合肥工业大学2014-2015第一学期《高等数学》试卷A试题

合集下载

合肥工业大学第二学期高等数学试卷A试题

合肥工业大学第二学期高等数学试卷A试题

合肥工业大学第二学期高等数学试卷A试题 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩ 则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( ) 2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰(B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰(D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())()x xLy ye f x dx e f x d ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。

合工大高数历年统考题

合工大高数历年统考题

学年第 二 学期 课程名称 高等数学(下)一、填空题(每小题3分,满分15分) 1.设函数ln(32)xy z x y e =-+,则(1,0)dz =3144dx dy -。

2.=⎰⎰dy yydx x sin 0ππ2。

3.设V 为柱体:10,122≤≤≤+z y x ,则=⎰⎰⎰υυd e z(1)e π-。

4.设()1f x x =+,ππ≤≤-x ,则其以2π为周期的傅立叶级数在点x π=处收敛于1。

二、选择题(每小题3分,共15分) 1.设⎪⎩⎪⎨⎧=+≠++=,0,0,0,,),(2222,y x y x y x xy y x f 则( .C ).A ),(lim 0y x f y x →→存在 .B ),(y x f 在点(0,0)处连续.C )0,0(),0,0(y x f f ''都存在 .D ),(y x f 在点(0,0)处可微2.曲线⎩⎨⎧=-+=+-632,922222z y x z e x y 在点(3,0,2)处的切线方程为(.B ) .A 32x y z -==- .B 326yx z -==- .C 32214x y z --==- .D {3(2)0x z y -=--= 3.设L 为圆周,122=+y x 则⎰=+Lds y x)(33( .A ).A 0 .B 1 .C 2 .D 34.设常数0a >,则级数1111(1)ln n an n n∞++=-∑( .C )。

.A 发散 .B 条件收敛 .C 绝对收敛 .D 敛散性与a 有关。

三、设),)((2xy y x f z -=,其中f 具有二阶连续偏导数,求2zx y∂∂∂。

(本题10分)解:122()zx y f yf x∂=-+∂, 2121111222122(2())22()[2()][2()]z x y f yf f x y x y f xf f y y x f xf x y y∂∂=-+=-+---+++-+∂∂∂ 221111222224()2()f x y f x y f xyf f =---+-++ 四(10分)、求函数)1(),(-=y x y x f 在由上半圆周)0(322≥=+y y x 与x 轴所围成的闭区域D 上的最大值和最小值。

合肥工业大学大一上学期高数期末考试题

合肥工业大学大一上学期高数期末考试题

咼数期末考试一、填空题(本大题有4小题,每小题4分,共16分)2.lim (1 + 3x)sinx =1. x -0_______________________________________.已知cosx是f(x)的一个原函数, 则2.xx兀2兀22兀 2 n — 1lim — (cos 2— + cos 2 ——+||| + cos 2兀)= 3. “世 n n n n ______________ .1 2 2x arcsin x 1 , dx 二2—1书1 一 X4. _ 运______________________ .二、单项选择题(本大题有4小题,每小题4分,共16分)设口(x) = —x, P (x)=3-3%'x ,则当 X T 1 时()5.1 x.(A)〉(x)与-(x)是同阶无穷小,但不是等价无穷小; (B )〉(x)与](x)是等价无穷小;(C (X)是比-(x)高阶的无穷小; (D ) -(x)是比〉(X)高阶的无穷小.6 设 f (x) = cos x( x + sin x ),则在 x = 0处有(A C) ■ (D ) f(x)不可导. x7.若F (x )二0( 2—x ) f( t ) dt ,其中f (x)在区间上(-1,1)二阶可导且f (x),则().(A) 函数F(x)必在x=0处取得极大值; (B) 函数F (x)必在x = 0处取得极小值; (C) 函数F(x)在x=0处没有极值,但点(0, F(0))为曲线y = F(x)的拐点;(D) 函数F(x)在x=0处没有极值,点(0,F(0))也不是曲线y 二F(x)的拐点。

1设f (x)是连续函数,且 f (x) = x + 2 j° f (t)dt ,贝U f (x)=((A ) 2解答题(本大题有5小题,每小题8分,共40分)10. 设函数厂y (x)由方程e x y-sin(xy)二1确定,求y (x)以及y (°).1 - x 78. 2—+2(B ) 2(C ) x 1 (D ) x 2.9.三求—dx.11.x(1 x )y(1) =14.求微分方程xy 2^xlnx满足9的解.四、解答题(本大题10分)15. 已知上半平面内一曲线 y 二y(x)(x 一0),过点(0,1),且曲线上任一点M&o ’y 。

2014年普通高等学校招生统一考试数学试卷(安徽.理)

2014年普通高等学校招生统一考试数学试卷(安徽.理)

2014年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域......书写的答案无效.............。

.......,.在答题卷、草稿纸上答题无效4.考试结束,务必将试卷和答题卡一并上交。

参考公式:如果事件A、B互斥,那么如果事件A、B相互独立,那么P(A+B)= P(A)+ P(B)P(A·B)= P(A)·P(B)第I卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 是虚数单位,z 表示复数z 的共轭复数。

若,1i z +=则zi z i+⋅=( ) A .2- B .2i - C .2 D .2i2.“0<x ”是“0)1ln(<+x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .89 4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧-=+=31y y t x ,(t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l被圆C 截得的弦长为( )A .14B .142C .2D .225.y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为( )A .121-或 B .212或C .2或1D .12-或 6.设函数))((R x x f ∈满足()()sin f x f x x π+=+,当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A .12 B .23C .0D .21-7.一个多面体的三视图如图所示,则该多面体的表面积为( )A .213+B .183+C .21D .18 8.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共有( )A .24对B .30对C .48对D .60对9.若函数()12f x x x a =+++的最小值为3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或8 10.在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满2()OQ a b =+。

14-15高数上试卷答案

14-15高数上试卷答案

华东交通大学2014—2015学年第一学期考试卷 《高等数学(A)Ⅰ》答案及评分标准一、填空题(每题3分,共15分)3e 1-、;)2(204 2--=-=-+x y y x 或、;22 3、;3164、;3 5-、二、选择题(每题2分,共10分)C 1、;A 2、;D 3、;A 4、;B 5、 三、计算题(每题 12分,共48分) 41253lim(1) 122+-+-+-=-∞→x x x x x x 原式解:、2241112153limxx x x xx +---+--=-∞→23-= 2203242e lim )2(x x x x --=→解:原式x x x 644e lim 20-=→34e lim 20x x →=34=y x x y ln ln )1(2=解:两边取对数得、 y y x y x y x y x '⋅⋅+=⋅+'1ln 1ln 求导得方程两边对 , 22ln ln xx xy y y xy y --='⇒ )11()11(11)2(2'+-⋅+-+-='x x x x y 解: 222)1()1()1(22)1(+--+⋅++-=x x x x x 112+-=x x y y d d '=∴x x d 112+-=23d ln 32)1(3x x ⎰=解:原式、 ⎰-=x x x x dln 32ln 322323⎰-=x x x x d 32ln 322123C x x x +-=232394ln 32 t t t x t x d tan sec d sec )2(==则,令解:, 42;时,当π==t x 32π==t x 时,当⎰⋅=⇒342d tan sec tan sec 1ππt t t t t 原式⎰=34d cos ππtt 34sin ππt=223-=0(1)4=++D Cz Ax 方程为解:由已知设所求一般、 ⎩⎨⎧=+-=++030D C A D C A 则有 ,22D C D A -=-=⇒,02022=-+=+--z x D z Dx D ,即故所求一般方程为 }4,2,1{)2(-=AB 解: , }2,5,3{-=AC253421--=⨯=∴kj i s所求直线的方向向量}11 41 16{,,-=113141162-=+=--⇒z y x 标准式方程为 ,⎪⎩⎪⎨⎧+=+-=-=tz t y tx 113141162所求参数方程为 四、综合题 (共2题,每题10分,共20分)2ln 1)( )1( 1xxx f -='解:、 , e 0)(=='x x f 得令 , 0)(e 0)(e 0<'>>'<<x f x x f x 时当,时当 , 处取极大值在故e )(=x x f e1)e (=f 且极大值为 343ln 22)ln 1()( )2(xx xxx x x f -=---='' ,23e 0)(==''x x f 得令0)(e 0)(e 02323>''><''<<x fx x fx 时当,时当 ,)e 23e (2323-,故拐点为⎰=41 2d )4()(2x x V π体积1、解: 41)1(16x-=ππ12= xx y 2121)2(-=' ⎰⎰+=-+=∴e1e 12d )2121(d )2121(1  曲线长度x x x x xx s e12)ln 2141(x x +=41e 2+= 五、证明题(7分)3tan )( 3x x x x f --=令证:,2222tan 1sec )(x x x x x f -=--='则 单调增加,故,时,有当)(0)(tan 20x f x f x x x >'⇒><<π0)0(=f 又,0)(20><<x f x 时,有当所以π, 3tan 3x x x +>即。

试卷latex模板效果文档

试卷latex模板效果文档

系班级姓
名学号装订
线内不要答题XXXX 大学2014/2015学年第一学期《高等数学》期末考试试卷(A 卷)绝密⋆启用前(XXXX 年级)题号一二三总分复核人得分得分评卷人复核人一、选择题(共20小题,每小题3分,共60分)(类型说明:每一道试题下面有A 、B 、C 、D 四个选项,请从中选择一个最佳答案,并在答题卡上将相应题号的字母涂黑,以示正确答案.)1.已知得分评卷人复核人二、填空题(共10小题,每小题3分,共30分)(类型说明:请把答案写在题中横线上,不必写出中间过程.)2.已知得分评卷人复核人三、解答题(共2小题,每小题5分,共10分)(类型说明:解答应写出文字说明、证明过程或演算步骤,请在指定区域作答.)3.已知
《高等数学》试卷共2页第1页
《高等数学》试卷共2页第2页。

合工大高等数学A(上)习题册.

合工大高等数学A(上)习题册.
x x a b →∞− ;
(0,0a b >>
2
0(6lim(2x x x
x a b →+(0,0a b >>.
2.若,(00f =(f x ′在点0x =的某邻域内连续,且(00f ′≠,试求(0lim f x x x +→.
习题Taylor中值定理
43−1.写出2(ln f x x =x在处的四阶泰勒展开式.
21.1x dx x +∫.
22
2.25x dx x x −−+∫.
1
3.1sin dx x +∫.
41
4.cos dx x ∫.
习题广义积分
57−计算下列广义积分:21ln 1.x
dx x +∞∫.
02.x
xe dx +∞−∫.
213.(1dx
x x +∞+∫.
1
4..
习题定积分的应用
61−1.假设曲线21y x =−(01x ≤≤,x轴,y轴所围区域被曲线2
习题洛必达(L′Hospital法则
42−1.求下列极限:30sin (1lim x x x
x →−;
2ln (2lim ln x x x
x x →+∞
+;
2011
(3lim(tan x x x x →−;
0ln(tan
(4lim ln(tan x ax bx +→ ;
(0,0a b >>
11
(5lim (x x
n
n n n ++→∞−+−+1;
221
11(2lim(1(1(123n n →∞−−⋅⋅⋅−2;

合肥工业大学第二学期《高等数学》试卷A试题

合肥工业大学第二学期《高等数学》试卷A试题

一、填空题(每小题3分,共15分) 1、椭球面∑:222216x y z ++=在点0(2,2,2)P 处的切平面方程是___________.2、设曲线L 的方程为221x y +=,则2[()]Lx y y ds +-=⎰ .3、设()21,0,1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于 . 4、微分方程220y y y '''++=的通解为 . 5、设23(,,)2f x y z x y z =++,则(1,1,1)grad f = .二、选择题(每小题3分,共15分) 1、设222z x y ze ++=,则11x y dz ===( )2、二次积分20(,)dx f x y dy ⎰ 化为极坐标下累次积分为( )3、微分方程sin y y x x '''+=+的特解形式可设为( ).(A )*()sin cos y x ax b A x B x =+++ (B )*(sin cos )y ax b x A x B x =+++ (C )*(sin cos )y x ax b A x B x =+++ (D )*sin cos y ax b A x B x =+++ 4、直线1121410214x y z x y z -+-==-++=-与平面2的位置关系是( ))(A l ∥π但l 不在π上 )(B l 在平面π上 )(C l ⊥π )(D l 与π斜交5、设曲面∑的方程为222,x y z z ++=,1∑为∑在第一卦限的部分,则下列结论不正确...的是( ).(A )0xdS ∑=⎰⎰ (B )0zdS ∑=⎰⎰(C )1224z dS z dS ∑∑=⎰⎰⎰⎰ (D )22x dS y dS ∑∑=⎰⎰⎰⎰三、(本题满分10分)设(,)sin xz f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂.四、(本题满分12分)求22(,)2f x y x y =-+在椭圆域D :2214y x +≤上的最大值和最小值.五、(本题满分10分)计算二重积分:2DI y x d σ=-⎰⎰,其中:11,02D x y -≤≤≤≤.六、(本题满分12分)已知积分22(5())(x xLy ye f x dx e f x ---+⎰与路径无关,且6(0)5f = .求()f x ,并计算(2,3)22(1,0)(5())()x x I y ye f x dx e f x dy--=-+⎰.七、(本题满分12分)计算积分2232222()(2)xz dydz x y z dzdx xy y z dxdy I x y z ∑+-++=++⎰⎰,其中∑是上半球面z =,取上侧.八、(本题满分10分).求幂级数∑∞=---12112)1(n nn x n 的收敛域及和函数,并求数项级数∑∞=---1112)1(n n n 的和.九、(本题满分4分)设0(1,2,3,...)n u n ≠=,且lim 1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑是否收敛如果是收敛的,是绝对收敛还是条件收敛。

2014年专升本(高等数学一)真题试卷(题后含答案及解析)

2014年专升本(高等数学一)真题试卷(题后含答案及解析)

2014年专升本(高等数学一)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.( )A.e2B.e1C.eD.e2正确答案:D2.设y=e-5x,则dy=( )A.-5e2-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx正确答案:A3.设函数f(x)=xsinx,则( )A.B.1C.D.2π正确答案:B4.设函数f(x)在[a,b]连续,在(a,b)可导,f’(x)>0,若f(a).f(b)<0,则y=f’(x)在(a,b)( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B5.∫x2ex3dx=( )A.B.3x2ex3+CC.D.3ex3+C正确答案:C6.∫-11(3x2+sin5x)dx=( )A.-2B.-1C.1D.2正确答案:D7.∫1+∞e-xdx=( )A.-eB.-e-1C.e-1D.e正确答案:C8.设二元函数z=x2y+xsiny,则=( )A.2xy+sinyB.x2+xcosyC.2xy+xsinyD.x2y+siny正确答案:A9.设二元函数z==( ) A.1B.2C.x2+y2D.正确答案:A10.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4正确答案:C填空题11.设=3,则a=________。

正确答案:12.曲线的铅直渐近线方程为________。

正确答案:13.设,则y’=________。

正确答案:14.设函数f(x)=在x=0处连续,则a=________。

正确答案:315.曲线y=xcosx在点(0,1)处的切线的斜率k=________。

正确答案:116.=________。

正确答案:17.设函数f(x)=∫0xet2,则f’(0)=________。

高等数学第一学期试题(附参考答案)

高等数学第一学期试题(附参考答案)

《高 等 数 学》课程试题一、填空题 .(每小题3分,共24分) 1. 设=+=)]([,1)(2x f f xx x f 则2. =→xx x 5sin 3sin lim 03. 设⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在0=x 连续,则常数=a4. 曲线x y ln 2=上点(1, 0)处的切线方程为5.设参数方程⎩⎨⎧==ty t x sin 2,则=dxdy 6. 函数x x f 2arctan )(=,则=dy7. ⎰=)(cos x xd 8. ⎰-201dx x =二、选择题 .(每小题3分,共24分)1.设函数⎩⎨⎧<<-≥-+=10,11,42)(22x x x x x x f ,则)(lim 1x f x →等于( )A .-3B .-1C . 0D .不存在 2. 当)1ln(0x ,,x +→两个无穷小比较时是比x ( )A. 高阶的无穷小量B. 等价的无穷小量C. 非等价的同阶无穷小量D. 低阶的无穷小量3.设)(x f 的一个原函数为)1ln(+x x ,则下列等式成立的是( ) A .C x x dx x f ++=⎰)1ln()( B.C x x dx x f +'+=⎰]1ln([)(班级:姓名:学号:试题共页加白纸张密封线C.⎰+=+C x f dxx x )()1ln( D.C x f dx x x +='+⎰)(])1ln([ 4. 设函数)(x f y =在0x x =处可导,则必有( )A .0=∆y B. 0lim=∆→y xx C. dy y =∆ D. 0=dy 5.设)12)(1()(+-='x x x f ,则在)1,21(内,曲线)(x f 是( )A .单调增加且是凹的B .单调增加且是凸的C .单调减少且是凹的D .单调减少且是凸的 6.设)0(),1ln(≠+=a ax y ,则二阶导数y ''=( ) A .22)1(ax a+ B.2)1(ax a + C. 22)1(ax a+-D. 2)1(ax a+-7.积分=⎰-dx x1121( )A .是发散的 B. 2 C. -2 D . 0 8.设函数⎰-=Φ2)(xtdttex ,则其导数=Φ')(x ( )A .x xe - B. xxe--;C.232xex -D.232xex --三、求极限.(每小题5分,共10分) (1)3)21(lim +∞→+x x x(2)xx x x sin cos 1lim+-→四、求下列导数或微分. (每小题6分,共12分) (1)求由方程1ln =+y ye x确定的隐函数)(x f y =的导数dxdy ;(2)求函数xe y sin =在01.0,0=∆=x x 处的微分dy五、求下列积分.(每小题6分,共18分) (1) ⎰+dxeexx 21(2)⎰212ln exdx x(3)⎰20sin πdx x六、设x:,0求证(5分)>1>ex x+七、欲做一个长方体的带盖箱子,其体积为723m,而底面的长与宽成2:1的关系。

合肥工业大学大一上学期高数期末考试题

合肥工业大学大一上学期高数期末考试题

高数期末考试一、填空题(本大题有4小题,每小题4分,共16分) 1. =+→xx x sin 20)31(lim .2.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.3.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .4. =-+⎰21212211arcsin -dx xx x .二、单项选择题 (本大题有4小题, 每小题4分, 共16分)5. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.6. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.7. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

(A )22x (B )222x +(C )1x - (D )2x +.三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 9. 设函数)(xf 连续,=⎰10()()g x f xt dt,且→=0()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。

安徽大学2009--2010《高等数学》试卷与解答

安徽大学2009--2010《高等数学》试卷与解答

安徽大学2009--2010《高等数学》试卷与解答安徽大学2009--2010学年第一学期《高等数学A(一)》考试试卷(A 卷)(闭卷时间120分钟)一、填空题(本题共5小题, 每小题2分, 共10分)1. 若+∞→x lim (12+-x x -(ax+b ))= 0, 则a =▁▁▁▁▁▁▁▁▁,b = ▁▁▁▁▁▁▁▁ .2. 设函数y = y(x)由方程52arctan 2=+-=e ty y t x t所确定,y = y(x) 关于x 的一.3.若f(x)= ,0,1sin x x a00=≠x x 在x=0处右导数存在,则a 的取值区间为▁▁▁▁▁▁. 4.求lnx 在x 0=1处带有Lagrange 型余项的n 阶Taylor 展开式: ▁▁▁▁▁▁▁▁5. 微分方程y "+y '=x 的通解为▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁.二、选择题(本题共5小题, 每小题2分, 共10分)1. 已知数列{x n }、{y n }满足∞→n lim x n y n =0, 则下列断言正确的是( ).A. 若{x n }发散, 则{y n }不发散.B. 若{x n }无界, 则{y n }必有界C. 若{x n }有界, 则{y n }必为无穷小量.D. 若{nx 1}为无穷小量, 则{y n }必为无穷小量. 选 D. 理由:A ,B 不正确,如x n ==-=k n n k n 2,12,0,y n ==-=kn k n n 2,012,C 不正确如2. 设f(x)= ∞→n lim1sin )1(2+-nx xn ,则( ).A.f(0)不存在.B. f(0) 存在,且x=0为可去间断点.处连续.3. 曲线y=x 4-2x 2+2的拐点个数为( ).A. 0.B. 1.C. 2 D . 3.4. 设f '(x) 存在且连续,则[?)(x df ]'= ( ).A. f '(x).B. f '(x)+C. C. f(x).D. f(x)+C. 选A. 理由:?)(x df =f(x)+C5. 设f(x) 连续, 则下列函数中, 必为偶函数的是( ). A. dt t f x2)(. B.dt t f t f t x-+0C.dt t f x2)(. D.dt t f t f t x--0))()((选B. 理由:A,D 不正确:)(2t f ,t(f(t)-f(-t)) 均为偶函数;B 正确:t(f(t)+f(-t)) 为奇函数; C 不正确: 当f(x) 为奇函数或偶函数时)(2x f 为偶函数三、计算题(本题共8小题, 每小题7分, 共56分)1. ∞→n limn n n n 22cos sin +2. 若0lim →x x x f cos 1)(- = 4, 求0lim →x (1+xx f )()x1.3. 设a>0, a 1>0, a 1+n =21(a n +n a a ), n=1,2, …. 求极限∞→n lim a n4. 0lim →x 21xxtt sin 02arctan dt .+++)1ln(1)1(1x x dx . (x>0)6.?-112x x dx . (x>0)7. 设xsin 是f(x) 的一个原函数, 求?103)('dx x f x .8. 求曲线Γ: y =dt t xsin (x ∈[0, π]) 的长.四、综合分析题(本题共2小题, 每小题7分, 共14分)1.讨论函数y =(x+1)2-3|x |在[-3,3)上的最值.2. 讨论广义积分?∞++01nmx x dx (n ≥0)的敛散性。

合肥工业大学近两年高数上试卷

合肥工业大学近两年高数上试卷

2014-2015试卷 一、填空题1、极限2sin 0lim(13)x x x →+=. 2、设2arctan()y x x =,则y ′ . 3、设()f x 的一个原函数为2x e−,则()________xf x dx ′=∫.4、曲线xe y =过原点的切线方程为____________. 5、曲线2r e θ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题 1、当1x →−时,31x+与3(1)x +为()(A) 高阶无穷小 (B) 低阶无穷小(C) 等价无穷小 (D) 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )(A) 1sin x + (B) 1sin x − (C) 1cos x + (D) 1cos x −3、设()f x 在0x =处连续,且0()lim11cos x f x x→=−,则在点0x =处( ). (A) (0)f ′不存在 (B) (0)0f ′=,且(0)f 为()f x 的极小值 (C) (0)f ′存在,且(0)0f ′≠ (D) (0)0f ′=,且(0)f 为()f x 的极大值4、下列广义积分发散的是( )(A)1∫(B)111sin dx x −∫ (C)221ln dx x x+∞∫(D) 2x xe dx +∞−−∞∫5、曲线2211x x e y e−−+=−()(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线三、计算下列各题(每小题6分,共36分)1、222111lim ()2n n n n n n πππ→∞++++++ . 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +−−−→.3、求sin (0)xy xx =>的导数()y x ′.4、已知()2ln 1,arctan ,x t y t =+ = 求22d d ,d d y y x x .5、2arctan x dx x∫. 6、设2ln(1)0()101x x f x x x+≥= < + ,求20(1)f x dx −∫. 四、(本题满分10分)设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x −<== > ∫ 讨论()f x 在0x =处的连续性和可导性.五、(本题满分10分)设曲线2xe y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、(本题满分8分)证明不等式:0>x 时,有11ln ≥+xx . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ′=2013-2014高数试卷一、填空题 1、极限0_________x →=.2、曲线221x xy y −+=在点(1,1)处的切线方程为 .3、设曲线()y f x =过点(0,0),且当x 在0x =处取得增量x ∆时相应的函数值增量3()(0)y x o x x ∆=∆+∆∆→,则2lim ()________n nf n→∞=.4、设连续函数()f x 满足1()2()d f x x f x x =,则1()d __________f x x =∫.5、积分121[ln(]_________x x −+=∫.二、选择题1、设lim n n x →∞与lim n n y →∞均不存在,那么下列命题正确的是( ).(A )若lim()n n n x y →∞+不存在,则lim()n n n x y →∞−必也不存在(B )若lim()n n n x y →∞+存在,则lim()n n n x y →∞−必也存在(C )lim()n n n x y →∞+与lim()n n n x y →∞−均不存在(D )lim()n n n x y →∞+与lim()n n n x y →∞−中只要有一个存在,另一个必定不存在2、已知0x =是函数ln()()sin a x f x x bx+=−的可去间断点,则常数,a b 的取值情况为( ).(A )1,a b =为任意实数 (B )1,b a =为任意实数 (C )1,a b ≠为任意实数 (D )=1,1a b ≠3、设21sin ,0()0,0,x x f x xx ≠= = 那么()f x 在0x =处( ). (A) 不连续 (B) 连续但不可导 (C) 可导但()f x ′不连续 (D) 可导且()f x ′也连续 4、极限22212lim()12n nn n n n→∞++⋅⋅⋅+=+++( ). (A) 14 (B) 13 (C) 12(D) 15、设2sin 1x +为)(x f 的一个原函数,则()d x f x x ′=∫( ).(A) 22cos x x C + (B) 2222cos sin x x x C −+ (C) 2222sin cos x x x C −+ (D) 222cos sin x x x C ++三、计算下列各题(每小题5分,共30分)1、011lim()ln(1)x x x →−+.2、设,0,(),0,x e x f x x x ≤= >求()21sin 0lim()d xxx f t t+−∞→∫.3、设y =d y 及y ′′.4、设()y y x =由220ln(1),d 1,1u t x te y u u =+ −= +∫确定,求1d d t y x =.5、x .6、设20sin ()d 1cos xt f x t t=+∫,求220()d 1()f x x f x π′+∫. 四、(本题满分8分)已知0x →时,22cos sin ()x x A Bx Cx o x +=+++,其中2()o x 是2x 的高阶无穷小,求常数,,A B C 的值.五、(本题满分10分)设2()1xf x x x =+−,(1)求函数()f x 的单调区间,(2)求函数()f x 的极值.六、(本题满分10分)如图所示1D 是由抛物线22y x x =−与直线(0)y kx k =>围成的图形,2D 是由曲线22y x x =−与直线y kx =及x 轴围成的图形,设1D 的面积为1S ,2D 的面积为2S ,若12:1:7S S =. (1)求常数k 的值;(2)求1D 绕x 轴旋转一周所得到的旋转体的体积x V 及2D 绕y 轴旋转一周所得到的旋转体的体积y V . 七、(本题满分6分)证明:0x ≠时,2cos 12x x >−.八、(本题满分6分)设()f x 在[]0,1上连续,在()0,1内可导,且1(0)(1)0,(0)()02f f f f ><.证明:(1)在()0,1内存在两个不同的点,ξη,使得()()0f f ξη==成立;(2)(0,1)ζ∃∈使得()()0f f ζζζ′−=成立。

高数A答案

高数A答案

12.x+2arctanx+C 13.C 14.解:
解:原式= (1 + x 2 +1 )dx= dx+2
2
1 1+x 2
dx = x+arctanx+c
原式=limx →1 (x −1) ln x =limx →1
x −1−ln x
1− ln
1 x2 1 1 + x x2
5.C 6.B 12.x+2arctanx+C
7.C 13.C
= limx →0+ xsin x = 0 = lim −
x →0
1
f x −f(0) x −0
= limx →0− xsin x = 0
1
所以 f(x)在 x=0 处可导。 3.(n+m) f ′ (a) 因为 f(x)在 x=a 可导,所以 f(a+nh)=f(a)+f'(a)nh+o(nh), f(a-mh)=f(a)-f'(a)mh+o(mh), f(a+nh)-f(a-mh)=f'(a)(m+n)h+o(h) 所以 lim(f(a+nh)-f(a-mh))/h=(m+n)f'(a) 4.cosx 2 5.C 因为(sinx)'=cosx 所以对于复合函数的导数是: dy=f’ (sinx)*(sinx)'dx=cosxf'(sinx)dx 6.B 解: ∵f'(x)<0, ∴f(x)在此区间内是递减 ∵f ''(x)>0 ∴f(x)在此区间内是是凹函数 7.C 8.(π, 0) 解:∵y=sinx ∴y'=cosx y''=-sinx 令 y''=0,得 x=π ∵当 x∈(0,π )时,y''<0 当 x∈(π ,2π )时,y''>0 ∴x=π 是 y=sinx 的拐点 ∵当 x=π 时,y=0 ∴曲线 y=sinx 在区间(0,2π )内的拐点坐标是(π ,0)。 9.B 10.1 11.D

2014-2015高数A(I)试卷A(1)

2014-2015高数A(I)试卷A(1)

石家庄铁道大学2014-2015学年第一学期二0一四 级本科班期末考试试卷(A )课程名称: 高等数学(A )I 考试日期: 1月 日 考试时间: 120 分钟 考试性质(学生填写):正常考试()缓考补考()重修()提前修读()一、单选题和填空题,(每小题3分,共30分)请将下列各题答案填到下面的表格内,否则不得分!.下列四对函数中,是相同函数的是 (A) 2ln(1sin )()x f x e+=与2()1sin g x x =+(B) 2()x f x x=与()g x x =(C) 2()ln(1)f x x =+与()2ln(1)g x x =+(D) ()f x =()g x x = 2.下列哪个极限不存在...(A) 1sin sin1lim 1x x x →-- (B) 10lim x x e →(C) 201lim sin x x x → (D) 11lim(1)xx x→+——————————————————密————封————线————内————答————题————无————效————————————班级: 学号: 姓名:3.设由1y y xe =+确定了y 是x 的隐函数,则下列结果正确的是(A)y dy e dx = (B) y y dy e xe dx=+ (C) 2ydy e dx y=- (D) 222y y d y e xe dx =+ 4.设()f x 在[1,1]-上可导,且2()(0)1lim(sin )2x f x f x →-=,则(0)f 是()f x 的 (A) 最大值 (B) 最小值 (C) 极大值 (D) 极小值 5.下列四个积分结果正确的是(A) 545sin 0x xdx -=⎰ (B) 141sin 01x x e xdx e -=+⎰(C)10-=⎰(D)201400π=⎰6.函数11()(1)xx f x e --=-的两个间断点x =0,1的类型(A) 都是第一类 (B) x =0是第一类,x =1是第二类 (C) 都是第二类 (D) x =0是第二类,x =1是第一类7.若函数21()1x x f x ax b x ⎧≤=⎨+>⎩在x =1处可导,则(,)a b =8.设()f x 在0x x =处可导,且0001lim(2)()4h h f x h f x →=--,则0()f x '=9.星形线33cos sin x a ty a t⎧=⎪⎨=⎪⎩(a >0,t 为参数)的全长= 10.若lim ()x af x →=∞,则称x a =是函数()y f x =的图像的垂直渐近线;若lim ()x f x b →∞=,则称y b =是函数()y f x =的图像的水平渐近线;若lim[()]0,0x f x kx b k →∞--=≠,即()lim,lim[()]x x f x k f x kx b x→∞→∞=-=,则称y kx b =+是函数()y f x =的图像的斜渐近线.函数2(3)()4(1)x f x x -=-有几条渐近线二、解答下列各题(每小题7分,共42分)1.求极限 030(tan )lim sin xx x x x dx x e x→-⎰2.求由参数方程23230sin 10tx t t y e t ⎧---=⎨-++=⎩所确定的函数()y f x =的微分dy .3.已知3ln y x x =,求(4)y——————————————————密————封————线————内————答————题————无————效———————4.求定积分0⎰5.设()f x 的一个原函数为2()xe F x x=,求2(1)xf x dx +⎰6.已知0(),(0)00xe xf x x λλλ-⎧≥=>⎨<⎩,求()xf x dx +∞-∞⎰三、解答下列各题(每小题9分,共18分)1.讨论2(3)()4(1)x f x x -=-的单调性,极值,凹凸性,拐点.列表表示结果.2.求由曲线,x x y e y e -==及直线2y e =所围成平面图形的面积A ,及该平面图形绕x 轴旋转一周所得旋转体的体积V .——————————————————密————封————线————内————答————题————无————效————————四、证明题(每小题5分,共10分)1.02(),0(),0x tf t dt x F x x C x ⎧⎪≠=⎨⎪=⎩⎰,其中()f x 是连续函数且(0)0f =, 若()F x 在x =0处连续,则C =0.2.达布定理:设函数()f x 在[,]a b 上可导,且()()0f a f b +-''<,则至少存在一点(,)c a b ∈使得()0f c '=. 利用达布定理证明:若函数()f x 在[,]a b 上可导,η是介于()f a +'与()f b -'之间的一个数,则至少存在一点(,)c a b ∈使得()f c η'=.。

2014-2015秋高数I(1)A参考答案

2014-2015秋高数I(1)A参考答案

第 1 页共 2页 安徽工程大学机电学院2014——2015学年秋季学期 《高等数学Ⅰ(1)》课程考试试卷(A )卷答案及评分标准一、单项选择题(每小题3分,共18分)1-6 AACABD二、填空题(每空3分,共18分)1、 22x - 2、 123、34、 124x y =- 5、 (1)xx e C-++ 6、1-三、计算题(每小题8分,共48分,)1、 2[(sin )][(cos2)]y f x f x '''=+ 2分2(s i n )2s i n c o s (c o s 2)2s i n 2)f x x x f x x ''=⋅+-( 2s i n 2[(s i n )2(c o s 2)]x f x f x ''=- 6分 2、 2()2(23)f x x -'=-+, 223()(1)22!(23)f x x -''=-+, 4分一般地,可得 ()(1)()(1)2!(23)n n n n f x n x -+=-+,所以()12!(0)(1)3n n nn n f+=-. 4分3、 (1) lim (arctan )2x x x π→+∞-arctan 2lim 1x x xπ→+∞-=222211lim lim 111x x xx x x→+∞→+∞-+===+- 4分(2) 由于21ln 02ln lim ln lim 21ln xx x xx x+++→→==+,所以21ln 2ln 21ln 0lim lim xx xx x x e e ++++→→==. 4分4、 函数的定义域为(,)-∞+∞.3(2), 6(1)y x x y x '''=-=-. 3分令0='y ,得0x =和2x =;令0=''y ,得1x =.列表讨论如下:)3,2(函数的单增区间为(,0]-∞和[2,)+∞,单减区间为[0,2]. 函数的极大值为4,极小值为0.曲线)(x f y =在(,1)-∞内是上凸的,在(1,)+∞内是上凹的,拐点为(1,2). 5分5、 令) 2( sin 2π<=t t x ,则原式⎰⎰==tdt dt t t t csc 21cos sin 4cos 2 4分C t t +-=⎰cot csc ln 21第 2 页共 2页C xx +--= 42 ln 212. 4分6、 21100arctan arctan 2x x xdx xd=⎰⎰ 2212011arctan 0221x x x dx x =-+⎰ 4分 12011111(1)a r c t a n 0821822d x x x ππ=--=-++⎰1.42π=- 4分四、应用题与证明题(每小题8分,共16分)1、建立坐标系如图所示.水深区间为[15,30].相应于[15,30]的任一小区间],[dx x x +的水层,其高度为dx ,这薄层水的重力为29.810980(kN)dx dx ππ⋅=,所以功元素980980dW dx x xdx ππ=⋅=. 4分所作的功为⎰=3015980xdx W π301522980⎦⎤⎢⎣⎡=x π1038555(kJ)≈. 4分2、 令()()F x f x x =-,则()F x 在闭区间1[,1]2上连续,且11(022F =>,(1)10F =-<,由零点定理可知至少存在一点1(,1)2η∈,使得()0F η=. 4分又由假设知(0)0F =,故)(x F 在区间[0,]η上满足罗尔定理的条件,从而推出至少存在一点(0,)(0,1)ξη∈⊂,使得 ()()10F f ξξ''=-=,即 ()1f ξ'=. 4分。

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每小题3分,共15分) 1、极限2sin 0
lim(13)
x x x →+= .
2、设2
arctan()y x x =,则y ' . 3、设()f x 的一个原函数为2
x e
-,则()________xf x dx '=⎰

4、曲线x
e y =过原点的切线方程为____________. 5、曲线2r e
θ
=从0=θ至2
π
θ=
的一段弧长=l ____________.
二、选择题(每小题3分,共15分) 1、当1x →-时,3
1x +与3(1)x +为()
(A) 高阶无穷小 (B) 低阶无穷小
(C) 等价无穷小 (D) 同阶但不等价无穷小
2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )
(A) 1sin x + (B) 1sin x - (C) 1cos x + (D) 1cos x -
3、设()f x 在0x =处连续,且0()
lim 11cos x f x x
→=-,则在点0x =处( )
. (A) (0)f '不存在 (B) (0)0f '=,且(0)f 为()f x 的极小值 (C) (0)f '存在,且(0)0f '≠ (D) (0)0f '=,且(0)f 为()f x 的极大值
4、下列广义积分发散的是( )
(A)
1
+∞

(B)
1
11
sin dx x -⎰ (C)
2
2
1
ln dx x x
+∞

(D) 2
x xe dx +∞
--∞

5、曲线22
11x x e y e
--+=
-()
(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线
三、计算下列各题(每小题6分,共36分)
1、222111lim ()2n n n n n n πππ
→∞++++++L . 2、)cos 1)(1(1
cos
sin 3lim 20x e x x x x
x +---→. 3、求sin (0)x
y x
x =>的导数()y x '. 4、已知()2
ln 1,arctan ,
x t y t ⎧=+⎪⎨=⎪⎩求
22d d ,d d y y
x x . 5、2arctan x dx x ⎰. 6、设2ln(1)0()101x x f x x x +≥⎧⎪
=⎨<⎪+⎩,求20
(1)f x dx -⎰. 四、(本题满分10分)设 ()()220
2
1cos , 0, 1, 0,1cos d , 0,x
x x x f x x t t x x ⎧-<⎪⎪
==⎨⎪⎪>⎩⎰ 讨论()f x 在0x =处的连续性和可导性.
五、(本题满分10分)设曲线2
x
e y =,切线2
e
y x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .
六、(本题满分8分)证明不等式:0>x 时,有11
ln ≥+
x
x . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),
且0)1()0(==f f ,
证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ'=.。

相关文档
最新文档