Ib几乎为零, 当Vbe超过一定值后,Ib随 Vbe的增大而迅速增大。
输出特性曲线
输出特性曲线表示三极管在放大状态下,集电极电流 (Ic)与集电极-发射极电压(Vce)之间的关系。
工业控制领域
三极管在工业控制电路中也有 着广泛的应用,如电机控制、
温度控制等。
消费电子领域
音响、电视、冰箱等消费电子 产品中也需要使用三极管进行
信号放大或电路控制。
03
三极管结构与工作原理
三极管内部结构
掺杂浓度
发射区掺杂浓度最高,基区很薄且 掺杂浓度最低,集电区掺杂浓度较 高。
PN结
三极管内部包含两个PN结,分别 是发射结和集电结。
三极管主要参数
01
02
03
电流放大系数
表示三极管对电流的放大 能力,是判断三极管放大 性能的重要参数。
极间反向电流
包括集电极-基极反向饱和 电流和集电极-发射极反向 饱和电流,反映了三极管 的截止性能。

《三极管教学》课件

《三极管教学》课件
《三极管教学》ppt课件
三极管概述三极管工作原理三极管基本应用三极管特性参数三极管的选择与使用
三极管概述
01
总结词
三极管是一种电子元件,由三个半导体区域组成,具有放大和开关电流的功能。
详细描述
三极管是电子学中非常重要的基本元件之一,由三个半导体区域组成,分别是基极(base)、集电极(collector)和发射极(emitter)。这三个区域在结构上有所不同,从而使得三极管具有了放大和开关电流的功能。
详细描述
பைடு நூலகம்
总结词
三极管的符号通常由三个电极的图形和字母组成,用于表示三极管的类型和功能。
要点一
要点二
详细描述
在电路图中,三极管的符号通常由三个电极的图形和字母组成。其中,字母B表示基极,E表示发射极,C表示集电极。根据三极管的类型和功能,这些符号会有所不同。例如,NPN型硅三极管的电路符号中,基极是箭头朝里的三角形,集电极是箭头朝外的三角形,发射极是竖线;PNP型硅三极管的电路符号中,基极是箭头朝外的三角形,集电极是箭头朝里的三角形,发射极是竖线。这些符号能够帮助我们理解和分析电路的工作原理。
根据结构和材料的不同,三极管可以分为双极型和场效应型两大类。
总结词
双极型三极管是由半导体材料制成的,其工作原理基于电子和空穴两种载流子的运动。常见的双极型三极管有硅三极管和锗三极管。场效应型三极管则是由金属-氧化物-半导体结构制成的,其工作原理基于电场对载流子的调控。常见的场效应型三极管有NMOS和PMOS两种。
考虑三极管工作时产生的热量,合理设计散热措施,保证管子工作在安全温度范围内。
散热设计
在某些应用中,需要将多个三极管配对使用,以获得更好的性能。
配对使用

三极管经典教程PPT课件

三极管经典教程PPT课件
静态工作点
为了使三极管工作在放大区,需要设置合适的静态工作点,即合适的基极电流和集电极电压。静态工作点的设置对放大电 路的性能有很大影响。
动态性能 共射放大电路具有较高的电压放大倍数和较好的频率响应特性。但由于三极管的非线性特性,输出信号 会产生失真。
共基放大电路
原理分析
共基放大电路中,信号源与三极管的发射极和基极相连, 集电极作为输出端。与共射放大电路相比,共基放大电路 具有更高的电流放大倍数和更宽的频带宽度。
放大状态:当加在三极管发射结的电 压大于PN结的导通电压,并处于某一 恰当的值时,三极管的发射结正向偏 置,集电结反向偏置,这时基极电流 对集电极电流起着控制作用,使三极 管具有电流放大作用,其电流放大倍 数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结 的电压大于PN结的导通电压,并当基 极电流增大到一定程度时,集电极电 流不再随着基极电流的增大而增大, 而是处于某一定值附近不怎么变化, 这时三极管失去电流放大作用,集电 极与发射极之间的电压很小,集电极 和发射极之间相当于开关的导通状态。 三极管的这种状态我们称之为饱和导 通状态。
电极电流IC与基极电流IB之比。
极间反向电流 包括集电结反向饱和电流ICBO和发 射极反向电流IEBO,用于衡量三极管
的稳定性。
截止频率fT 表示三极管的高频性能,定义为当β 下降到低频时β值的0.707倍时所对应 的频率。
动态特性参数的意义 用于全面评价三极管的性能,为电路 设计提供重要依据。
03
解调概念
从已调信号中提取出低频信号的过程。
解调方式
对应不同的调制方式,有相应的解调方法,如包络检波、鉴频和鉴相等。
07
三极管应用实例与选型指南
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VBQ
VB EQ Re
VCEQ VCC ICQ Rc IEQ Re VCC ICQ ( Rc Re )
IBQ
ICQ β
32
4.5.1 共集电极放大电路
Av 1 。 Ri Rb //[rbe ( 1
rbe β
共集电极电路特点:
◆ 电压增益小于1但接近于1,vo与vi同相 ◆ 输入电阻大,对电压信号源衰减小 ◆ 输出电阻小,带负载能力强
极电阻有很大关系。适用于低频情况下,作多级放大电路的中间级。 共集电极放大电路:
只有电流放大作用,没有电压放大,有电压跟随作用。在三种组态中, 输入电阻最高,输出电阻最小,频率特性好。可用于输入级、输出级或缓冲 级。 共基极放大电路:
只有电压放大作用,没有电流放大,有电流跟随作用,输入电阻小,输 出电阻与集电极电阻有关。高频特性较好,常用于高频或宽频带低输入阻抗 的场合,模拟集成电路中亦兼有电位移动的功能。
IE = IB +IC
6
三极管的三种放大电路
当晶体管被用作放大器使用时,其中两个电极用作信号 (待放大信号) 的输入端子;两个电极作为信号 (放大后的 信号) 的输出端子。 那么,晶体管三个电极中,必须有一 个电极既是信号的输入端子,又同时是信号的输出端子, 这个电极称为输入信号和输出信号的公共电极。
1
目录
1 三极管的结构
2 三极管的作用
3
三极管的三种放大电路
4 三极管的开关状态
2
三极管的结构简介
三极管的类型:
• 按频率分:高频管、低频管; • 按功率分:小、中、大功率管; • 按半导体材料分:硅、锗管; • 按结构分:NPN和PNP管;
3
三极管的结构简介
(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管
uBE=uI+URb1
29
讨论1 放大电路的组成原则
静态工作点合适:合适的直流电源 合适的电路参数
• 输入信号能够作用于晶体管的输入端, 输出信号能够传送给负载。
• 对实用放大电路的要求:
共地; 直流电源种类尽可能少; 负载上无直流分量。
30
1. 基极分压式射极偏置电路
(1)稳定工作点原理
b点电位基本不变的条件:
不设置正确的静态: 输出电压必然失真! 设置合适的静态工作点,主要是为了解决失真问题;
但Q点将影响所有动态参数!
28
4.2.3 两种实用放大电路
1.直接耦合放大电路
问题: 1、两种电源
将两个电源 合二为一
静态时,U BEQ U Rb1
2、信号源与放大电路不“共地” 动态时,
共地,且要使信号 驮载在静态之上
电压放大倍数
Av
vO vI
0.98V 20mV
49
21
放大状态下BJT的工作原理
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。 实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。 (2)外部条件:发射结正向偏置,集电结反 向偏置。
4
BJT的结构简介
半导体三极管的结 构示意图如图所示。 它有两种类型:NPN型 和PNP型。
(a) NPN型管结构示意图 (b) PNP型管结构示意图 (c) NPN管的电路符号 (d) PNP管的电路符号
5
三极管的作用
晶体三极管的用途主要是交流信号放大,直流信号放大和电路开 关。
晶体三极管偏置 使用晶体管作放大用途时,必须在它的各电极上加上适当极性的
电压,称为“偏置电压”简称“偏压”, 又“偏置偏流”。电路 组成上叫偏置电路。晶体管各电极加上适当的偏置电压之后,各 电极上便有电流流动。 通过发射极的电流称为“射极电流”,用 IE表示;通过基极的电流称为“基极电流”,用IB表示;通过集电 极的电流称为“集极电流”,用IC表示。 晶体管三个电极的电流有一定关系,公式如下
以输入、输出信号的位置为判断依据: 信号由基极输入,集电极输出——共射极放大电路 信号由基极输入,发射极输出——共集电极放大电路 信号由发射极输入,集电极输出——共基极电路
35
4.5.3 放大电路三种组态的比较
2.三种组态的比较
36
4.5.3 放大电路三种组态的比较
3.三种组态的特点及用途
共射极放大电路: 电压和电流增益都大于1,输入电阻在三种组态中居中,输出电阻与集电
33
4.5.2 共基极放大电路
1.静态工作点 直流通路与射极偏置电路相同
VBQ
Rb2 Rb1 Rb2
VCC
ICQ
IEQ
VBQ
VB EQ Re
VCEQ VCC ICQRc IEQ Re
VCC ICQ(Rc Re )
IBQ
ICQ β
34
4.5.3 放大电路三种组态的比较
1.三种组态的判别
电路处于静态时,三极管三个电极的电压、电
流在特性曲线上确定为一点,称为静态工作点, 常称为Q点。一般用IB、 IC和VCE (或IBQ、ICQ 和VCEQ )表示。
# 思考题:放大电路为什么要建立正确的静态?
27
共射放大电路的工作原理
设置正确静态的必要性
电路的放大对象是动态信号,为什么要求晶体管在信 号为零时有合适的直流电流和极间电压?
I1 >>IBQ ,VBQ >>VBEQ
此时,VBQ
Rb2 Rb1 Rb2
VCC
VBQ与温度无关
Re取值越大,反馈控制作用越强
一般取 I1 =(5~10)IBQ , VBQ =3~5V
31
1. 基极分压式射极偏置电路
(2)放大电路指标分析
①静态工作点
VBQ
Rb2 Rb1 Rb2
VCC
ICQ
IEQ
按晶体管公共电极的不同选择,晶体管放大电路有 三种:共基极电路 ( Common base circuit)、共射极电 路(Common emitter circuit) 和 共集极电路(Common collector circuit),如下图示。
7
三极管的三种放大电路
由于共射极电路放大电路的电流增益和电压增益均较其 它两种放大电路为大,故多用作讯号放大使用。
a)基极加上足够的顺向偏压使IB足够大 b)C-E间视同导通状态
11
12
13
14
15
16
17
18
19
20
放大状态下三极管的工作原 4理. 放大作用
共基极放大电路
若 vI = 20mV 使 iE = -1 mA, 当 = 0.98 时,
则 iC = iE = -0.98 mA, vO = -iC• RL = 0.98 V,
end 37
38
8
三极管的放大原理 晶体三极管的放大作用晶体管是一个电流控制组
件,其集极电流 IC可以由基极电流IB控制,只需 轻微的改变基流IB就可以引起很大的集流变化IC。 由于晶体管基流IB的轻微变化可以控制较大的集 流IC,我们利用这一特点,用它来放大微弱的电 信号,称为晶体管的放大作用 (Amplification),简 称晶体管放大。简单来说,晶体管的放大原理是 把微弱的电信号 (微弱的电压信号 Vi) 加在基极上, 使基极电流按电信号变化,通过晶体管的电流控 制作用,就可以在负载上得到与原信号变化一样, 但增强了的电信号 (较大的电压信号 Vo)。
22
共射极放大电路
电路组成 共射放大电路的工作原理 两种实用放大电路
23
电路组成
输入回路(基极回路)
输出回路(集电极回路)
24
电路组成 习惯画法
共射极基本放大电路
习惯画法
25
共射放大电路的工作原理
1.简单的工作原理
Vi=0
Vi=Vsint
26
共射放大电路的工作原理
2.静态
输入信号为零(vi= 0 或 ii= 0)时,放大电 路的工作状态,也称直流工作状态。
9
三极管截止状态
a)基极(B)不加偏压使
(b)基极(B)加上反向偏
c)此时集极(C)与射极(E)
基极电流IB等于零
压使基极电流IB等于零 之间形同段路,负载无 电流通过
10
三极管饱合状态
当三极管之基极加入高电平时,因为IC≒IE=β×IB,射极和集极的电流 亦非常大,此时集极与射极之间的电压降非常低(VCE为0.4V以下),其 意义相 当于集极与射极之间完全导通,此一状态称为三极管饱合状态
相关文档
最新文档