时频分析基本理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时频分析基本理论
一、时频分析的基本概念
二、短时傅里叶变换
短时傅立叶变换(窗口傅立叶变换)是用一个很窄的窗函数取出信号,对其求傅立叶变换,假定信号在这个时窗内是平稳的,得到该时窗内的频率,并过滤掉了窗函数以外的信号频谱,确定频率在特定的时间内是存在的,然后沿着信号移动窗函数,得到信号频率随时间的变化关系,这样就得到了时频分布。可知,短时傅立叶变换的定义为:这种变换是线性的,而且满足叠加原理。换言之,如果s(t)是几个信号分量的线性组合,那么各个信号分量的时频线性组合可以得到s(t)的时频表示:线性由于不会产生交叉项干扰,所以是区分多分量信号的希望的性质,而且小波变换也是线性时频变换。傅立叶变换可以分别从信号的时域和频域观察信号,但却不能把二者联合起来描述信号。因为信号的时域中不包含任何频域信息;而频域中不包含时域信息。同时短时傅立叶变换概念直接,算法简单,已经成为研究非平稳信号十分有力的工具,在信号瞬时频率的估计领域得到了广泛的应用,并且是其它时频分析的基础。但是它存在两个问题:对窗函数的长度选择与窗函数的选择问题。为了得到更好的频域效果,因为窗函数的长度与频谱图的频率分辨率密切相关,因此信号的观察时间必须比较长。当信号变化很快时,反应频率与时间变化的关系将会受到影响;然而,当窗函数很短时,对于特定的窗函数来说,将会得到更好的效果。对比其他方法来说,短时傅立叶变换(stft)虽然有着分辨率不高等明显缺陷,但由于其算法简单,实现容易,所以在很长一段时间里成为非平稳信号分析标准和有力的工具,而且不会产生多信号交叉干扰项,同时我们采用短时傅里叶变换算法估计瞬时频率对于频率分集和频率编码脉冲信号来说会更加方便。
四、总结
通过对时频分析理论的研究,介绍了线性时频表示、双线性时频表示等时频分析方法,论述了各种时频方法的优缺点,使得我们更加准确而且形象的了解了信号的变化。