华师大新版八年级(上) 中考题同步试卷:13.1 命题、定理与证明(01)

合集下载

华东师大版数学 八年级上册 13.1 命题、定理与证明 课后练习题

华东师大版数学 八年级上册 13.1 命题、定理与证明 课后练习题

一、单选题1. 下列真命题中,它的逆命题也是真命题的是( )A.若a=b,则|a|=|b|B.两个图形成轴对称,则这两个图形是全等图形C.等边三角形是锐角三角形D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半2. 以下说法中:(1)多边形的外角和是;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.33. 下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②平移的方向一定是水平的;③内错角相等;④相等的角是对顶角;⑤垂线段最短.A.3 B.2 C.1 D.04. 下列命题中,真命题的个数有( )同位角相等;过一点有且只有一条直线与已知直线平行;无限小数是无理数;立方根等于它本身的数有两个,它们是和.A.个B.个C.个D.个5. 下列语句中,不是命题的是()A.相等的角是对顶角B.同旁内角互补C.平角是一条直线D.延长线段到点C,使二、填空题6. 有些命题是基本事实,还有些命题它们的正确性是经过推理证实的,这样得到的真命题叫做________.定理也可以作为继续推理的依据.在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作________.7. “互补的两个角一定是一个锐角、一个钝角”是假命题,我们可以举反例:____.8. 用一组a,b的值说明命题“若a2>b2,则a>b”是假命题,若a=﹣3,则b的值可以是___________.(写出符合要求的一个即可)三、解答题9. A,B,C,D,E五名学生猜测自己的数学成绩. A说:“如果我得优,那么B也得优.” B说:“如果我得优,那么C也得优.” C说:“如果我得优,那么D也得优.” D 说:“如果我得优,那么E也得优.” 大家都没有说错,但只有三个人得优,请问:得优的是哪三个人?10. 指出下列命题的条件和结论.(1)同位角相等,两直线平行;(2)同角的余角相等;(3)平行于同一条直线的两直线平行;(4)同旁内角不互补,两直线不平行.11. 如图,若直线,直线,则,用推理的方法说明它是真命题.。

2010-2023历年[同步]年华师大版八年级上13.1命题、定理与证明练习卷(带解析)

2010-2023历年[同步]年华师大版八年级上13.1命题、定理与证明练习卷(带解析)

2010-2023历年[同步]年华师大版八年级上13第1卷一.参考题库(共20题)1.(2014•宁波)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1B.b=2C.b=﹣2D.b=02.(2014•兰州)下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形3.(2014•德州)下列命题中,真命题是()A.若a>b,则c﹣a<c﹣bB.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C.点M(x1,y1),点N(x2,y2)都在反比例函数y=的图象上,若x1<x2,则y1>y2D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S =9,这过程中乙发挥比甲更稳定4.(2014•湘潭)以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等5.(2014•杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直6.(2015•泰安模拟)下列命题正确的个数是()个.①用四舍五入法按要求对0.05049分别取近似值为0.050(精确到0.001);②若代数式有意义,则x的取值范围是x≤﹣且x≠﹣2;③数据1、2、3、4的中位数是2.5;④月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为3.8×108米.A.1B.2C.3D.47.(2015•淄博模拟)已知下列四个命题:(1)对角线互相垂直平分的四边形是正方形;(2)对角线垂直相等的四边形是菱形;(3)对角线相等且互相平分的四边形是矩形;(4)一组对边平行,另一组对边相等的四边形是平行四边形其中真命题的个数是()A.1B.2C.3D.08.(2015•普陀区一模)下列命题中,正确的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个B.2个C.3个D.4个9.(2014•泰安)在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个10.(2014•襄阳)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短11.(2014•玉林)下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形12.(2014•资阳)下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形13.(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形14.(2014•福州)下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°15.(2014•包头)已知下列命题:①若a>b,则ac>bc;②若a=1,则=a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个16.(2014•桂林)下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似17.(2014•东营)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等18.(2014•大庆)下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个19.(2014•黄石)以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形20.(2014•厦门)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.42第1卷参考答案一.参考题库1.参考答案:A试题分析:先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.2.参考答案:B试题分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.3.参考答案:A试题分析:根据不等式的性质对A进行判断;根据概率的意义对B进行判断;根据反比例函数的性质对C进行判断;根据方差的意义对D进行判断.解:A、当a>b,则﹣a<﹣b,所以c﹣a<c﹣b,故A选项正确;B、某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故B选项错误;C、点M(x1,y1),点N(x2,y2)都在反比例函数y=的图象上,若0<x1<x2,则y1>y2,故C选项错误;D、甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中甲发挥比乙更稳定,故D选项错误.故选:A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.参考答案:C试题分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选:C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.5.参考答案:D试题分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.解:A、等腰梯形的对角线相等,故A错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,故B错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,故C错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,故D正确.故选:D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.参考答案:C试题分析:分别利用近似数和有效数字、科学记数法及有效数字、分式有意义的条件、二次根式有意义的条件及中位数的知识进行判断即可得到正确的结论.解:①用四舍五入法按要求对0.05049分别取近似值为0.050(精确到0.001),本命题正确;②若代数式有意义,则x的取值范围是为x≤且x≠﹣2,本命题错误;③数据1、2、3、4的中位数是=2.5,本命题正确;④月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为3.8×108米,本命题正确.故选C.点评:本题考查了近似数和有效数字、科学记数法及有效数字、分式有意义的条件、二次根式有意义的条件及中位数的知识,考查的知识点比较多,但相对比较简单.7.参考答案:A试题分析:根据正方形的判定对(1)进行判断;根据菱形的判定方法对(2)进行判断;根据矩形的判定方法对(3)进行判断;根据平行四边形的判定方法对(4)进行判断.解:对角线线段且互相垂直平分的四边形是正方形,所以(1)错误;对角线垂直平分的四边形是菱形,所以(2)错误;对角线相等且互相平分的四边形是矩形,所以(3)正确;一组对边平行,另一组对边也平行的四边形是平行四边形,所以(4)错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.参考答案:A试题分析:利用确定圆的条件、垂径定理、等弧的定义及正五边形的性质分别判断后即可确定正确的选项.解:(1)不在同一直线上的三点确定一个圆,错误;(2)平分弦(不是直径)的直径垂直于弦,错误;(3)相等的圆心角所对的弧相等,错误;(4)正五边形是轴对称图形,正确.故选A.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、垂径定理、等弧的定义及正五边形的性质,难度不大.9.参考答案:B试题分析:分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B C1,故(1)正确;1(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能用ASS判定△ABC≌△A1B1C1,故(2)错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,故(3)正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,故(4)正确.正确的个数有3个;故选:B.点评:本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.10.参考答案:C试题分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解:A、所有的实数都可用数轴上的点表示,所以A选项正确;B、等角的补角相等,所以B选项正确;C、无理数包括正无理数和负无理数,0是有理数,所以C选项错误;D、两点之间,线段最短,所以D选项正确.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.参考答案:C试题分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12.参考答案:D试题分析:利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,故选:D.点评:本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.13.参考答案:C试题分析:根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选:C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.参考答案:B试题分析:分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.点评:本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.15.参考答案:A试题分析:先对原命题进行判断,再判断出逆命题的真假即可.解;①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选:A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.16.参考答案:B试题分析:利用相似三角形的判定定理对每个选项逐一判断后即可确定正确的选项.解:A、等腰三角形不一定相似,是假命题,故A选项错误;B、等边三角形都相似,是真命题,故B选项正确;C、锐角三角形不一定都相似,是假命题,故C选项错误;D、直角三角形不一定都相似,是假命题,故D选项错误.故选:B.点评:本题考查了命题与定理及相似三角形的判定的知识,解题的关键是了解相似三角形的判定定理,难度不大.17.参考答案:D试题分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解:A、例如3与﹣3,可判断A错误,故A是假命题;B、对角线互相垂直的平行四边形是菱形,错误,故B是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,错误,故C是假命题;D、线段垂直平分线上的点与这条线段两个端点的距离相等,正确,故D是真命题,故选:D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.18.参考答案:A试题分析:分别利用平行四边形的判定方法判断得出即可.解:(1)两组对边分别相等的四边形是平行四边形,此选项正确;(2)两组对角分别相等的四边形是平行四边形,此选项正确;(3)对角线互相平分的四边形是平行四边形,此选项正确;(4)一组对边平行且相等的四边形是平行四边形,此选项正确.故选:A.点评:此题主要考查了平行四边形的判定,熟练掌握平行四边形的判定是解题关键.19.参考答案:A试题分析:根据等腰图形的性质对A矩形判断;根据矩形、正方形和菱形的判定方法分别对B、C、D矩形判断.解:A、等腰梯形是轴对称图形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四边相等且有一个角为90°的四边形是正方形,所以C选项错误;D、有两条相互垂直的对称轴的四边形可以是菱形或矩形,所以D选项错误.故选:A.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.20.参考答案:D试题分析:证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论.解:42是偶数,但42不是8的倍数.故选:D.点评:本题考查了命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.。

八年级数学上册 13.1 命题、定理与证明达标检测(AB卷,含解析)(新版)华东师大版

八年级数学上册 13.1 命题、定理与证明达标检测(AB卷,含解析)(新版)华东师大版

13.1命题、定理与证明A卷基础达标题组一命题的判断及组成1.下列语句不是命题的是( )A.无限小数是无理数B.过点A作CD的垂线C.互为倒数的两数乘积等于1D.两条直线相交,只有一个交点【解析】选B.因为选项B是作图语句,没有作出任何判断.2.下列语句不是命题的是( )A.两点之间线段最短B.山峰必有最高点C.x与y的和等于0吗?D.对顶角不相等【解析】选C.A,B,D都符合命题的定义;C是问语不是命题.3.下列语句是命题的是( )A.延长线段AB到CB.用量角器画∠AOB=90°C.两点之间线段最短D.任何数的平方都不小于0吗?【解析】选C.“延长线段AB到C”和“用量角器画∠AOB=90°”都是描述性语言,它们都不是命题;“任何数的平方都不小于0吗?”是疑问句,它不是命题;“两点之间线段最短”是命题.4.命题“直角三角形两个锐角互余”的条件是.【解析】“直角三角形两个锐角互余”的条件是一个直角三角形中的两个锐角,结论是这两个锐角互余.答案:一个直角三角形中的两个锐角5.下列句子中哪些是命题?(1)动物需要水.(2)猴子是动物的一种.(3)玫瑰花是动物.(4)美丽的天空.(5)负数都小于0.(6)你的作业做完了吗?(7)所有的质数都是奇数.(8)过直线l外一点作l的平行线.(9)如果a=b,a=c,那么b=c.【解析】(1)动物需要水,是命题.(2)猴子是动物的一种,是命题.(3)玫瑰花是动物,是命题.(4)美丽的天空,不是命题.(5)负数都小于0,是命题.(6)你的作业做完了吗?不是命题.(7)所有的质数都是奇数,是命题.(8)过直线l外一点作l的平行线,不是命题.(9)如果a=b,a=c,那么b=c,是命题.【知识归纳】表示祈使、感叹、疑问语气的句子,都不是命题.题组二真假命题的判断1.说明命题“如果a,b,c是△ABC的三边,那么长为a-1,b-1,c-1的三条线段能构成三角形”是假命题的反例可以是( )A.a=2,b=2,c=3B.a=2,b=2,c=2C.a=3,b=3,c=4D.a=3,b=4,c=5【解析】选A.当a=2,b=2,c=3时,a-1=1,b-1=1,c-1=2,此时:1+1=2,所以不能构成三角形.2.下列命题中,为真命题的是( )A.相等的角是对顶角B.同旁内角互补C.若|x|>|y|,则x>yD.若x=y,则x+1=y+1【解析】选 D.相等的角不一定是对顶角;同旁内角互补的条件是两直线平行;当x=-4,y=-3时,是选项C的一个反例;根据等式的性质可知选项D是一个真命题.【知识归纳】判断假命题最简捷的方法(1)与学过的正确知识相矛盾的结论.(2)能举出一个反例.3.请写出命题“两个不同的无理数的差一定不是整数”的反例的两个数是.(只要写出一种情况即可)【解析】命题:“两个不同的无理数的差一定不是整数”,反例的两个数可以是:-1,+1. 答案:-1,+1(答案不唯一)4.举反例说明下面命题是假命题.(1)互补的两个角一定是一个锐角,一个钝角.(2)两个负数的差一定是负数.(3)一正一负两个数的和为0.【解析】(1)两个直角互补,所以,互补的两个角一定是一个锐角,一个钝角是假命题.(2)-1-(-2)=1,所以,两个负数的差一定是负数是假命题.(3)-1+2=1,所以,一正一负两个数的和为0是假命题.题组三证明1.如图,因为∠AOC=∠BOD,所以∠AOC+∠AOB=∠BOD+∠AOB,这个推理的依据是( )A.等量加等量和相等B.等量减等量差相等C.等量代换D.整体大于部分【解析】选A.因为∠AOC=∠BOD,∠AOB=∠AOB,所以∠AOC+∠AOB=∠BOD+∠AOB.等号左右两边分别加上了一个相等的量,其结果仍然相等.2.如图,下列条件中能判定直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠5【解析】选C.根据∠1=∠2不能推出l1∥l2;∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2;∵∠1+∠3=180°,∴l1∥l2;根据∠3=∠5不能推出l1∥l2.3.小聪、小玲、小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A,B两个选项,有且只有一个选项是正确的,三人的答案和得分如下表,试问:这5道题的正确答案(按1~5题的顺序排列)依次是.【解析】根据得分可得小聪和小玲都是只有一个题答错,小红有两个题答错.第5题,三人选项相同,若不是选A,则小聪和小玲的其他题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3题、第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2题正确,即1的答案是B,2的答案是A;则小红的错题是1和2,则3和4正确,则3的答案是B,4的答案是B.所以,这5道题的正确答案(按1~5题的顺序排列)依次是BABBA.答案:BABBA4.小红、小强、小华三名同学中有一个把教室打扫得干干净净,事后,老师问他们三人是谁做的好事.小红说:“是小强做的”;小强说:“不是我做的”;小华说:“不是我做的”.如果他们三人中有两人说了假话,一人说了真话,那么老师能判定教室是谁打扫的吗?(要有分析)【解析】若小红说的是对的,那么小强、小华就是错的,那么小红与小华的话相矛盾;若小华说的是对的,那么小红、小强就是错的,那么三人之话也相矛盾;所以小强所说的是对的.分析得出是小华做的.所以教室是小华打扫的.【易错警示】推理应有依据,不能想当然!首先假设其中两人所说的是假话,进行分析,得出与已知的矛盾,进而得出符合要求的答案.5.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【证明】∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°.∵∠3=45°,∴∠1=∠3,∴CF∥AB.【鉴前毖后】对命题“同角的补角相等”.画图,并写出已知、求证.(不证明)(1)错因:______________________.(2)纠错:_________________________________________________ ___________________________________________________________ __________________________________________________________ __________________________________________________________ ___________________________________________________________ 答案: (1)把同角当成了相等的角(2)如图已知:∠AOC和∠BOD是∠AOB的补角.求证:∠AOC=∠BOD.B卷能力达标(测试时间30分钟试题总分50分)一、选择题(每小题4分,共12分)1..下列语句是命题的是( )A.延长线段ABB.你吃过午饭了吗?C.锐角都小于90°D.连结A,B两点【解析】选C.A是作图语言,不符合命题的定义;B是一个问句,不符合命题的定义;C符合命题的定义;D是作图语言,不符合命题的定义.【知识归纳】基本事实、定理、命题之间的联系(1)有些命题,是公认的真命题,不需要证明,这就是基本事实.(2)有些命题,经过证明确定是真命题,这就是定理.(3)所有的基本事实、定理都是命题中的真命题.2.下列选项中,可以用来说明命题“两个锐角的和是钝角”是假命题的是( )A.∠A=30°,∠B=50°B.∠A=30°,∠B=70°C.∠A=30°,∠B=90°D.∠A=30°,∠B=110°【解析】选 A.当∠A=30°,∠B=50°,而∠A+∠B=80°,即这两个锐角的和为锐角,所以命题“两个锐角的和是钝角”是假命题.3.下列命题错误的是( )A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【解析】选C.0不是无理数,无理数包括正无理数和负无理数.二、填空题(每小题4分,共12分)4.命题“如果a+b>0,那么a>0,b>0”是命题(填“真”或“假”).【解析】当a=2,b=-1时,a+b>0成立,但a>0,b>0不成立.故命题“如果a+b>0,那么a>0,b>0”是假命题.答案:假5.请举反例说明“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= .(写出一个x的值即可)【解析】当x=-2时,代数式的值为-1,不是正数.答案:-2(答案不唯一)6.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式是 .【解析】条件为:两条直线平行于同一条直线,结论为:平行,故写成“如果……那么……”的形式是:如果两条直线平行于同一条直线,那么它们平行. 答案:如果两条直线平行于同一条直线,那么它们平行三、解答题(共26分)7.(8分)下列语句中,哪些是命题,哪些不是命题?(1)若a,b互为相反数,则a+b=0.(2)两条平行直线被第三条直线所截,同旁内角互补吗?(3)画线段AB=5cm.(4)若a3=b3,则a≠b.(5)解方程3x+5=11.(6)x=5不是方程3x2-2x-65=0的解.【解题指南】解答本题的关键解答本题需要准确判断每一个语句所表示的语气,一般情况下表示祈使、感叹、疑问的语句都不是命题.【解析】(1)(4)(6)是命题,而(2)(3)(5)不是命题.8.(8分)指出下列命题的条件和结论,并指出该命题是真命题,还是假命题.(1)一个锐角的补角大于这个角的余角.(2)不相等的两个角不是对顶角.(3)异号两数相加得零.【解析】(1)条件:一个角是锐角;结论:这个角的补角大于这个角的余角.真命题.(2)条件:两个角不相等;结论:这两个角不是对顶角.真命题.(3)条件:两个数异号;结论:这两个数相加得零.假命题,如-3和5是异号两数,但-3+5=2≠0. 【培优训练】9.(10分)命题:“两个连续奇数的平方差是8的倍数”是真命题还是假命题?如果认为是假命题,请说明理由;如果认为是真命题,请给出证明.【解析】“两个连续奇数的平方差是8的倍数”是真命题.理由:设两个连续奇数为2n+1,2n-1,它们的平方差是(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=4n·2=8n,故两个连续奇数的平方差是8的倍数.。

八年级数学上第13章全等三角形13.1命题、定理与证明1命题目标二命题的真假课华东师大

八年级数学上第13章全等三角形13.1命题、定理与证明1命题目标二命题的真假课华东师大
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月11日星期五8时23分18秒20:23:1811 March 2022 4、享受阅读快乐,提高生活质量。下午8时23分18秒下午8时23分20:y!
第13章
全等三角形
1课3题. 12.
命题
1
目标二 命题的真假
习题链接
温馨提示:点击 进入讲评
1 2B 3D 4D
5A 6C 7C 8
答案呈现
9
1 下列四个命题:①对顶角相等;②同旁内角互补; ③ 4的算术平方根是 2;④两直线平行,同位角相等. 其中是假命题的是__②__③____(填序号).
2 【2020·岳阳】下列命题是真命题的是( B ) A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行 C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小
9 【教材P55练习T2变式】判断下列命题是真命题还是假 命题,若是假命题,请举出反例. (1)两个锐角的和是锐角;
解:假命题.反例:∠1=70°,∠2=80°, 但∠1+∠2=150°,不是锐角.(举反例不唯一)
(2)经过直线外一点,有且只有一条直线与这条直线 平行; 解:真命题.
(3)如果a2=b2,那么a=b. 假命题.反例:a=2,b=-2,有a2=b2, 但a≠b.(举反例不唯一)
3 【2021·安阳文峰区期末】下列命题是真命题的是( D ) A.若 x2+kx+14是完全平方式,则 k=1 B.一个正数的算术平方根一定比这个数小 C.若等腰三角形的两边长分别是 3 和 7,则第三边长 是3或7 D.两点之间线段最短
4 【2020·通辽改编】下列命题中,是假命题的是( D ) A.无理数都是无限小数 B.因式分解ax2-a=a(x+1)(x-1) C.棱长是1cm的正方体的表面展开图的周长一定 是14 cm D.六边形的内角和是360°

华师大新版八年级(上) 中考题同步试卷:13.1 命题、定理与证明(02)

华师大新版八年级(上) 中考题同步试卷:13.1 命题、定理与证明(02)

华师大新版八年级(上)中考题同步试卷:13.1 命题、定理与证明(02)一、选择题(共25小题)1.下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似2.下列说法正确的有()①在﹣,,π,﹣3.1415926,中,共有3个无理数.②若a=b,则a2=b2,它的逆命题是真命题.③若n边形的内角和是外角和的3倍,则它是八边形.④平分弦的直径垂直于弦,并且平分弦所对的两条弧.A.1个B.2个C.3个D.4个3.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15C.24D.424.下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°7.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形8.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短9.下列命题是假命题的是()A.不在同一直线上的三点确定一个圆B.矩形的对角线互相垂直且平分C.正六边形的内角和是720°D.角平分线上的点到角两边的距离相等10.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A.4个B.3个C.2个D.1个12.下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等13.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形14.下列命题中,属于真命题的是()A.同位角相等B.正比例函数是一次函数C.平分弦的直径垂直于弦D.对角线相等的四边形是矩形15.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直平分的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组邻边相等,并且有一个内角为直角的四边形是正方形16.下列命题中,不正确的是()A.n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半17.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线相等的四边形是等腰梯形18.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直19.以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等20.以下命题是真命题的是()A.等腰梯形是轴对称图形B.对角线相等的四边形是矩形C.四边相等的四边形是正方形D.有两条相互垂直的对称轴的四边形是菱形21.下列说法中,正确的有()①等腰三角形两边长为2和5,则它的周长是9或12.②无理数﹣在﹣2和﹣1之间.③六边形的内角和是外角和的2倍.④若a>b,则a﹣b>0.它的逆命题是假命题.⑤北偏东30°与南偏东50°的两条射线组成的角为80°.A.1个B.2个C.3个D.4个22.下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形23.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③B.①④C.②④D.②24.在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个25.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1B.b=2C.b=﹣2D.b=0二、填空题(共4小题)26.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视、俯视图都是圆;⑤如果一个角的两边与另一个解的两边分别平行,那么这两个角相等,其中是真命题的有(只需填写序号).27.下列四个命题中,正确的是(填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.28.下列命题中正确的个数有个.①如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1;②在反比例函数y=中,y随x的增大而减小;③要了解一批炮弹的杀伤半径,适合用普查方式;④从﹣3,﹣2,2,3四个数中任意取两个数分别作为k,b的值,则直线y=kx+b经过第一、二、三象限的概率是.29.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)三、解答题(共1小题)30.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).已知:如图,.求证:.证明:华师大新版八年级(上)中考题同步试卷:13.1 命题、定理与证明(02)参考答案一、选择题(共25小题)1.B;2.A;3.D;4.D;5.C;6.B;7.B;8.C;9.B;10.C;11.A;12.D;13.C;14.B;15.B;16.B;17.B;18.D;19.C;20.A;21.B;22.D;23.D;24.B;25.A;二、填空题(共4小题)26.②④;27.①④;28.2;29.①②④;三、解答题(共1小题)30.在△ABC中,∠B=∠C;AB=AC;。

华师版八年级数学上册第13章同步测试题含答案

华师版八年级数学上册第13章同步测试题含答案

华师版八年级数学上册第13章同步测试题含答案13.1 命题、定理与证明定理与证明1.“同角或等角的补角相等”是( )A.定义B.基本事实C.定理D.假命题2.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2 B.∠2=∠4C.∠3=∠4 D.∠1+∠4=180°3.如图所示,下列推理不正确的是( )A.若∠1=∠C,则AE∥CDB.若∠2=∠BAE,则AB∥DEC.若∠B+∠BAD=180°,则AD∥BCD.若∠C+∠ADC=180°,则AE∥CD4.根据下图,完成下列推理过程.(1)∵∠1=∠A(已知),∴AD∥BC.(________________________________________________________)(2)∵∠3=∠4(已知),∴CD∥AB.(________________________________________________________)(3)∵∠2=∠5(已知),∴AD∥BC.(________________________________________________________)(4)∵∠ADC+∠C=180°(已知),∴AD∥BC.(________________________________________________________)5.填写下列证明过程中的推理根据:已知:如图所示,AC,BD相交于O,DF平分∠CDO与AC相交于F,BE平分于∠ABO 与AC相交于E,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C(________),∴AB∥CD(__________________________________),∴∠ABO=∠CDO(__________________________________),又∵∠1=12CDO,∠2=12∠ABO(__________________________________),∴∠1=∠2(____________________).6.已知:如果所示,a∥b,c⊥a.求证:c⊥b.7.已知,如图,∠1=∠2,DC∥FE,DE∥AC,求证:FE平分∠BED.8.下列推理正确的是( )A.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1+∠3=90°B.∵∠1+∠3=90°,∠3+∠2=90°,∴∠1=∠2C.∵∠1与∠2是对顶角,又∠2=∠3,∴∠1与∠3是对顶角D.∵∠1与∠2是同位角,又∠2与∠3是同位角,∴∠1与∠3是同位角9.下列推理中,错误的是( )A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF10.完成下列推理证明.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.证明:∵AD∥EF(________),∴∠1=∠(_________ ∠1=∠2(已知),∴∠________=∠2(________________________).∴AB∥DG(______________________________________)11.如图,已知:∠ADE=∠B,∠1=∠2,FG⊥AB.求证:CD⊥AB.12.已知:如图,DE⊥AB,EF⊥BC,∠B=∠ADE.求证:AD∥EF.13.如图,将△MNP的三边分别向两边延长,并在每两条延长线上任取两点连接起来,又得到了三个新的三角形.求证:∠A+∠B+∠C+∠D+∠E+∠F=360°.14.已知:如图所示,AB∥CD,DE与BF相交于点E,试探究∠3与∠1,∠2之间有何等量关系?并加以证明.答案:1. C2. D3. D4. (1) 同位角相等,两直线平行(2) 内错角相等,两直线平行(3) 内错角相等,两直线平行(4) 同旁内角互补,两直线平行5. 已知内错角相等,两直线平行两直线平行,内错角相等角平分线定义等量代换6. 证明:∵a∥b,∴∠2=∠1.∵c⊥a,∴∠1=90°.∴∠2=90°.∴c⊥b7. 解:∵DC∥FE,∴∠1=∠3,∠CDE=∠4,∵DE∥AC,∴∠2=∠CDE,∴∠2=∠4,∵∠1=∠2,∴∠3=∠4,∴EF是∠BED的平分线8. B9. A10. 已知BADBAD 两直线平行,同位角相等内错角相等,两直线平行11. 证明:∵∠ADE=∠B,∴DE∥BC,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴CD∥FG.∵AB⊥FG,∴∠5=90°,∠5=∠4=90°,∴CD⊥AB12. 证明:∵DE⊥AB,∴∠BED=90°,∵△BED是直角三角形,∴∠BDE+∠B=90°.∵∠B=∠ADE,∴∠BDE+∠ADE=90°.∴∠ADB=90°,∵EF⊥BC,∴BFE=90°,∴∠ADB=∠BFE,∴AD∥EF13. 证明:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∴∠1+∠2+∠3=∠A +∠B+∠C+∠D+∠E+∠F.又∵∠1=∠4+∠5,∠2=∠4+∠6,∠3=∠5+∠6,∴∠1+∠2+∠3=∠4+∠5+∠4+∠6+∠5+∠6=2(∠4+∠5+∠6)=2×180°=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°14. ∴∠3=∠1+∠2-180°.证明:连结BD.∵∠3是△BDE的外角,∴∠3=∠DBE+∠BDE.又∵AB∥CD,∴∠ABD+∠BDC=180°.∴∠3=(∠1-∠ABD)+(∠2-∠BDC)=∠1+∠2-(∠ABD+∠BDC)=∠1+∠2-180°13.2 三角形全等的判定边边边1. 如图,在△ACE和△BDF中,AE=BF,CE=DF,利用“S.S.S.”证△ACE≌△BDF 时,需添加一个条件是( )A.AB=BC B.DC=BCC.AB=CD D.以上都不对2.下列条件中能作出唯一三角形的是( )A.AB=4 cm,BC=3 cm,AC=5 cmB.AB=2 cm,BC=6 cm,AC=4 cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°3.如图,B,C,D,E在一条直线上,且BC=DE,AC=FD,AE=FB,则△ACE≌________,理由是_____________∠ACE=________,理由是_____________________________.4.如图,已知AB=CD,AD=CB,求证:△ABD≌△CDB.5.如图,C是线段AB的中点,AD=BE,CD=CE,求证:∠A=∠B.6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有( )A.1组B.2组C.3组D.4组7.如图,在四边形ABCD中,AC与BD相交于点O,且OA=OB,OC=OD,AD=BC,则图中共有全等三角形( )A.4对B.3对C.2对D.1对8.如图,方格纸上有一个格点三角形和一条格点线段AB,在这个格点纸上找一点C,使得△ABC与这个格点三角形全等,这样的C点可以找到________个.9.已知:如图,△ABC中,AB=AC,AD⊥BC垂足为D.将△ADC绕点D逆时针旋转90°后,点A落在BD上点A1处,点C落在DA延长线上点C1处,A1C1与AB交于点E.求证:△A1BE≌△AC1E.10.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由做法得△MOC≌△NOC的依据是( )A.AAS B.SAS C.ASA D.SSS11.如图,在△ABC中,AB=AC,D为BC的中点,则下列结论中:①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC,其中正确的个数为( )A.1个B.2个C.3个D.4个12.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠C B.∠ABC=∠CDAC.∠ABD=∠CDB D.∠ABC=∠C13.如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.14.如图,AB=AC,AD=AE,CD=BE.求证:∠DAB=∠EAC.15.如图,已知:PA=PB,AC=BD,PC=PD,△PAD和△PBC全等吗?请说明理由.16.如图,已知AB=DC,DB=AC.(1)求证:∠ABD=∠DCA;(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?17.如图,AD=CB,E,F是AC上两动点,且有DE=BF.(1)若E,F运动如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若E,F运动如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E,F不重合,AD和CB平行吗?说明理由.答案:1. C2. A3. △FDB S.S.S. ∠FDB 全等三角形的对应角相等4. ∵AB =CD ,AD =CB ,BD =BD ,∴△ABD ≌△CDB(S.S.S.)5. 解:利用边边边证△ACD ≌△BCE ,∴∠A =∠B6. C7. B8. 49. ∵△ABC 中,AB =AC ,AD ⊥BC ,∴∠B =∠C ,BD =CD.∵△A 1DC 1是由△ADC 旋转而得,∴A 1D =AD ,C 1D =CD ,∠C 1=∠C ,∴∠B =∠C 1,BD =C 1D ,∴BD -A 1D =C 1D -AD ,即BA 1=C 1A.在△A 1BE 和△AC 1E 中,⎩⎨⎧∠BEA 1=∠C 1EA ∠B =∠C 1BA 1=C 1A ,∴△A 1BE ≌△AC 1E(A .A .S .)10. D11. D12. D13. 连结AC ,在△ABC 和△ADC 中,∵AB =AD ,CB =CD ,AC =AC ,∴△ABC ≌△ADC(S .S .S .).∴∠B =∠D14. 在△ADC 和△AEB 中,∵AC =AB ,CD =BE ,AD =AE ,∴△ADC ≌△AEB(S .S .S .),∴∠DAC =∠EAB ,∴∠DAB =∠EAC15. ∵AC =BD ,∴AD =BC ,又∵PA =PB ,PC =PD ,∴△PAD ≌△PBC(S .S .S .)16. (1)连结AD ,在△BAD 和△CDA 中,∵AB =CD ,DB =AC ,AD =AD ,∴△BAD ≌△CDA(S .S .S .).∴∠ABD =∠DCA(2)作辅助线的意图是构造全等的三角形即两个三角形的公共边17. (1)运用“S .S .S .”证明△ADE ≌△CBF(2)成立,证明方法同(1)(3)当AF =CE 时,AD 与CB 平行;当AF ≠CE 时,AD 与CB 不平行,理由略13.2.4 角边角一.选择题(共10小题)1.如图,在△ABC 和△DEF 中,AB=DE ,∠B=∠E ,补充下列哪一个条件后,能直接应用“SAS”判定△ABC ≌△DEF ( )A .BF=ECB .∠ACB=∠DFEC .AC=DFD .∠A=∠D2.如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC3.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对4.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC5.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF6.如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F7.如图,AB∥EF,AB=EF,添加下面哪个条件不能使△ABC≌△EFD()A.BD=FC B.∠A=∠E C.AC∥DE D.AC=ED8.面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对9.如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EF C.AB=ED D.不用补充条件10.两个三角形有以下元素对应相等,则不能确定全等的是()A.一边两角 B.两边和其夹角C.两边及一边所对的角D.三条边二.填空题(共4小题)11.如图,∵∴△≌△(SAS).12.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).13.如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是.14.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是.三.解答题(共6小题)15.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.16.如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.17.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.18.已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE.求证:△AEC≌△BDC.19.如图,在△ABC和△DEF中,点B,E,C,F在同一条直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.如图,直线AD与BC相交于点O,OA=OD,OB=OC;求证:△AOB≌△DOC.参考答案与试题解析一.选择题(共10小题)1.(2015春•相城区期末)如图,在△ABC和△DEF中,AB=DE,∠B=∠E,补充下列哪一个条件后,能直接应用“SAS”判定△ABC≌△DEF()A.BF=EC B.∠ACB=∠DFE C.AC=DF D.∠A=∠D【分析】应用(SAS)从∠B的两边是AB、BC,∠E的两边是DE、EF分析,找到需要相等的两边.【解答】解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而DE=BF+FC、EF=CE+CF,要使DE=EF,则BF=EC.故选A.【点评】本题考查了三角形全等的条件,判定三角形全等一定要结合图形上的位置关系,从而选择方法.2.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC ≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对【分析】如图,首先证明△ABC≌△DCB,进而得到∠ECB=∠EBC,EB=EC,BF=CF;同理可证△EFB≌EFC、△ABE≌△DCE,即可解决问题.【解答】解:如图,∵AB∥EF∥CD,∠ABC=90°,∴∠DCB=∠EFB=∠ABC=90°;在△ABC与△DCB中,,∴△ABC≌△DCB(SAS),∴∠ECB=∠EBC,∴EB=EC,BF=CF;同理可证△EFB≌EFC、△ABE≌△DCE;∴图中的全等三角形有3对,故选B.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用、解题的关键.4.(2015秋•廊坊期末)如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论.【解答】解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.【点评】本题考查了全等三角形的判定方法;三角形全等判定定理中,最易出错的是“边角边”定理,这里强调的是夹角,不是任意一对角.5.(2016春•泰州校级期末)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(2016•琼海校级模拟)如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F【分析】判定三角形全等的方法主要有SAS、ASA、AAS、SSS等,根据所添加的条件判段能否得出△EAC ≌△FDB即可.【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当CE=BF时,不能判定△EAC≌△FDB;(D)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选(C)【点评】本题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解题时注意:判定两个三角形全等时,必须有边相等的条件,若有两边一角对应相等时,角必须是两边的夹角.7.(2016春•揭西县期末)如图,AB∥EF,AB=EF,添加下面哪个条件不能使△ABC≌△EFD()A.BD=FC B.∠A=∠E C.AC∥DE D.AC=ED【分析】根据全等三角形的判定方法依次进行判断即可.【解答】解:∵AB∥EF,AB=EF,∴∠B=∠F,当BD=CF时,可得BC=DF,在△ABC和△EFD中,满足SAS,故A可以判定;当∠A=∠E时,在△ABC和△EFD中,满足ASA,故B可以判定;当AC∥DE时,可得∠ACB=∠EDF,在△ABC和△EFD中,满足AAS,故C可以判定;当AC=DE时,在△ABC和△EFD中,满足SSA,故D不可以判定;故选D.【点评】本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.8.(2016春•成安县期末)面积相等的两个三角形()A.必定全等 B.必定不全等C.不一定全等D.以上答案都不对【分析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.【点评】本题考查了全等三角形的判定.解答此题需要熟悉三角形的面积公式.9.(2016春•永登县期末)如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EF C.AB=ED D.不用补充条件【分析】根据已知及全等三角形的判定方法进行分析即可.【解答】解:∵AB∥DE∴∠D=∠B∵CD=BF∴DF=BC∴AB=ED∴△ABC≌△EDF故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS和ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.(2016春•枣庄校级月考)两个三角形有以下元素对应相等,则不能确定全等的是()A.一边两角 B.两边和其夹角C.两边及一边所对的角D.三条边【分析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.而SSA不能判定三角形全等.【解答】解:A、一边两角,可根据AAS判定两三角形全等;B、两边和其夹角,可根据SAS判定两三角形全等;C、两边及一边所对的角,SSA不能判定两三角形全等;D、三条边,可根据SSS判定两三角形全等.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.填空题(共4小题)11.(2016春•福州校级期末)如图,∵∴△ABD ≌△ACE (SAS).【分析】本题是很据已知条件找对应的全等三角形,关键是先确定出所给条件中,已知的两条边是哪两个三角形的.进而可判断出哪些三角形全等.【解答】解:∵AB、AD和AC、AE分别是△ADB和△ACE的两边,且AB=AC,AD=AE;又∵∠BAC=∠CAB,∴△ADB≌△ACE(SAS).故填ABD,ACE.【点评】本题主要考查全等三角形的判定方法;在书写三角形全等时要注意各对应顶点要对应,排列位置要一致.12.(2015秋•无锡期末)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD (只添一个条件即可).【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.(2015春•市中区期末)如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是AC=AE(或BC=DE,∠E=∠C,∠B=∠D).【分析】要使△ABC≌△ADE,已知有一对角与一对边相等,则可以根据三角形全等的判定方法添加合适的条件即可.【解答】解:∵∠BAC=∠DAE=90°,AB=AD,∴可添加AC=AE,利用SAS判定.故填AC=AE(或BC=DE,∠E=∠C,∠B=∠D).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14.(2015秋•都匀市期中)如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件AC=DF ,依据是SAS .【分析】要使△ABC≌△DEF,已知∠1=∠2,AC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF,SAS.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三.解答题(共6小题)15.(2016•历城区二模)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.(2015•重庆校级三模)如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.【分析】根据AB∥DC,可得∠C=∠A,然后由AE=CF,得AE+EF=CF+EF,最后利用SAS判定△ABF≌△CDE.【解答】解:∵AB∥DC,∴∠C=∠A,∵AE=CF,∴AE+EF=CF+EF,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS).【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(2015春•永春县期末)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.(2014•永春县质检)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE.求证:△AEC≌△BDC.【分析】根据∠ACD=∠BCE,可得出∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD.根据边角边公理可得出△AEC≌△BDC.【解答】证明:在△AEC和△BDC中,∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△AEC和△BDC中,,∴△AEC≌△BDC(SAS).【点评】本题考查了全等三角形的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.19.(2013秋•北京期末)如图,在△ABC和△DEF中,点B,E,C,F在同一条直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.【分析】首先根据AB∥DE可得∠B=∠DEF.再由BE=CF可得BC=EF,然后再利用SAS证明△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=FC+EC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(2014秋•长汀县期中)如图,直线AD与BC相交于点O,OA=OD,OB=OC;求证:△AOB≌△DOC.【分析】利用SAS进行全等的判定即可.【解答】解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.2 三角形全等的判定1. 如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是( )A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°2.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=ED B.AC=EFC.AC∥EF D.BF=DC3.根据下面的条件,能画出唯一的△ABC的是( )A.AB=3,BC=2,∠C=60°B.AB=3,BC=4,∠A=90°C.∠B=90°,AC=4,BC=5D.∠A=45°,∠B=45°,∠C=90°4.如图所示,∠A=∠DEC=90°,AB=CE,BC=DC,则Rt△CED≌________,理由是________,此时∠BCD=________.(A,C,E在同一条直线上)5.如图,∠BAC=∠CDB=90°,请添加一个条件使△ABC≌△DCB,并在添加的条件后面的括号内填上判断的依据:(1)________________( );(2)________________( );(3)_________________________( );(4)_________________________( ).6.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE =CF.求证:Rt△ABE≌Rt△CBF.7.已知AC=BD,AF=BE,CE⊥AB,FD⊥AB.求证:CE=DF.8.已知点B,E,C在一条直线上,AB⊥BC,DC⊥BC,AB=EC,且AE=DE.求证:AB +DC=BC.9.下列说法中正确的有( )①两直角边分别相等的两直角三角形全等;②两锐角分别相等的两直角三角形全等;③斜边和一条直角边分别相等的两直角三角形全等;④一锐角和斜边分别相等的两直角三角形全等.A.4个B.3个C.2个D.1个10.如图,矩形ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F,连结BD,DF,则图中全等的直角三角形共有( )A.3对B.4对C.5对D.6对11.如图AD,A′D′分别是锐角△ABC和△A′B′C′中BC,B′C′边上的高且AB=A′B′,AD =A′D′,若使△ABC≌△A′B′C′.请你补充条件(只填写一个你认为适当的条件)12.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD =CD.求证:BE⊥AC.13.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在BC上,求证:∠B=∠C;(2)如图②,若点O在△ABC的内部,求证:∠ABO=∠ACO.14.如图,AB与CD相交于点O,∠ACF=∠BDE=90°,F在AB上,且AC=BD,AE =BF,求证:CO=DO.15.如图,在△ABC中,AB=AC,∠A=90°,D是AC上的一点,CE⊥BD于点E,且CE=12BD,求证:BD平分∠ABC.答案:1. A2. C3. B4. Rt △BAC H.L. 90°5. (1) AC =DB(H .L .)(2) AB =DC(H.L.)(3) ∠ABC =∠DCB(A.A.S.)(4) ∠ACB =∠DBC(A.A.S.)依据:略6. ∵∠ABC =90°,∴∠CBF =∠ABE =90°,在Rt △ABE 和Rt △CBF 中,AE =CF ,AB =CB ,∴Rt △ABE ≌△Rt △CBF(H .L .)7. ∵AF =BE ,∴AF -EF =BE -EF ,即AE =BF ,∵EC ⊥AB ,FD ⊥AB ,∴∠AEC =∠BFD =90°,在Rt △ACE 和Rt △BDF 中,⎩⎨⎧AC =BD AE =BF,∴Rt △ACE ≌Rt △BDF(H .L .),∴CE =DF 8. ∵AB ⊥BC ,DC ⊥BC ,∴∠B =∠C =90°,在Rt △AEB 和Rt △EDC 中,⎩⎨⎧AE =DE AB =EC, ∴Rt △AEB ≌Rt △EDC(H .L .),∴DC =BE ,∵BC =BE +CE ,∴AB +DC =BC9. B10. B11. BC =B ′C ′或∠C =∠C ′或∠BAC =∠B ′A ′C ′12. ∵AD ⊥BC ,∴∠BDA =∠ADC =90°,又∵BF =AC ,FD =CD ,∴Rt △BDF ≌Rt △ADC(H .L .),∴∠C =∠BFD ,∵∠DBF +∠BFD =90°,∴∠C +∠DBF =90°,∵∠C +∠DBF +∠BEC =180°,∴∠BEC =90°,即BE ⊥AC13. (1)在Rt △OEC 和Rt △OFB 中,∵⎩⎨⎧OE =OF OB =OC,∴Rt △OEC ≌Rt △OFB(H .L .),∴∠B =∠C(全等三角形的对应角相等)(2)在Rt △OEC 和Rt △OFB 中,∵⎩⎨⎧OE =OF OB =OC,∴Rt △OEC ≌Rt △OFB(H .L .),∴∠ABO =∠ACO 14. 利用H .L .证Rt △ACF ≌Rt △BDE ,∴∠AFC =∠BED ,CF =DE ,再利用A .A .S .,证△COF ≌△DOE ,∴OC =OD15. 延长CE 与BA 的延长线相交于F ,证△ABD ≌△ACF ,∴BD =CF ,∵CE =12BD ,∴CE=12CF ,再证:△FBE ≌△CBE.∴BD 平分∠ABC13.3.2等腰三角形的判定1.下列能断定△ABC为等腰三角形的是( )A.∠A=30°,∠B=60° B.∠A=50°,∠B=80°C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为102.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )A.3 cm B.4 cm C.1.5 cm D.2 cm3.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )A.0个 B.1个 C.2个 D.3个4.如图,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC,BD相交于点E,则下列结论中正确的个数有( )①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB为等腰三角形.A.1个 B.2个 C.3个 D.4个5.如图,在△ABC中,AD⊥BC于D.请你再添加一个条件,就可以确定△ABC是等腰三角形.你添加的条件是_____________.6.如图,已知在△ABC中,∠C=90°,AD是角平分线,过点B作BA的垂线与AD的延长线相交于点E,求证:△BDE是等腰三角形.7.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有( )A.1个 B.2个 C.3个 D.4个8.如图,D,E,F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是( )A.等边三角形 B.腰和底边不相等的等腰三角形 C.直角三角形 D.不等边三角形9.如图,AB=AC,∠BAC=120°,AD⊥AB,AE⊥AC.(1)在Rt△ACE中,∠C=______,CE=______AE;(2)求证:△ADE是等边三角形.10.若三角形中一角的平分线是它对边的中线,则这个三角形一定是( )A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形11.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有( )A.5个 B.6个 C.7个 D.8个12.如图,D为锐角△ABC边AC延长线上一点,DF⊥AB于F交BC于E,要使△CED为等腰三角形,则△ABC的边必须满足的条件是______________.13.如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,求证:△ADF 是等腰三角形.14.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.15.如图所示,△ABC为等边三角形,∠ABD=∠ACE,BD=CE,求证:△ADE是等边三角形.16.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.17.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE;(2)若BE∥AC,试判断△ABC的形状,并说明理由.答案:1---4 BADD5. BD=CD6. ∵在Rt △ACD 中,∠ADC +∠DAC =90°,又∵∠BDE =∠ADC ,∴∠BDE +∠DAC =90°,∵Rt △ABE 中,∠E +∠BAE =90°,又∵AD 是∠BAC 的平分线,即∠BAE =∠DAC ,∴∠E =∠BDE ,∴BE =BD ,即△BDE 是等腰三角形7. D8. A9. (1) 30° 2(2) 由∠AED =∠ADE =∠EAD =60°可证 10. A 11. D12. AC =BC13. ∵AB =AC ,∴∠B =∠C ,又DE ⊥BC ,∴∠B +∠BDE =90°,∠C +∠F =90°,又∠BDE =∠ADF ,∴∠ADF =∠F ,∴AD =AF 14. (1)∵AC ⊥BC ,BD ⊥AD ,∴△ABC 与△BAD 是直角三角形,在△ABC 和△BAD 中,∵AC =BD ,AB =BA ,∠ACB =∠BDA =90°,∴△ABC ≌△BAD(H .L .),∴BC =AD (2)∵△ABC ≌△BAD ,∴∠CAB =∠DBA ,∴OA =OB ,∴△OAB 是等腰三角形 15. ∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°.又∠ABD =∠ACE ,BD =CE ,∴△ABD ≌△ACE(S .A .S .),∴AD =AE ,∠DAE =∠BAD =60°, ∴△ADE 是等边三角形16. △AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,∵∠B =∠B(公共角),∠BAD =∠BCE ,BD =BE ,∴△BAD ≌△BCE(AAS ),∴BA =BC ,∠BAD =∠BCE ,∴∠BAC =∠BCA ,∴∠BAC -∠BAD =∠BCA -∠BCE ,即∠FAC =∠FCA ,∴AF =CF ,∴△AFC 是等腰三角形17. (1) △AFC 是等腰三角形.理由如下:在△BAD 与△BCE 中,∵∠B =∠B(公共角),∠BAD =∠BCE ,BD =BE ,∴△BAD ≌△BCE(AAS ),∴BA =BC ,∠BAD =∠BCE ,∴∠BAC =∠BCA ,∴∠BAC -∠BAD =∠BCA -∠BCE ,即∠FAC =∠FCA ,∴AF =CF ,∴△AFC 是等腰三角形(2)△ABC 是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC ,点D 是BC 的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC 是等边三角形13.3等腰三角形专题一 与等腰三角形有关的探究题1. 设a 、b 、c 是三角形的三边长,且ca bc ab c b a ++=++222,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是等腰直角三角形.其中真命题的个数是( )A.4个B.3个C.2个D.1个2. 如图,已知:∠MON =30°,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3……在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=1,则△A 2013B 2013A 2014 的边长为( ) A.2013 B. 2014 C.20122D. 201323. 如图,在△AB1A中, ∠B=20°,AB=1A B,在1A B上取一点C,延长1AA到2A,使得12A A=1A C; 在2A C上取一点D,延长12A A到3A,使得23A A=2A D;……,按此做法进行下去,求∠nA的度数.4. 如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.5. 如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.。

八年级数学华师大版上册13.1命题与定理(含答案)

八年级数学华师大版上册13.1命题与定理(含答案)
第13章全等三角形
1已知直线 的平行线;
③规定了原点、正方向和单位长度的直线叫作数轴;
④两直线平行,同位角相等;
⑤单项式和多项式统称为整式.
A.1个B.2个C.3个D.4个
(1)两点确定一条直线;
(2)不许大声喧哗!
(3)连结线段MN;
(4)两个锐角的和一定是直角;
(5) ;
(6)不相交的两条直线叫作平行线.
A.2个B.3个C.4个D.5个
①相等的角是对顶角;
②内错角相等,两直线平行;
③如果 是自然数,那么 是有理数;
④如果 ,那么 ;
⑤如果 ,那么 、 互为相反数.
A.1个B.2个C.3个D.4个
4.若规定“⊙”是一种运算符号,且 ,试计算: 的值.
状元笔记:
[知识要点]
1.定义:对一个概念的含义加以描述说明或作出明确规定的语句叫作这个概念的定义.
参考答案
1.B【解析】③和⑤是定义.
3.②⑤
4.解:∵ ,

.

华师大版初中数学八年级上册《13.1 命题、定理与证明》同步练习卷

华师大版初中数学八年级上册《13.1 命题、定理与证明》同步练习卷

华师大新版八年级上学期《13.1 命题、定理与证明》2019年同步练习卷一.选择题(共40小题)1.下列命题中,真命题是()A.若2x=﹣1,则x=﹣2B.任何一个角都比它的补角小C.等角的余角相等D.一个锐角与一个钝角的和等于一个平角2.下列命题中,真命题有()①邻补角的角平分线互相垂直;②两条直线被第三条直线所截,内错角相等;③两边分别平行的两角相等;④如果x2>0,那么x>0;⑤经过直线外一点,有且只有一条直线与这条直线平行.A.2个B.3个C.4个D.5个3.下列命题中,真命题的是()A.同旁内角互补B.相等的角是对顶角C.同位角相等,两直线平行D.直角三角形两个锐角互补4.有以下四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A.4B.3C.2D.15.下列命题中是真命题的为()A.弦是直径B.直径相等的两个圆是等圆C.平面内的任意一点不在圆上就在圆内D.一个圆有且只有一条直径6.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一组邻边相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.下列命题中真命题有()①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.A.1个B.2个C.3个D.4个8.下列命题:①等弧所对的圆周角相等;②平分弦的直径垂直于弦;③等边三角形的外心也是它的内心;④正五边形既是轴对称图形,也是中心对称图形.其中正确的命题是()A.①③B.②④C.①②③D.①②③④9.下列命题中,是真命题的是()A.不带根号的数都是有理数B.所有的质数都是奇数C.立方根等于本身的数只有1D.负数都小于零10.下列命题是假命题的是()A.同角(或等角)的余角相等B.三角形的任意两边之和大于第三边C.三角形的内角和为180°D.两直线平行,同旁内角相等11.下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根12.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②Rt△ABC中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3);④两条直线被第三条直线所截,内错角相等;A.1个B.2个C.3个D.4个13.下列语句是命题的为()A.作直线AB的垂线B.同角的余角相等吗?C.延长线段AO到C,使OC=OAD.两直线相交,只有一个交点14.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形15.在△ABC与△DEF中,下列四个命题是真命题的个数共有()①如果∠A=∠D,=,那么△ABC与△DEF相似;②如果∠A=∠D,=,那么△ABC与△DEF相似;③如果∠A=∠D=90°,=,那么△ABC与△DEF相似;④如果∠A=∠D=90°,=,那么△ABC与△DEF相似;A.1个B.2个C.3个D.4个16.下列命题中,正确的是()A.两个直角三角形一定相似B.两个矩形一定相似C.两个等边三角形一定相似D.两个菱形一定相似17.下列命题的逆命题是真命题的是()A.如果两个角是直角,那么它们相等B.全等三角形的对应角相等C.两直线平行,内错角相等D.对顶角相等18.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③19.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于97°的两个等腰三角形相似20.下列选项中a的值,可以作为命题“a2>4,则a>2”是假命题的反例是()A.a=3B.a=2C.a=﹣3D.a=﹣221.下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形中至少有一个角不大于60°D.三角形的一个外角大于任何一个内角22.在下列四个命题中,是真命题的是()A.两条直线被第三条直线所截,内错角相等B.如果x2=y2,那么x=yC.三角形的一个外角大于这个三角形的任一内角D.直角三角形的两锐角互余23.下列命题中,是真命题的是()A.对角线相等的平行四边形是正方形B.相似三角形的周长之比等于相似比的平方C.若方程kx2﹣2x﹣1=0有两个不相等的实数根,则k>﹣1D.若一个斜坡的坡度为,则该斜坡的坡角为30°24.在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有1和0;③在同一平面内,如果a⊥b,b⊥c,则a⊥c;④直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是5cm,则点A到直线c的距离是5cm;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是()A.1个B.2个C.3个D.4个25.下列定理没有逆定理的是()A.两直线平行,内错角相等B.全等三角形的对应角相等C.直角三角形两锐角互余D.等腰三角形两底角相等26.甲乙丙丁四人的车分别为白色、银色、蓝色和红色.在问到他们各自车的颜色时,甲说:“乙的车不是白色.”乙说:“丙的车是红色的.”丙说:“丁的车不是蓝色的.”丁说:“甲、乙、丙三人中有一个人的车是红色的,而且只有这个人说的是实话.”如果丁说的是实话,那么以下说法正确的是()A.甲的车是白色的,乙的车是银色的B.乙的车是蓝色的,丙的车是红色的C.丙的车是白色的,丁的车是蓝色的D.丁的车是银色的,甲的车是红色的27.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多28.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.029.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁30.(思维拓展)如图所示,①代表0,②代表9,③代表6,则④代表()A.1B.3C.5D.731.一排有10个座位,其中某些座位已有人,若再来1人,他无论坐在何处,都与1人相邻,则原来最少就座的人有()A.3个B.4个C.5个D.6个32.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟33.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.5号学生进入30秒跳绳决赛B.2号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛34.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3B.4C.5D.635.手工课上,老师将同学们分成A,B两个小组制作两个汽车模型,每个模型先由A组同学完成打磨工作,再由B组同学进行组装完成制作,两个模型每道工序所需时间如下:则这两个模型都制作完成所需的最短时间为()A.20分钟B.22分钟C.26分钟D.31分钟36.某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是()A.甲、丙B.甲、丁C.乙、丁D.丙、丁37.甲,乙两人在做“报40”的游戏,其规则是:“两人轮流连续数数,每次最多可以连续数三个数,谁先报到40,谁就获胜”.那么采取适当策略,其结果是()A.后说数者胜B.先说数者胜C.两者都能胜D.无法判断38.100人共有2000元人民币,其中任意10人的钱数的和不超过380元.那么一个人最多有()元.A.216B.218C.238D.23639.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.3040.A,B,C,D四个队赛球,比赛之前,甲和乙两人猜测比赛的成绩次序:甲:从第一名开始,名次顺序是A,D,C,B;乙:从第一名开始,名次顺序是A,C,B,D,比赛结果,两人都猜对了一个队的名次,已知第一名是B队,请写出四个队的名次顺序是()A.B,A,C,D B.B,C,A,D C.D,B,A,C D.B,A,D,C 二.填空题(共7小题)41.重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.42.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2min;②洗菜3min;③准备面条及佐料2min;④用锅把水烧开7min;⑤用烧开的水煮面条和菜要3min.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少需要min.43.张老师把红、白、蓝各一个气球分别送给三个小朋友.根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?(1)小春说:“我分到的不是蓝气球.”(2)小宇说:“我分到的不是白气球.”(3)小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了.”则小春、小宇、小华分别分到颜色的气球.44.为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是.45.某地发生车祸,A、B、C三名司机中有一位司机肇事,警察找了A、B、C三个司机询问,A说:“是B肇事.”,B说:“不是我肇事.”,C说:“不是我肇事.”这三个司机中只有一人说的话正确,请问,聪明的同学,你可以推断出是司机肇事.46.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.则第二局的输者是 .47.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有 天. 三.解答题(共3小题)48.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,请你根据表中数据猜一下2号,5号,8号,9号学生哪一个进入30秒跳绳决赛.说明你的理由.49.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人之得票数内,全村设有四个投开票所,目前第一、第二、第三投开票所已开完所有选票,剩下第四投开票所尚未开票,结果如表所示: (单位:票) 请回答下列问题:(1)请分别写出目前甲、乙、丙三名候选人的得票数;(2)承(1),请分别判断甲、乙两名候选人是否还有机会当选村长,并详细解释或完整写出你的解题过程.50.四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.华师大新版八年级上学期《13.1 命题、定理与证明》2019年同步练习卷参考答案与试题解析一.选择题(共40小题)1.下列命题中,真命题是()A.若2x=﹣1,则x=﹣2B.任何一个角都比它的补角小C.等角的余角相等D.一个锐角与一个钝角的和等于一个平角【分析】根据一元一次方程的解法、余角和补角的概念判断即可.【解答】解:若2x=﹣1,则x=﹣,A是假命题;90°=180°﹣90°,则90°的角等于它的补角小,B是假命题;等角的余角相等,C是真命题;30°+120°=150°,则一个锐角与一个钝角的和不一定等于一个平角,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.下列命题中,真命题有()①邻补角的角平分线互相垂直;②两条直线被第三条直线所截,内错角相等;③两边分别平行的两角相等;④如果x2>0,那么x>0;⑤经过直线外一点,有且只有一条直线与这条直线平行.A.2个B.3个C.4个D.5个【分析】根据平行线的性质、对顶角的概念和性质、平方的概念判断即可.【解答】解:①邻补角的角平分线互相垂直,正确,是真命题;②两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;③两边分别平行的两角相等或互补,故错误,是假命题;④如果x2>0,那么x>0,错误,是假命题;⑤经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,正确的有2个,故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.下列命题中,真命题的是()A.同旁内角互补B.相等的角是对顶角C.同位角相等,两直线平行D.直角三角形两个锐角互补【分析】利用平行线的性质、对顶角的定义及互补的定义分别判断后即可确定正确的选项.【解答】解:A、两直线平行,同旁内角互补,故错误,是假命题;B、对顶角相等,但相等的角不一定是对顶角,故错误,是假命题;C、同位角相等,两直线平行,正确,是真命题;D、直角三角形两锐角互余,故错误,是假命题,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的定义及互补的定义,难度不大.4.有以下四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A.4B.3C.2D.1【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【解答】解:(1)两条对角线互相平分的四边形是平行四边形,正确;(2)两条对角线相等的平行四边形是矩形,故错误;(3)两条对角线互相垂直的平行四边形是菱形,正确;(4)有一组邻边相等且有一个角是直角的平行四边形是正方形,故错误.故选:C.【点评】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.5.下列命题中是真命题的为()A.弦是直径B.直径相等的两个圆是等圆C.平面内的任意一点不在圆上就在圆内D.一个圆有且只有一条直径【分析】根据圆的基本概念判断即可.【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一组邻边相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形【分析】根据矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线相等的平行四边形是矩形,A正确,不符合题意;有一组邻边相等的平行四边形是菱形,B错误,符合题意;四个角相等的四边形是矩形,C正确,不符合题意;对角线互相垂直平分且相等的四边形是正方形,D正确,不符合题意;故选:B.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.下列命题中真命题有()①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.A.1个B.2个C.3个D.4个【分析】根据全等三角形的概念和判定定理判断即可.【解答】解:两个周长相等的三角形不一定是全等三角形,①是假命题;两个周长相等的直角三角形不一定是全等三角形,②是假命题;两个周长相等的等腰三角形不一定是全等三角形,③是假命题;两个周长相等的等边三角形是全等三角形,④是真命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.下列命题:①等弧所对的圆周角相等;②平分弦的直径垂直于弦;③等边三角形的外心也是它的内心;④正五边形既是轴对称图形,也是中心对称图形.其中正确的命题是()A.①③B.②④C.①②③D.①②③④【分析】根据圆周角定理,垂径定理,正多边形和圆判断即可.【解答】解:等弧所对的圆周角相等,①是真命题;平分弦(不是直径)的直径垂直于弦,②是假命题;等边三角形的外心也是它的内心,③是真命题;正五边形既是轴对称图形,不是中心对称图形,④是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.下列命题中,是真命题的是()A.不带根号的数都是有理数B.所有的质数都是奇数C.立方根等于本身的数只有1D.负数都小于零【分析】根据有理数,质数,立方根的意义,负数的性质一一判断即可;【解答】解:A、不带根号的数都是有理数.错误,比如π不带根号的数是无理数;B、所有的质数都是奇数,错误.2是质数都是偶数;C、立方根等于本身的数只有1,错误,立方根等于本身的数有±1,0;D、负数都小于零,正确.故选:D.【点评】本题考查命题与定理,解题的关键是熟练掌握基本知识,属于中考常考题型.10.下列命题是假命题的是()A.同角(或等角)的余角相等B.三角形的任意两边之和大于第三边C.三角形的内角和为180°D.两直线平行,同旁内角相等【分析】利用余角的定义、三角形的三边关系、三角形的内角和及平行线的性质分别判断后即可确定正确的选项.【解答】解:A、同角(或等角)的余角相等,正确,是真命题;B、三角形的任意两边之和大于第三边,正确,是真命题;C、三角形的内角和为180°,正确,是真命题;D、两直线平行,同旁内角互补,故错误,是假命题,故选:D.【点评】考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.11.下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根【分析】直接利用方差的意义以及众数的定义和中位数的意义分别分析得出答案.【解答】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.【点评】此题主要考查了中位数的意义以及众数和方差,正确把握相关定义是解题关键.12.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②Rt△ABC中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3);④两条直线被第三条直线所截,内错角相等;A.1个B.2个C.3个D.4个【分析】利用实数的性质、勾股定理、关于对称轴的点的坐标及平行线的性质分别判断后即可确定正确的选项.【解答】解:①数轴上的点和实数是一一对应的,故错误,是假命题;②Rt△ABC中,已知两边长分别是3和4,则第三条边长为5或,故错误,是假命题;③在平面直角坐标系中点(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),正确,是真命题;④两条平行直线被第三条直线所截,内错角相等,故错误,是假命题,真命题只有一个,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解实数的性质、勾股定理、关于对称轴的点的坐标及平行线的性质,难度不大.13.下列语句是命题的为()A.作直线AB的垂线B.同角的余角相等吗?C.延长线段AO到C,使OC=OAD.两直线相交,只有一个交点【分析】根据命题的定义对各选项进行判断.【解答】解:作直线AB的垂线为描述性语言,它不是命题;同角的余角相等吗?它为疑问句,不是命题;延长线段AO到C,使OC=OA,它为描述性语言,它不是命题;两直线相交,只有一个交点,它为判断性语言,它是命题.。

华东师大版八年级数学上册《13.1.1命题》同步测试题带答案

华东师大版八年级数学上册《13.1.1命题》同步测试题带答案

华东师大版八年级数学上册《13.1.1命题》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.下列不是命题的是()A.作直线a的平行线bB.若ab>0,则a>0,b>0C.两点之间,线段最短D.两直线相交成90°,则两直线平行2.命题“度数之和为90°的两个角互为余角”的题设是()A.90°B.两个角C.度数之和为90°D.度数之和为90°的两个角3.“两直线相交只有一个交点”这个命题的结论是()A.两条直线B.相交C.只有一个交点D.两条直线相交4.“两负数之积为正数”的条件是,结论是.【能力巩固】5.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中是真命题的是.(填写真命题的序号)6.命题“绝对值相等的两个数互为相反数”.(1)将这命题改写成“如果……,那么……”的形式.(2)写出这命题的题设和结论.(3)判断该命题的真假.【素养拓展】7.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题.(2)请说明你写的命题是真命题.参考答案【基础达标】1.A2.D3.C4.两负数相乘积是正数【能力巩固】5.①②④6.解:(1)命题“绝对值相等的两个数互为相反数”改写成“如果……那么……”的形式为如果两个数的绝对值相等,那么这两个数互为相反数.(2)题设是两个数的绝对值相等,结论是这两个数互为相反数.(3)该命题是假命题.【素养拓展】7.解:(1)如果AB∥CD且∠A=30°,那么∠CDA=30°.(2)因为AB∥CD,所以∠CDA=∠A=30°.。

华师大版八年级上册 13.1 命题、定理与证明 同步练习(无答案)

华师大版八年级上册 13.1 命题、定理与证明 同步练习(无答案)

命题证明与证明1.下列命题中,是真命题的是()A.如果a⊥b,b⊥c,则a⊥cB.经过直线外一点,有而且只有一条直线与这条直线平行C.在坐标平面内P(-2,3)到x轴上的距离等于-2 D.无限小数都是无理数2.下列命题中,是真命题的是()A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行3.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x²>0,那么²>0.A.1个B.2个C.3个D.4个4.下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.45.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁6.下列句子中不是命题的是()A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a²=b²D.同角的补角相等7.下面给出五个命题:①若x=-1,则x³=-1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x²=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有()A.4个B.3个C.2个D.1个8.下列命题是假命题的为()A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B.锐角三角形的所有外角都是钝角C.内错角相等D.平行于同一直线的两条直线平行9.下列命题中,属于假命题的是()A.等角的余角相等B.在同一平面内垂直于同一条直线的两直线平行C.相等的角是对顶角D.有一个角是60°的等腰三角形是等边三角形10.请写出“三个角都相等的三角形是等边三角形”的逆命题:.11.命题“全等三角形的对应角相等“的逆命题为.12.请将命题“等腰三角形的底角相等”改写为“如果…,那么…”的形式.13.如图所示,斜边长相等的一副直角三角板叠放在一起,∠BAC=∠BDC=90°,∠ABC=45°,∠DBC=30°,两直角边BD、AC交于点F,另两条直角边的延长线交于点E,点O为BC 中点,连接AD、OA和OD.以下四个命题中:①四边形ABCD内接于以BC为直径的⊙O;②∠BFC=105°;③∠AOD<30°;④以点A为旋转中心,将△AEC顺时针旋转90°,则与△AFB重合.正确命题的题号为.14.在下列命题中,是真命题的有(只填序号)①如果∠A+∠B=180°,那么∠A与∠B互为补角;②如果∠C+∠D=90°,那么∠C与∠D互余;③互为补角的两个角的平分线互为垂直;④有公共顶点且相等的角是对顶角;⑤如果两个角相等,那么它们的余角也相等.15.学校广播室要从八年级(2)班选一名广播员,小明、小华和小英普通话都不相上下,并且都争着要去.老师决定用抽签的办法确定,结果三个人都争着先抽,以为第一个抽签的人抽中的可能性大一些;这时,小华从兜里拿出两枚一元的硬币,并说将两枚硬币同时向上抛出,如果两个都是正面朝上,小明去;如果两个都是反面朝上,小英去;如果两个一正一反,小华自己去.那么,你认为(填“老师”或“小华”)的办法公平合理,理由是.16.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.17.如图,有如下四个论断:①AC∥DE,②DC∥EF,③CD平分∠BCA,④EF平分∠BED.(1)若选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个数学命题,其中正确的有哪些?不需说明理由.(2)请你在上述正确的数学命题中选择一个进行说明理由.18.【原题再现】如图,在△ABC中,D为BC边上一点,DB=DC,DE⊥AB于点E,DF⊥AC于点F,且DE=DF,求证:AB=AC.【探究思考】同学们完成这道题目后,在老师的启发下对问题进行了反思探究,提出了如下思考:①把题中的条件“DB=DC”和结论“AB=AC”互换得到的命题是否成立?②题中的“D为BC上一点”改为“D为△ABC内部一点”,是否仍能得到AB=AC?【问题解决】(1)请你对上述两个问题作出判断,直接在横线上写“是”或“否”;(2)选择其中一个问题画出图形,并说明理由.。

新华东师大版八年级数学上册第13章全等三角形13.1命题定理与证明1命题作业

新华东师大版八年级数学上册第13章全等三角形13.1命题定理与证明1命题作业

[13.1 1.命题]一、选择题1.下列属于命题的是( )A.任意一个三角形的内角和一定是180°吗B.请你把书递过来C.负数与正数的和一定是负数D.C是线段AB的中点吗2.命题“同角的余角相等”中的“同角的余角”()A.是条件B.是结论C.既是条件,也是结论D.既不是条件,也不是结论3.下列命题为真命题的是( )A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n-2)·180°D.16的平方根是44.2017·无锡对于命题“若a2>b2,则a>b.”下面四组关于a,b的值中,能说明这个命题是假命题的是( )A.a=3,b=2 B.a=-3,b=2C.a=3,b=-1 D.a=-1,b=3二、填空题5.命题“六边形的外角和等于360°”的条件是____________________,结论是____________________,它是________(填“真”或“假”)命题.6.2017·泉州师院附属鹏峰中学期中命题“等角的余角相等”的条件是“两个角相等”,则结论是____________________.7.下列命题中,假命题的序号是________.①实数与数轴上的点一一对应;②等腰三角形有两条边相等;③对任意实数x,存在实数y,使x+y>0;④合数不可能是奇数.链接听课例3归纳总结三、解答题8.下列语句是命题吗?其中的命题是真命题还是假命题?并举出反例说明其中的假命题.(1)如果m+n>0,那么m>0,n>0.(2)如果a=5,那么a2=25.(3)任何一个角的补角都不小于这个角.(4)起立!链接听课例1归纳总结9.把下列命题改写成“如果……,那么……”的形式.(1)平行于同一条直线的两条直线平行;(2)任意两个直角都相等.链接听课例2归纳总结10.对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断作为条件,一个论断作为结论,组成一个你认为正确的命题.数学应用A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.(注:单循环比赛就是小组内的每一个队都要和其他队赛一场)。

华东师大版八年级数学上册《13.1.2定理与证明》同步测试题带答案

华东师大版八年级数学上册《13.1.2定理与证明》同步测试题带答案

华东师大版八年级数学上册《13.1.2定理与证明》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.过直线外一点有且只有一条直线与已知直线平行是()A.公理B.定理C.定义D.假命题2.下列说法错误的是()A.所有的定义都是命题B.所有的定理都是命题C.所有的公理都是命题D.所有的命题都是定理3.下面的命题中:(1)旋转不改变图形的形状和大小;(2)轴对称不改变图形的形状和大小;(3)连结两点的所有线中,线段最短;(4)三角形的内角和等于180°.属于公理的有()A.1个B.2个C.3个D.4个4.推理:如图,∵∠AOC=∠BOD,∴∠AOC+∠AOB=∠BOD+∠AOB,这个推理的依据是()A.等量加等量和相等B.等量减等量差相等C.等量代换D.整体大于部分【能力巩固】5.如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等,两直线平行B.同旁内角互补,两直线平行C.内错角相等,两直线平行D.平行于同一条直线的两直线平行6.植树时只要定出两个树坑的位置,就能确定同一行树坑所在的直线,这是什么道理?7.如图,有时需要把弯曲的河道改直,根据什么可以说明这样做能缩短航程?【素养拓展】8.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C应分别是30°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.参考答案【基础达标】1.A2.D3.A4.A【能力巩固】5.C6.解:经过两点,有且只有一条直线.7.解:两点之间,线段最短.【素养拓展】8.解:延长BD交AC于E(图略),假设合格,则有∠BDC=∠C+∠CED,∠CED=∠A+∠B.∵∠A=90°,∠B=30°,∠C=21°∴∠BDC=90°+30°+21°=141°≠148°故零件不合格.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D.多项式 t2﹣16+3t 因式分解为(t+4)(t﹣4)+3t 18.下列说法正确的是( )
A.面积相等的两个三角形全等 B.矩形的四条边一定相等
C.一个图形和它旋转后所得图形的对应线段相等 D.随机投掷一枚质地均匀的硬币,落地后一定是正面朝上 19.命题“关于 x 的一元二次方程 x2+bx+1=0,必有实数解.”是假命题.则在下列选项中, 可以作为反例的是( )
C.同旁内角互补
D.矩形的对角线相等
6.下列命题中,为真命题的是( )
第1页(共7页)
A.六边形的内角和为 360 度
B.多边形的外角和与边数有关
C.矩形的对角线互相垂直
D.三角形两边的和大于第三边
7.下列命题:
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
(1)若 A(1,2),B(2,﹣1),则 A⊕B=(3,1),A⊗B=0;
(2)若 A⊕B=B⊕C,则 A=C; (3)若 A⊗B=B⊗C,则 A=C; (4)对任意点 A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数 为( )
A.1 个
B.2 个
C.3 个
25.下列命题中,真命题的个数是( )
⑤抛物线 y=﹣2x2+4x+3 的顶点坐标是(1,1).
其中是真命题的有
(只填序号)
28.以下四个命题:
①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;
②边数相等的两个正多边形一定相似;
③等腰三角形 ABC 中,D 是底边 BC 上一点,E 是一腰 AC 上的一点,若∠BAD=60°
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布 日期:2019/3/23 11:30:13; 用户:qgjyus er10 468;邮箱:q gjyus er10468.219 57750;学号 :21985476
第7页(共7页)
B.对角线互相垂直的平行四边形是矩形
C.四条边相等的四边形是菱形
第2页(共7页)
D.正方形是轴对称图形,但不是中心对称图形
12.下列给出 5 个命题:
①对角线互相垂直且相等的四边形是正方形
②六边形的内角和等于 720°
③相等的圆心角所对的弧相等
④顺次连接菱形各边中点所得的四边形是矩形
⑤三角形的内心到三角形三个顶点的距离相等.
其中正确命题的个数是( )
A.2 个
B.3 个
C.4 个
D.5 个
13.下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形
B.平行四边形的对角线互相平分
C.矩形的对角线相等
D.对角线相等的四边形是矩形
14.下列命题中的真命题是( )
A.两边和一角分别相等的两个三角形全等
B.相似三角形的面积比等于相似比
D.4 个
①若﹣1<x<﹣ ,则﹣2

②若﹣1≤x≤2,则 1≤x2≤4
③凸多边形的外角和为 360°;
④三角形中,若∠A+∠B=90°,则 sinA=cosB.
A.4
B.3
C.2
26.下列命题是真命题的是( )
A.任何数的 0 次幂都等于 1
B.顺次连接菱形四边中点的线段组成的四边形是正方形
C.图形的旋转和平移会改变图形的形状和大小
2.下列命题是真命题的是( )
A.对角线互相平分的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直的四边形是正方形
3.下列命题中,真命题的个数有( )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
华师大新版八年级(上)中考题同步试卷:13.1 命题、定理与
证明(01)
一、选择题(共 26 小题)
1.下列命题中,假命题是( )
A.平行四边形是中心对称图形
B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等
C.对于简单的随机样本,可以用样本的方差去估计总体的方差
D.若 x2=y2,则 x=y
C.正方形不是中心对称图形
D.圆内接四边形的对角互补
15.下列命题正确的是( )
A.对角线互相垂直的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
16.下列四个命题中,真命题是( )
A.“任意四边形内角和为 360°”是不可能事件
且 AD=AE,则∠EDC=30°;
④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.
其中正确命题的序号为

29入“真”或“假”)
30.命题“对角线相等的四边形是矩形”是
命题(填“真”或“假”).
第6页(共7页)
华师大新版八年级(上)中考题同步试卷:13.1 命题、 定理与证明(01)
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
8.下列说法不正确的是( )
A.圆锥的俯视图是圆
B.对角线互相垂直平分的四边形是菱形
C.任意一个等腰三角形是钝角三角形
D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大
9.下列命题中是真命题的是( )
参考答案
一、选择题(共 26 小题) 1.D; 2.A; 3.B; 4.D; 5.C; 6.D; 7.C; 8.C; 9.C; 10.B; 11.C; 12.A; 13.D; 14.D; 15.D; 16.D; 17.C; 18.C; 19.C; 20.D; 21.D; 22.A; 23.D; 24.C; 25.B; 26.D; 二、填空题(共 4 小题) 27.③④; 28.②③④; 29.假; 30.假;
D.角平分线上的点到角两边的距离相等
二、填空题(共 4 小题)
27.下列命题:
①对角线互相垂直的四边形是菱形;
②点 G 是△ABC 的重心,若中线 AD=6,则 AG=3;
③若直线 y=kx+b 经过第一、二、四象限,则 k<0,b>0;
第5页(共7页)
D.1
④定义新运算:a*b=2a﹣b2,若(2x)*(x﹣3)=0,则 x=1 或 9;
C.三角形的中位线把三角形分成面积相等的两部分 D.对顶角相等 22.已知下列命题: ①在 Rt△ABC 中,∠C=90°,若∠A>∠B,则 sinA>sinB;
②四条线段 a,b,c,d 中,若 = ,则 ad=bc;
③若 a>b,则 a(m2+1)>b(m2+1); ④若|﹣x|=﹣x,则 x≥0. 其中原命题与逆命题均为真命题的是( )
A.3 个
B.2 个
C.1 个
D.0 个
4.下列命题正确的是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相互垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互垂直平分且相等的四边形是正方形
5.下列命题中错误的是( )
A.平行四边形的对角线互相平分
B.菱形的对角线互相垂直
A.b=﹣3
B.b=﹣2
C.b=﹣1
20.下列命题是假命题的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.b=2
D.对角线互相垂直的四边形是正方形 21.下列命题中,属于真命题的是( )
A.各边相等的多边形是正多边形 B.矩形的对角线互相垂直
第4页(共7页)
A.①②③
B.①②④
C.①③④
D.②③④
23.下列命题中,属于真命题的是( )
A.三点确定一个圆
B.圆内接四边形对角互余
C.若 a2=b2,则 a=b
D.若 = ,则 a=b
24.在平面直角坐标系中,任意两点 A(x1,y1),B(x2,y2),规定运算: ①A⊕B=(x1+x2,y1+y2);②A⊗B=x1x2+y1y2;③当 x1=x2 且 y1=y2 时,A=B,有下 列四个命题:
B.“湘潭市明天会下雨”是必然事件
C.“预计本题的正确率是 95%”表示 100 位考生中一定有 95 人做对
D.抛掷一枚质地均匀的硬币,正面朝上的概率是
第3页(共7页)
17.下列命题正确的是( ) A.矩形的对角线互相垂直 B.两边和一角对应相等的两个三角形全等
C.分式方程
+1=
可化为一元一次方程 x﹣2+(2x﹣1)=﹣1.5
A.确定性事件发生的概率为 1
B.平分弦的直径垂直于弦
C.正多边形都是轴对称图形
D.两边及其一边的对角对应相等的两个三角形全等
10.下列命题中,是假命题的是( )
A.对顶角相等
B.同旁内角互补
C.两点确定一条直线
D.角平分线上的点到这个角的两边的距离相等
11.下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
相关文档
最新文档