第十六届华罗庚金杯少年数学邀请赛决赛题 C(小学组)2011
2011年第16届华杯赛小学组决赛真题及答案
![2011年第16届华杯赛小学组决赛真题及答案](https://img.taocdn.com/s3/m/4aa70b670b1c59eef8c7b48a.png)
答案:(1)18+23/24(2)70(3)45(4)12(5)2.094(6)5(7)8000/3(8)10
(9)2011。
连结DF,可以证明三角形ADF既是长方形的一半,也是梯形的一半
(10)8种354、367、381、397、851、957、961、991。
注:如果坏的可以是不亮的,那么还包含351、357、361、391、951,共计13种。
(11)三或五。
第一个和最后一个周日可以是1、29或3、31。
(12)253。
14*0+15*1+15*2+……+15*15+16*14>2011。
(13)312。
个位和为21,十位和为9,共36+48+48=132种;个位和为11,十位和为20,共72+36+72=180种。
(14)假设小虫向F方向走,则两只蜘蛛走向B和E,这样小虫必须退回G。
其中一只蜘蛛由B走向C,另一只在E点徘徊不动。
之后C点的蜘蛛继续向G点追逐小虫,而E点的蜘蛛一直保持自己位于小虫关于面对角线HF的对称点上,即可抓到小虫。
另外两个方向同理,蜘蛛必可抓到小虫。
历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
![历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】](https://img.taocdn.com/s3/m/7a09945bf7ec4afe04a1dfe0.png)
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
历届华杯赛初赛小高真题库
![历届华杯赛初赛小高真题库](https://img.taocdn.com/s3/m/a7e5dfae76a20029bd642de4.png)
初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10 分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).再加入50克含糖率20%的糖水.再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.(A)10 (B)17 (C)23 (D)315.今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD =1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式43421Λ43421Λ个个2016201699999999⨯的结果中含有( )个数字0.(A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ).(A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016L ,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ). (A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A (小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
(完整版)第十六届华杯赛总决赛试题
![(完整版)第十六届华杯赛总决赛试题](https://img.taocdn.com/s3/m/0212a3ab5727a5e9856a61f7.png)
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
第16届华杯赛决赛模拟题.答案版(终版)
![第16届华杯赛决赛模拟题.答案版(终版)](https://img.taocdn.com/s3/m/47cfdaea4afe04a1b071de8f.png)
第十六届华罗庚金杯少年数学邀请赛决赛——模拟试卷一、 填空题(每小题10分,共80分)1. 计算:=+⨯++⨯+⨯125.0201131407725.040223201114 。
【分析】: 2。
2. 四位数中,数码0出现_ ____次。
【分析】一个数中出现3个0的有1000,2000,……, 9000.共9个。
一个数中出现2个0的有993243⨯⨯=个;只出现1个0的有39992187⨯⨯⨯=个。
因此 ,四位数中,数码0出现21872243392700+⨯+⨯=次。
3. 如图,每个正六边形的面积是1,则图中虚线围成的五边形的面积是_______.【分析】:整个图形的面积减去外面的8个小块的面积.整个图形一共有10个小正六边形.我们把外面8个小块编号为1,2,3,4,5,6,7,8.如图.1号和6号正好是小六边形的一半,面积都是0.5.2号和3号刚好可以凑成一个六边形,所以,面积是1.同样,7号和8好凑成一个六边形,面积是1.4号和5号是两个一样的小三角形,而正六边形可以分成6个这样的小三角形,所以,4号和5号的面积都是1/6.所求面积是: 10-0.5×2-1-1-1/6×2=6+2/3=6.7.4. “12345678910111213…484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(顺序不变)组成一个首位不为0的多位数,则这个多位数最大为______,最小为___ ___。
【分析】:根据题意,由于共有941291+⨯=个数字,最后划去80个数字,还剩下11个数字,99997484950;10000123440。
,为得到最小值,留下小的数字。
5. 所有适合不等式187<5n <720的自然数n 之和为 。
【分析】:根据题意,n 可以是2到14中的任意自然数,于是:2+3+…+14 = 104。
6. 请从2、3、5、7、9中选出4个不同的数字组成一个四位完全平方数,那么这个平方数是 。
第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)
![第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)](https://img.taocdn.com/s3/m/b91304acc281e53a5802fff1.png)
2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.2011年第十六届“华罗庚金杯”少年数学邀请赛总决赛试卷(小学组第2试)参考答案与试题解析一、填空题(共3题,每题10分)1.(10分)某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支.如果买1支的人数是其余人数的2倍,则买2支铅笔的人数是10 .【分析】买1支的人数是其余人数的2倍,也就是说全班人数相当于其余人数的1+2=3倍,先根据除法意义,求出买2支和3支铅笔的人数,再设买2支铅笔的有x人,进而用x表示出买3支铅笔的人数,最后依据买笔总数=人数×买笔支数,用x表示出买笔总人数,根据铅笔总数是50支列方程,依据等式的性质即可求解.【解答】解:36÷(1+2)=36÷3=12(人);设买2支铅笔的人数是x人12×2×1+2x+(12﹣x)×3=5024+2x+36﹣3x=5060﹣x+x=50+x60﹣50=50+x﹣50x=10;答:买2支铅笔的人数是10.故答案为:10.2.(10分)如图中,四边形ABCD的对角线AC与BD相交于O,E为BC的中点,三角形ABO的面积为45,三角形ADO的面积为18,三角形CDO的面积为69.则三角形AED的面积等于75 .【分析】若将AD作为底边,因为点E为BC的中点,那么△ADB,△ADE,△ADC的高为等差数列(可以认为中间三角形的高是两边三角形的高的平均数),所以面积也呈等差数列(可以认为中间三角形的面积是两边三角形的面积的平均数).据此可解.【解答】解:若将AD作为底边,因为点E为BC的中点,所以△ADE的高为△ADB和△ADC的高的平均数,因此△ADE的面积就等于△ADB和△ADC的面积的平均数.所以,S△ADE=(S△ADB+S△ADC)÷2=(45+18+18+69)÷2=75;答:三角形AED的面积等于75.3.(10分)一列数的前三个依次是1,7,8,以后每个都是它前面相邻三个数之和除以4所得的余数,则这列数中的前2011个数的和是3028 .【分析】根据题意,列出这个数列是:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…易见,从第4个数开始每8个数一个循环.由于前面还有3个数,所以需用2011减去3的得数除以8,求出有多少组,再相加即可解答.【解答】解:这个数列:1、7、8、0、3、3、2、0、1、3、0、0、3、3、2、0、1、3、0、0…(2011﹣3)÷8=251(0+3+3+2+0+1+3+0)×251+1+7+8=12×251+16=3028故答案为:3028.二、解答题(共3题,每题10分,写出解答过程)4.有57个边长等于1的小等边三角形拼成一个内角都不大于180的六边形,小等边三角形之间既无缝隙,也没有重叠部分.则这个六边形的周长至少是多少?【分析】在面积不变的情况下,要使得这些等边三角形堆成的边长最短,则使它们堆城一个六边形,且六边形的每个内角都是120度.然后构建一个大三角形:把大三角形每条边n等分,连结各边n等分点一共构成n×n个小等边三角形解答即可.【解答】解:我们把一个等边三角形每条边2等分,可以连结各边中点一共构成2×2=4个小等边三角形;如果把每条边3等分,连结各边三等分点一共构成3×3=9个小等边三角形;以此类推,把每条边n等分,连结各边n等分点一共构成n×n个小等边三角形.7×7<57<8×8<9×9,8×8=64,64﹣57=7,7不能分解成为3个完全平方数之和的形式,9×9=81,81=4+4+16,所以我们就可以把这57个小三角形放在如图所示的等边三角形中,每条边被9等分,△ABC的边长为9,三个角各被切除一部分,此时DE=5,EF=2,FG=3,GH=4,HI=3,DI=2,则DE+EF+FG+GH+HI+DI=19,即这个六边形的周长至少是19.答:这个六边形的周长至少是19.故答案为:19.5.(10分)黑板上写有1,2,3,…,2011一串数.如果每次都擦去最前面的16个数,并在这串数的最后再写上擦去的16个数的和,直至只剩下1个数,则:(1)最后剩下的这个数是多少?(2)所有在黑板上出现过的数的总和是多少?【分析】(1)每操作一次,不影响黑板上所有数的总和,因此最后剩下的和=1+2+3+…+2011,根据高斯求和公式完成即可.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次显然,从开始,只要117次操作,黑板上就剩256个数.据此依据规则分析即可.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)*139/2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066;综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326 【解答】解:(1)1+2+3+…+2011=(1+2011)×2011÷2=2012×2011÷2=2023066答:最后剩下的这个数是2023066.(2)由于倒数第2次操作,黑板上就16个数,总和是2023066,这16个数来源于16×16=256个数,这256个数的和也同上.2011﹣(16﹣1)x=256,x=117次,显然,从开始,只要117次操作,黑板上就剩256个数.①原有2011个数,和2023066②操作117次,黑板剩余256个数:1873到2011,新出现117个和.这117个和=2023066﹣(1873+2011)×139÷2=1753128③操作16次,黑板剩余16个数都是新出现,和=2023066④操作1次,黑板剩余1个数=2023066综上,所有出现过的数=2023066+1753128+2023066+2023066=7822326.6.(10分)试确定积(21+1)(22+1)(23+1)…(22011+1)的末两位的数字.【分析】首先判断出积能被25整除,由于各因数均为奇数,则判断积的末两位数字为25或75,结合各因数被4整除的余数特点判断积的余数,进而判断出末两位数字为75.【解答】解:设n=(21+1)×(22+1)×(23+1)×…×(22011+1),由于各因数2k+1均为奇数,其中22+1=5,26+1=65=5×13,所以n≡0(mod25),此时知n的末两位数字要么为25,要么为75.又21+1≡3(mod4),对k≥2,都有2k+1≡1(mod4),所以n≡3(mod4),即n的末两位数字被4除余3,而25≡1(mod4),75≡3(mod4),所以n 的末两位数字为75.答:(21+1)(22+1)(23+1)…(22011+1)的末两位的数字75.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:51:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第十六届华赛杯小学组决赛试题及答案
![第十六届华赛杯小学组决赛试题及答案](https://img.taocdn.com/s3/m/44d4e62ea55177232f60ddccda38376bae1fe016.png)
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
第十六届“华杯赛”小学组决赛试题C
![第十六届“华杯赛”小学组决赛试题C](https://img.taocdn.com/s3/m/2d54007827d3240c8447ef3a.png)
第十六届华罗庚金杯少年数学邀请赛决赛试题C (小学组) 决赛试题C (小学组) (时间: 2011年4月16日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 877655433++= . 2. 工程队的8个人用30天完成了某项工程的32, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了 天. 3. 甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍. 乙骑了4千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为 千米. 4. 在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时37分20秒时, 在分针与时针所夹的锐角内有 个小彩灯. 5. 在边长为2厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 2厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率3.141π=)6. 用同一种颜色对44⨯方格的7个格子进行涂色, 如果某列有涂色的方格则必须从最底下的格子逐格往上涂色, 相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如右图). 那么共有 种涂色的图案.密封线内请勿答题7. 已知某个几何体的三视图如右图, 根据图中标示的尺寸(单位: 厘米), 这个几何体的体积是_______(立方厘米).8. 公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放置的七支荧光管显示, 如下图所示.某公交车的数字显示器有一支坏了的荧光管不亮, 显示的线路号为“351”, 则可能的线路号有 个.二、解答下列各题 (每题10分, 共40分, 要求写出简要过程)9. 在右面的加法竖式中, 不同的汉字可以代表相同的数字, 使得算式成立. 在所有满足要求的算式中, 四位数华杯决赛的最小值是多少?10. 长方形ABCD 的面积是70平方厘米. 梯形AFGE 的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.11. 求不能写成3个不相等的合数之和的最大奇数.12. 设某年中有一个月里有三个星期日的日期为奇数, 则这个月的21日可能是星期几?三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)13. 以[]x 表示不超过x 的最大整数, 设自然数n 满足200015151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n ,则n的最小值是多少?14.一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水, 深度为a, 其中600≤<a. 现将棱长为10的立方体铁块放在容器的底面, 问放入铁块后水深是多少?。
第十六届“华杯赛”小学组决赛试题D及参考答案
![第十六届“华杯赛”小学组决赛试题D及参考答案](https://img.taocdn.com/s3/m/6126c7e0856a561252d36f0f.png)
所以
bk 2 15d 14b 34 , dk 3 15d 14b 51 .
这两个分数是
75 70 和 . 34 51
6 7 5 7 1 ; bk dk 6
(7)
④ c 2 , a 3 , m 5 5 7 ,此时,
3 5 7 2 5 7 1 ; bk dk 6
( 8)
⑤ c 1 , a 2 , m 3 5 5 7 ,此时,
2 3 5 7 3 5 7 1 . bk dk 6
15 14 1 15 14 15d 14b , kbd bk dk 6 bk dk
1 1 , kbd 6 15d 14b
(10)
根据(1) , (2)和(3) ,应当有
b,15d 14b 1, d ,15d 14b 1 ,
此即意味着:
k (15d 14b) n ,
75 70 , 34 51 am cm 和 , 其中 : bk dk
解答 . 设这两个最简分数为
b,d 1 ; a,c 1 ; am,bk 1 ; cm,dk 1 .
既然 m am cm , 所以有
(1) (2) (3)
a c 1.
又因为 am,cm 1050 1 2 3 5 5 7 ,并结合(4) ,可得到 : ①
1 12 22 32 42 52 62 72 50 ,
所以红色朝上的卡片共有 7 张. 12. 答案: 11 厘米. 解答 . 如图,
球的内接正方体 ABCD- A1 B1 C1 D1 的顶点在球面上, 它的 (体) 对角线 AC1 就是球 的直径, 即
2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解
![2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解](https://img.taocdn.com/s3/m/87326687680203d8ce2f24e1.png)
2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解第十六届华罗庚金杯少年数学邀请赛 决赛试题A (小学组) (时间: 2011年4月16日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 135713572468+++= . 2. 工程队的8个人用30天完成了某项工程的31, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了 天. 3. 甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍. 乙骑了5千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为 千米. 4. 在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时35分20秒时, 在分针与时针所夹的锐角内有 个小彩灯. 5. 在边长为1厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 1厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率 3.141π=) 6. 用40元钱购买单价分别为2元、5元和11元的三种练习本, 每种至少买一本, 而且钱恰好花完. 则不同的购买方法有 种.7. 已知某个几何体的三视图如右图,根据图中标示的尺寸(单位: 厘米),这个几何体的体积是 (立方厘米).学校____________姓名_________参赛证号密封线内请勿答题8. 将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数), 在形成的11个分数中, 分数值为整数的最多能有 个.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 长方形ABCD 的面积是2011平方厘米. 梯形AFGE的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.10. 公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如右图所示. 某公交车的数字显示器有两支坏了的荧光管不亮, 显示的线路号为“351”, 则该公交车的线路号有哪些可能?11. 设某年中有一个月里有三个星期日的日期为奇数, 则这个月的20日可能是星期几?12. 以[]x 表示不超过x 的最大整数, 设自然数n 满足201115151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n , 则n 的最小值是多少?三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 在右面的加法竖式中, 不同的汉字代表不同的数字. 问: 满足要求的不同算式共有多少种?14. 如图, 两只蜘蛛同处在一个正方体的顶点A , 而一只爬虫处在A 的体对顶点G . 假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动, 任何时候它们都知道彼此的位置, 蜘蛛能预判爬虫的爬行方向. 试给出一个两只蜘蛛必定捉住爬虫的方案.2011年“华杯赛”复赛小学组试题及详解第16届华杯赛复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。
全国“华罗庚金杯”决赛试卷(五年级组)
![全国“华罗庚金杯”决赛试卷(五年级组)](https://img.taocdn.com/s3/m/abafe117bfd5b9f3f90f76c66137ee06eff94e9d.png)
全国“华罗庚金杯”少年数学邀请赛决赛试卷(五年级组)(时间:(时间: 10:00~11:30 )一、填空题(每题10分,共80分)1、计算:)195167248(66.698.19)75.4285412375.2247816(-´´´´+´= 2、一次数学竞赛满分是100分,某班前六名同学的平均得分是95.5分,排名第六的同学的得分是89分,每人得分是互不相同的整数,那么排名第三的同学至少得至少得 分。
分。
3、在下面的等式中,相同的字母表示同一数字,若abcd -dcba =□997,那么,那么 □ 中 应填应填 。
4、在梯形ABCD 中,上底长5厘米,下底长10厘米,20=D BOC S 平方厘米,则梯形ABCD 的面积是的面积是平方厘米。
平方厘米。
5、已知:10△3=14, 8△7=2, 43△141=,根据这几个算式找规律,如果,根据这几个算式找规律,如果85△x =1,那么x = . 6、右图中共有、右图中共有 个三角形。
个三角形。
7、有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是,则这个数最小是 。
8、A 是乘积为2007的5个自然数之和,B 是乘积为2007的4个自然数之和。
那么A 、B 两数之差的最大值是两数之差的最大值是 。
装订线全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案(五年级组)一、填空题(每题10分,共80分)分)题号题号 1 2 3 4 5 6 7 8 答案答案 3 96 2 45 8124 59 1781 1~8题答案提示:题答案提示:1、3 解:原式=÷øöçèæ-´´úûùêëé´÷øöçèæ++´÷øöçèæ+1951679666.698.19419285412819247816 =19528953419285441912819247881916´÷øöçèæ´+´+´+´=195289531515713138´÷øöçèæ+++=195289531952895´÷øöçèæ+=3 2、96 解:要想排名第三的同学得分尽量低,则其它几人的得分就要尽量的高,故第一名应为100分,第二名应为99分,因此第三、四、五名的总分为:分,因此第三、四、五名的总分为: 95.5×95.5×66-100-99-89=285(分) 故第三、四、五名的平均分为故第三、四、五名的平均分为 285÷3=95(分),因此第三名至少要得96分。
第十六届“华杯赛”小学组决赛试题C答案
![第十六届“华杯赛”小学组决赛试题C答案](https://img.taocdn.com/s3/m/ae35d93cf78a6529657d5303.png)
第十六届华罗庚金杯少年数学邀请赛决赛试题C参考答案(小学组)一、填空题(每小题10分,共80分)二、解答下列各题(每题10分,共40分, 要求写出简要过程)9.答案: 1000解答. 因为华杯决赛是四位数, 所以不会小于1000. 当华杯决赛=1000, 十六届=990, 兔年=21时题目要求的等式成立.10.答案:70.解答. 连接FD的直线与AE的延长线相交于H. 则△DFG绕点D逆时针旋转180o与△DHE重合,DF=DH.梯形AEGF的面积=△AFH的面积=2×△AFD的面积=长方形ABCD的面积=70(平方厘米).11.答案: 17解答. 合数有:4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,…….因为4 + 6 + 9 = 19, 所以19能写成3个不相等的合数之和. 大于19的奇数n可以表示成n=19+2k, k是非零自然数, 进而n =4+9+(6+2k ).注意6+2k 为大于2的偶数, 是合数, 所以不小于19的奇数都写成3个不相等的合数之和.另外, 17不能写成3个不相等的合数之和.12. 答案: 4, 6.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是整数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0,2,4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时21号是星期六.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k+2不可能有三个奇数.当a =3时, 要使7k+3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时21号是星期四.当74≤≤a 时, a k +7不可能有三个奇数.三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)13. 答案: 252.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.200015151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2000213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.400013152≤-k k 又40004114171317152>=⨯-⨯, 40003632161316152<=⨯-⨯, 得知k 最大可以取16. 当16=k 时, m =240. 注意到这时811161842363220002131520002+⨯==-=--k k . 注意到20002008121618161512151615111516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而200019921116181615111516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ . 所以 252 是满足题目要求的n 的最小值.14. 解答. 由题设知水箱底面积S 水箱=40×25=1000.水箱体积V 水箱=1000×60=60000,铁块底面积S 铁=10×10=100.铁块体积V 铁=10×10×10=1000.(1)若放入铁块后,水箱中的水深恰好为60时,1000a +1000=60000, 得 a =59.所以,当59≤a ≤60时,水深为60(多余的水溢出).(2)若放入铁块后,水箱中的水深恰好为10时,1000a +1000=10000, 得 a =9. 所以,当9≤a <59时,水深为a ×40×25+10×10×1040×25= a +1. (3)由(2)知,当0<a <9时,设水深为x ,则1000x =1000a +100x .得x =109a . 答:当0<a <9时,水深为109a ;当9≤a <59时,水深为a +1;当59≤a ≤60时,水深为60.。
2011-2016年第16-22届华罗庚杯少年数学邀请赛几何试题(小学高年级组)全解析
![2011-2016年第16-22届华罗庚杯少年数学邀请赛几何试题(小学高年级组)全解析](https://img.taocdn.com/s3/m/2afa823e58fb770bf78a55cb.png)
B
2011年第16届华罗庚杯少年数学邀请赛决赛C几何试题 长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
E A D
G
B
F
C
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。 解1:连接DF, E A D S△ADF= G
������ ������
利用蝴蝶模型,在梯形AFGE中, S□ AFGE
利用蝴蝶模型,在长方形ABCD中, S△ADF=
������ ������
S□ ABCD
B
F
C
故: S□ AFGE= S□ ABCD=70
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水,深度为a,其中0 ˂a ≤60,现将棱长尾10的长方体铁块放在容器底面,问放入铁块后水深是()。
1
2
3
分析:无盖长方体容器盛有水情况有三种: 1、水很满;放入铁块后,水溢出; 2、水深很浅,放入铁块后,铁块一部分在水中,另一部分露出水面,水面也有升高。
A
由三角形AFC的面积和四边形DBEF的面积相等,得: S△AEC=S△BCD,则:������������ × ������������ = ������������ × ������������ 由于BD:AB=DM:AN=1:3,则:EC:BC=1:3
E
A
O C D
B
如图所示,AB∥CE,AC ∥ DE,且AB=AC=5,CE=DE=10。若
华罗庚金杯赛数学试题与答案[第1至15届]
![华罗庚金杯赛数学试题与答案[第1至15届]](https://img.taocdn.com/s3/m/be6d1522bb68a98271fefabf.png)
华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。
问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。
如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。
问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。
一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。
现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。
问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。
大正方形的面积是49平方米,小正方形的面积是4平方米。
问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。
第十四届华罗庚金杯少年数学邀请赛决赛试题C(小学组)参考答案
![第十四届华罗庚金杯少年数学邀请赛决赛试题C(小学组)参考答案](https://img.taocdn.com/s3/m/db39a6d1b14e852458fb57f5.png)
第十四届华罗庚金杯少年数学邀请赛决赛试题C参考答案(小学组)9.答案:在1和2之间.解答:11111123571113+++++=111111()()()21331157+++++=151412 263335++因为151412151412412 26333526262626 ++<++=<,又因为151412151412411 26333535353535 ++>++=>所以六个分数111111,,,,,23571113的和在1和2之间.10.答案:10月份的第一天是星期四,3、5、8、11月有五个星期日.解答:下表列出各个月的1号的相关信息.10月1号与l月1号相距273天,273是7的倍数,所以,10月份的第一天也是星期四.3月1号是星期日,3月份有31天,所以3月有5个星期日;5月3号是星期日,5月份有31天,所以5月有5个星期日;8月2号是星期日,8月份有31天,所以8月有5个星期日;11月1号是星期日,11月份有30天,所以11月有5个星期日.11.答案:540或l08.解答:如果b 不22的倍数,因为2[,]235a b =⨯⨯,则a 一定是22的倍数.由此可知[,]a c 一定是22的倍数.但是2[,]235a c =⨯⨯不是22的倍数.所以b 是22的倍数.同理可得c 是23的倍数.所以[,]b c 应被2223⨯整除.因为[,]60a b =,[,]270a c =,所以60是b 的倍数,270是c 的倍数. 所以b ,c 的最小公倍数[b ,c]是[60,270]的约数. 因为[60,270]=22·33·5,所以[b ,c]= 22·33·5=540或[b ,c]= 22·33=108.当a=1,b=60,c=270时,[a ,c]=60,[a ,c]=270,[b ,c]=540; 当a=5,b=12,c=54时,[a ,c]=60,[a ,c]=270,[b ,c]=108. 12.答案:l00.解答:面积是l 的等边三角形有32个;面积是4的等边三角形有18个;面积是9的等边三角形有8个;面积是16的等边三角形有2个;利用对称的性质,如图l ,红色等边三角形的面积是由6个面积是l 的等边三角形组成的正六边形面积的一半,等于3;面积是3的等边形角形共有9×2=18个;利用对称的性质,如图2和图3所示,蓝色等边三角形的面积是:143172⨯⨯+=,面积是7的等边三角形共有2×4×2=16个;利用对称性的性质,如图4,黄色等边三角形的面积是124122⨯=的有2个.如图5所示,灰色的正三角形的面积为1634132⨯⨯+=,面积为13的正三角形共有4个.因此,可以连成的等边三角形总计有:321882181624100+++++++=(个).三、解答下列各题 (每小题15分,共30分,要求写出详细过程)1图图2图3图4图513.答案:619.解答:设三角形O C D 的面积为x ,梯形的高为h ,则:1()42A B C D h +=.因为5A B =,3C D =,所以1h =. 因为1322O C D O B C B C D S S S C D h ∆∆∆+==⨯=,所以32O B C O C D S S ∆∆=-,即32O B C S x ∆=- ……………………①同理可得512O A B O B C S S x ∆∆=-=+ ………………………②因为O AD O C D O BC O C D S S S S ∆∆∆∆+=+,所以O AD O BC S S ∆∆=. ……③ 由三角形面积公式得O AB O AD O BCO C DS S AO S O CS ∆∆∆∆==,即O AB O AD O BCO C DS S S S ∆∆∆∆=所以O AB O C D O BC O AD S S S S ∆∆∆∆⨯=⨯ ………………………………④ 由①,②,③,④得33(1)()()22x x x x +=--,所以916x =,即916O C D S ∆=.所以O C D ∆的面积为916.14.答案:l 59.解答:因为48能被3整除,所以“第十四届”所表示的数能被3整除,即“第十四届”的四个数字之和能被3整除.又因为1+2+3+…+9=45能被3整除,所以“华杯赛”表示的数的数字之和也能被3整除,即“华杯赛”所代表的数能被3整除.因为48能被4整除,而且“祝”字是4,“贺”字是8,所以“届”为偶数,只能取2或6.又“祝贺”与“华杯赛”的乘积为四位数,所以“华”字代表的数字只能是1.否则,即使“华杯赛”取最小的三位数为213,48×213=10224是五位数,所以取其它的三位数将更不符合要求.(1)当“届”取数字“2”时,则“赛”字只能是9,此时,算式是:⨯=481杯9第十四2.因为余下的4个数字3,5,6,7中,只有5与10的和能被3整除,所以“杯”字只能取5.此时,48×159=7632,符合要求.故“华杯赛”所代表的整数是159.(2)当“届”取数字“6”时,则“赛”取数字“2”或“7”.①若“赛”取数字“2”时,此时算式是⨯=481杯2第十四6.因为3与3,5,7,9的和分别为6,8,10,12,所以“杯”可以取数字“3”或“9”.但是48×132=6336,48×192=9216,显然不符合要求.②若“赛”取数字“7”时,此时算式是⨯=481杯7第十四6.因为8与2,3,5,9的和分别为10,11,13,17均不能被3整除,所以不存在“1杯7”使得等式⨯=481杯7第十四6成立.所以“华杯赛”所代表的整数为l59.。
第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案
![第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案](https://img.taocdn.com/s3/m/786b3f9880eb6294dd886cc1.png)
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:公元历2005 1985 1910希伯莱历5746伊斯兰历1332印度历1927第1小题:公元历2005 1985 1910希伯莱历5766 5746 5671伊斯兰历1427 1407 1332印度历1927 1907 18322.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:0 3 8 15 …1 2 7 14 …4 5 6 13 …9 10 11 12 ………………规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
16届华杯赛小学组获奖名单
![16届华杯赛小学组获奖名单](https://img.taocdn.com/s3/m/f86e00df50e2524de5187e73.png)
通知第十六届全国“华罗庚金杯”少年数学邀请赛(广州赛区)决赛已于2011年4月16日举行,经市竞赛工作领导小组审定,现将广州市小学组获奖同学名单公布如后(排名不分先后)。
“华杯赛”(广州赛区)竞赛工作领导小组广州市教育局教学研究室二○一一年四月二十二日广州市参加第十六届全国“华罗庚金杯”少年数学邀请赛(广州赛区小学组)决赛获奖名单一等奖:(21人)凌晨越秀区中星小学余智仁越秀区农林下路小学方正韬越秀区育才学校朱炜铧越秀区东山培正小学梁天诺越秀区五羊小学何广森越秀区东山培正小学黄文韬越秀区沙涌南小学戴思婷越秀区东风东路小学吴宇昊越秀区东川路小学曾正韬天河区华阳小学郭子铭天河区先烈东小学黄芷霖天河区华师附小王迩东天河区体育东路小学唐山茖天河区华农附小吴涵泓天河区体育东路小学沈炜朋天河区华康小学张鹏海珠区中山大学附属小学梁逸爽海珠区昌岗中路小学徐子昱番禺区市桥德兴小学吴官泽番禺区华师附中番禺小学潘子非荔湾区协和小学二等奖:(84人)黄怡诗越秀区东风西路小学许博维越秀区东风东路小学曾比扬越秀区东风西路小学胡宇征越秀区东风东路小学陈羲越秀区东风西路小学马泽生越秀区东风东路小学李世中越秀区东风西路小学梁瑞江越秀区育才学校朱亦可越秀区东风西路小学李志衡越秀区育才学校马默凡越秀区文德路小学胡亦凡越秀区华侨外国语学校朱茜君越秀区文德路小学林立聪越秀区华侨外国语学校罗昊珲越秀区五羊小学陈睿祺越秀区铁一小学黄文皓越秀区沙涌南小学朱师健越秀区梅花村小学吕子原越秀区旧部前小学刘佳梁越秀区建设六马路小学周延泽越秀区中山二路小学周前越秀区东山实验小学林恺舜越秀区东川路小学罗静莹越秀区大沙头小学施扬越秀区朝天小学薛又天天河区暨大附小李昶晟天河区龙口西小学曾天宇天河区暨大附小丘恒越天河区龙口西小学朱江源天河区华师附小刘瀚泽天河区龙口西小学吴婧琳天河区华师附小胡东伟天河区华阳小学邵诗婷天河区华师附小邓俊华天河区华阳小学李康乾天河区华师附小施羊梦燊天河区中海康城小学梁正臣天河区华师附小陈泽颖天河区体育西路小学谢漪天河区华师附小钟鸣扬天河区龙岗路小学周文星天河区华师附小廖宁祎天河区华康小学李雅蕙天河区华师附小唐柟天河区华景小学冯迪维天河区华师附小黄莫尧天河区华工附小张亦弛天河区华师附小钟子健天河区员村小学刘烨天河区珠委小学潘子锐荔湾区康有为纪念小学鞠思亮荔湾区协和小学曾颢荔湾区康有为纪念小学李述霖荔湾区协和小学罗方志荔湾区康有为纪念小学黄舒婷荔湾区芳村小学程靖怡荔湾区康有为纪念小学龙子恒荔湾区芳村小学刘穗锦荔湾区康有为纪念小学张伊扬荔湾区西华路小学刘付蔚元荔湾区康有为纪念小学谢绍逸荔湾区西关外国语学校陈飞宇荔湾区沙面小学张天舜荔湾区乐贤坊小学郭肇伦荔湾区华侨小学沈文怀白云区三元里小学刘派白云区景泰小学黄天帜白云区景泰小学陈天睿白云区民航子弟学校苏泽盛白云区京溪小学陈卓欣海珠区晓港东马路小学罗国瑞海珠区万松园小学杨一凡海珠区同福中路第一小学肖亚语海珠区绿翠小学卫广溢海珠区金碧第一小学梁镇峰海珠区海珠区实验小学刘思齐海珠区珠区第二实验小学刘卓承海珠区海联路小学李灏斌海珠区昌岗中路小学董君行海珠区滨江中路小学马炜俊黄埔区石化小学邹健伟黄埔区横沙小学叶正夫番禺区祈福英语学校付婉莹番禺区番禺祈福新村学校三等奖:(202人)肖景芊越秀区铁一小学陈俊玮越秀区东山培正小学陈力扬越秀区铁一小学王昕之越秀区东山培正小学梁睿泽越秀区铁一小学刘涛语越秀区东山培正小学雍梦尘越秀区铁一小学周子越越秀区东山培正小学郭智伦越秀区铁一小学王渟茵越秀区东山培正小学陶凯雯越秀区农林下路小学肖然越秀区东山培正小学陈蕙章越秀区农林下路小学包晗越秀区东山培正小学徐盈紫越秀区农林下路小学朱学彬越秀区东山培正小学郑燊越秀区朝天小学郭嘉越秀区黄花小学张阅帆越秀区朝天小学李宇同越秀区黄花小学刘超宇越秀区朝天小学邹可翰越秀区黄花小学林郁东越秀区小北路小学刘悦嵩越秀区旧部前小学欧隽铨越秀区小北路小学叶畅越秀区旧部前小学高琪婷越秀区东风西路小学王昌承越秀区环市路小学黄晓飞越秀区东风西路小学吴溥樾越秀区环市路小学翟玮思越秀区东风西路小学樊骅越秀区豪贤路小学杨伯烨越秀区东风西路小学罗明浩越秀区豪贤路小学陈隽越秀区东风西路小学袁孟宣越秀区大沙头小学高亦飞越秀区东风西路小学叶子瑞越秀区大沙头小学谢晋轶越秀区东风西路小学陈俊延越秀区东川路小学谢方婷越秀区东风西路小学林逸晴越秀区八一实验小学黄杨峻越秀区东风西路小学陈予耿越秀区八一实验小学周俊丞越秀区东川路小学陶钰越秀区执信南路小学胡光雄越秀区东川路小学许灵筠越秀区永曜北小学陈卓琛越秀区东川路小学翟宏钊越秀区雄鹰学校何为越秀区东川路小学谢婧瑶越秀区水荫路小学张嘉鸿越秀区中山二路小学李炜越秀区建设六马路小学郑子纯越秀区中山二路小学傅明隽越秀区回民小学刘智豪越秀区中山三路小学张宇轩越秀区华侨外国语学校钟嘉迅越秀区中山三路小学黎迪文越秀区红火炬小学张睿达越秀区雅荷塘小学陈嘉岳越秀区广铁一小柯乃昌越秀区雅荷塘小学詹耀钊越秀区广铁四小李可非越秀区署前路小学王梓铭越秀区东山实验小学张怀瑾越秀区署前路小学鞠文桦越秀区登峰小学肖奕恒越秀区中星小学林元芃越秀区文德路小学陈景辉越秀区育才学校曾令韬越秀区文德路小学邵小珊越秀区育才学校伍思衡越秀区文德路小学凌晓风越秀区育才学校黄承国越秀区文德路小学黄嘉瑜越秀区育才学校刘佳明越秀区文德路小学曹于勤越秀区育才学校林汉钊越秀区文德路小学仇闻川越秀区育才学校颜雨扬越秀区文德路小学曾雨阳天河区华师附小陈韬宇天河区华师附小潘文歆天河区华师附小周金程天河区华师附小邢逸凡天河区华师附小卢嘉骏天河区华师附小杜彩卉天河区华师附小唐大元天河区华师附小黄永祯天河区华师附小廖如祺天河区华师附小靖诗慧天河区华师附小钱友坤天河区华师附小郭家星天河区华师附小林佳音天河区华师附小曹孛嫣天河区华师附小黄柏杰天河区华师附小肖玉麟天河区华师附小徐厚扬天河区华师附小霍俊铭天河区华师附小欧阳乾弘天河区华师附小胡遥天河区华师附小张文乐天河区华师附小黄逸彤天河区华师附小郑博扬天河区华师附小何云帆天河区华师附小任柏睿天河区华师附小周东霖天河区华师附小钟宇昊天河区龙口西小学郑晟天河区先烈东路小学林金煌天河区龙口西小学张海洋天河区先烈东路小学严笑天河区龙口西小学方睿敏天河区先烈东路小学孟子轩天河区龙口西小学刘崇旻天河区先烈东路小学李世昉天河区龙口西小学毛子涵天河区南国小学刘奕旻天河区华工附小黄晔鹏天河区第四十七中学汇景实验学校李泓毅天河区华工附小戴宇昕天河区第四十七中学汇景实验学校方子鸣天河区科技园中英文学校米剑骐天河区五一小学杨智航天河区骏景小学蒋泽林天河区五山小学徐俊豪天河区骏景小学林烜扬天河区体育西路小学李卫雨天河区天府路小学刘高志天河区体育东路小学王智炜天河区天府路小学唐宇轩天河区陶育路小学龙辰纲天河区华颖小学何禧贤天河区员村小学任海翔天河区华阳小学邓昉源天河区华景小学朱皓青天河区华成小学林泓旭天河区华景小学梁超宇天河区华美英语实验学校陈翼天河区华景小学宋荣天河区暨大附小翁溥鸿天河区华农附小齐思广荔湾区西关培正小学张臻煜荔湾区康有为纪念小学姚瞻楠荔湾区西关培正小学谭继宇荔湾区康有为纪念小学李欢荔湾区培真小学陈栢骥荔湾区康有为纪念小学黄洋逸荔湾区培真小学吴希荔湾区康有为纪念小学黄钰淇荔湾区培真小学万宗希荔湾区康有为纪念小学刘承昭荔湾区宝源小学朱俊熹荔湾区康有为纪念小学林罗萱荔湾区宝源小学杨钊承荔湾区康有为纪念小学佘怡谩荔湾区协和小学吴德桐荔湾区林凤娥小学黄家和荔湾区詹天佑小学梁嘉文荔湾区华侨小学杜浩民荔湾区芳村小学黄以昊海珠区同福中路第一小学叶晨滔海珠区绿翠小学余燊懿海珠区同福中路第一小学邝泊庭海珠区红棉小学杨沂霖海珠区同福中路第一小学黄嘉麟海珠区海珠区实验小学梁昶烨海珠区宝玉直小学黄炜枫海珠区赤岗小学杨一帆海珠区宝玉直小学苏一洋海珠区赤岗东小学陆慧莹海珠区新民六街小学阮泳瀚海珠区昌岗东路小学江梓漫白云区民航子弟学校时伟嘉白云区云景培英小学骆子豪白云区民航子弟学校马晓霞白云区积德小学朱煜章白云区广外附小郑言白云区竹料一小侯钊轶白云区广外附小黄艺峻桂园小学戴子轩黄埔区怡园小学薛靖云黄埔区荔园小学谢睿熙黄埔区怡园小学林嘉睿黄埔区荔园小学劳栋靖黄埔区石化小学周穗齐黄埔区文船小学刘越番禺区石碁东怡小学林泽锋番禺区市桥桥东小学张纪宁番禺区石碁东怡小学黄雨航番禺区市桥德兴小学邹韬萝岗区广州开发区第二小学何天成番禺区广州祈福新邨学校何昊智萝岗区广州开发区第二小学陈曦萝岗区广州开发区第二小学黄嘉杰花都区新华第四小学袁子昂从化市太平镇太平中心小学刘智辉花都区新华第四小学陈扬花都区新华圆玄小学申深潜南沙区金隆小学张俊哲增城市荔江小学。
第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案
![第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案](https://img.taocdn.com/s3/m/4eb267feba0d4a7302763a63.png)
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
2011年第16届华杯赛决赛小学组及初中组共四套试卷及答案
![2011年第16届华杯赛决赛小学组及初中组共四套试卷及答案](https://img.taocdn.com/s3/m/573dd6ddaef8941ea76e055a.png)
A卷:第16届华杯赛决赛小学组试卷(A卷)第1题:答案:第2题:丫丫、丫丫的爸爸妈妈、丫丫的表弟今年的岁数总和是95,爸爸比妈妈大4岁,丫丫比弟弟大三岁,8年前,他们的年龄总和是65,问爸爸今年几岁答案:42第3题:两个自然数的和是210,最小公倍数是1547,问这两个数的积是________.答案:10829第4题:AB两地相距600千米,甲乙两人骑车从A往B行,甲每天骑40千米,乙每天骑60千米,但乙骑一天要休息一天,第______天时,乙距B地的距离是甲距B地的2倍。
答案:12第5题:如图,平行四边形BCEF、AHCI,已知三角形ABD=22,三角形DHG=36,求三角形FGI=?答案:14第6题:某班去植树,同学们被分为3组,第一组每人植树5棵,第二组每人植树4棵,第三组每人植树3棵,第二组的人数是一、三两组总人数的三分之一,第二组植的树比一、三两组植树棵树总和少72,问这个班最少有几个人答案:32第7题:11×101×1001×10001×1000001×111的末八位是____________.答案:87654321第8题:银行密码是100000至999999之间的数字,某人取钱时忘了密码,只记得有1 3 5 7 9且没有别的数字如果不限输密码次数,某人最多试几次答案:1800第9题:下面的数字谜中,不同的汉字可以表示相同的数字,问“华杯决赛”最大为几?兔年十六届+ 华杯决赛-------------------2 01 1答案:1901第10题:如图:(见下图)BC=BE=5,AD=AE=10,三角形OED=10,问整个图形的面积是多少?答案:52.5第11题:有50张一面为红一面为蓝的卡片,老师在卡片正反两面上写上1~50(正反一样),然后把卡片一律蓝色向上放在桌面上,让50名同学去翻卡片。
老师说:“凡是序号为你的号码的倍数的就翻过来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六届华罗庚金杯少年数学邀请赛
决赛试题C (小学组)
(时间: 2011年4月16日10:00~11:30)
一、填空题(每小题 10分, 共80分)
1. 877655433++=.
2.工程队的8个人用30天完成了某项工程的3
2, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了
天. 3.甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍.
乙骑了4千米后, 自行车出现故障, 耽误的时间可以骑全程的6
1. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为
千米.
4.在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时37分20秒时, 在分针与时针所夹的锐角内有
个小彩灯.
5.在边长为2厘米的正方形ABCD 中, 分别以A , B , C , D 为
圆心, 2厘米为半径画四分之一圆, 交点E , F , G , H , 如图
所示. 则中间阴影部分的周长为 厘米.(取圆周率
3.141π=)
6.用同一种颜色对44⨯方格的7个格子进行涂色, 如果某列有
涂色的方格则必须从最底下的格子逐格往上涂色, 相邻两列
中左侧的涂色的方格数大于或等于右侧涂色的方格数(如右
图). 那么共有 种涂色的图案.
7.已知某个几何体的三视图如右
图, 根据图中标示的尺寸(单
位: 厘米), 这个几何体的体积
是_______(立方厘米).
8.公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放
置的七支荧光管显示, 如下图所示.
某公交车的数字显示器有一支坏了的荧光管不亮, 显示的线路号为“351”, 则可能的线路号有个.
二、解答下列各题 (每题10分, 共40分, 要求写出简要过程)
9.在右面的加法竖式中, 不同的汉字可以代表相
同的数字, 使得算式成立. 在所有满足要求的
算式中, 四位数华杯决赛的最小值是多少?
10.长方形ABCD 的面积是70平方厘米. 梯形
AFGE 的顶点F 在BC 上, D 是腰EG 的中点. 试
求梯形AFGE 的面积.
11.求不能写成3个不相等的合数之和的最大奇数.
12.设某年中有一个月里有三个星期日的日期为奇数, 则这个月的21日可能是
星期几?
三、解答下列各题(每小题 15分, 共30分, 要求写出详细过程)
13.以[]x 表示不超过x 的最大整数, 设自然数n 满足
200015151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n ,
则n的最小值是多少?
14.一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水, 深度
为a, 其中60
0≤
<a. 现将棱长为10的立方体铁块放在容器的底面, 问放
入铁块后水深是多少?
第十六届华罗庚金杯少年数学邀请赛
决赛试题C参考答案(小学组)
一、填空题(每小题10分,共80分)
二、解答下列各题(每题10分,共40分, 要求写出简要过程)
9.答案: 1000
解答. 因为华杯决赛是四位数, 所以不会小于1000. 当
华杯决赛=1000, 十六届=990, 兔年=21
时题目要求的等式成立.
10.答案:70.
解答. 连接FD的直线与AE的延长线相交于H. 则△
DFG绕点D逆时针旋转180o与△DHE重合,
DF=DH.
梯形AEGF的面积
=△AFH的面积=2×△AFD的面积
=长方形ABCD的面积=70(平方厘米).
11.答案: 17
解答. 合数有:
4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,…….
因为4 + 6 + 9 = 19, 所以19能写成3个不相等的合数之和. 大于19的奇数n可以表示成n=19+2k, k是非零自然数, 进而
第十六届华罗庚金杯少年数学邀请赛决赛试题C 参考答案(小学组)
n =4+9+(6+2k ).
注意6+2k 为大于2的偶数, 是合数, 所以不小于19的奇数都写成3个不相等的合数之和.
另外, 17不能写成3个不相等的合数之和.
12.答案: 4, 6.
解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是整数, 317≤+a k . 要求有三个奇数.
当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0,2,4三个值, 此时,
177+=+k a k
分别为1, 15, 29, 这时21号是星期六.
当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k+2不可能有三个奇数.
当a =3时, 要使7k+3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时
377+=+k a k
分别为3, 17, 31, 这时21号是星期四.
当74≤≤a 时, a k +7不可能有三个奇数.
三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)
13.答案: 252.
解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,
.200015151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是
.20002
13152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k k
k m m 因此
.400013152≤-k k
又
40004114171317152>=⨯-⨯, 40003632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时
811161842
363220002131520002+⨯==-=--k k . 注意到
2000
2008121618161512151615111516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦
⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而
200019921116181615111516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ . 所以 252 是满足题目要求的n 的最小值.
14. 解答. 由题设知
水箱底面积S 水箱=40×25=1000.
水箱体积V 水箱=1000×60=60000,
铁块底面积S 铁=10×10=100.
铁块体积V 铁=10×10×10=1000.
(1)若放入铁块后,水箱中的水深恰好为60时,
1000a +1000=60000, 得 a =59.
所以,当59≤a ≤60时,水深为60(多余的水溢出).
(2)若放入铁块后,水箱中的水深恰好为10时,
1000a +1000=10000, 得 a =9.
所以,当9≤a <59时,水深为a ×40×25+10×10×1040×25
= a +1. (3)由(2)知,当0<a <9时,设水深为x ,则
1000x =1000a +100x .得x =109
a .答:当0<a <9时,水深为
109a ;当9≤a <59时,水深为a +1;当59≤a ≤60时,水深为60.。