湖南省雅礼中学、长沙一中2015届高考模拟高三三月联考(整理精校版)

合集下载

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)语文试题 Word版含解析

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)语文试题 Word版含解析

雅礼中学2025届高三月考试卷(三)语文命题人:审题人:本试卷共四道大题,23道小题,满分150分。

时量150分钟.得分:________一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一二八定律又叫帕累托法则,最早用于描述社会财富分配不均的现象:即约20%的人掌握着80%的财富,帕累托法则的核心观点是约20%的变量操纵着80%的局面,所以,二八定律又名“80/20法则”,是一种基于“重要的少数与琐碎的多数”原则的量化标准。

该原理由19世纪意大利经济学家维弗雷多·帕累托提出,他发现20%的产品或活动通常带来了80%的收益。

在管理学中,二八定律通常用于识别和优化关键的20%因素,以获得80%的成果,从而使有限的资源发挥尽可能大的应用效益。

需要指出的是,虽然总体呈现出这样的统计规律,但占比不一定恰好是20%和80%。

长尾效应最早由美国的克里斯·安德森在2004年提出,常用于解释在线商业和经济模型,指销量较小或不被重视的产品或服务,由于种类繁多,总销量庞大,累计总收入超过了主流热门产品的收入。

从曲线的形状来看,除了较短的头部,还有一条长长的“尾巴”(如图1所示),随着互联网和产信息化的发展,数字产品存储成本的压力逐渐降低甚至抵消,消费者具有更多的选择权和自主性,长尾理论的应用蓬勃发展。

在经济学领域,二八定律早已成为重要的商业法则,企业通过重点关注核心客户、大客户和热门产品、畅销产品等,获得最大化的收益。

二八定律阐释的是稀缺经济学,其基本假设是“资源稀缺”,即有形货架、存货成本等较为缺乏,企业没有足够的货源架空间为每一个消费者提供所需的每一类产品,也无力承担滞销产品所占有的生产成本。

在此情况下,企业要实现盈利,唯一的解决办法就是采用标准化服务战略,通过单一品种的大规模生产,占据绝大部分市场,促使产品快速流通,避免长期占用货架和生产成本。

湖南省长沙市雅礼中学2022-2023学年高三上学期月考卷(三)语文试题含答案解析

湖南省长沙市雅礼中学2022-2023学年高三上学期月考卷(三)语文试题含答案解析

雅礼中学2023届高三月考试卷(三)语文一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1~5题。

材料一:多年以来,许多哲学家、大多数科学家、神经学家以及以自然为基础的人工智能研究者都在激烈地争论着一个问题:意识可否通过人工智能再造。

1980年,持不可造观念的加利福尼亚大学哲学家约翰·希尔勒,用“汉语房间”的形式来表达他的观点。

假设一个非汉语语者坐在一间屋子里,当门外传进来一串用汉语字符提出的问题,这个人可以根据手中特别详尽而聪明的规则表,排出一串包含有该问题答案的新的汉语字符,并把它们传出门外。

从在房间外提出问题的汉语语者的角度看,似乎有一个特别聪明的人在房间里阅读他的问题并给出答案。

但是对房间里的人而言,问题和答案都只是一些毫无意义的符号。

希尔勒认为这就是人工智能最有可能做到的:一个机器给出一个合理的答案,同时却不理解答案的意思。

所以说,无论机器的程序有多复杂,它都不可能有意识——它将用最愚蠢的方式来显示它的聪明。

借由“汉语房间”理论,希尔勒加强了他对人工智能的攻击。

他坚持认为,既然说意识是由非程序、非计算机的生物化学过程来产生,那么人工装置得到意识的希望几乎不存在。

但是,希尔勒的观点看来又是相当容易反驳的。

就像从理论上、经验中论证的一样,生物化学作用与信息处理之间的界限非常模糊,且低级但是完整的生物化学计算机装置的问世也是在将来几年内肯定可以预见的,同时非生物化学神经网络在模拟大脑功能方面也取得了很大的成功。

一些传统人工智能学者也反击说,高度繁杂的人工智能程序并不是简单地以最愚蠢的方式从一系列规则中作出选择,而是考虑许多并列的不同规则、处理规则之间的冲突、对各种规则进行推测、认识规则之间的联系,还要组建新的规则。

他们认为,这就好比一个锁在汉语房间里的、特别敏锐的、不懂汉语的人最终有可能开始理解汉语一样,一个繁杂的、建立在规则之上的系统是有可能得到基础意识的。

2014年高考湖南雅礼中学、长沙一中高三三月联考

2014年高考湖南雅礼中学、长沙一中高三三月联考

2014年高考(163)湖南雅礼中学、长沙一中高三三月联考高考模拟2014-03-16 1048湖南省雅礼中学、长沙一中高三三月联考语文试题一、语言文字运用(12分,每小题3分)1.下列词语的字形及加点字的读音,全部正确的一组是A.搁浅(gē)叨扰(dāo)一炷香(zhù)闷(mēn)声闷气B.巷道(hàng)整饬(chì)应届生(yīng)飞来横祸(hãng)C.害臊(sào)采撷(xiã)唱双潢(huáng)呼天抢地(q iāng)D.照片(piàn)歼灭(jiān)一沓纸(dá)拾级而上(shâ)1.D。

A.叨扰tāo;闷(mēn):因空气不流通而引起的感觉:~气,~热。

闷(mân):心烦,不舒畅:愁~,沉~,郁~,~懑。

B.横hâng,[1]凶暴,不讲理;蛮~,强~,~暴,~蛮。

[2]意外的,不寻常的:~财,~祸,~事,~死。

C.潢改为簧。

D. piān义同“片(piàn)”,用于“相片儿”、“电影片儿”等。

沓(dá):量词,用于叠起来的纸张或其他薄的东西。

2.下列各句中,加点的词语使用恰当的一项是A.在清楚地看到诸多“颜色革命”带来的严重后果后,越来越多的国家站出来反对以美国为首的西方国家随意践踏别国主权,强行干预别国内政。

B.惠特尼·休斯顿是美国著名歌星,她母亲也是一名出色的福音歌手。

因为受母亲的熏染,惠特尼·休斯顿从小就对歌唱表演表现出浓厚的兴趣。

C.三国时的曹植从小聪敏异常,写诗作文倚马可待,著名的《七步诗》就是在嫉恨他的哥哥曹丕的严加逼迫之下,在短短的七步之内创作而成的。

D.面对各种国际争端,我们要一定时刻保持清醒的头脑,主权问题应寸步不让,意识形态问题可求同存异,其他不触及根本的问题则可大而化之。

C项“倚马可待”特指人的文思敏捷。

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题(含答案)

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题(含答案)

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“存在x∈Z,x2+2x+m≤0”的否定是( )A. 存在x∈Z,x2+2x+m>0B. 不存在x∈Z,x2+2x+m>0C. 任意x∈Z,x2+2x+m≤0D. 任意x∈Z,x2+2x+m>02.已知集合A={ i , i2 , i3 ,i4 }(i是虚数单位),B={ 1 , −1 },则A∩B=( )A. { −1 }B. { 1 }C. { 1 , −1 }D. ⌀3.已知奇函数f(x)=(2x+m⋅2−x)cos x,则m=( )A. −1B. 0C. 1D. 124.已知m,l是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是( )A. m⊥l,m⊂β,l⊥αB. m⊥l,α∩β=l,m⊂αC. m//l,m⊥α,l⊥βD. l⊥α,m//l,m//β5.已知函数f(x)=4cos(ωx+φ)(ω>0)图象的一个最高点与相邻的对称中心之间的距离为5,则f(−6φπ)=( )A. 0B. 2φC. 4D. φ26.已知M是圆C:x2+y2=1上一个动点,且直线l1:mx−ny−3m+n=0与直线l2:nx+my−3m−n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是( )A. [3−1,23+1]B. [2−1,32+1]C. [2−1,22+1]D. [2−1,33+1]7.P是椭圆C:x2a2+y2b2=1(a>b>0)上一点,F1、F2是C的两个焦点,PF1⋅PF2=0;点Q在∠F1PF2的平分线上,O为原点,OQ//PF1,且|OQ|=b.则C的离心率为( )A. 12B. 33C. 63D. 328.设集合A={(x1,x2,x3,x4,x5)|x i∈{−1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+ |x4|+|x5|≤3”的元素个数为( )A. 60B. 90C. 120D. 130二、多选题:本题共3小题,共18分。

炎德 英才大联考湖南省雅礼中学 2024届高三月考试卷(八)

炎德 英才大联考湖南省雅礼中学 2024届高三月考试卷(八)

炎德·英才大联考湖南省雅礼中学 2024届高三月考试卷(八)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19.15.B. £ 9.18.C. £9.15.答案是C。

1. What programs does the man generally listen to?A. News.B. Talk shows.C. Education programs2. What will Carl do?A. Buy some steak.B. Bring some wine.C. Cook dinner.3.Where is probably George now?A. On the plane.B. In a car.C. At home.4. Where does the man most likely live?A. In Canada.B. In New York.C. In California.5. What is the man speaker's feeling in the end?A. SurpriseB. Relief.C. Sympathy第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

湖南省长沙市雅礼中学2024-2025学年高三上学期月考卷(一) 语文试卷(含解析)

湖南省长沙市雅礼中学2024-2025学年高三上学期月考卷(一) 语文试卷(含解析)

炎德·英才大联考雅礼中学2025届高三月考试卷(一)语文本试卷共四道大题,23道小题,满分150分。

时量150分钟。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:积极情绪(Positive Emotion)可以定义为正面的情绪或者具有正面向上价值的情绪。

情绪的认知理论认为,“积极情绪就是在目标实现过程中取得进步或得到他人积极评价时所产生的感受。

”由此可见,积极情绪就是经历了内在、外在的刺激,正确地解决了问题,达到某种成功与满意度,满足了个体的需求,感觉到个体的存在价值伴有随之而来的愉悦的心情与感受。

积极情绪并不是消极接受、坦然享受、乐不思蜀的感觉。

这些只是浅薄的感受,即时地享乐。

积极情绪拓展到更深的层面——从欣赏到热爱。

它并不是简单的迷恋,而是一种真心喜欢、经过努力而获得的欢愉、欣喜。

“积极情绪”这个词,指向了重要的人性瞬间。

那些轻微而短暂的愉悦状态,其实要比你想象的强大得多。

作为人类,生来就能够体验到微弱短促却愉悦舒畅的积极情绪。

它有着不同的形态和滋味。

回想一下,当感到与他人或与所爱的人心灵相通时;当感到有趣、有创意或忍俊不禁时;当感到自己的灵魂被蕴含在生命中的纯粹的美所打动时;或者当因一个新颖的主意或爱好而感到活力无限、兴致勃勃时,你都会不由自主地产生爱、喜悦、感激、宁静、兴趣和激励这样的积极情绪,它们会打开你的心扉。

然而,无论是迷恋、欢笑还是爱,你由衷的积极情绪总是无法持续很长的时间。

良好的感觉来了又去,就如同好天气一样,这是人类的本性。

积极情绪会逐渐消退,如果它长盛不衰,人们会很难适应变化,无法觉察到好消息和坏消息之间的差异,或是邀请与冒犯之间的差异。

如果你想重塑生活,让它变得更美好,秘诀就是不要把积极情绪抓得太紧,也不要抗拒它稍纵即逝的本性,而是将它更多地植入生活——久而久之,你就会提高积极情绪的分量。

我们发现,在这一秘诀中最重要的是积极率,这是用来描述积极情绪与消极情绪的数量关系的一种方法。

2023届炎德英才大联考雅礼中学高三月考试卷(三)参考答案

2023届炎德英才大联考雅礼中学高三月考试卷(三)参考答案

炎德·英才大联考雅礼中学2023届高三月考试卷(三)数学参考答案一、单项选择题二、多项选择题三、填空题13.14 14.1.5 15.π16.2四、解答题17.【解析】(1)27sin 2cos 22cos 1249ππβββ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭.(2)∵02παβπ<<<<, ∴3444πππβ<-<,322ππαβ<+<.∴sin 04πβ⎛⎫-> ⎪⎝⎭,()cos 0αβ+<,∵1cos 43πβ⎛⎫-= ⎪⎝⎭,()4sin 5αβ+=,∴sin 43πβ⎛⎫-= ⎪⎝⎭,()3cos 5αβ+=-.∴()3143cos cos 44535315ππααββ⎡⎤⎛⎫⎛⎫+=+--=-⨯+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.18.【解析】(1)以A 为原点,分别以AB ,AD ,AP 为x ,y ,z 轴建系,则()0,0,0A ,()B ,()C ,()0,2,0D ,()0,0,3P ,∴()0,0,3AP =,()23,6,0AC =,()BD =-,∴0BD AP ⋅=,0BD AC ⋅=,∴BD AP ⊥,BD AC ⊥,PAAC A =,∴BD ⊥平面PAC .(2)设平面ABD 的法向量为()0,0,1=m ,平面PBD 的法向量为(),,1x y =n ,由0BP ⋅=n ,0BD ⋅=n ,∴30,320,2x y y ⎧⎧=⎪⎪-+=⎪⎪⇒⎨⎨-+=⎪⎪=⎪⎪⎩⎩∴3,12⎫=⎪⎪⎝⎭n , ∴1cos ,2=m n , ∴二面角P BD A --的大小为60︒19.【解析】(1)设前三个小组的频率分别为1p ,2p ,3p , 由条件得()21311233,22,10.0050.02010,p p p p p p p ⎧=⎪⎪⎨=⎪++=-+⨯⎪⎩ 解得:116p =,214p =,313p =, 由2115604p n n ==⇒=. (2)由(1)知一个高中生身高超过160厘米的概率为()370.0050.0201012p p =++⨯=, 由于高中生人数很多,所以X 服从二项分布,7~3,12X B ⎛⎫ ⎪⎝⎭,()3375C 1212k k k P X k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0,1,2,3k =,773124EX =⨯=. (3)将表中的数据代入公式()()()()()22p ad bc a b c d a c b d χ-=++++, 得到()2250181589 5.059>5.024********χ⨯⨯-⨯=≈⨯⨯⨯,查表知()2 5.0240.025P χ≥=,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.20.【解析】(1)1(0)2f =,1211224a -==+,()()()11020010n n f f f f +⎡⎤==⎣⎦+, ∴()()()()()()()()1112101101001120242020221012n n n n n n n n n n f f f f a a f f f f +++--+-====-⋅=-+++-++, ∴112n n a a +=-, ∴数列{}n a 是首项为14,公比为12-的等比数列,11142n n a -⎛⎫=- ⎪⎝⎭. (2)21232232n n T a a a na +=+++,212321111123222222n n T a a a na ⎛⎫⎛⎫⎛⎫⎛⎫-=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相减得:221211142311124212n n n T n -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+⨯- ⎪⎝⎭+, 22131192n n n T +⎛⎫=- ⎪⎝⎭. 21.【解析】(1)设双曲线E 的方程为()222210,0x y a b a b -=>>, 则(),0B c -,(),0D a ,(),0C c .由3BD DC =,得()3c a c a +=-,即2c a =.∴22216,124,2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩解得1a =,∴2c =,b .∴双曲线E 的方程为2213y x -=. (2)设在x 轴上存在定点(),0G t ,使()BC GM GN λ⊥-.设直线的方程为x m ky -=,()11,M x y ,()22,N x y .由MP PN λ=,得120y y λ+=, 即12y y λ=-.① ∵()4,0BC =,()1212,GM GN x t x t y y λλλλ-=--+-,∴()()12BC GM GN x t x t λλ⊥-⇔-=-.即()12ky m t ky m t λ+-=+-.②把①代入②,得 ()()121220ky y m t y y +-+=.③把x m ky -=代入2213y x -=,并整理得()()222316310k y kmy m -++-=. 其中2310k -≠且0∆>, 即213k ≠,且2231k m +>. 122631km y y k -+=-,()21223131m y y k -=-. 代入③,得()()22261603131k m km m t k k ---=--,化简得kmt k =,当1t m =时,上式恒成立. 因此,在x 轴上存在定点1,0G m ⎛⎫ ⎪⎝⎭,使()BC GM GN λ⊥-. 22.【解析】(1)()121f x x x a'=--+, ∵0x =时,()f x 取得极值,∴()00f '=,故120100a-⨯-=+, 解得1a =.经检验1a =符合题意.(2)由1a =知()()2ln 1f x x x x =+--, 由()52f x x b =-+, 得()23ln 102x x x b +-+-=, 令()()23ln 12x x x x b ϕ=+-+-, 则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=,在区间[]0,2上恰有两个不同的实数根.或()()()()4511321221x x x x x x ϕ-+-'=-+=++, 当[]0,1x ∈时,()0x ϕ'>,于是()x ϕ在[]0,1上单调递增;当(]1,2x ∈时,()0x ϕ'<,于是()x ϕ在(]1,2上单调递减.依题意有()()()()()00,31ln 1110,22ln 12430,b b b ϕϕϕ⎧=-≤⎪⎪=+-+->⎨⎪=+-+-≤⎪⎩ 解得,1ln 31ln 22b -≤<+. (3)()()2ln 1f x x x x =+--的定义域为{}1x x >-, 由(1)知()()231x x f x x -+'=+.令()0f x '=得,0x =或32x =-(舍去), ∴当10x -<<时,()0f x '>,()f x 单调递增;当0x >时,()0f x '<,()f x 单调递减.∴()0f 为()f x 在()1,-+∞上的最大值.∴()()0f x f ≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立),对任意正整数n ,取10x n =>,得2111ln 1n n n ⎛⎫+<+ ⎪⎝⎭, ∴211ln n n n n ++⎛⎫<⎪⎝⎭. 故()23413412ln 2ln ln ln ln 14923n n n n n ++++++>++++=+.。

炎德英才大联考长沙市一中2025届高三月考试卷(三)数学试卷

炎德英才大联考长沙市一中2025届高三月考试卷(三)数学试卷

时量:120分钟满分:150分一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的炎德英才大联考长沙市一中2025届高三月考试卷(三)数学)1.若复数z 满足1i34i z +=-,则z =()B.252.已知数列{}n a 的前n 项和22n S n n =-,则345a a a ++等于()A.12B.15C.18D.213.抛物线24y x =的焦点坐标为()A.(1,0)B.(1,0)-C.1(0,)16-D.1(0,)164.如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为()A.πsin 23y x ⎛⎫=-⎪⎝⎭B.πsin 3y x ⎛⎫=+⎪⎝⎭C.πsin 26y x ⎛⎫=+⎪⎝⎭D.5πcos 26y x ⎛⎫=-⎪⎝⎭5.1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为()(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A.10km /sB.20km /sC.80km /s 3D.40km /s 6.若83cos 5αβ=,63sin 5αβ-=,则()cos αβ+的值为()A.4-B.54C.4-D.47.如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为()A.427B.827C.29D.498.设n S 为数列的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为()A.{}20,21-B.{}20,20-C.{}29,11-D.{}20,19-二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9.如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是()A.直线EF 与11D B 为异面直线B.直线1D E 与1DC 所成的角为60oC.1D F AD⊥ D.//EF 平面11CDD C 10.已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则()A.12l l ⊥ B.直线1l 与圆O 相切C.直线2l 与圆O 截得弦长为 D.OQ 11.已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则()A.23b ac>B.若1x ,2x ,3x 成等差数列,则23bx a=-C.1313x x t t +<+D.222222123123x x x t t t ++=++三、填空题(本大题共3个小题,每小题5分,共15分)12.已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.13.已知平面向量a ,b 满足2a = ,1= b ,且b 在a上的投影向量为14a - ,则ab + 为______.14.如图,已知四面体ABCD 的体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A =.(1)求A ;(2)若sin sin 2sin B C A +=,且△ABC ,求a 的值.16.设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.17.已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.18.已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB 的长;(2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.19.已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.。

2015高考备考高考写作(整理精校版)

2015高考备考高考写作(整理精校版)

2015年高考写作作文辅导0327 0737写作1、(2015·遵义四中第二次月考)孔子曰:“三人行,必有我师焉。

择其善者而从之,其不善者而改之。

”其中“择善”含意深刻,使人大有所悟。

在生活中我们需择善人而交,择善书而读,择善言而听,择善事而行,“择善”在我们生活中尤其重要,请以“择善”为话题,写一篇作文。

题目自拟,立意自定,不少于800字。

2、(2015·长沙一中第一次月考)以“起点”为题目,写一篇不少于800字的议论文或记叙文。

3、(2015·温州八校联考)阅读下面的文字,根据要求作文。

(60分)在《现代汉语规范词典》里,“转身”有下列意思:转动身体,改变方向。

转身,本是一具体动作行为,但蕴含其中的或许是处事方式的转变,或许是人生态度的转变,或许是事物发展情态的转变……小鸟一转身,生出一分轻盈;江河一转身,增添一分雄壮;游子一转身,带走一分乡愁;有人逃出火海又转身冲进火海;有人面对坦途又转身选择了险峰;有人面对掌声和鲜花却转身走入寂寞……转身是一种深情,是一种勇气,是一种智慧,小到个人,大到国家都会有转身。

关于“转身”,你有哪些感触和思考?请以“转身”为题,结合自己的体验和感受,联系现实生活,写一篇不少于800字的文章,文体自选(诗歌除外),立意自定。

4、(2015·雅礼中学第一次月考)请以“苦”为题目,写一篇不少于800字的议论文或记叙文。

例文一:苦“文王拘而演《周易》,仲尼厄而作《春秋》,屈原放逐,犹赋《离骚》,孙武摈脚,《兵法》修列……”史学家司马迁如是说。

“故天将降大事于斯人,必先苦其心志,劳具筋骨,饿其体肤,空乏其身……”伟大的思想家孟子如是说。

古代先贤对苦都有不同的见解,但终归于一点,苦是人生美丽花朵得以绽放的阳光和养分,苦是人生硕果甜美中的一丝酸涩,苦是人生回忆中所蒸发的汗水和泪水,是它们滋润着我们的成长与成功。

没有痛苦,没有挫折,就不能得到人生的真谛。

湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)

湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)

湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。

炎德英才大联考长沙市一中2025届高三月考试卷(三)数学答案

炎德英才大联考长沙市一中2025届高三月考试卷(三)数学答案

时量:120分钟满分:150分一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的炎德英才大联考长沙市一中2025届高三月考试卷(三)数学)1.若复数z 满足1i34i z +=-,则z =()A.5B.25C.5D.2【答案】C 【解析】【分析】根据复数的除法运算求出复数z ,计算其模,即得答案.【详解】由1i34i z+=-可得()()()()1i 34i 1i 17i 34i 34i 34i 25z +++-+===--+,则25z =,故选:C2.已知数列{}n a 的前n 项和2n S n n =-,则345a a a ++等于()A.12B.15C.18D.21【答案】B 【解析】【分析】利用52S S -即可求得345a a a ++的值.【详解】因为数列{}n a 的前n 项和22n S n n =-,所以34552=a a a S S ++-()2252522215=-⨯--⨯=.故选:B.3.抛物线24y x =的焦点坐标为()A.(1,0)B.(1,0)-C.1(0,16-D.1(0,)16【答案】D 【解析】【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标【详解】解:由24y x =,得214x y =,所以抛物线的焦点在y 轴的正半轴上,且124p =,所以18p =,1216p =,所以焦点坐标为1(0,16,故选:D4.如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为()A.πsin 23y x ⎛⎫=-⎪⎝⎭B.πsin 3y x ⎛⎫=+⎪⎝⎭C.πsin 26y x ⎛⎫=+ ⎪⎝⎭D.5πcos 26y x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】观察图象,确定函数()sin y x ωϕ=+的周期,排除B ,由图象可得当5π12x =时,函数取最小值,求ϕ由此判断AC ,结合诱导公式判断D.【详解】观察图象可得函数()sin y x ωϕ=+的最小正周期为2ππ2π36T ⎛⎫=-=⎪⎝⎭,所以2ππω=,故2ω=或2ω=-,排除B ;观察图象可得当π2π5π63212x +==时,函数取最小值,当2ω=时,可得5π3π22π+122k ϕ⨯+=,Z k ∈,所以2π2π+3k ϕ=,Z k ∈,排除C ;当2ω=-时,可得5ππ22π122k ϕ-⨯+=-,Z k ∈,所以π2π+3k ϕ=,Z k ∈,取0k =可得,π3ϕ=,故函数的解析式可能为πsin 23y x ⎛⎫=-⎪⎝⎭,A 正确;5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 错误故选:A.5.1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为()(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A.10km /sB.20km /sC.80km /s 3D.40km /s【答案】B 【解析】【分析】根据实际问题,运用对数运算可得.【详解】由题意122m m =,122200122lnln 82m m m m v v v m m ++===,得03ln 82v =,故0888203ln3ln 2 1.10.7ln 2v ==≈=--,故选:B6.若83cos 5αβ=,63sin 5αβ=,则()cos αβ+的值为()A.4-B.4C.4-D.4【答案】C 【解析】【分析】已知两式平方相加,再由两角和的余弦公式变形可得.【详解】因为83cos 5αβ+=,63sin 5αβ-=,所以25(3cos 4)62αβ=,2(3sin )2536αβ=,即所以2259cos co 6s 1042cos ααββ++=,229sin sin +10sin 2536ααββ-=,两式相加得9)104αβ+++=,所以10cos()4αβ+=-,故选:C .7.如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为()A.427B.827C.29D.49【答案】A 【解析】【分析】根据该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以求解.【详解】共移动4次,该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以,所以该质点共两次到达1的位置的概率为211124333332713⨯⨯+⨯⨯=.故选:A.8.设n S 为数列的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为()A.{}20,21-B.{}20,20-C.{}29,11- D.{}20,19-【答案】A 【解析】【分析】利用121++=+n n a a n 可证明得数列{}21n a -和{}2n a 都是公差为2的等差数列,再可求得()2=21n S n n +,有了这些信息,就可以从k 的取值分析并求解出结果.【详解】因为121++=+n n a a n ,所以()()()()()()212342123+41=++++++37+41=212n n n n nS a a a a a a n n n --⋅⋅⋅=++⋅⋅⋅-=+,假设()2=21=210n S n n +,解得=10n 或21=2n -(舍去),由存在*N k ∈,1210k k S S +==,所以有19k =或20k =,由121++=+n n a a n 可得,+1223n n a a n ++=+,两式相减得:22n n a a +-=,当20k =时,有2021210S S ==,即210a =,根据22n n a a +-=可知:数列奇数项是等差数列,公差为2,所以()211+11120a a =-⨯=,解得120a =-,当19k =时,有1920210S S ==,即200a =,根据22n n a a +-=可知:数列偶数项也是等差数列,公差为2,所以()202+10120a a =-⨯=,解得218a =-,由已知得123a a +=,所以121a =.故选:A.二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9.如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是()A.直线EF 与11D B 为异面直线B.直线1D E 与1DC 所成的角为60oC.1D F AD ⊥D.//EF 平面11CDD C 【答案】ABD 【解析】【分析】直接根据异面直线及其所成角的概念可判断AB ,利用反证法可判断C ,利用线面平行判定定理可判断D.【详解】如图所示,连接AC ,1CD ,EF ,由于E ,F 分别为1AD ,DB 的中点,即F 为AC 的中点,所以1//EF CD ,EF ⊄面11CDD C ,1CD ⊆面11CDD C ,所以//EF 平面11CDD C ,即D 正确;所以EF 与1CD 共面,而1B ∉1CD ,所以直线EF 与11D B 为异面直线,即A 正确;连接1BC ,易得11//D E BC ,所以1DC B ∠即为直线1D E 与1DC 所成的角或其补角,由于1BDC 为等边三角形,即160DC B ∠=,所以B 正确;假设1D F AD ⊥,由于1AD DD ⊥,1DF DD D = ,所以AD ⊥面1D DF ,而AD ⊥面1D DF 显然不成立,故C 错误;故选:ABD.10.已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则()A.12l l ⊥ B.直线1l 与圆O 相切C.直线2l 与圆O 截得弦长为23 D.OQ 17【答案】ACD 【解析】【分析】选项A 根据12l l ⊥,12120A A B B +=可判断正确;选项B 由圆心O 到1l 的距离不等半径可判断错误;选项C 根据垂直定理可得;选项D 先求出()4sin cos ,4cos sin Q θθθθ-+,根据两点间的距离公式可得.【详解】选项A :因()cos sin sin cos 0θθθθ+-=,故12l l ⊥,A 正确;选项B :圆O 的圆心O 的坐标为()0,0,半径为2r =,圆心O 到1l 的距离为12244cos sin d r θθ-==>+,故直线1l 与圆O 相离,故B 错误;选项C :圆心O 到1l 的距离为()22211sin cos d θθ-==+-,故弦长为222223l r d =-=,故C 正确;选项D :由cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩得4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩,故()4cos sin ,4sin cos Q θθθθ+-,故OQ ==,故D 正确故选:ACD11.已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则()A.23b ac>B.若1x ,2x ,3x 成等差数列,则23bx a=-C.1313x x t t +<+D.222222123123x x x t t t ++=++【答案】ABD 【解析】【分析】对于A ,由题意可得()0f x '=有两个不同实根,则由0∆>即可判断;对于B ,若123,,x x x 成等差数列,则()()22,x f x 为()f x 的对称中心,即可判断;对于C ,结合图象,当0a >和0a <时,分类讨论即可判断;对于D ,由三次函数有三个不同的零点,结合韦达定理,即可判断.【详解】因为()32f x ax bx cx d =+++,则()232f x ax bx c '=++,0a ≠,对称中心为,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,对于A ,因为()f x 有三个不同零点,所以()f x 必有两个极值点,即()2320f x ax bx c '=++=有两个不同的实根,所以2Δ4120b ac =->,即23b ac >,故A 正确;对于B ,由123,,x x x 成等差数列,及三次函数的中心对称性,可知()()22,x f x 为()f x 的对称中心,所以23bx a=-,故B 正确;对于C ,函数()()1g x f x =-,当()0g x =时,()1f x =,则1y =与()y f x =的交点的横坐标即为1t ,2t ,3t ,当0a >时,画出()f x 与1y =的图象,由图可知,11x t <,33x t <,则1313x x t t +<+,当0a <时,则1313x x t t +>+,故C 错误;对D ,由题意,得()()()()()()32123321231a x x x x x x ax bx cx da x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩,整理,得123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩,得()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++,即222222123123x x x t t t ++=++,故D 正确.故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用交点式得到三次方程的韦达定理式再计算即可.三、填空题(本大题共3个小题,每小题5分,共15分)12.已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.【答案】9【解析】【分析】根据二项分布的期望、方差公式,即可求得答案.【详解】由题意知随机变量X 服从二项分布(),B n p ,()3E X =,()2D X =,则()3,12np np p =-=,即得1,93p n ==,故答案为:913.已知平面向量a ,b 满足2a = ,1= b ,且b 在a上的投影向量为14a - ,则ab + 为______.【答案】【解析】【分析】由条件结合投影向量公式可求a b ⋅ ,根据向量模的性质及数量积运算律求a b +.【详解】因为b 在a上的投影向量为14a - ,所以14b a a a aa ⋅⋅=- ,又2a = ,所以1a b ⋅=-,又1= b ,所以a b +==14.如图,已知四面体ABCD 的体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.【答案】11【解析】【分析】连接,EG ED ,将多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -,利用题设条件找到小棱锥底面面积与四面体底面面积的数量关系,以及小棱锥的高与四面体的高的数量关系,结合四面体的体积即可求得多面体EFGHBD 的体积.【详解】如图,连接,EG ED ,则多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -.因H 是AD 上靠近D 点的四等分点,则14DHE AED S S = ,又E 是AB 的中点,故11114428DHE AED ABD ABD S S S S ==⨯= ,因G 是CD 上靠近D 点的四等分点,则点G 到平面ABD 的距离是点C 到平面ABD 的距离的14,故三棱锥G EDH -的体积1113218432G EDH C ABD V --=⨯=⨯=;又因点F 是BC 的中点,则133248CFG BCD BCD S S S =⨯= ,故58BFGD BCD S S = ,又由E 是AB 的中点知,点E 到平面BCD 的距离是点A 到平面BCD 的距离的12,故四棱锥E BFGD -的体积51532108216E BFGD A BCD V V --=⨯=⨯=,故多面体EFGHBD 的体积为11011.G EDH E BFGD V V --+=+=故答案为:11.【点睛】方法点睛:本题主要考查多面体的体积求法,属于较难题.一般的求法有两种:(1)分割法:即将多面体通过连线,作面的垂线等途径,将其分成若干可以用公式求解;(2)补形法:即将多面体通过辅助线段构造柱体,锥体或台体,利用整体体积减去个体体积等间接方法求解.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A -=.(1)求A ;(2)若sin sin 2sin B C A +=,且ABC V 的面积为a 的值.【答案】(1)π3A =(2)2a =【解析】【分析】(1)利用正弦定理的边角变换得到tan A =,从而得解;(2)利用正弦定理的边角变换,余弦定理与三角形面积公式得到关于a 的方程,解之即可得解.【小问1详解】因为sin cos 0a B A -=,即sin cos a B A =,由正弦定理得sin sin cos A B B A ⋅=⋅,因为sin 0B ≠,所以sin A A =,则tan A =,又()0,πA ∈,所以π3A =.【小问2详解】因为sin sin 2sin B C A +=,由正弦定理得2b c a +=,因为π3A =,所以113sin 222ABC S bc A bc ==⨯= 4bc =,由余弦定理2222cos a b c bc A =+-⋅,得224b c bc +-=,所以()234b c bc +-=,则()22344a -⨯=,解得2a =.16.设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.【答案】(1)4230--=x y (2)答案见解析【解析】【分析】(1)由函数式和导函数式求出(1)f 和(1)f ',利用导数的几何意义即可写出切线方程;(2)对函数()f x 求导并分解因式,根据参数a 的取值进行分类讨论,由导函数的正负推得原函数的增减,即得()f x 的单调性.【小问1详解】当0a =时,()221ln 2f x x x x =+,()2(ln 1)f x x x =+',因1(1),(1)22f f '==,故()f x 在1x =处的切线方程为12(1)2y x -=-,即4230--=x y ;【小问2详解】因函数()()221ln 2f x x ax x x =++的定义域为(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x =+++=++',①当2a e ≤-时,若10e x <<,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在1(0,)e上单调递增;若1e x >,由20x a +=可得2a x =-.则当1e 2a x <<-时,20x a +<,ln 10x +>,故()0f x '<,即函数()f x 在1(,)e 2a -上单调递减;当2a x >-时,ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在(,)2a -+∞上单调递增;②当2e a >-时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e +∞上单调递增;若12e a x -<<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(,)2e a -上单调递减;若02a x <<-,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在(0,)2a -上单调递增,当2e a =-时,()0f x '≥恒成立,函数()f x 在()0,+∞上单调递增,综上,当2e a <-时,函数()f x 在1(0,)e 上单调递增,在1(,)e 2a -上单调递减,在(,)2a -+∞上单调递增;当2e a =-时,函数()f x 在()0,+∞上单调递增;当2e a >-时,函数()f x 在(0,2a -上单调递增,在1(,2e a -上单调递减,在1(,)e+∞上单调递增.17.已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.【答案】(1)证明见详解(2)3913【解析】【分析】(1)根据线面垂直可证BD ⊥平面PAC ,则BD PC ⊥,再根据线面平行的性质定理可证BD ∥MN ,进而可得结果;(2)根据题意可证⊥PO 平面ABCD ,根据线面夹角可知PAC 为等边三角形,建立空间直角坐标系,利用空间向量求面面夹角.【小问1详解】设AC BD O = ,则O 为,AC BD 的中点,连接PO ,因为ABCD 为菱形,则AC BD ⊥,又因为PD PB =,且O 为BD 的中点,则PO BD ⊥,AC PO O = ,,AC PO ⊂平面PAC ,所以BD ⊥平面PAC ,且PC ⊂平面PAC ,则BD PC ⊥,又因为BD ∥平面AMHN ,BD ⊂平面PBD ,平面AMHN 平面PBD MN =,可得BD ∥MN ,所以MN PC ⊥.【小问2详解】因为PA PC =,且O 为AC 的中点,则PO AC ⊥,且PO BD ⊥,AC BD O = ,,AC BD ⊂平面ABCD ,所以⊥PO 平面ABCD ,可知PA 与平面ABCD 所成的角为60PAC ∠=︒,即PAC 为等边三角形,设AH PO G =I ,则,G AH G PO ∈∈,且AH⊂平面AMHN ,PO ⊂平面PBD ,可得∈G 平面AMHN ,∈G 平面PBD ,且平面AMHN 平面PBD MN =,所以G MN ∈,即,,AH PO MN 交于一点G ,因为H 为PC 的中点,则G 为PAC 的重心,且BD ∥MN ,则23PM PN PG PB PD PO ===,设2AB =,则11,32PA PC OA OC AC OB OD OP ========,如图,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,则)()22,0,0,3,0,,1,0,,133A P M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭uuu r uuur uuu r ,设平面AMN 的法向量()111,,x n y z =,则1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩,令11x =,则110,y z ==,可得(n = ,设平面PAM 的法向量()222,,m x y z =,则2222220330m AM y z m AP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩,令2x =,则123,1y z ==,可得)m =u r,可得39cos ,13n m n m n m ⋅===⋅r u r r u r r u r ,所以平面PAM 与平面AMN 所成的锐二面角的余弦值3913.18.已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB (2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.【答案】(1)线段AB 的长为6;(2)(i )直线l的方程为221x y =±+;(ii )直线l的斜率的取值范围为33(,)(,7447-- .【解析】【分析】(1)直接代入横坐标求解纵坐标,从而求出的值;(2)(i )(ii )先设直线和得到韦达定理,在分别得到两个三角形的面积公式,要求相等,代入韦达定理求出参数的值即可.【小问1详解】由双曲线22:13y x Γ-=的方程,可得221,3a b ==,所以1,2a b c ===,所以1(2,0)F -,2(2,0)F ,若AB x ⊥轴,则直线AB 的方程为2x =,代入双曲线方程可得(2,3),(2,3)A B -,所以线段AB 的长为6;【小问2详解】(i)如图所示,若直线l 的斜率为0,此时l 为x 轴,,A B 为左右顶点,此时1,,F A B 不构成三角形,矛盾,所以直线l 的斜率不为0,设:2l x ty =+,1122()A x y B x y ,,(,),联立22132y x x ty ⎧-=⎪⎨⎪=+⎩,消去x 得22(31)1290t y ty ++=,t 应满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,由根与系数关系可得121222129,3131t y y y y t t +=-=--,直线1AF 的方程为110(2)2y y x x -=++,令0x =,得1122y y x =+,点112(0,2y M x +,直线1BF 的方程为220(2)2y y x x -=++,令0x =,得2222y y x =+,点222(0,2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==- ,111212221||||||222F M N M F MNN S y y x y y y y x x =-=-=-++ 12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++,由11F AB F MN S S = ,可得1212212128()||2||4()16y y y y t y y t y y -=-+++,所以21212|4()16|4t y y t y y +++=,所以222912|4(16|43131t t t t t ⨯+-+=--,解得22229484816||431t t t t -+-=-,22916||431t t -=-,解得22021t =,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以t =所以直线l 的方程为221x y =±+;(ii )由1F ,2F 恒在以MN 为直径的圆内部,可得2190F MF >︒∠,所以110F F N M < ,又112211,22(2,)(2,22F y y N x x M F =+=+ ,所以1212224022y y x x +⨯<++,所以121210(2)(2)y y x x +<++,所以1221212104()16y y t y y t y y +<+++,所以2222931109124()163131t t t t t t -+<⨯+-+--,所以22970916t t -<-,解得271699t <<,解得433t <<或433t -<<-,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以直线l的斜率的取值范围为33(,(,7447-- .【点睛】方法点睛:圆锥曲线中求解三角形面积的常用方法:(1)利用弦长以及点到直线的距离公式,结合12⨯底⨯高,表示出三角形的面积;(2)根据直线与圆锥曲线的交点,利用公共底或者公共高的情况,将三角形的面积表示为12211||||2F F y y ⨯-或121||||2AB x x ⨯-.19.已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.【答案】(1)12170,1,4b b b ===(2)1(1)22n n +-⨯+(3)n a n=【解析】【分析】(1)根据集合新定义,利用列举法依次求得对应值即可得解;(2)根据集合新定义,求得12,b b ,121222i i i b b b i +++==== ,从而利用分组求和法与裂项相消法即可得解.(3)通过集合新定义结合等差数列性质求出11a =,然后利用反证法结合数列{}n a 的单调性求得11n n a a +-=,利用等差数列定义求解通项公式即可;【小问1详解】因为2n a n =,则123451,4,9,16,25a a a a a =====,所以{}*11i B i a =∈<=∅N ∣,{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,i B i a =∈<=N ∣,故12170,1,4b b b ===.【小问2详解】因为2n n a =,所以123452,4,8,16,32a a a a a =====,则**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N ,所以10b =,20b =,当122i i k +<≤时,则满足i a k <的元素个数为i ,故121222i i i b b b i +++==== ,所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ 1212222n n =⨯+⨯++⨯ ,注意到12(1)2(2)2n n n n n n +⨯=-⨯--⨯,所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ 1(1)22n n +=-⨯+.【小问3详解】由题可知11a ≥,所以1B =∅,所以10b =,若12a m =≥,则2B =∅,1{1}m B +=,所以20b =,11m b +=,与{}n b 是等差数列矛盾,所以11a =,设()*1n n n d a a n +=-∈N ,因为{}n a 是各项均为正整数的递增数列,所以*n d ∈N ,假设存在*k ∈N 使得2k d ≥,设k a t =,由12k k a a +-≥得12k a t ++≥,由112k k a t t t a +=<+<+≤得t b k <,21t t b b k ++==,与{}n b 是等差数列矛盾,所以对任意*n ∈N 都有1n d =,所以数列{}n a 是等差数列,1(1)n a n n =+-=.【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和。

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题 (

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题 (

一、单选题二、多选题1.已知过点可作双曲线的两条切线,若两个切点分别在双曲线的左、右两支上,则该双曲线的离心率的取值范围为( )A.B.C.D.2.已知在等比数列中,,则A.B.C.D.3. 某大学,,三个专业的在校学生人数见下表:专业类别合计学生人数现采用分层抽样的方法,调查这三个专业学生对参加某项社会实践活动的意向.在抽取的样本中,专业的学生有人,则样本中专业的学生人数为( )A.B.C.D.4. 已知集合,,则( )A.B.C.D.5. 如图,在四棱锥中,,其余的六条棱长均为2,则该四棱锥的体积为()A.B.C.D.6. 将函数图象上所有点的纵坐标伸长到原来的2倍,并沿轴向左平移个单位长度,再向下平移1个单位长度得到函数的图象.若对于任意的,总存在,使得,则的值可能是( )A.B.C.D.7. 设,则( )A.B.C.D.8. 如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学三、填空题四、解答题9.已知抛物线:的焦点在直线上,点在抛物线上,点在准线上,满足轴,,则( )A.B .直线的倾斜角为C.D .点的横坐标为10.已知函数是定义域为的奇函数,,若,,,则( )A.的图象关于点对称B .是周期为4的周期函数C.D.11. 下列说法正确的是( )A .若,则B.若,,且,则的最大值是1C .若,,则D .函数的最小值为912. 已知向量,是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P,当=x +y 时,则称有序实数对(x ,y )为点P 的广义坐标.若点A 、B 的广义坐标分别为(x 1,y 1)(x 2,y 2),关于下列命题正确的是:A .线段A 、B 的中点的广义坐标为();B .A 、B 两点间的距离为;C .向量平行于向量的充要条件是x 1y 2=x 2y 1;D .向量垂直于的充要条件是x 1y 2+x 2y 1=013. 已知曲线C :,点M 与曲线C 的焦点不重合.已知M 关于曲线C 的焦点的对称点分别为A ,B ,线段MN 的中点在曲线C 右支上,则的值为______.14.在中,已知,则面积的最大值是___________15. 某学校有男生400人,女生600人.为了调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为__________.16. 已知椭圆的离心率为,分别是的上、下顶点,,分别是的左、右顶点.(1)求的方程;(2)设为第二象限内上的动点,直线与直线交于点,直线与直线交于点,求证:.17.等差数列的前n 项和为,已知.(1)求的通项公式及;(2)求数列的前n项和.18. 已知函数(a 为常数).(1)求函数的单调区间;(2)证明:当且时,.19. 已知函数.(1)讨论的单调性.(2)是否存在实数a使得不等式恒成立?若存在,求出a的取值范围;若不存在,请说明理由.20. 近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:对优惠活动好评对优惠活动不满意合计对车辆状况好评对车辆状况不满意合计(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.参考数据:参考公式:,其中.21. 甲、乙、丙为完全相同的三个不透明盒子,盒内均装有除颜色外完全相同的球.甲盒装有4个白球,8个黑球,乙盒装有1个白球,5个黑球,丙盒装有3个白球,3个黑球.(1)随机抽取一个盒子,再从该盒子中随机摸出1个球,求摸出的球是黑球的概率;(2)已知(1)中摸出的球是黑球,求此球属于乙箱子的概率.。

湖南省雅礼中学2015届高三月考试卷(三)历史试题

湖南省雅礼中学2015届高三月考试卷(三)历史试题

湖南省雅礼中学2015届高三月考试卷(三)历史试题(考试范围:必修一、必修二、必修三第一单元)本试题卷分选择题和非选择题两部分,共8页。

时间90分钟,满分100分。

第I卷选择题(共48分)一、选择题:本大题共24小题,每小题2分,共计48分。

在每小题列出的四个选项中,只有一项是最符合题目要求的。

1.柳宗元在《封建论》中说:“天下之道……使贤者居上,不肖者居下,而后可以理安。

今夫封建者,继世而理;继世而理者,上果贤乎,下果不肖乎?……圣贤生于其时,亦无以立于天下,封建者为之也。

”文中作者所要表达的是A.封建制度无法有效运行B.天下之道,君臣关系最重要C.分封世袭制下统治者的素质得不到保障D.圣贤在分封世袭制下很难出现2.时人有云:治国要有“如履薄冰,如临深渊”的自觉,要有“治大国如烹小鲜”的态度。

该思想的渊源可追溯到A.儒家的“为政以德”思想B.道家的“无为而治”思想C.法家的“以法治国”思想D.墨家的“兼爱非攻’’思想3.两汉时期,“钱”字很少见于文学作品中。

而从两晋时期起,它的别称被大量收录:鲁褒尊其为“孔方兄”,干宝以“青蚨”称之,而王衍则贬之为“阿堵物”。

这说明魏晋时期A.商品经济发展促使社会价值观念变革B.商品经济的发展导致儒家义利观的解构C.儒家地位的变迁影响文学内容变化D.商业繁荣为市民文学发展奠定基础4.南宋末年文天祥亦曾感慨:“自魏晋以来至唐最尚门阀,故以谱牒为重,近世此事寝废,予每为之浩叹。

”这表明A.中国历代政府重视谱牒B.文天祥对于门阀制度非常重视C.土族制度在宋代已经消亡D.科举制度有利于谱牒门阀制度发展5.南宋开庆元年(1259年)建德县各类田地产钱统计(据《景定严州(古杭州的一府)续志》)如下,这一表格说明了A.中国经济重心南移完成B.农村税收高于城市C.宋朝推行重农抑商政策D.商品经济促进城市地价提高6.春秋时期管子日:“若岁凶旱水泆(溢),民失本,则修宫室台榭,以前无狗后无彘者(指穷人)为庸(指佣工)。

2023-2024学年湖南省长沙市雅礼中学高三上学期月考试卷(二)数学试卷及答案

2023-2024学年湖南省长沙市雅礼中学高三上学期月考试卷(二)数学试卷及答案

大联考雅礼中学2024届高三月考试卷(二)数学得分:___________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若12z i =+,则()1z z +⋅=( )A. 24i-- B. 24i-+ C. 62i- D. 62i+2. 全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是( )A. {2,3,5,7,9}B. {2,3,4,5,6,7,8,9}C. {4,6,8}D. {5}3. 函数()2log 22x x xx f x -=+部分图象大致是( )A. B.C. D.4. 在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=( )A. 3B. 3- C. 4- D. 45. 某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(1.5 4.7π≈)A. 3045.6gB. 1565.1gC. 972.9gD. 296.1g6. 已知数列{}n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为( )A.4πB. 2πC.34π D.54π8. 已知函数()f x 定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A. ()()2,04,∞-⋃+B. ()(),15,∞∞--⋃+C. ()(),24,-∞-+∞ D. ()()1,05,∞-⋃+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于实数a ,b ,c ,下列选项正确的是( )A. 若a b >,则2a ba b +>> B. 若0a b >>,则a b>>C. 若11a b>,则0a >,0b < D. 若0a b >>,0c >,则b c ba c a+>+10. 已知函数()2sin cos f x x x x =+,则下列说法正确的是( )A ()πsin 23f x x ⎛⎫=-⎪⎝⎭的.B. 函数()f x 的最小正周期为πC. 函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D. 函数()f x 的图象可由sin 2y x =的图象向右平移π3个单位长度得到11. 设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( )A. 若0d <,则1S 是数列{}n S 的最大项B. 若数列{}n S 有最小项,则0d >C. 若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D. 若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列12. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是( )A. 四面体11A D MN 的体积为定值B. 当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C. 直线MN 与平面ABCDD. 当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.14. 在平面直角坐标系xOy 中,圆O 与x 轴正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分的AOC ∠,34,55B ⎛⎫ ⎪⎝⎭,则点C 的坐标为__________.15. 已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.16. 已知菱形ABCD中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c)sin a C C =-.(1)求A ;(2)若8a =,ABCABC 的周长.19. 如图,在三棱柱111ABC A B C -中,11BC B C O = ,12BC BB ==,1AO =,160B BC ∠=︒,且AO ⊥平面11BB C C .(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.20. 如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF交椭圆于B 点,且满足||2||AF FB =,||AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.21. 如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -体积大于14,求三棱锥A MPC -体积的取值范围.22. 混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()Nf X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.的大联考雅礼中学2024届高三月考试卷(二)数学得分:___________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若12z i =+,则()1z z +⋅=( )A. 24i --B. 24i-+ C. 62i- D. 62i+【答案】C 【解析】【分析】根据复数的乘法运算和共轭复数的定义求解.【详解】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2. 全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是( )A. {2,3,5,7,9}B. {2,3,4,5,6,7,8,9}C. {4,6,8}D. {5}【答案】C 【解析】【分析】根据给定的条件利用韦恩图反应的集合运算直接计算作答.【详解】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3. 函数()2log 22x xxx f x -=+的部分图象大致是( )A. B.C. D.【答案】A 【解析】【分析】利用函数的奇偶性和特殊点即得.【详解】易知()2log 22x xxx f x -=+的定义域为{}0x x ≠,因为()()22log log 2222x x x xx x x f x x f x-----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4. 在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=( )A. 3 B. 3- C. 4- D. 4【答案】A 【解析】【分析】建立直角坐标系,写出相关点的坐标,得到AC ,DE,利用数量积的坐标运算计算即可.【详解】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =--,所以()()()32333AC DE ⋅=⨯-+-⨯-=.故选:A.5. 某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(1.5 4.7π≈)A. 3045.6gB. 1565.1gC. 972.9gD. 296.1g【答案】C 【解析】【分析】由题意可知所需要材料的体积即为半球体积与圆台体积之和,先求出圆台的体积,再利用组合体的体积乘以打印所用原料密度可得结果.【详解】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g ⨯≈⨯=故选:C6. 已知数列{}n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据等比数列的通项公式以及前n 项和公式,分别验证充分性以及必要性即可得到结果.详解】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n nn n a S a a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A7. 若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为( )A.4πB. 2πC.34π D.54π【答案】C 【解析】【分析】根据已知不等式得到,要求y =sin x 和y =cos x 图象不在y =a的同一侧,利用正弦函数、余弦函数图象的性质进行解答即可.【详解】在同一坐标系中,作出y =sin x 和y =cos x 的图象,【的当m =4π时,要使不等式恒成立,只有a ,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a 的同一侧.∴由图可知m 的最大值是34π.故选:C.8. 已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A. ()()2,04,∞-⋃+B. ()(),15,∞∞--⋃+C. ()(),24,-∞-+∞D. ()()1,05,∞-⋃+【答案】D 【解析】【分析】根据()()2f x f x +=-可得()f x 关于直线1x =对称,根据()()24f f -=-可得()()240f f -==,结合函数()f x 的单调性可得函数图象,根据图象列不等式求解集即可.【详解】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x 的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于实数a ,b ,c ,下列选项正确的是( )A. 若a b >,则2a ba b +>> B. 若0a b >>,则a b>>C. 若11a b>,则0a >,0b < D. 若0a b >>,0c >,则b c ba c a+>+【答案】ABD 【解析】【分析】利用比较法、特例法逐一判断即可.【详解】对选项A ,因为a b >,所以022a b a b a +--=>,022a b a bb +--=>,所以2a ba b +>>,故A 正确;对选项B ,0a b >>1=>,所以a >,1=>b >,即a b >>,故B 正确;对选项C ,令2a =,3b =1b>,不满足0a >,0b <,故C 错误;对选项D ,因为0a b >>,0c >,所以()()()()()0a b c b a c c a b b c b a c a a a c a a c +-+-+-==>+++,故D 正确.故选:ABD .10. 已知函数()2sin cos f x x x x =+,则下列说法正确的是( )A. ()πsin 23f x x ⎛⎫=-⎪⎝⎭B. 函数()f x 的最小正周期为πC. 函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D. 函数()f x 图象可由sin 2y x =的图象向右平移π3个单位长度得到【答案】AB的【解析】【分析】利用二倍角公式及辅助角公式化简函数,再结合正弦函数的图像性质逐项判断.【详解】()211cos 21πsin cos sin 2sin 22sin 22223x f x x x x x x x x +⎛⎫=-+==-=- ⎪⎝⎭,所以A 正确;对于B ,函数()f x 的最小正周期为2ππ2=,所以B 正确;对于C ,由ππ2π32x k -=+,k ∈Z ,得5ππ122k x =+,Z k ∈,所以函数()f x 的对称轴方程为5ππ122k x =+,Z k ∈,所以C 不正确;对于D ,sin 2y x =的图象向右平移π6个单位长度,得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到,所以D 不正确.故选:AB .11. 设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( )A. 若0d <,则1S 是数列{}n S 的最大项B. 若数列{}n S 有最小项,则0d >C. 若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D. 若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列【答案】BD 【解析】【分析】取特殊数列判断A ;由等差数列前n 项和的函数特性判断B ;取特殊数列结合数列的单调性判断C ;讨论数列{}n S 是递减数列的情况,从而证明D.【详解】对于A :取数列{}n a 为首项为4,公差为2-的等差数列,2146S S =<=,故A 错误;对于B :等差数列{}n a 中,公差0d ≠,211(1)(222n n n d dS na d n a n -=+=+-,n S 是关于n 的二次函数.当数列{}n S 有最小项,即n S 有最小值,n S 对应的二次函数有最小值,对应的函数图象开口向上,0d >,B 正确;对于C :取数列{}n a 为首项为1,公差为2-的等差数列,22n S n n =-+,122(1)2(1)(2)210n n S n n n n S n =-+++-+---=+<+,即1n n S S <+恒成立,此时数列{}n S 是递减数列,而110S =>,故C 错误;对于D :若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥,一定存在实数k ,当n k >时,之后所有项都为负数,不能保证对任意*N n ∈,均有0n S >.故若对任意*N n ∈,均有0n S >,有数列{}n S 是递增数列,故D 正确.故选:BD12. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是( )A. 四面体11A D MN 的体积为定值B. 当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C. 直线MN 与平面ABCDD. 当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形【答案】ACD 【解析】【分析】求出四面体的体积判断A ;把正方体的棱分成3类,再判断各类中的一条即可判断B ;作出线面角,并求出其正切表达式判断C ;利用线线、线面平行的性质作出截面判断D.【详解】点M ,N 在棱11B C ,CD 上运动时,M 到11A D 距离始终为2,N 到平面11A D M 的距离始终为2,所以四面体11A D MN 的体积11114222323N A MD V -=⨯⨯⨯⨯=恒为定值,A 正确;在正方体1111ABCD A B C D -中,棱可分为三类,分别是1111,,A A A B A D ,及分别与它们平行的棱,又1111,,A A A B A D 不与平面1A MN 平行,则在正方体1111ABCD A B C D -中,不存在棱与平面1A MN 平行,B 错误;正方体棱长为2,如图1,过M 作1MM BC ⊥于1M ,则有1MM ⊥平面ABCD ,于是MN 与平面ABCD 所成角即为1MNM ∠,于是11112tan MM MNM M N M N∠==,又1M N长度的最大值为MN 与平面ABCD,C 正确;如图2,取BC 中点M ',连接,AM MM '',有11////MM BB AA ',且11MM BB AA '==,则四边形1AA MM '是平行四边形,有1//AM A M ',过N 作AM '的平行线交AD 于点E ,此时14DE DA =,则1//EN A M ,即EN 为过1A ,M ,N 三点的平面与平面ABCD 的交线,连接1A E ,在BC 上取点F ,使得14CF CB =,同证1//AM A M '的方法得11//A E B F ,在棱1CC 上取点G ,使113CG CC =,连接MG 并延长交直线BC 于H ,则112CH C M CF ==,即11FH C M B M ==,而1//FH B M ,于是四边形1FHMB 是平行四边形,有11////MG B F A E ,则MG 为过1A ,M ,N 三点的平面与平面11BCC B 的交线,连接NG ,则可得五边形1A MGNE 即为正方体中过1A ,M ,N 三点的截面,D 正确.故选:ABD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.【答案】2-【解析】【分析】求导,利用()13f '=求解即可.【详解】解:因为()ln f x x a x =-,所以()1a f x x'=-,又函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则()1131af '=-=,所以2a =-.故答案为:2-14. 在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分AOC ∠,34,55B ⎛⎫⎪⎝⎭,则点C 的坐标为__________.【答案】2425⎛⎫⎪⎝⎭【解析】【详解】由题意可知圆O 1=,设AOB BOC α∠=∠=,由题意可知4sin 5α=,3cos 5α=,则点C 的横坐标为271cos 212sin 25αα⨯=-=-,点C 的纵坐标为241sin 22sin cos 25ααα⨯==.故答案为:724,2525⎛⎫-⎪⎝⎭.15. 已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.【答案】【解析】【分析】由题意可得()e 2e xxf x -=+,再结合基本不等式即可得答案.【详解】解:因为函数()e xy f x =+为偶函数,则()()e e x x f x f x --+=+,即()()ee xx f x f x ---=-,①又因为函数()3e xy f x =-为奇函数,则()()3e 3e xx f x f x ---=-+,即()()3e 3ex xf x f x -+-=+,②联立①②可得()e 2e xxf x -=+,由基本不等式可得()e 2e x x f x -=+≥=,当且仅当e 2e x x -=时,即当1ln 22x =时,等号成立,故函数()f x 的最小值为故答案为:16. 已知菱形ABCD 中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.【答案】28π【解析】【分析】将ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,得到120AEC ∠=︒,在AEC △中由余弦定理求出AE 的长,进一步求出AB 的长,分别记三角形ABD △与BCD △的重心为G 、F ,记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,证明Rt OGE △与Rt OFE 全等,求出OE ,再推出BD OE ⊥,连接OB ,由勾股定理求出OB ,即可得出外接球的表面积.【详解】将ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,则AE BD ⊥,CE BD ⊥,所以AEC ∠即为二面角A BD C --的平面角,所以120AEC ∠=︒;设AE a =,则AE CE a ==,在AEC △中2222cos120AC AE EC AE CE =+-⋅⋅︒,即2127222a a a ⎛⎫=-⨯⨯⨯- ⎪⎝⎭解得3a =,即3AE =,所以AB ==所以ABD △与BCD △是边长为.分别记三角形ABD △与BCD △的重心为G 、F ,则113EG AE ==,113EF CE ==;即EF EG =;因为ABD △与BCD △都是边长为所以点G 是ABD △的外心,点F 是BCD △的外心;记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,根据球的性质,可得OF ⊥平面BCD ,OG ⊥平面ABD ,所以 OGE 与OFE △都是直角三角形,且OE 为公共边,所以Rt OGE △与Rt OFE 全等,因此1602OEG OEF AEC ∠=∠=∠=︒,所以2cos 60EFOE ==︒;因为AE BD ⊥,CE BD ⊥,AE CE E =I ,且AE ⊂平面AEC ,CE ⊂平面AEC ,所以BD ⊥平面AEC ;又OE ⊂平面AEC ,所以BD OE ⊥,连接OB ,则外接球半径为OB ===,所以外接球表面积为2428S ππ=⨯=.故答案为:28π【点睛】思路点睛:求解几何体外接球体积或表面积问题时,一般需要结合几何体结构特征,确定球心位置,求出球的半径,即可求解;在确定球心位置时,通常需要先确定底面外接圆的圆心,根据球心和截面外接圆的圆心连线垂直于截面,即可确定球心位置;有时也可将几何体补型成特殊的几何体(如长方体),根据特殊几何体的外接球,求出球的半径.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.【答案】(1)n a n =; (2)证明见解析.【解析】【分析】(1)利用,n n a S 的关系,结合已知条件以及等差数列的通项公式即可求得结果;(2)根据(1)中所求,利用裂项求和法求得n T ,即可证明.【小问1详解】依题意可得,当1n =时,2111122S a a a ==+,0n a >,则11a =;当2n ≥时,22n n n S a a =+,21112n n n S a a ---=+,两式相减,整理可得()()1110n n n n a a a a --+--=,又{}n a 为正项数列,故可得11n n a a --=,所以数列{}n a 是以11a =为首项,1d =为公差的等差数列,所以n a n =.【小问2详解】证明:由(1)可知n a n =,所以()42222n b n n n n ==-++,()44441324352n T n n =+++⋅⋅⋅+⨯⨯⨯+22222222222222132435462112n n n n n n =-+-+-+-⋅⋅⋅+-+-+---++2221312n n =+--<++,所以3n T <成立18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c)sin a C C =-.(1)求A ;(2)若8a =,ABCABC 的周长.【答案】(1)2π3(2)18.【解析】【分析】(1)由正弦定理结合两角和的正弦公式化简可得出tan A的值,结合角A的取值范围可求得角A 的值;(2)利用三角形的面积公式可得出182b c bc++=,结合余弦定理可求得b c+的值,即可求得ABC的周长.【小问1详解】)sina C C=-,)sin sinB AC C=-,①因为πA B C++=,所以()sin sin sin cos cos sinB AC A C A C=+=+,sin sin sinA C A C=-,又因为A、()0,πC∈,sin0C≠sin0A A=-<,所以tan A=,又因为()0,πA∈,解得2π3A=.【小问2详解】解:由(1)知,2π3A=,因为ABC所以()1sin2ABCS a b c A=++=⋅△,即()8b c++=,所以,182b c bc++=②,由余弦定理2222π2cos3a b c bc=+-⋅得2264b c bc++=,所以()264b c bc+-=③,联立②③,得()()22864b c b c+-++=,解得10b c+=,所以ABC的周长为18a b c++=.19. 如图,在三棱柱111ABC A B C-中,11BC B C O=,12BC BB==,1AO=,160B BC∠=︒,且AO⊥平面11BB C C.(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.【答案】(1)证明见解析 (2【解析】【分析】(1)根据线面垂直的性质和判断定理可得1B C ⊥平面1ABC ,从而即可证明1AB B C ⊥;(2)建立以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴的空间坐标系,利用空间向量求解即可.【小问1详解】证明:因AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1AO B C ⊥,因为1BC BB =,四边形11BB C C 是平行四边形,所以四边形11BB C C 是菱形,所以11BC B C ⊥.又因为1AO BC O ⋂=,AO ⊂平面1ABC ,1BC ⊂平面1ABC ,所以1B C ⊥平面1ABC ,因为AB ⊂平面1ABC ,所以1AB B C ⊥.【小问2详解】解:以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,如图所示,则)B,()10,1,0B ,()0,0,1A,()1C ,所以()10,1,1AB =-,)11C B =,)110,1A B AB ==-,为设平面11AB C 的一个法向量为()1111,,n x y z = ,则11111111100n AB y z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11x =,可得1y =1z =,所以(11,n =u r,设平面111B C A 的一个法向量为()2222,,n x y z = ,则211221112200n A B z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取21x =,可得2y =2z =,所以(21,n = ,设二面角111A B C A --的大小为θ,因为1212121cos ,7n n n n n n ⋅〈〉===⋅ ,所以sin θ==,所以二面角111A B C A --.20. 如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF 交椭圆于B 点,且满足||2||AF FB =, ||AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.【答案】(1)22132x y +=;(2).【解析】【分析】(1)由已知得b =,由||2||AF FB =且||AB =,知||AF a ==,即可求出椭圆C 的标准方程;(2)直线AF0y +=,与椭圆联立求出3(,2B ,求出点,A B 到直线(0)y kx k =>的距离为1d =,2d =,联立直线y kx =与椭圆方程结合弦长公式求出CD ,求出四边形ACBD 的面积121()2S CD d d =+,整理化简利用二次函数求出最值.【详解】(1)A Q 为椭圆C上一点,b ∴=又 ||2||AF FB =,||AB =可得,||AF =,即a =所以椭圆C 的标准方程是22132x y +=.(2)由(1)知(1,0)F,A ,∴直线AF0y +-=,联立221320x y y ⎧+=⎪⎨+-= ,整理得:22462(3)0x x x x -=-=,解得:1230,2x x ==,∴3(,2B设点A,3(,2B 到直线(0)y kx k =>的距离为1d 和2d ,则1d =,2d = 直线(0)y kx k =>与椭圆相交于,C D 两点,联立22132x y y kx ⎧+=⎪⎨⎪=⎩,整理得:22(32)6k x +=,解得:34x x ==4CD x ∴=-=∴设四边形ACBD 面积为S,则121()2S CD d d =+=(0)k =>.设)t k =+∞,则k t =S ∴====≤当1t =,即t k ===k =ACBD面积有最大值【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -的体积大于14,求三棱锥A MPC -体积的取值范围.【答案】(1(2)【解析】【分析】(1)取OB 的中点N ,连接MN ,证明出//NP OC ,可得出3ONP π∠=,OPN θ∠=,然后在ONP △中利用正弦定理可求得sin θ的值;(2)计算得出四边形OCPB的面积364S πθ⎛⎫=+> ⎪⎝⎭,结合20,3πθ⎛⎫∈ ⎪⎝⎭可求得θ的取值范围,设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V,计算得出2361123V V πθ⎛⎫==+ ⎪⎝⎭,结合正弦型函数的基本性质可求得结果.【小问1详解】解:取OB 的中点N ,连接MN ,M 为AB 的中点,则//MN OA ,MN ⊄ 平面AOC ,AO ⊂平面AOC ,则//MN 平面AOC ,由题设,当//MP 平面AOC 时,因为MP MN M ⋂=,所以,平面//MNP 平面AOC ,NP ⊂ 平面MNP ,则//NP 平面AOC ,因为NP ⊂平面OBPC ,平面OBPC 平面AOC OC =,则//NP OC ,所以,3ONP BOC ππ∠=-∠=,OPN COP θ∠=∠=,在OPN 中,由正弦定理可得sin sin 3ON OP πθ=,故sin 3sin ON OP πθ==.【小问2详解】解:四棱锥M OCPB -的体积1111323V OA S S =⋅⋅=,其中S 表示四边形OCPB 的面积,则112111sin sin sin sin 223222S OP OC OP OB πθθθθθ⎫⎛⎫=⋅+⋅-=++⎪ ⎪⎪⎝⎭⎭3sin 46πθθθ⎛⎫=+=+ ⎪⎝⎭,所以,111364V S πθ⎛⎫==+> ⎪⎝⎭,可得sin 6πθ⎛⎫+> ⎪⎝⎭203πθ<< ,则5666πππθ<+<,故2363πππθ<+<,解得,62ππθ⎛⎫∈ ⎪⎝⎭.设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,由于M 是AB 的中点,则231112sin 2623V V OA S OB OC π⎛⎫==⋅-⋅ ⎪⎝⎭136πθ⎛⎫=+∈ ⎪⎝⎭.22. 混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()N f X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由均值的性质及基本不等式即可证明.(2)由二项分布的概率及条件概率化简即可证明.【小问1详解】由题意可得X 满足二项分布(),X B N p ,由()()E aX b aE X b +=+知,()()N NE f X K X E pN N K K K =+=+⋅≥⎡⎤⎣⋅⎦,当且仅当1Kp K=时取等号;【小问2详解】记P P =(混管中恰有1例阳性|混管检测结果为阳性),i P P =(混管中恰有i 例阳性)=()C 1K i ii K p p --,0,1,,i K = ,令()e 1xh x x =--,33210210x ---⨯<<⨯,则()e 1xh x '=-,当()3021,0x -⨯∈-时,()0h x '<,()h x 为单调递减,当()300,21x -∈⨯时,()0h x '>,()h x 为单调递增,所以()()00h x h ≥=,且()()332103210e 21010h ---⨯--⨯=--⨯-≈,()()332103210e 21010h --⨯-⨯=-⨯-≈,所以当33210210x ---⨯<<⨯,e 10x x --≈即e 1x x ≈+,两边取自然对数可得()ln 1x x ≈+,所以当4010p -<<,1020K ≤≤时,所以()()ln 11e e K K p Kp p Kp ---=≈≈-,则()()()()110111111111K K Kp K p Kp p P P K p P Kp p ---⎡⎤-⎣⎦==≈=--≈---.故某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.。

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在,”的否定是A.存在,B.不存在,C.任意,D.任意,2.若集合(i 是虚数单位),,则等于A. B. C. D.3.已知奇函数,则A.-1B.0C.1D.4.已知,是两条不同的直线,,是两个不同的平面,则下列可以推出的是A.,, B.,,C.,, D.,,5.已知函数图象的一个最高点与相邻的对称中心之间的距离为5,则A.0B. C.4D.6.已知是圆上一个动点,且直线与直线x ∈Z 220x x m ++…x ∈Z 220x x m ++>x ∈Z 220x x m ++>x ∈Z 220x x m ++…x ∈Z 220x x m ++>{}2341,i ,i ,i A ={}1,1B =-A B ⋂{}1-{}1{}1,1-∅()()22cos x x f x m x -=+⋅m =12m l αβαβ⊥m l ⊥m β⊂l α⊥m l ⊥l αβ⋂=m α⊂m l P m α⊥l β⊥l α⊥m l P m βP()()4cos (0)f x x ωϕω=+>6f ϕπ⎛⎫-= ⎪⎝⎭2ϕ2ϕM 22:1C x y +=1:30l mx ny m n --+=2:30l nx my m n +--=(,,)相交于点,则的取值范围为A. B.C. D.7.是椭圆上一点,,是的两个焦点,,点在的角平分线上,为原点,,且.则的离心率为A.8.设集合,那么集合中满足条件“”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数满足,,并且当时,,则下列关于函数说法正确的是A. B.最小正周期m n ∈R 220m n +≠P PM 1,1⎤-+⎦1⎤-⎦1,1⎤-+⎦1⎤+⎦P 2222:1(0)x y C a b a b+=>>1F 2F C 120PF PF ⋅= Q 12F PF ∠O 1OQPF P OQ b =C 12(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=A 1234513x x x x x ++++……()f x ()()22f x f x ππ+=-()()0fx f x ππ++-=()0,x π∈()cos f x x =()f x 302f π⎛⎫=⎪⎝⎭2T π=C.的图象关于直线对称D.的图象关于对称11.若双曲线,,分别为左、右焦点,设点是在双曲线上且在第一象限的动点,点为的内心,,则下列说法不正确的是A.双曲线的渐近线方程为B.点的运动轨迹为双曲线的一部分C.若,,则D.不存在点,使得取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为________.13.各角的对应边分别为,,,满足,则角的取值范围为________.14.对任意的,不等式(其中e 是自然对数的底)恒成立,则的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求数列的前项和.16.(本小题满分15分)如图,在四棱锥,,,,点在上,且,.(1)若为线段的中点,求证:平面;()f x x π=()f x (),0π-22:145x y C -=1F 2F P I12PF F △()0,4A C 045x y±=I 122PF PF =12PI xPF yPF =+ 29y x -=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭4x ABC △a b c 1b ca c a b+++…A *n ∈N 11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…a n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T P ABCD -BCAD P 1AB BC ==3AD =E AD PE AD ⊥2DE PE ==F PE BFP PCD(2)若平面,求平面与平面所成夹角的余弦值.17.(本小题满分15分)已知函数有两个极值点为,,.(1)当时,求的值;(2)若(e 为自然对数的底数),求的最大值.18.(本小题满分17分)已知抛物线的焦点为,为上任意一点,且的最小值为1.(1)求抛物线的方程;(2)已知为平面上一动点,且过能向作两条切线,切点为,,记直线,,的斜率分别为,,,且满足.①求点的轨迹方程;②试探究:是否存在一个圆心为,半径为1的圆,使得过可以作圆的两条切线,,切线,分别交抛物线于不同的两点,和点,,且为定值?若存在,求圆的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量,,,…,(且),令,如果存在,使得,那么称是该向量组的“长向量”.(1)设,且,若是向量组,,的“长向量”,求实数的取值范围;(2)若,且,向量组,,,…,是否存在“长向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“长向量”,其中,AB ⊥PAD PAB PCD ()21ln 2f x x x ax =+-1x ()212x x x <a ∈R 52a =()()21f x f x -21e x x …()()21f x f x -2:2(0)E x py p =>F H E HF E P P E M N PM PN PF 1k 2k 3k 123112k k k +=P ()0,(0)Q λλ>P Q 1l 2l 1l 2l E ()11,A s t ()22,B s t ()33,C s t ()44,D s t 1234s s s s Q 1a 2a 3a n a N n ∈3n …123n n S a a a a =++++{}()1,2,3,,p a p n ∈ p n p a S a - …p a(),2n a n x n =+n ∈N 0n >3a 1a 2a 3ax sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭n ∈N 0n >1a 2a 3a 7a 1a 2a3a1a2a3a()1sin ,cos a x x =.设在平面直角坐标系中有一点列,,,…,,满足为坐标原点,为的位置向量的终点,且与关于点对称,与(且)关于点对称,求的最小值.()22cos ,2sin a x x = 1P 2P 3P n P 1P 2P 3a 21k P +2k P 1P 22k P +21k P +k ∈N 0k >2P10151016P P参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C 【解析】集合,,.故选C.3.A【解析】是奇函数,,,,,.故选A.4.D 【解析】有可能出现,平行这种情况,故A 错误;会出现平面,相交但不垂直的情况,故B 错误;,,,故C 错误;,,又由,故D 正确.故选D.5.C 【解析】设的最小正周期为,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有,得,则有,解得,所以,所以.故选C.6.B 【解析】依题意,直线恒过定点,直线恒过定点,显然直线,因此,直线与交点的轨迹是以线段为直径的圆,其方程为:,圆心,半径,而圆的圆心,半径,如图:,两圆外离,由圆的几何性质得:,{}i,1,1,i A =--{}1,1B =-{}1,1A B ⋂=-()f x ()()22cos x x f x m x -=+⋅()()()2222x x x xf x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =()()122cos 0x x m x -∴++=10m ∴+=1m =-αβαβm l P m α⊥l βαβ⊥⇒P l α⊥m l m α⇒⊥P m βαβ⇒⊥P ()f x T 224254T ⎛⎫+= ⎪⎝⎭12T =212πω=6πω=()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭()()1:310l m x n y ---=()3,1A ()()2:130l n x m y -+-=()1,3B 12l l ⊥1l 2l P AB 22(2)(2)2x y -+-=()2,2N 2r =C ()0,0C 11r =12NC r r =>+12min1PMNC r r =--=-,所以的取值范围为.故选B.7.C【解析】如图,设,,延长交于点,由题意知,为的中点,故为中点,又,即,则,又由点在的角平分线上得,则是等腰直角三角形,故有化简得即代入得,即,又,所以,所以,.故选C.8.D【解析】因为或,所以若,则在中至少有一个,且不多于3个.所以可根据中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为,所以共有种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为,故A 正确;,结合A 选项可知第70百分位数为第7个数和第812max1PMNC r r =++=+PM 1⎤-+⎦1PF m =2PF n =OQ 2PF A 1OQ PF P O 12F F A 2PF 120PF PF ⋅= 12PF PF ⊥2QAP π∠=Q 12F PF ∠4QPA π∠=AQP △2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩2,2,m n b m n a -=⎧⎨+=⎩,,m a b n a b =+⎧⎨=-⎩2224m n c +=222()()4a b a b c ++-=2222a b c +=222b a c =-2223a c =223e =e =0i x =1i x =1234513x x x x x ++++……()1,2,3,4,5i x i =1i x =i x 2315C 2N =⋅3225C 2N =⋅435C 2N =⋅23324555C 2C 2C 2130N =⋅+⋅+⋅=422616-=1070%7⨯=个数的平均数,即,故B 不正确;这10年粮食年产量的平均数为,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于时,,并且满足,则函数的图象关于直线对称.由于,所以,故,故,故函数的最小正周期为,根据,知函数的图象关于对称.由于时,,,故A 正确,由于函数的最小正周期为,故B 错误;由函数的图象关于对称,易知的图象不关于直线对称,故C 错误;根据函数图象关于点对称,且函数图象关于直线对称,知函数图象关于点对称,又函数的最小正周期为,则函数图象一定关于点对称,故D 正确.故选AD.11.ABD 【解析】双曲线,可知其渐近线方程为,A错误;设,,的内切圆与,,分别切于点,,,可得,,,由双曲线的定义可得:,即,又,解得,则点的横坐标为,由点与点的横坐标相同,即点的横坐标为,故在定直线上运动,B 错误;由,且,解得,,,,则,同理可得:,设直线,直线,联立方程得,设的内切圆的半径为,则,解得,即,353836.52+=()13232302835384239263533.710⨯+++++++++=()0,x π∈()cos f x x =()()22f x f x ππ+=-()f x2x π=()()0fx f x ππ++-=()()fx f x ππ+=--()()()()()22f x f x f x f x ππππ--+=+=--=-()()()24f x f x f x ππ=-+=+4π()()0fx f x ππ++-=()f x (),0π()0,x π∈()cos f x x =3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4π()f x (),0π()f x x π=(),0π2x π=()3,0π4π(),0π-22:145x y C -=02x =1PF m =2PF n =12PF F △1PF 2PF 12F F S K T PS PK =11F S FT =22F T F K =2m n a -=12122F S F K FT F T a -=-=122FT F T c +=2F T c a =-T a I T I 2a =I 2x =122PF PF =1224PF PF a -==18PF =24PF =1226F F c ==126436167cos 2868PF F ∠+-∴==⨯⨯12sin PF F ∠==12tan PF F ∠∴=21tan PF F ∠=)1:3PF y x =+)2:3PF y x =-(P 12PF F △r ()12118684622PF F S r =⨯⨯=⨯++⋅△r =I ⎛ ⎝,,,由,可得解得,,故,C 正确;,,当且仅当,,三点共线取等号,易知,故存在使得取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90 【解析】展开式的通项公式为,令,解得,所以展开式中的系数为.13. 【解析】从所给条件入手,进行不等式化简,观察到余弦定理公式特征,进而利用余弦定理表示,由可得,可得.14. 【解析】对任意的,不等式(其中e 是自然对数的底)恒成立,只需恒成立,只需恒成立,只需恒成立,2,PI ⎛∴=- ⎝ (17,PF =- (21,PF =- 12PI xPF yPF =+ 27,,x y -=--⎧⎪⎨=⎪⎩29x =49y =29y x -=1224PF PF a -== 12244PA PF PA PF AF ∴+=+++…A P 2F ()1min549PA PF +=+=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭()()521031553C C 3rr rrr r r T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭1034r -=2r =4x 225C 310990⋅=⨯=0,3π⎛⎤⎥⎝⎦()()1b c b a b c a c a c a b+⇒+++++……()()222a c a b b c a bc ++⇒++…cos A 222b c a ac +-…2221cos 22b c a A bc +-=…0,3A π⎛⎤∈ ⎥⎝⎦11ln2-*n ∈N 11e 1n an n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…11e n an +⎛⎫+ ⎪⎝⎭…()1ln 11n a n ⎛⎫++ ⎪⎝⎭…11ln 1a n n -⎛⎫+ ⎪⎝⎭…构造,,,.下证,再构造函数,,,,设,,,令,,,,在时,,单调递减,,即,所以递减,,即,所以递减,并且,所以有,,所以,所以在上递减,所以的最小值为.,即的最大值为.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为是正项等比数列,所以,公比,因为,所以,即,则,解得(舍去)或,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又因为,所以,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)依题意得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)当时,,所以,因为,所以,当时,符合上式,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)()()11ln 1m x x x =-+(]0,1x ∈()()()()()22221ln 11ln 1x x x m x x x x ++-=++'(]0,1x ∈()(]22ln 1,0,11x x x x+<∈+()()22ln 11x h x x x =+-+(]0,1x ∈()()()2221ln 12(1)x x x xh x x ++-'-=+(]0,1x ∈()()()221ln 12F x x x x x =++--()()2ln 12F x x x =+-'(]0,1x ∈()()2ln 12G x x x =+-(]0,1x ∈()21xG x x=-+'(]0,1x ∈(]0,1x ∈()0G x '<()G x ()()00G x G <=()0F x '<()F x ()()00F x F <=()0h x '<()h x ()00h =()22ln 11x x x+<+(]0,1x ∈()0m x '<()m x (]0,1x ∈()m x ()111ln2m =-11ln2a ∴-…a 11ln2-{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2n n a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n …()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ()121n b b n n =+11b =()21n b n n =+1n =1n b ={}n b ()21n b n n =+因为,所以.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)16.【解析】(1)设为的中点,连接,,因为是中点,所以,且,因为,,,,所以四边形为平行四边形,,且,所以,且,即四边形为平行四边形,所以,因为平面平面,所以平面.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)因为平面,所以平面,又,所以,,相互垂直,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,所以,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)设平面的一个法向量为,则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设平面的一个法向量为,()211211n b n n n n ⎛⎫==- ⎪++⎝⎭1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭M PD FM CM F PE FMED P 12FM ED =AD BC P 1AB BC ==3AD =2DE PE ==ABCE BC ED P 12BC ED =FM BC P FM BC =BCMF BFCM P BF ⊄,PCD CM ⊂PCD BF P PCD AB ⊥PAD CE ⊥PAD PE AD ⊥EP ED EC E ()0,0,2P ()0,1,0A -()1,1,0B -()1,0,0C ()0,2,0D ()1,0,0AB = ()0,1,2AP = ()1,0,2PC =- ()1,2,0CD =-PAB ()111,,m x y z =1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-()0,2,1m =- PCD ()222,,n x y z =则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)设平面与平面所成夹角为,则∙∙∙∙∙∙∙∙∙∙∙(15分)17.【解析】(1)函数的定义域为,则,当时,可得,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)当或时,;当时,;所以在区间,上单调递增,在区间上单调递减;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)所以和是函数的两个极值点,又,所以,;所以,即当时,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)易知,又,所以,是方程的两个实数根,则且,,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设,由,可得,令,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)则,所以在区间上单调递减,222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 21z =()2,1,1n = PAB PCD θcos θ=()21ln 2f x x x ax =+-()0,+∞()211x ax f x x a x x -+=+-='52a =()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==10,2x ⎛⎫∈ ⎪⎝⎭()2,x ∈+∞()0f x '>1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 10,2⎛⎫ ⎪⎝⎭()2,+∞1,22⎛⎫ ⎪⎝⎭12x =2x =()f x 12x x <112x =22x =()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭52a =()()21152ln28f x f x -=-()()()()22221212111ln2x f x f x x x a x x x -=+---()21x ax f x x-+='1x 2x 210x ax -+=2Δ40a =->120x x a +=>121x x =2a >()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭21x t x =21e x x (21)e x t x =…()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭e t …()222111(1)1022t g t t t t-⎛⎫=-+=-< ⎪⎝⎭'()g t [)e,+∞得,故的最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙(15分)18.【解析】(1)设抛物线的准线为,过点作直线于点,由抛物线的定义得,所以当点与原点重合时,,所以,所以抛物线的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)①设,过点且斜率存在的直线,联立消去,整理得:,由题可知,即,所以,是该方程的两个不等实根,由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)又因为,所以,,由,有,所以,因为,,,所以点的轨迹方程为.②由①知,设,,且,∙∙∙∙∙∙∙∙∙(9分)联立消去,整理得,又,,,,由韦达定理可得,同理可得,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)又因为和以圆心为,半径为1的圆相切,,即.同理,所以,是方程的两个不等实根,()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭…()()21f x f x -e 1122e -+E l 2py =-H 1HH ⊥l 1H 1HF HH =H O 1min 12pHH ==2p =E 24x y =(),P m n P ():l y k x m n =-+()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩y 24440x kx km n -+-=()2Δ164440k km n =--=20k mk n -+=1k 2k 1212,,k k m k k n +=⎧⎨=⎩()0,1F 31n k m -=0m ≠123112k k k +=121232k k k k k +=21m m n n =-0m ≠12n n -=1n ∴=-P ()10y x =-≠(),1P m -()14:1l y k x m =--()25:1l y k x m =--1m ≠±0m ≠()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩y 2444440x k x k m -++=()11,A s t ()22,B s t ()33,C s t ()44,D s t 12444s s k m =+34544s s k m =+()()()212344515454444161616s s s s k m k m k k m m k k =++=+++1l ()0,(0)Q λλ>1()()2224412120m k m k λλλ-++++=()()2225512120m k m k λλλ-++++=4k 5k ()()22212120m k m k λλλ-++++=所以由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(14分)所以,若为定值,则,又因为,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)所以圆的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)19.【解析】(1)由题意可得:,则.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)(2)存在“长向量”,且“长向量”为,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)理由如下:由题意可得,若存在“长向量”,只需使,又,故只需使,即,即,当或6时,符合要求,故存在“长向量”,且“长向量”为,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)(3)由题意,得,,即,即,同理,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)三式相加并化简,得,即,,所以,设,由得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)设,则依题意得:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--1234s s s s 220λ-=0λ>λ=Q 22(1x y +=312a a a +…40x -……2a 6a1n a ==p a1n p S a - …()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-71p S a -=== 022cos12p π+ (1)1cos 22p π--……2p =2a 6a123a a a + (2)2123a a a + …()22123a a a +...222123232a a a a a ++⋅ (2)22213132a a a a a ++⋅ (222)312122a a a a a ++⋅…2221231213230222a a a a a a a a a +++⋅+⋅+⋅…()21230a a a ++…1230a a a ++ …1230a a a ++=()3,a u v = 1220a a a ++= sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩(),n n n P x y ()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩得,故,,所以,,当且仅当时等号成立,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)故.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP ++++++⎡⎤=--=-=⎣⎦22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ …()4x t t ππ=-∈Z 10151016min1014420282P P =⨯=。

湖南省长沙市一中2024届高三月考卷(一)语文试题

湖南省长沙市一中2024届高三月考卷(一)语文试题

炎德·英才大联考长沙市一中2024届高三月考试卷(一)语文得分:本试卷共10页,时量150分钟,满分150分。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:人类创造的文化,包括科技文化和人文文化两大部类,它们分别发展看工具理性和价值理性。

科学技术作为最富革命性格的生产力,改造着世界,创造着巨大的物质财富,为人类提供日益增多的方便与享受,使人类自觉不自觉地产生了一种对科学技术的盲目崇拜。

19世纪以降,尤其是20世纪,相当多的人把科学技术视作全知、全能、全在的救世主,以为所有难题,包括精神、价值、自由都可以经由科学技术获得完满解决。

但由于科学技术是从研究自然界(尤其是物理世界)中抽象出来的一种“物质化”方法,或“非人格化”方法,其应用显然不足以解决人的精神领域的各种问题。

用池田大作的语言来说,“科学之眼”自有其限定性,因为“科学的思维法产生了轻视生命的领向,容易忽视活生生的人的真实风貌”,因而有赖人文的思想及方法的补充与矫正。

这首先表现在,对人类的生命意义而言,科学技术的健康走向,有赖人文精指引。

诚然,科技是“价值中立”的,但是作为社会人的科学家却不应是价值中立的,二战期间,爱因斯坦与“原子弹之父”奥本海默联袂反对使用原子弹,便是从人类良知和社会责任感出发的。

科技需要人文文化弥补的又一理由是:科学技术可以提供日益强大、有效的工具理性,却不能满足人类对于政治理念、伦理规范和终极关怀等层面的需求,总之,无法提供人类区别于禽兽的“价值理性”。

而现代人类所面临的诸多困扰,往往发生在值理性”管辖的领地,发生在“意义危机”频频袭来之际。

中国古代优秀的人文传统也其是在道德层面,有若干超越性的意义,可以成为文明人类公认的生活准则。

诸不忍之心、羞恶之心、恻隐之心、仁爱之心,都是贯通古今、中外认可的。

“人无信不少”,何尝不是成熟的现代市场交易所应遵循的经济伦理?“己所不欲,勿施于人”,也规代社会人际关系须臾不可脱离的黄金法则。

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题-

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题-

湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是( )四、解答题∴GA GC =,又∵GN 为公共边,∴Rt Rt GNA GNC V V ≌,∴AN CN =,N 为AC 的中点,又∵M 为BC 的中点,∴MN 为CBA △的中位线,MN P AB ,又∵MN Ë平面ABD ,AB Ì平面ABD ,∴MN P 平面ABD .又∵MN GN N =I ,MN Ì平面MNG ,GN Ì平面MNG ,∴平面MNG P 平面ABD ,又∵MG Ì平面MNG ,∴MG P 平面ABD .方法二:延长CG ,交AD 于点K ,连接AG ,BK ,∵BG ^平面ACD ,GA Ì平面ACD ,GC Ì平面ACD ,∴BG ^GA ,BG ^GC ,又∵BA BC =,BG 为公共边,∴Rt Rt BGA BGC V V ≌,∴GA GC =,又∵DA AC ^,∴ACK V 是KAC Ð为直角,CK 为斜边的直角三角形,∴GC GK =,即G 为CK 的中点,又∵M 为BC 的中点,∴MG 为CBK V 的中位线,MG P BK ,∵BK Ì平面ABD ,MG Ë平面ABD ,所以MG P 平面ABD .(2)过点A 作AF BG ∥,以A 为原点,AC ,AD ,AF 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.因此(0)0p =是()p x 的最小值,即()0p x ³,所以e 1x x ³+恒成立,所以()()e 11ax h x ax x g x -=³-+³-+³.综上,1a ³.【点睛】思路点睛:用导数研究不等式()0f x ³恒成立问题,常常是利用导数求得()f x 的最小值,再由最小值不小于0得参数范围,也可以利用特殊值求得参数的范围(必要条件),然后证明这个范围对所有自变量x 都成立(充分条件),从而得出结论.。

湖南省湖南师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考文数试题-Word版含解析

湖南省湖南师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考文数试题-Word版含解析

湖南省湖南师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考文数试题-Word 版含解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数)3(i i -的共轭复数是( )A.i 31+B.i 31-C.i 31+-D.i 31-- 【答案】B.考点:1.复数的计算;2.共轭复数的概念.2.设R U =,{}21xA x =>,{}2log 0B x x =>,则=BC A UI ( )A .{}0<x xB .{}1x x >C .{}01x x <≤D .{}10<≤x x 【答案】C. 【解析】试题分析:易知{}0>=x x A ,{}1>=x x B ,则{}01UA CB x x ==<≤I ,故选C .考点:集合的运算.3.计算οοοο107cos 47cos 17cos 47sin +的结果等于( )A.21- B.23C.22 D.21【答案】D. 【解析】 试题分析:sin 47cos17cos 47cos(9017)sin 47cos17cos 47(sin17)++=+-o o o o o o o o o1sin(4717)sin 302=-==o o o ,故选D.考点:三角恒等变形. 4.已知向量)1,1(-=a ,),1(m b =,若(2)4a b a -⋅=r r r ,则=m ()A.1-B.0C.1D.2【答案】C. 【解析】试题分析:由已知得)2,3(),1()2,2(2m m --=--=-,又∵)1,1(-=a ,∴423)2(=-+=⋅-m a b a ,∴1=m ,故选C.考点:平面向量数量积.5.已知抛物线)0(2>=a ax y 的焦点到准线距离为1,则=a ( )A.4B.2C.41D.21【答案】D. 【解析】试题分析:抛物线方程化为y a x12=,∴)41,0(a F ,焦点到准线距离为121=a ,∴21=a ,故选D.考点:抛物线的标准方程及其性质. 6.下列命题是假命题的是()A .R ∈∀ϕ,函数)2sin()(ϕ+=x x f 都不是偶函数B .α∃,R β∈,使cos()cos cos αβαβ+=+C .向量(2,1)a =-r,)0,3(-=b ,则a 在b 方向上的投影为2D .“1≤x ”是“1<x ”的既不充分又不必要条件 【答案】A.b 考点:命题真假判断. 7.已知双曲线12222=-b y a x 的离心率为332,则双曲线的两渐近线的夹角为( )A .6πB .4πC .3πD .2π【答案】C.考点:双曲线的标准方程及其性质.8.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若abC c b a=-+tan )(222,则角C 的值为( )A.6π或65πB.3π或32π C.6πD.32π【答案】A. 【解析】 试题分析:2221cos 1cos sin 22tan 2sin 2a b c C C C ab C C +-=⇒=⇒=,(0,)C π∈,∴6C π=或56π,故选A . 考点:余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.9.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则yx z -=23的最大值为( )A.33 B.3 C.3 D.9【答案】B. 【解析】考点:线性规划.10.如图所示程序框图,如果输入三个实数a ,b ,c,要求输出这三个数中最小的数,那么在空白的判断框中,应填入下面四个选项中的( )A.xc< C.bc> B.xb>c> D.c 【答案】B.【解析】试题分析:由题意可知,该程序框图的作用是通过比较判断,将较小的值赋值给x,故判断框中应是c x<,故选B.考点:程序框图.11.一个正三棱柱的侧棱长和底面边长相等,体积为316cm,它的三视图中的俯视图如图所示,侧视3图是一个矩形,则侧视图的面积是()A.8B.38C.4D.34【答案】B.考点:三视图.【思路点睛】根据几何体的三视图判断几何体的结构特征,常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.12.对于函数)(x f ,若a ∀,b ,c R ∈,()f a ,()f b ,()f c 为某三角形的三边长,则称)(x f 为“可构造三角形函数”,已知2()21x xtf x -=+是“可构造三角形函数”,则实数t 的取值范围是()A.]0,1[-B.]0,(-∞C.]1,2[--D.]21,2[-- 【答案】D. 【解析】 试题分析:121112112)(++-=+--+=x x x t t x f ,当01=+t ,即1-=t 时:1)(=x f ,此时()f a ,()f b ,()f c 都为1,能构成一个正三角形的三边长,满足题意;当01>+t 即1->t 时:)(x f 在R 上单调递增,1)(<<-x f t ,∴(),(),()1t f a f b f c -<<,由)()()(c f b f a f >+得21112-≤<-⇒≥-t t ; 当01<+t 即1-<t 时:)(x f 在R 上单调递减,t x f -<<)(1,由)()()(c f b f a f >+得22-≥⇒-≥t t ,∴12-<≤-t ,综上:212-≤≤-t ,故选D.考点:1.新定义问题;2.函数性质的综合运用. 【思路点睛】利用函数单调性讨论参数的取值范围一般要弄清三个环节:1.考虑函数的定义域,保证研究过程有意义;2.弄清常见函数的单调区间与题目给出的单调区间的关系;3.注意恒成立不等式的等价转化问题.二、填空题(本大题共5个小题,满分20分.把答案填在题中的横线上.)13.设函数2log (0)()()(0)x x f x g x x >⎧=⎨<⎩,若)(x f 为奇函数,则)41(-g 的值为_______. 【答案】2. 【解析】试题分析:22log 41log)41()41()41(222=-=-=-=-=--f f g ,故填:2.考点:奇函数的性质. 14.已知点)0,1(-A ,过点A 可作圆0122=+++mx y x 的两条切线,则m 的取值范围是______.【答案】(2,)+∞.考点:圆的标准方程.15.已知)2,0(,cos 62sin 5πααα∈=,则=2tan α_____. 【答案】13. 【解析】试题分析:αααcos 6cos sin 10=,∴53sin =α,3153541sin cos 12cos 2sin 22sin 22cos 2sin 2tan 2=-=-===αααααααα,故填:13. 考点:三角恒等变形.【思路点睛】1.三角函数式的变形,主要思路为角的变换、函数变换、结构变换,常用技巧有“辅助角”“1的代换”“切弦互化”等,其中角的变换是核心,②三角函数式的化简原则:尽量使函数种类最少,次数相对较低,项数最少,尽量使分母不含三角函数,尽量去掉根号或减少根号的层次,能求值的应求出其值.16.已知函数)(2)(2R x b ax x x f ∈+-=,给出下列命题: ①R a ∈∃,使)(x f 为偶函数;②若)2()0(f f =,则)(x f 的图象关于1=x 对称;③若02≤-b a,则)(x f 在区间),[+∞a 上是增函数; ④若022>--b a ,则函数2)()(-=x f x h 有2个零点. 其中正确命题的序号为_______.【答案】①③.考点:函数的图象和性质.【思路点睛】函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,使问题成功获解的重要依托,函数图象主要应用于以下方面:①求函数的解析式;②求函数的定义域;③求函数的值域;④求函数的最值;⑤判断函数的奇偶性;⑥求函数的单调区间;⑦解不等式;⑧证明不等式;⑨探求关于方程根的分布问题;⑩比较大小;⑪求函数周期等.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}na 的前n 项和)12(-=n n k S ,且83=a . (1)求数列{}n a 的通项公式;(2)求数列{}n na 的前n 项和nT . 【答案】(1)2n n a =;(2)22)1(1+-=+n n n T .11222++⋅--=-n n n n T ,22)1(1+-=+n n n T .考点:1.数列的通项公式;2.错位相减法求数列的和.18.(本小题满分12分)如图AB是⊙O的直径,点C是弧AB上一点,VC垂直⊙O所在平面,D,E分别为VA,VC的中点. (1)求证:⊥DE平面VBC;(2)若6=VC,⊙O的半径为5,求点E到平面BCD =CA的距离..【答案】(1)详见解析;(2)322考点:1.线面垂直的判定;2.体积法求解点到平面的距离.【思路点睛】计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面特别是轴截面,将空间问题转化为平面问题求解,利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.18.(本小题满分12分)2015年下学期某市教育局对某校高三文科数学进行教学调研,从该校文科生中随机抽取40名学生的数学成绩进行统计,将他们的成绩分成六段)90,80[,)100,90[,)110,100[,)130,120[,)140,130[后得到如图所示的频率分布直方图.(1)求这40个学生数学成绩的众数和中位数的估计值;(2)若从数学成绩)100,80[内的学生中任意抽取2人,求成绩在)90,80[中至少有一人的概率.【答案】(1)众数的估计值为115,中位数的估计值为115;(2)35.考点:1.频率分布直方图;2.古典概型.20.(本小题满分12分) 在平角坐标系xOy 中,椭圆)0(1:2222>>=+b a b y a x C 的离心率21=e ,且过点)3,0(,椭圆C 的长轴的两端点为A ,B ,点P 为椭圆上异于A ,B 的动点,定直线4=x 与直线PA ,PB 分别交于M ,N 两点.(1)求椭圆C 的方程;(2)在x 轴上是否存在定点经过以MN 为直径的圆,若存在,求定点坐标;若不存在,说明理由.【答案】(1)13422=+y x ;(2)(1,0),(7,0).令0=y ,∴22212122212126969168k k k k k k k k x x+-=++++-, ∴012168212=++-k k x x ,∴0)43(121682=-⨯++-x x , 即0782=+-x x ,解得7x =或1x =,∴存在定点(1,0),(7,0)经过以MN 为直径的圆.考点:1.椭圆的标准方程;2.圆的标准方程;3.定点问题.21.(本小题满分12分)已知函数)0,(ln 2)1()(2>∈∈--=a R a N k x a xx f k 且.(1)求)(x f 的极值;(2)若2016=k ,关于x 的方程ax x f 2)(=有唯一解,求a 的值.【答案】(1)极小值,ln a a a -;(2)12a =.当),(0+∞∈x x 时,0)(>'x g ,∴)(x g 在),(0+∞x 上单调递增, 又0)(=x g 有唯一解,∴⎩⎨⎧='=0)(0)(00x g x g ,即20002002ln 200x a x ax x ax a ⎧--=⎨--=⎩, 两式相减得:101ln 20ln 200000=⇒=-+⇒=-+x x x a ax x a ,∴21=a .考点:导数的运用.【思路点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明;2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值;3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 是ABC ∆的外接圆,AD 平分BAC ∠交BC 于D ,交ABC ∆的外接圆于E .(1)求证:DC BD AC AB =; (2)若3=AB ,2=AC ,1=BD ,求AD 的长.【答案】(1)详见解析;(2)334=AD .∵ABE ADC ∆∆~,∴AE AC AB AD =,∴AC AB AE AD ⋅=⋅,∴AC AB DE AD AD ⋅=+⋅)(,∴316326321232=-=⨯-⨯=⋅-⋅=⋅-⋅=DC BD AC AB DE AD AC AB AD ,∴334=AD .考点:1.圆的基本性质;2.相似三角形的判定与性质.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的极坐标方程为θρcos 2=,曲线2C 的参数方程为t t y t x(53254⎪⎩⎪⎨⎧+-=-=为参数). (1)判断1C 与2C 的位置关系;(2)设M 为1C 上的动点,N 为2C 上的动点,求MN 的最小值.【答案】(1)相离;(2)65. (2)561511min =-=MN .考点:1.极坐标方程,参数方程与直角方程的相互转化;2.圆的方程.24.(本小题满分10分)选修4-5:不等式选讲 已知a ,b R ∈,12)(---=x x x f .(1)若0)(>x f ,求实数x 的取值范围;(2)对R b ∈∀,若)(x f b a b a ≥-++恒成立,求a 的取值范围.【答案】(1))23,(-∞;(2)),21[]21,(+∞--∞Y .考点:1.绝对值不等式;2.恒成立问题.。

湖南雅礼中学2023届高三上学期月考(三)历史试题 Word版含解析

湖南雅礼中学2023届高三上学期月考(三)历史试题  Word版含解析
8.《中华人民共和国土地改革法》第四条规定:“工商业者家在农村中的土地和原由农民居住的房屋,应予征收。但其在农村中的其他财产和合法经营,应加保护,不得侵犯。”这()
A.体现了新民主主义的经济政策B.表明政府进行工商业改造
C.不利于巩固人民民主统一战线D.促使土地由地主私有变为公有
【答案】A
【解析】
【详解】由材料“工商业者家在农村中的土地和原由农民居住的房屋,应予征收。但其在农村中的其他财产和合法经营,应加保护,不得侵犯。”可知,土地改革时保护私营工商业的发展,这体现了新民主主义时期的经济政策,A项正确;进行工商业改造是三大社会主义改造时期工商业方面的政策,排除B项;新民主主义的经济政策有利于巩固人民民主统一战线,排除C项;材料没有提到土地的所有权问题,而且土地改革是将土地由地主私有变为农民私有,排除D项。故选A项。
A.尽管妥协但政治上日趋成熟B.缺乏足够的实力来巩固政权
C.已认清袁世凯的反革命本质D.认识到了政治斗争的复杂性
【答案】C
【解析】
【详解】资产阶级革命派的大多数人都认为袁世凯不好,说明此时资产阶级革命派认清了袁世凯的反革命本质,故选C;资产阶级革命派的妥协说明他们在政治上不成熟,排除A;材料内容只反映了革命派对袁世凯的认识,并不能说明他们缺乏足够的实力来巩固政权,排除B;资产阶级革命派的妥协说明他们没有认识到政治斗争的复杂性,排除D。
6.20世纪初,新的知识精英群体开始影响人们的行为方式和价值准则,“专制太甚,人心难收,自费留学、国外求学或著书立说以图学制革命者,颇不乏人”。这说明在当时的中国社会()
A.学制改革突破中体西用模式B.资产阶级民主革命的思想成为主流
C.救亡图存的方式发生了转变D.形成了政治变革的思想和群体基础
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省雅礼中学、长沙一中2015届高考模拟高三三月联考高考模拟试卷0412 10:55::语文试题一、语言文字运用(12分,每小题3分)1.下列词语的字形及加点字的读音,全部正确的一组是A.搁浅(gē)叨扰(dāo)一炷香(zhù)闷(mēn)声闷气B.巷道(hàng)整饬(chì)应年生(yīng)飞来横祸(hãng)C.害臊(sào)采撷(xiã)唱双潢(huáng)呼天抢地(qiāng)D.照片(piàn)歼灭(jiān)一沓纸(dá)拾级而上(shâ)1.D。

A.叨扰tāo;闷(mēn):因空气不流通而引起的感觉:~气,~热。

闷(mân):心烦,不舒畅:愁~,沉~,郁~,~懑。

B.横hâng,[1]凶暴,不讲理;蛮~,强~,~暴,~蛮。

[2]意外的,不寻常的:~财,~祸,~事,~死。

C.潢改为簧。

D. piān义同“片(piàn)”,用于“相片儿”、“电影片儿”等。

沓(dá):量词,用于叠起来的纸张或其他薄的东西。

2.下列各句中,加点的词语使用恰当的一项是A.在清楚地看到诸多“颜色革命”带来的严重后果后,越来越多的国家站出来反对以美国为首的西方国家随意践踏别国主权,强行干预别国内政。

B.惠特尼·休斯顿是美国著名歌星,她母亲也是一名出色的福音歌手。

因为受母亲的熏染,惠特尼·休斯顿从小就对歌唱表演表现出浓厚的兴趣。

C.三国时的曹植从小聪敏异常,写诗作文倚马可待,著名的《七步诗》就是在嫉恨他的哥哥曹丕的严加逼迫之下,在短短的七步之内创作而成的。

D.面对各种国际争端,我们要一定时刻保持清醒的头脑,主权问题应寸步不让,意识形态问题可求同存异,其他不触及根本的问题则可大而化之。

2.C。

C项“倚马可待”特指人的文思敏捷。

符合语境。

南朝·宋·刘义庆《世说新语·文学》:“桓宣武北征,袁虎时从,被责免官,会须露布文,唤袁倚马前令作,手不掇笔,俄得七纸,殊可观。

” A项“干预”:过问(别人的事)。

“干涉”:过问或制止,多指不应该管硬管,含贬义。

此处应为“干涉”。

B 项“熏染”:长期接触的人或事物对人的生活习惯逐渐产生某种影响(多指坏的)。

此处改为“熏陶”,更符合语境。

D项“大而化之”原指是美德发扬光大,进入化境。

现常用来表示做事疏忽大意,马马虎虎,含贬义。

不是大事化小的意思。

3.下列各句中,没有语病的一项是A.希望双方共同努力,以实际行动反对贸易保护主义,继续鼓励和保护双向投资,实现双边贸易平衡、多元化、可持续发展。

B.这架造型独特的直升机属于当地的一家直升机租赁公司,现在被一家煤气服务公司租用,用于检查煤气管道是否存在泄漏。

C.据媒体报道,前段时间,一架MQ8B“大力侦察兵”飞机在帕克斯基地成功地完成了首次无人机采用生物燃料的飞行试验。

D.二月初,亚洲遭遇极寒天气,日本雪灾迄今夺去至少63人死亡,韩国首尔最低温度摄氏零下17度,是55年来最低纪录。

3.A。

B项成分残缺,应为“是否存在泄漏问题”或者改为“是否泄漏”。

C项语序不当,应该把“首次”放在“采用”前。

D项句式杂糅,应为“夺去至少63人的生命”,或者去掉“夺去”。

4.日前,《广州市拾遗物品管理规定》(征求意见稿)拟出新招,拾金不昧者可获得相当于失物价值10%的金钱奖励。

消息一出,引发舆论热议,下面是四位网友留言,表意最准确鲜明生动的一项:A.拾金不昧,虽是中华民族传统美德,但从失主角度看,东西失而复得,对归还者给予一定钱物表示感谢,似乎是人之常情。

B.拾金不昧有偿,是否就与传统美德相悖?是否就标志着道德的沦丧?是否不被不法分子利用,成为一种获利手段?这些问题值得思考。

C.拾金不昧有奖与拾金不昧,二者之间不是你死我活的敌对关系,而是更加务实开放的伙伴关系。

拾金不昧有奖更接地气,贴人心,我支持!D.对于拾金不昧,有奖才是王道,神马都是浮云。

子曾经曰过:“重赏之下必有勇夫。

”因此,对这一举措,我举双手赞成。

4.C。

C项通过比喻拟人,鲜明生动地表达了自己的观点。

A项“似乎是人之常情”,表意不鲜明,态度不明朗。

B项,观点不鲜明,“值得思考”未明确态度。

D 项,采用网络用语,文白夹杂,表述不规范;且引用不准确,“重赏之下必有勇夫”出处:《后汉书·耿纯传》:“重赏甘饵,可以聚人者也。

”李贤注引《黄石公记》:“芳饵之下,必有悬鱼,重赏之下,必有死夫。

”。

二、文言文阅读(22分。

其中,选择题9分,每小题3分;简答题3分;翻译题10分。

)阅读下面的文言文,完成5~9题。

南轩记曾巩得邻之茆(máo)地,蕃之,树竹木,灌蔬于其间,结茅以自休,嚣然而乐。

世固有处廊庙之贵,抗万乘之富,吾不愿易也。

得到邻近杂草很多的一块地,围上篱笆,栽上竹木,在里面灌水种蔬菜,搭建起草房来供自己休息,悠闲又快乐。

世上固然有身在朝廷的显贵,财富与国君匹敌(相当)的富人,但我不愿意和他们互换位置。

人之性不同,于是知伏闲隐奥,吾性所最宜。

驱之就烦,非其器所长,况使之争于势利、爱恶、毁誉之间邪?世人的性情各不相同,由此而明白处于闲散的生活状态中,隐居在僻静的处所,我的性情最为合适。

迫使我去做繁杂的事情,原本就不是我那天赋的长处所在,何况还要让人到那势利、爱憎、毁誉中间去争斗呢?然吾亲之养无以修,吾之昆弟饭菽藿羹之无以继,吾之役于物,或田于食,或野于宿,不得常此处也,其能无焰然于心邪?然而我母亲的赡养没条件达到最完美的地步,我兄弟们的粗食淡饭也没办法顿顿吃得上,我被解决这些生活问题所驱迫,有时在田地里用饭,有时在野外住宿,不能够经常呆在这草房中,哪能在心里不焦躁呢?少而思,凡吾之拂性苦形而役于物者,有以为之矣。

士固有所勤,有所肆,识其皆受之于天而顺之,则吾亦无处而非其乐,独何必休于是邪?顾吾之所好者远,无与处于是也。

不过冷静一下再想想,大凡像我这样违背自己的性情,劳苦自己的身体,被生活问题所驱迫的情况,也是有理由去做的了。

读书人原本就有该勤苦的事,也有该尽力的事,明白这些都是从上天那里承受过来的,进而顺从它,那我也就没有任何地方不是该欢乐的了,为什么偏偏一定要在这草房里休息才算好呢?回想我所爱好的东西很高远,与身在这草房中没有什么太大的关系。

然而六艺百家史氏之籍,笺疏之书,与夫论美刺非、感微托远、山镵(chán)冢刻、浮夸诡异之文章,下至兵权、历法、星官、乐工、山农、野圃、方言、地记、佛老所传,吾悉得于此。

然而六经、诸子百家、史家的著述,注解之类的书籍,以及评定美好事物,讽刺丑恶现象,对细微的东西别有感触而寄托又深远,凿于山崖和镌刻在墓石,浮夸又诡谲怪异的文章,下至用兵谋略、历法星象、乐舞音律、农作物种植、方言和地理书,佛教道教所传授的教义法术,我又全在这草房中获取到。

皆伏羲以来,下更秦汉至今,圣人贤者魁杰之材,殚岁月,惫精思,日夜各推所长,分辨万事之说,其于天地万物,小大之际,修身理人,国家天下治乱安危存亡之致,罔不毕载。

处与吾俱,可当所谓益者之友非邪?它们都属于从伏羲以来,往下又历经秦朝汉朝直至当代,圣人贤人和突出的奇才穷尽岁月,付出极大的精密思索,日夜各自推究学问胜过其他学问的地方,分析辨明各种事物的论断。

这些论断对于天地万物,小事与大道的关系,修养好自身,治理民众,国家天下治乱安危存亡的最高表现,没有不详尽载述的。

这样一来,草房与我在一起,可以够得上人们所说的扩充自己的好友吧?还是并不如此呢?吾窥圣人旨意所出,以去疑解蔽。

贤人智者所称事引类,始终之概以自广,养吾心以忠,约守而恕者行之。

其过也改,趋之以勇,而至之以不止,此吾之所以求于内者。

我窥探圣人主旨用意的出发点,用它来去除疑惑,解开蒙昧。

贤人和明智者称说事物,连及类属,勾勒出由始至终的大概情形,用它来扩充自己。

拿忠诚来培植我的心性,紧紧约束住节操,按宽容的原则去行事。

人有过错就改正,凭勇敢去对待所要奔赴的事业,靠永不止息来实现最高的目标,这些都是我要从内心来加以索求的东西(原因)。

得其时则行,守深山长谷而不出者,非也。

不得其时则止,仆仆然求行其道者,亦非也。

吾之不足于义,或爱而誉之者,过也。

吾之足于义,或恶而毁之者,亦过也。

获得到适当的时机就去施行,这时还守身在深山长谷而不出世,显然也是错误的。

得不到适当的时机就作罢,这时还要不辞劳苦地去谋求践行自己的主张,显然也是错误的。

我在适宜问题的处理上做得还不够,有人喜爱我而对我加以称赞,这是不对的。

我在适宜问题的处理上做得很充分,有人厌恶我而对我进行诋毁,这也是不对的。

彼何与于我哉?此吾之所任乎天与人者。

然则吾之所学者虽博,而所守者可谓简;所言虽近而易知,而所任者可谓重也。

他们这两种态度,与我又有什么相干呢?进退适宜,正是我对上天和世人所应承当的东西。

既然如此,那么我所研习的学问虽然很广博,但所持守的却可以称得上简要;所谈论的东西尽管浅近,很容易了解,但所承当的却可以称得上重大。

书之南轩之壁间,蚤夜觉观焉,以自进也。

南丰曾巩记。

把以上这些话写在南轩的墙壁上,早晚看看它,用来激励自己上进。

南丰曾巩记。

(选自《唐宋八大家》延边人民出版社)5.对下列句子中加点的词语解释,正确的一项是A.蕃之,树竹木蕃:繁殖B.然吾亲之养无以修亲:亲戚C.士固有所勤,有所肆肆:尽、尽力D.贤人智者所称事引类称:称赞答案 C(A,蕃,同“藩”,屏障,这里是作为屏障,意译为“围上篱笆”。

B,亲,指父母亲,根据身世这里指母亲。

D,称,“称”和“引”在这里都是援引、引证的意思,后面多接言语、事例等。

)6.下列各句中的“于”字,与“吾之役于物”的“于”字意义和用法相同的一项是A.青,取之于蓝,而青于蓝B.畔主背亲,为降虏于蛮夷C.不拘于时,学于余D.当欣于所遇,暂得于己答案:C(A.于,介词,表比较,可译为“比”;本句选自荀子《劝学》。

B,于,介词,引进处所或对象,可译为“在”;本句选自班固《苏武传》。

C.于,表被动,可译为“被”或“受”,与例句中的“于”字用法相同;本句选自韩愈《师说》。

D,于,介词,可译为“对”,引进对象;本句选自王羲之《兰亭集序》。

)7.下列用“/”给文中画波浪线部分的断句,正确的一项是()A.得其时/则行守深山长谷而不出者/非也/不得其时/则止仆仆然求行其道者/亦非也/吾之不足于义/或爱而誉之者/过也/吾之足于义/或恶而毁之者/亦过也B.得其时/则行守深山长谷而不出者/非也/不得其时/则止仆仆然/求行其道者/亦非也/吾之不足于义/或爱而誉之者/过也/吾之足于义/或恶而毁之者/亦过也C.得其时则行/守深山长谷而不出者/非也/不得其时则止/仆仆然求行其道者/亦非也/吾之不足于义/或爱而誉之者/过也/吾之足于义/或恶而毁之者/亦过也D.得其时则行/守深山长谷而不出者/非也/不得其时则止/仆仆然求行其道者/亦非也/吾之不足/于义或爱而誉之者/过也/吾之足/于义或恶而毁之者/亦过也答案:C。

相关文档
最新文档