电流互感器二次负载的计算及选择

合集下载

电流互感器的参数选择计算方法

电流互感器的参数选择计算方法

附件3:电流互感器的核算方法参数选择计算本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。

项目名称代号参数备注额定电流比Kn600/5额定二次电流Isn5A额定二次负载视在功率Sbn30VA(变比:600/5)50VA(变比:1200/5)不同二次绕组抽头对应的视在功率不同。

额定二次负载电阻Rbn1.2Ω二次负载电阻Rb0.38Ω二次绕组电阻Rct0.45Ω准确级10准确限值系数Kalf15实测拐点电动势Ek130V(变比:600/5)260V(变比:1200/5)不同二次绕组抽头对应的拐点电动势不同。

最大短路电流Iscmax10000A一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值)1、计算二次极限电动势:Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V参数说明:(1)Es1:CT额定二次极限电动势(稳态);(2)Kalf:准确限制值系数;(3)Isn:额定二次电流;(4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值:5A产品:1~1500A/5 A产品0.5Ω1500~4000A/5 A产品 1.0Ω1A产品:1~1500A/1A产品6Ω1500~4000A/1 A产品15Ω当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。

(5)Rbn :CT额定二次负载,计算公式如下:Rbn=Sbn/ Isn 2=30/25=1.2Ω;——Rbn :CT额定二次负载;——Sbn :额定二次负荷视在功率;——Isn :额定二次电流。

当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载2、校核额定二次极限电动势有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。

Es1=127.5V<Ek(实测拐点电动势)=130V结论:CT满足其铭牌保证值要求。

电流电压互感器额定二次容量计算方法

电流电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入90,其余为1。

2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

mZ ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。

而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。

电流互感器传输距离

电流互感器传输距离

国标GBl208-1997《电流互感器》第4.2.2项中规定,额定二次电流标准值为1A、2A 和5A,经实际应用,1A电流互感器和5A相比有许多优点,当测量和保护的传输距离较大时,如电流表安装在现场,就优先选用1A电流互感器,其原因如下:1.线路功耗降低,线路功耗与通过电流平方成正比,二次电流为lA的互感器和5A相比降低功耗25倍,即1A的功耗仅5A的4%。

在设计1A系统时,一般只需计算测景和保护仪表的阻抗(忽略接触电阻)。

测量线路的功耗(VA)2.传输距离加大:电流互感器二次负载计算公式s=I。

Z,在相同负载f,二次电流为1A互感器的传输距离是5A的25倍,有利于远距离测量和保护,这样可避免增选5,lA中问互感器或选用大容量互感器。

不同额定容量时的传输距离(m)3.电线截面碱小:太中型工厂,当仪表和互感器安装距离较远(例如单程长度40m),从表2可以看出,当选项用5A、10V A互感器,电线截面需4ram。

,如选用1A、5vA 互感器,电线截面只需lmm’。

截面减少,投资降低电流互感器二次容量的计算及选择摘要:电流互感器的二次电流有 1A及5A两种,选用不同的二次电流,则二次的负荷及容量不同,所用的控制电缆截面也不同。

1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。

2 电流互感器二次负荷的计算电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。

计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。

(完整版)电流互感器二次容量的计算及选择

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

额定二次负荷va和欧姆的换算

额定二次负荷va和欧姆的换算

额定二次负荷va和欧姆的换算摘要:一、引言二、额定二次负荷的定义与计算1.电压互感器的额定二次负荷2.电流互感器的额定二次负荷三、欧姆的换算方法1.欧姆值的含义2.欧姆值的计算与换算四、额定二次负荷与欧姆的换算实例五、总结与建议正文:一、引言在电力系统中,电压互感器和电流互感器是常见的测量设备。

它们将高压电流转化为低压电流,以便进行电能计量和其他监测。

在使用这些设备时,了解其额定二次负荷和欧姆的换算方法至关重要。

本文将详细介绍这两方面的内容,以帮助读者更好地理解和应用。

二、额定二次负荷的定义与计算1.电压互感器的额定二次负荷电压互感器的额定二次负荷(VA)是指在额定电压下,互感器二次侧能承受的最大负荷功率。

其计算公式为:VA = S × 1000其中,S为互感器的一次额定容量(kVA),1000为换算系数。

2.电流互感器的额定二次负荷电流互感器的额定二次负荷(VA)是指在额定电流下,互感器二次侧能承受的最大负荷功率。

其计算公式为:VA = I × U × 1000其中,I为互感器的一次额定电流(A),U为互感器的一次额定电压(V),1000为换算系数。

三、欧姆的换算方法1.欧姆值的含义欧姆(Ω)是电阻的单位,表示电阻对电流的阻碍程度。

电阻值越大,电流通过电阻时遇到的阻力越大。

2.欧姆值的计算与换算欧姆值可以通过以下公式进行计算:R = U / I其中,R为电阻值(Ω),U为电压(V),I为电流(A)。

欧姆值的换算:1Ω = 1V/A = 1000mV/mA = 1000000μV/μA四、额定二次负荷与欧姆的换算实例以一个电压互感器为例,其一次额定容量为100kVA,一次额定电压为10kV。

计算其额定二次负荷:VA = 100kVA × 1000 = 100000VA接下来,计算二次侧的额定电流:I = VA / U = 100000VA / 10kV = 1000A根据欧姆定律,计算二次侧的电阻值:R = U / I = 10kV / 1000A = 10Ω五、总结与建议本文介绍了电压互感器和电流互感器的额定二次负荷的定义与计算方法,以及欧姆值的计算与换算。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点.电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些.电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(0。

5级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择1.电流互感器简介互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。

而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A 的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型 2 种。

电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“ 8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。

油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。

为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。

2.电流互感器的特点1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。

2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。

3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。

因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。

相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算摘要:电流互感器是电力系统中非常重要的一次设备,掌握其误差特性及二次负载的计算,对设计人员来说至关重要,本文分析了电流互感器误差产生的原因以及分别对测量电流互感器、保护电流互感器二次负载进行了计算。

关键词:电流互感器、误差、二次负载、计算1、电流互感器的误差电流互感器是用来将一次系统的大电流按比例变换为二次系统的小电流,以满足测量、监控、保护及自动装置等的需要,并将一、二次设备安全隔离,使高、低压回路不存在电的联系的一种常见的电气设备。

测量误差是指电流互感器的二次输出量I2与其归算二次侧的一次输入量I1’的大小不相等,幅角不相同所造成的差值,因此测量误差分为数值(变比)误差和相位(角度)误差两种。

产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。

电流互感器本身造成的测量误差是由于电流互感器有励磁电流Ie存在,而Ie是输入电流的一部分,它不传到二次侧,故形成变比误差,Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失,Ie所流经的励磁支流是一个呈电感性的支路,Ie和I2不同相位,这是造成角度误差的主要原因。

运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大所致。

故为保证电流互感器工作在误差范围内,在不改变其本身固有特性的情况下,作为设计人员来说,根据实际情况,选择适当的电流互感器二次容量尤为重要,以下介绍二次负载容量的计算。

2、测量电流互感器二次负载容量的计算为了保证测量仪表的准确度,互感器的准确度级不得低于所供测量仪表的准确度级。

电流互感器的一定准确等级是与一定的负荷容量S2相对应的。

当接入负荷(仪表继电器等)的容量超过互感器准确级规定的容量Se2时,电流互感器的准确级将要下降,即测量误差增大。

因此,为了保证测量的准确度,互感器二次侧所接负荷容量S2应小于互感器准确度级所规定的额定容量Se2。

,即应满足:Se2≥S2即Se2≥I22Z2 (1)由上式可知,二次负荷容量与二次阻抗有着直接关系。

电流互感器二次容量计算

电流互感器二次容量计算
收 稿 日期 :2 0 1 2 — 1 0 — 2 0
z 一连接导线 的单程电阻 ( Q)
91
2 0 1 3年 第 1期
云南 电力技 术
第4 1卷
z 一接 触 电 阻 ( Q) ,一 般 取 0 . 0 5 ~0 . 1
( n)

电流应遵 照 国家标 准 来 选择 而 不该 向断 路 器标 准
器 出现饱 和后 .二 次 电流 继 续 保 持增 大趋 势 ,保
互 感 器 ,一 次 电流较 小 时 ,二 次 电流呈 线性 变化 :
. s = 丘・
当电流互 感器 二次 电流为 5 A 时 ,S = 2 5 Z , 当电流互 感器 二次 电流 为 1 A 时 ,S : Z ,
根据规定要求在系统区内出现最大短路电流时保护用电流互感器不该出现饱和这与测量用电流互感器的工作条件不一样测量用电流互感器除了在正常工作范围内有合适的准确度外当出现短路电流时则要求电流互感器饱和以保护测量装置及仪表不受短路电流损坏
第4 1 卷
2 0 1 3年 2月






Vo 1 . 41 No .1
2 . 1 二 次负荷 计算
了在正 常工 作 范 围 内有 合 适 的 准 确度 外 。当 出现 短 路 电流 时 ,则要 求 电流 互 感 器饱 和 , 以保 护 测 量 装置及 仪 表不 受 短 路 电流 损坏 。而保 护用 电流 互 感 器只是 在 比正 常 工 作 电 流大 几 倍 几 十倍 的 电 流 时才 开始 有 效 的工 作 ,其 误 差 要 求 在 误差 曲线 范 围 内 。保 护 用 互感 器 主要 要 求 :绝 缘 可 靠 ;足 够 大 的准确 限 值 系数 :足 够 的热 稳 定 性 和 动稳 定 性 。保 护用 互感 器 在 额 定 负荷 下 能 够 满 足 准确 级 的要 求 ,最 大 一次 电流 叫额定 准确 限值 一次 电流 。 准 确 限值 系数就 是 额定 准 确 限值 一 次 电流 与额 定

电流互感器二次线的计算.

电流互感器二次线的计算.

电流互感器问答15.当有几种表计接于同一组电流互感器时,其接线顺序如何?答:其接线顺序是:指示仪表、电度仪表、记录仪表和发送仪表。

16.使用电流互感器应注意的要点有哪些?答:(I)电流互感器的配置应满足测量表计、自动装置的要求。

(2)要合理选择变比。

(3)极性应连接正确。

(4)运行中的电流互感器二次线圈不许开路.(5)电流互感器二次应可靠接地。

(6)二次短路时严禁用保险丝代替短路线或短路片。

(7)二次线不得缠绕。

17.电流互感器的轮校周期和检修项目是什么?答;计量用和作标准用的仪器和有特殊要求的电流互感器校验周期为每两年一次,一般仪用互感器核验周期为每四年一次。

仪用互感器的检验项目为:校验一、二次线圈极性;测定比差和角差;测量绝缘电阻、介质损失以及而压试验.18.怎样根据电流互感器二次阻抗正确选择二次接线的截面积?答:可根据下式计算进行选择S≥ρLm / Z―(rq+ri+rc).式中S——连接导线的截面积Lm——连接导线的计算长度m,单机接线Lm=2L,星形接线Lm=L,不完全星形接线Lm=√3ρ——导线电阻率Ωmm2/mZ——对应于电流互感器准确等级的二次负荷额定阻抗,可从铭牌查出。

rq——为仪表电流线圈的总阻抗Ω; rj——为继电器电流线圈的总阻抗Ωrc——连接二次线的接触电阻一般取0.05Ω19.电流互感器二次为什么要接地?答:二次接地后可以防止一次绝缘击穿,二次串入高压,威胁人身及设备的安全,属于保护接地。

接地点应在端子k2处,低压电流互感器一般采用二次保护接零的方式。

20对电流互感器如何进行技术管理?答:(1)电流互感器以及其它计量设备必须做好台帐,有专人管理。

并做好互感器转移记录。

(2)在供电企业内应建立各种相应的技术档案和管理制度,包括出厂原始记录、资料。

历年修校记录、检修工艺规程和质量标准.(3)对计量用电流互感器的安装、更换、移动、校验、拆除、加封和接线工作均由供电企业负责,加强电能计量管理。

PT、CT计算

PT、CT计算

电流二次回路负荷计算根据《Q/GXD 116.01-2007广西电网电能计量装置配置及验收技术标准》,对于三相四线制接线方式,若3台电流互感器与电能表之间采用四线连接,则不计算N 线电阻(因线路三相负荷平衡时N 线电流为0,N 线电阻不构成CT 二次负荷);若3台电流互感器与电能表之间采用六线连接,则应计算N 线电阻(因三相N 线始终流过电流,N 线电阻构成CT 二次负荷)。

电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nI S ——设计选择的电流互感器二次额定负荷,VAK ——系数,一般选择1.5~4。

A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接线系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。

2n I ——电流互感器二次额定电流,A ,为1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接触电阻,取0.1Ω① 110kV CT 二次容量计算:高岭站110kV CT 二次额定电流为1A ,电缆综合长度为120米,电缆截面使用4mm 2。

根据公式(2),则:Ω=⨯==5.0457120A L R l ρ 其中:二次电流回路使用三相星型接法,所以jx K =1,2jx K =1。

电流互感器二次容量的计算

电流互感器二次容量的计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器二次电缆的截面选择

电流互感器二次电缆的截面选择

电流互感器二次电缆的截面选择
我们知道CT二次负担包括二次电缆及负载(继电器、仪表等)。

在这里说一下二次电缆负担的计算方法,可以为我们CT选型及二次电缆选型提供依据。

我们知道导线电阻=ρL/S,ρ为导体的电阻率,铜的电阻率为0.0172,L为导体长度,单位米,S为导体截面,单位平方毫米。

举个例子,CT为星接,CT与控制室距离100米,那么每相CT电缆的负担为:
采用1.5平方电缆时:
0.0172×200/1.5=2.3欧
采用2.5平方电缆时:
0.0172×200/2.5=1.376欧
距离50米时1.5平电缆1.15欧,2.5平电缆0.7欧。

就地安装时2.5平线为0.07欧与继电器阻抗持平。

一般继电器的功率为1VA左右,微机保护每相功率也在1VA左右,折算到阻抗为0.04欧。

即便是3-4块继电器串在一起,也只是0.1欧多一点,所以CT的二次负担当CT与保护安装处的距离超过50米时主要体现在二次电缆的电阻上。

假设CT二次负担为20VA,即0.8欧,保护安装处距离CT100米。

那么需要电缆二次截面至少应为
S=200×0.0172/0.8=4.3平方毫米,这时只能选择6平电缆或2芯2.5平电缆并联才能满足CT二次负担要求。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA对于短线路可选5VA 一般稍长的选20VA或30VA特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求不是越大越好只有选择的二次容量大小接近实际的二次负荷时电流互感器的精度才较高容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上就要看测量单元(电度表或综合保护装置)和互感器的距离了如果测量单元是在距离较远的综控室则一般选择20VA或30VA如果测量装置也是装在配电柜上的,则选5VA 或10VA 就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比一般按照60-80 的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(级足矣)测量用的可以更低点;J ‘3、根据配电柜的布局选择穿心式或普通式互感器强烈建议使用普通式穿心式的固定支撑问题一直做的不太可靠如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流互感器的参数选择计算方法

电流互感器的参数选择计算方法

附件3:电流互感器的核算方法参数选择计算本文所列计算方法为典型方法,为方便表述,本文数据均按下表所列参数为例进行计算。

项目名称代号参数备注额定电流比Kn600/5额定二次电流Isn5A额定二次负载视在功率Sbn30VA(变比:600/5)50VA(变比:1200/5)不同二次绕组抽头对应的视在功率不同。

额定二次负载电阻Rbn1.2Ω二次负载电阻Rb0.38Ω二次绕组电阻Rct0.45Ω准确级10准确限值系数Kalf15实测拐点电动势Ek130V(变比:600/5)260V(变比:1200/5)不同二次绕组抽头对应的拐点电动势不同。

最大短路电流Iscmax10000A一、电流互感器(以下简称CT)额定二次极限电动势校核(用于核算CT是否满足铭牌保证值)1、计算二次极限电动势:Es1=KalfIsn(Rct+Rbn)=15×5×(0.45+1.2)=123.75V参数说明:(1)Es1:CT额定二次极限电动势(稳态);(2)Kalf:准确限制值系数;(3)Isn:额定二次电流;(4)Rct:二次绕组电阻,当有实测值时取实测值,无实测值时按下述方法取典型内阻值: 5A产品:1~1500A/5 A产品0.5Ω1500~4000A/5 A产品 1.0Ω1A产品:1~1500A/1A产品6Ω1500~4000A/1 A产品15Ω当通过改变CT二次绕组接线方式调大CT变比时,需要重新测量CT额定二次绕组电阻。

(5)Rbn :CT额定二次负载,计算公式如下:Rbn=Sbn/ Isn 2=30/25=1.2Ω;——Rbn :CT额定二次负载;——Sbn :额定二次负荷视在功率;——Isn :额定二次电流。

当通过改变CT二次绕组接线方式调大CT变比时,需要按新的二次绕组参数,重新计算CT 额定二次负载2、校核额定二次极限电动势有实测拐点电动势时,要求额定二次极限电动势应小于实测拐点电动势。

Es1=127.5V<Ek(实测拐点电动势)=130V结论:CT满足其铭牌保证值要求。

电流互感器二次回路

电流互感器二次回路

一、概述(2)
电流互感器特点:是一个特殊型式变换器,它 的二次电流正比于一次电流。因其二次回路的 负载阻抗很小,一般仅几个欧姆,故二次工作 电压也很低,当二次回路阻抗大时二次工作电 压U=IZ也变大,当二次回路开路时,U将上升 到危险的幅值,它不但影响电流传变的准确度, 而且可能损坏二次回路的绝缘,烧毁电流互感 器铁芯。所以电压互感器的二次回路不能开路。
•电流互感器二次回路,
二、电流互感器的基本参数(13)
其中0.1~1的四个标准其二次负荷应在额定负 荷的25%~100%间,3~5两个标准其二次负 荷应在额定负荷的50%~100%间,否则准确 度不能满足要求。所以对负荷范围广,准确度 要求高的场合,可以采用经补偿的0.2s和O.5s 电流互感器,该互感器在1%~120%负荷间均 能满足准确度要求。对测量用电流互感器除了 幅值准确度要求外,还有角度误差要求。
•电流互感器二次回路,
二、电流互感器的基本参数(6)
为了既满足测量、计量在正常使用的精度及读 数,又能满足故障大电流下继电保护装置的精 工电流及电流互感器10%误差曲线要求,二个 回路常采用不同次级、不同变比。也可用中间 抽头来选择不同变比。 电流互感器的变比也是一个重要参数。当一次 额定电流与二次额定电流确定后,其变比即确 定。电流互感器的额定变比等于一次额定电流 比二次额定电流。
四、保护用电流互感器的暂态特性(2)
暂态过程的大小与持续时间与系统的时间常数 有关,一般220kV系统的时间常数不大于60ms, 500kV系统的时间常数在80~200ms之间。系统 时间常数增大的结果,使短路电流非周期分量 的衰减时间加长,短路电流的暂态持续时间加 长。系统容量越大,短路电流的幅值也越大, 暂态过程越严重。所以针对不同的系统要采用 具有不同暂态特性的电流互感器。

电流互感器传输距离

电流互感器传输距离

国标GBI208-1997《电流互感器》第4. 2. 2项中规定,额定二次电流标准值为1A、2A 和5A,经实际应用,1A电流互感器和5A相比有许多优点,当测量和保护的传输距离较大时,如电流表安装在现场,就优先选用1A电流互感器,其原因如下:1.线路功耗降低,线路功耗与通过电流平方成正比,二次电流为IA的互感器和5A相比降低功耗25倍,即1A的功耗仅5A的4 %。

在设计1A系统时,一般只需计算测景和保护仪表的阻抗(忽略接触电阻)。

测量线路的功耗(VA)2.传输距离加大:电流互感器二次负载计算公式s=l。

Z,在相同负载f,二次电流为1A互感器的传输距离是5A的25倍,有利于远距离测量和保护,这样可避免增选5 , IA 中问互感器或选用大容量互感器。

不同额定容量时的传输距离3.电线截面碱小:太中型工厂,当仪表和互感器安装距离较远(例如单程长度40m), 从表2可以看出,当选项用5A、10VA互感器,电线截面需4ram。

,如选用1A、5vA 互感器,电线截面只需Imm。

截面减少,投资降低电流互感器二次容量的计算及选择摘要:电流互感器的二次电流有 1A 及5A 两种,选用不同的二次电流,则二次的负 荷及容量不同,所用的控制电缆截面也不同。

1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器, 它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次 系统与高电压隔离。

它不仅保证了人身和设备的安全, 也使仪表和继电器的制造简单化、 标准化,提高了经济效益。

电流互感器的额定一次电流根据不同回路的正常电流会有不同, 但电流互感器额定 二次电流却是标准化的, 只有1A 及5A 两种,本文就这两种电流分别计算测量及保持用 电流互感器在不同的传输距离下所需的二次容量。

2 电流互感器二次负荷的计算电流互感器的负荷通常有两部分组成: 一部分是所连接的测量仪表或保护装置;另 一部分是连接导线。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

CT二次负载计算方法

CT二次负载计算方法

一、保护CT运行要求1、继电保护及安全自动装置(包括微机故障录波器等)电流必须取自保护级烧组(P或D/B)。

严禁取自计量烧组(0.2或0.5/1.0/3.0)。

2、继电保护及安全自动装置CT(包括主变套管、中性点、棒间隙等)在一次最大短路电流对应的极限误差不得超过标称值(5%或10%)。

3、新建发、变电工程应使用IA制CT。

这样可允许更大的二次负载和短路电流,更能适应电网的不断发展。

4、220KV及以上系统双重化配置的两套保护装置,其电流、电压回路必须彻底独立,严禁两套保护装置之间有任何电气联系。

同一套表保护装置主、后备保护可以共享数据。

5、、110KV及以下系统配置的单套保护装置,其主、后备保护电流回路必须彻底独立。

二、电流互感器(CT)的误差由于励磁电流的存在,二次电流与换算后的一次电流不但幅值上不相等,而且相位上也不相同,这就造成了CT的误差。

由于一、二次电流的不等造成的电流误差,称为比误差;由于相位不同造成的角度误差称为相差。

根据有关规定,在允许二次负载、允许最大短路电流饱和倍数情况下,比误差不大于5%-10%,相差不大于7·。

CT的误差与流过CT的一次短路电流,CT的变比、容量、二次负载、接线方式、铁芯结构及材料等多种因素密切相关。

合格的CT是继电保护、安全稳控装置正确动作的前提条件,也是电网安全、稳定运行基本保障。

保护装置不正确动作之后;原因不明。

其中一个重要原因与CT饱和有关。

由于故障录波不完善,保护信息部完整(微机化率低活性能不完善),事故分析不到位,上述原因长期被忽视,日月积累,今年来问题在110KV及以上系统开始显露,已造成多起电网事故(包括配网事故),教训是非常深刻的。

三、减小误差的主要措施;励磁电流是造成CT的误差的主要原因,因此要减小误差就必须在减小励磁电流着手。

主要措施如下:1、在CT的设计、研发阶段采用高导磁率的铁芯材料,增大铁芯截面、缩短侧路长度,尽量提高CT的饱和倍数。

电流互感器容量计算公式

电流互感器容量计算公式

电流互感器容量计算公式
电流互感器的容量计算公式,根据不同的应用场景,可能存在差异。

对于一般电力系统用的电流互感器,容量计算公式如下:
S2 = I22 (Kx1∑Rmk + Kx2RW + Rc ),即为微机装置功耗+电缆功耗+接触功耗。

其中,I22为额定二次电流,通常取5A。

然而,对于零序CT,由于正常运行的时候通过电流为0,不能采用以上公式进行容量计算。

通常按照工程经验,直接取5VA,然后进行校验。

此外,额定容量Sn和额定负荷Zn之间的关系可以用下面的公式来表示:Sn=I2n² Zn。

对于一般电力系统用的电流互感器,额定二次电流I2n=5A,因此
Sn=5²Zn=25Zn(VA)。

以上公式仅供参考,如需了解更详细的信息,建议咨询电气工程专家或查阅相关文献资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器二次负载的计算及选择
【摘要】电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

对电流互感器的二次负载的计算有利于进行负载的匹配,确保其准确度。

本文对完全星形接线及不完全星形接线下,不同故障反映的二次负载进行了计算。

【关键词】电流互感器;二次负载
1.电流互感器简介
互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。

而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型2种。

电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。

油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。

为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。

2.电流互感器的特点
1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。

2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。

3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。

因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。

相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。

也就是说,一次电流、励磁电流、二次阻抗、二次电流、二次电动势这几个量是互为因果关系的。

4)电流互感器能够用来测量电流,是因为它是一个恒流源,且电流表的电流线圈阻抗较小,串进回路中,对回路电流影响不大。

当然,这一点只适用于电流互感器在额定负载范围内,根据上文可知,负载增大超过允许值时,会影响二
次电流,进而使误差增加到超过允许的范围。

3.电流互感器的二次侧阻抗值
电流互感器的二次侧阻抗值是指接在二次绕组上端子间的阻抗、仪器和连接导线等的总阻抗,通常以阻抗值表示,又称为电流互感器的负荷。

一般在电流互感器铭牌上标注的准确度等级与二次侧外阻抗大小有关,电流互感器的误差随着外阻抗的增大则愈大,使二次电流值的准确度等级降低。

为了确保电流互感器在使用中不超过铭牌中标注的准确度等级,就要求二次侧所接负荷的阻抗值不应大于某一数值,因此,铭牌上要标定二次侧阻抗值。

电流互感器二次容量是额定功率因数及额定二次电流时所吸收的视在功率伏安值。

其关系式如下:
是电流互感器的二次额定电流,A;
Z是电流互感器的二次负载阻抗,?;
S是电流互感器的二次容量,V A。

二次负载阻抗的大小对互感器的准确度有影响,如上文提到的,当TA的二次负载阻抗超出了容许值时,励磁电流随之增大,从而造成铁芯饱和,一次电流的很大一部分被用来供给励磁电流,使得互感器的误差增大,使准确度下降。

4.计算电流互感器二次负载
根据继电保护与自动装置的不同,电流互感器二次绕组的接线方式有所不同。

一般有完全(三相)星形接线;不完全(两相)星形接线;三角形接线;两相差接线及其它。

计算电流互感器二次负载时:
(1)完全星形接线及零序电流保护接线见图1。

1)三相短路(此时中性线没有电流)
2)两相短路(以ab相短路为例)
3)单相短路(以a相短路为例)
若二次负载采用,则在计算电流倍数时,应采用单相接地电流值;若采用,则应采用相间短路电流值。

哪种情况严重,就采用哪种组合方式。

(2)不完全星形保护接线见图2。

1)三相短路(此时流经中性线的电流与B相大小相等方向相反)
2)两相短路(以ab相或bc相短路为例)
3)两相短路(以ac相短路为例,此时中性线内无电流)
其它接线方式下,发生短路的情况可相应计算出来,在此就不一一列举了。

根据计算的结果,将实测阻抗值按最严重的短路类型换算成Z,可算出允许的二次负载。

当计算发现二次负载不满足要求时,可通过以下方式进行处理:
①增大二次电流截面;
②串接备用电流互感器使允许负载增大1倍;
③改用伏安特性较高的二次绕组;
④提高电压互感器变比。

5.使用电流互感器时应注意的问题
1)电流互感器的配置应满足测量表计、继电保护与自动装置的要求,并分别由单独的二次绕组供电,这样才可既满足不同设备的要求,并且不会相互影响;
2)选择电流互感器时,额定电压应等于被测电路的电压,其一次额定电流应大于被测电路的最大持续工作电流,同时其结构型号及容量应满足准确度要
求;
3)运行中的电流互感器的二次绕组不应开路,否则开口处电压可能达到几千伏,对设备或人身造成严重危害;
4)电流互感器的二次绕组、铁心及外壳应可靠接地,且接地点只允许有一个。

参考文献
[1]贾伟.电网运行与管理技术问答[M].北京:中国电力出版社,2007.
[2]国家电力调度通信中心编.电力系统继电保护实用技术问答[M].北京:中国电力出版社,1999.11.
[3]刘清汉等.继电保护工[M].北京:中国水利水电出版社,2003.。

相关文档
最新文档