2020年河南省中考数学模拟试卷(含答案)
2020年河南省中考数学模拟试题(含答案)
2020年河南省中考数学模拟试题含答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.下列各数中,最小的数是 A .3 B .32 C .2 D .232.据报道,中国工商银行2015年实现净利润2 777亿元.数据2 777亿用科学计数法表示为 A .×1010B .×1011C .×1012D .×10133.下列计算正确的是 A .822 B .2(3)=6 C .3a 4-2a 2=a 2 D .32()a =a 54.如图所示的几何体的俯视图是5.某班50名同学的年龄统计如下:年龄(岁) 12 13 14 15 学生数(人)123206该班同学年龄的众数和中位数分别是A .6 ,13B .13,13.5C .13,14D .14,14A B CD(第4题)6.如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为 A . 6 B .9 C .12 D .157.如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定...正确的是A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D .弧AC = 弧BC8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是A .1B .45C .34D . 129.如图,CB 平分∠ECD ,AB ∥CD ,AB 与EC 交于点A . 若∠B =40°,则∠EAB 的度数为A .50°B . 60°C . 70°D .80°10.如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,PD ⊥AB 交AB 于点D .设运动时间为x (s ),△ADP 的面积为y (cm 2),则y 与x(第6题)OABCDD (第7题)PAB CDABCD(第10 题)(第9题)EAC DB二、填空题( 每小题3分,共15分) 11.计算:327-︱-2︱= .12.如图,矩形ABCD 中,A B =2 cm ,BC =6cm ,把△ABC 沿对角线AC 折叠,得到△AB’C ,且B’C 与AD 相交于点E ,则AE 的长为 cm .13.如图,Rt △ABC 中,∠B =90°, AB = 6,BC = 8,且,将Rt △ABC 绕点C 按顺时针方向旋转90°,得到Rt △A’B’C ,则边AB 扫过的面积(图中阴影部分)是 . 14.已知y =-14x 2-3x +4(-10≤x ≤0)的图象上有一动点P ,点P 的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为 . 15.如图,在Rt △ABC 中,∠B =90°,BC =2 AB = 8,点D ,E 分别是边BC ,AC 的中点,连接DE .将△EDC 绕点C 按顺时针方向旋转,当△EDC 旋转到A ,D ,E 三点共线时,线段BD 的长为 . 三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:1()2aa÷3(2)2a a,请从-1,0,1中选取一个合适的数作为a 的值代入求值.(第12 题)A BCB'B'AD CBE(第13 题)(第15 题)ABCED17.(9分)如图,点A ,B ,C 分别是⊙O 上的点,∠B = 60°,AC = 3,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP =AC .(1)求证:AP 是⊙O 的切线;(2)求PD 的长.18.(9分)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A ,B ,C ,D 四类,其中A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示 “不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次调查中,一共抽查了 名学生; (2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 ; (4)如果这所学校共有初中学生1500名,请你估算该校初中学生对二战历史“非常了解”和“比较了解”的学生共有多少名.(第17 题)ADP C BO20903021图图15%30%ABCD人数1008060402019.(9分)如图所示,某教学活动小组选定测量小山上方某信号塔PQ 的高度,他们在A处测得信号塔顶端P 的仰角为45°,信号塔低端Q 的仰角为31°,沿水平地面向前走100米到处,测得信号塔顶端P 的仰角为68°.求信号塔PQ 的高度.(结果精确到0.1米.参考数据:sin68°≈ ,cos68° ≈ ,tan68° ≈cos31°≈)20.(9分)如图,已知矩形OABC 中,OA =3,AB =4,双曲线y=kx(x > 0)与矩形两边AB ,BC 分别交于D ,E ,且BD =2AD .(1)求k 的值和点E 的坐标;(2)点P 是线段OC 上的一个动点,是否存在点P ,使∠P 的坐标;若不存在,请说明理由.21.(10分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,它们的优惠方案分别为:甲店,一次性购物中超过200元后的价格部分打七折;乙店,一次性购物中超过500y元.(1)求甲商店购物时y 1与x 之间的函数关系; (2)两种购物方式对应的函数图象如图所示,求交点C 的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.22.(10分)问题背景:已知在△ABC 中,边AB 上的动点D 由A 向B 运动(与A ,B 不重合),同时点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值.(1)初步尝试 如图(1),若△ABC 是等边三角形,DH ⊥AC ,且点D 、E 的运动速度相等,小王同学发现可以过点D 作DG ∥BC 交AC 于点G ,先证GH =AH ,再证GF =CF , 从而求得AC HF的值为 .(2)类比探究如图(2),若△ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点D ,E 的运动速度31,求AC HF的值.(3)延伸拓展如图(3)若在△ABC 中,AB =AC ,∠ADH =∠BAC =36°,记BC AC=m ,且点D 、E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出果,不必写解答过程).图(3)HFEDCB A 图(2)HFEDCBA图(1)G H F A BCED23.(11分)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.lyx POCB A参考答案及评分标准一、选择题二、填空题三、解答题16.解:原式=2212a aa÷2432aa=2(1)2aa·2(1)(1)aa a=11aa.………………………………5分∵当a取±1时,原式无意义,………………………………6分∴当a=0时,∴原式=01 01=-1 ………………………………8分17.(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵在△AOC中,OA=OC,∴∠ACP=∠CAO=12(180°-∠AOC)=30°.∴∠AOP=2∠ACP=60°.∴AP=AC,∴∠P=∠ACP=30°.∴∠OAP=180°-∠AOP-∠P=90°,即OA⊥AP.∴AP是⊙O的切线.………………………………5分(2)连接AD.∵CD是⊙O的直径,∴∠CAD=90°.在Rt△ACD中,∵AC=3,∠ACP=30°,∴AD=AC·tan∠ACP=3由(1)知∠P=∠ACP=30°,ADPCBO∴∠PAC =180°-∠P -∠ACP =120°. ∴∠PAD =∠PAC -∠CAD =30°.∴∠P =∠PAD =30°.∴PD =AD =3.………………………………9分18.解:(1)一共抽查了 200 名学生; ………………………………2分(2)补全条形统计图如图所示: ………………………………4分 (3)D 类部分所对应扇形的圆心角的度数为36°;(注:若填36,不扣分)……6分 (4)30901500900200. ………………………………9分19.解:延长PQ 交直线AB 于点M ,则∠PMA =90°,设PM 的长为x 米,根据题意, 得∠PAM =45°,∠PBM =68°,∠QAM =31°,AB =100,∴在Rt △PAM 中,AM =PM =x .BM =AM -AB =x -100, ………………2分在Rt △PBM 中,∵tan ∠PBM =PMBM, 即tan68°=100xx .解得x ≈ .∴AM =PM ≈ .………………………………5分 在Rt △QAM 中,∵tan ∠QAM =QMAM, ∴QM =AM ·tan ∠QAM =×tan31°≈. ………………8分 ∴PQ =PM -QM =-≈(米).因此,信号塔PQ 的高度约为米. ………………………………9分602090301图类型人数10080604020QP20.解:(1)∵四边形OABC为矩形,且OA=3,AB=4,∴OC= AB=4,AB∥OC,即AB∥x轴.∵点D在AB上,且BD=2 AD,BD+AD= AB=4,∴AD=433AB.∴点D的坐标为(43,3).∵点D在双曲线y=kx上,∴k=3×43=4.………3分又∵点E在BC上,∴点E的横坐标为4.把x=4代入y=4x中,得y=1.∴点E的坐标为(4,1).………5分(2)假设存在满足题意的点P的坐标为(m,0).则OP=m,CP=4-m.由(1)知点E(4,1),∴CE=1.∵∠APE=90°∴∠APO+∠EPC=90°.∵∠APO+∠OAP=90°,∴∠OAP=∠EPC.又∵∠AOP=∠PEC=90°,∴△AOP∽△PCE.∴OA OPCP CE,即341mm.解得m=1或m=3.经检验,m=1或m=3为原方程的两个根.∴存在这样的点P,其坐标为(1,0)或(3,0).………9分21.解:(1)根据题意,得当0 ≤x ≤ 200时,y1=x;当x > 200时,y1=200+(x-200)= x+60.综上所知,甲商店购物时y1与x之间的函数关系式为y1=﹛x(0 ≤x ≤ 200);x+60(x > 200).………………………………4分(2)由图象可知,交点C的横坐标大于500,当x﹥500时,设乙商店购物时应付金额为y2元,则y2=500+(x-500)= x+250.由(1)知,当x﹥500时,y1= x+60.由于点C是y1与y2的交点,∴令 x+60= x+250.yxPEDCA BOyx OCBA500200解得x=950,此时y1=y2=725.即交点C的坐标为(950,725).………………………………8分(3)结合图像和(2)可知:当0 ≤x ≤ 200或x=950时,选择甲、乙两家商店购物费用相同;当200<x<950时,选择甲商店购物更优惠;当x﹥950时,选择乙商店购物更优惠.………………………………10分22.解:(1)2………………………………2分(2)如图(1)过点D作DG∥BC交AC于点G,则∠ADG=∠ABC=90°.∵∠BAC=∠ADH=30°,∴AH=DH,∠GHD=∠BAC+∠ADH=60°,∠HDG=∠ADG-∠ADH=60°,∴△DGH为等边三角形.∴GD=GH =DH =AH,AD=GD·tan60°=3GD.由题意可知,AD=3CE.∴GD=CE.∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF.∴△GDF≌△CEF.∴GF=CF.GH+GF=AH+CF,即HF=AH+CF,∴HF=12AC=2,即2ACHF.………………………………8分(3)ACHF1mm.………………………………10分提示:如图(2),过点D作DG∥BC交AC于点G,易得AD=AG,AD=EC,∠A GD=∠ACB.在△ABC中,∵∠BAC=∠ADH=36°,AB=AC,∴AH=DH,∠ACB=∠B=72°,∠GHD=∠HAD+∠ADH=72°.∴∠AGD=∠GHD=72°.∵∠GHD=∠B=∠HGD=∠ACB,∴△ABC∽△DGH.∴BC GHmAC DH,GHFEDC BA图(1)GHFEDCBA图(2)∴GH =mD H =mA H . 由△ADG ∽△ABC 可得GD BC BC m AD AB AC.∵DG ∥BC ,∴FG GD GD m FCEC AD.∴FG =mFC .∴GH +FG =m (AH +FC )=m (AC -HF ), 即HF =m (AC -HF ).∴AC HF 1m m. 23.(1)抛物线的解析式为y =x 2+2x -3.……………分 (2)如图,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q . ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°. ∵∠PMB =90°, ∴∠PBM +∠BPM =90°. ∴∠BPM =∠NBQ .又∵∠BMP =∠BNQ =90°,PB =NB , △BPM ≌△NBQ .∴PM =BQ .∵抛物线y =x 2+2x -3与x 轴交于点A (1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0).∴BQ =2.∴PM =BQ =2. ∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2.将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3. 解得x 1=-12,x 2=-12(舍去).∴此时点P 的坐标为(-12,-2).………………………………7分 (3)存在.如图,连接AC .可设点P 的坐标为(x ,y )(-3﹤x ﹤0), 则y =x 2+2x -3.∵点A (1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3.即点C (0,-3). ∴OC =3.由(2)可知 S 四边形PBAC =S △BPM +S 四边形PMOC +S △AOCQ N Ml y xPOCBA=12BM·PM+12(PM+OC)·OM+12OA·OC=12(x+3)(-y)+12(-y+3)(-x)+12×1×3=-32y-32x+32.将y=x2+2x-3代入可得S四边形PBAC=-32(x2+2x-3)-32x+32=-32(x+32)2+758.∵-32﹤0,-3﹤x﹤0,∴当x=-32时,S四边形PBAC有最大值758.此时,y=x2+2x-3=-154.∴当点P的坐标为(-32,-154)时,四边形PBAC的面积最大,最大值为758.………………………………11分。
2020年河南中考数学模拟(含答案)
2020年河南省中考数学模拟试卷3一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中,倒数最小的是( )A .﹣5B . 51-C .5D . 15B 【解析】﹣5, 51-,5,15的倒数依次为:51-,﹣5,15,5; ∵115555-<-<<,∴倒数最小的为51-.故选:B . 2.2020年3月12日,中科院宣布国内学者已经掌握了用“纳米”画笔“绘制”各种需要的芯片,针对于此,厚度仅为0.3nm 的低维材料应运而生. 已知1nm =10﹣9m ,则0.3nm 用科学记数法表示为( )A .0.3×10﹣10 mB .3×10﹣10 mC .0.3×10﹣11mD .30×10﹣11mB 【解析】0.3nm 用科学记数法表示为:3×10﹣10m ,故选:B .3.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,过点O 作OF ⊥OE ,若∠AOC =42°,则∠BOF 的度数为( )A .48°B .52°C .64°D .69°D 【解析】∵∠AOC =42°,∴∠BOD =∠AOC =42°,∵OE 平分∠BOD ,∴∠BOE =21°, ∵OF ⊥OE ,∴∠BOF =90°﹣21°=69°.故选:D .4.下列运算正确的是( )A .426a a a +=B .()32826a a --=C .65a a -=D . 325•a a a = D 【解析】A 、4a ,2a 非同类项,无法合并,故此选项不合题意;B 、()322a -=()3232a ⨯-=68a -,故此选项不合题意;C 、65a a a -=,故此选项不合题意;D 、32•a a =23a +=5a ,故此选项符合题意;故选:D .5.如图所示的几何体,它的左视图是( )A .B .C .D .D 【解析】依据“长对正、高平齐、宽相等”画如图所示的几何体的三视图为:故选:D .6.关于x 的一元二次方程()()132x x x --=--,下面说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根D 【解析】将方程()()132x x x --=--化为一般形式为:2350x x -+=,∵△=9﹣4×1×5<0,∴该方程没有实数根.故选:D .7.若一组数据4, 9,5,m ,3的平均数是5,则这组数据的中位数和众数分别是( )A .9,3B .4,5C .4,4D .5,3C 【解析】∵一组数据4, 9,5,m ,3的平均数是5,∴4+9+5+m+3=5×5,解得:m=4,这组数据按从从小到大排列为:3,4,4,5,9, 故则中位数是:4,众数是4.故选:C .8.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x 个,依据题意可得方程( )A .480012000480021.5x x --=B .1200012000480021.5 1.5x x --=C .120004800480021.5x x --=D . 12000480012000480021.5x x ---= D 【解析】设采用新工艺之前每小时可生产口罩x 个,则采用新工艺之后每小时可生产口罩1.5x 个,根据题意,得方程为:12000480012000480021.5x x---=.故选:D . 9.如图,在平行四边形ABCD 中,AB=4,BC=5,∠ABC=60°. 按以下步骤作图:①以C 为圆心,以适当长为半径做弧,交CB 、CD 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点E ,作射线CE 交BD 于点O,交AD 边于点F ;则BO 的长度为( )A. 413 B .173 C 561.254C 【解析】过点D 作DG ⊥BC 的延长线,垂足为G.由做图痕迹可知,CF 为∠BCD 的角平分线,∴∠BCF=∠DCF ,∵AD ∥BC ,∴∠BCF=∠DFC,∴∠DFC=∠DCF ,∴DF=DC=4,∵AB ∥CD ,∴∠DCG=∠ABC=60°,∴CG=CD ·cos60°=2,DG=CD ·sin60°= 23, 在Rt △BGD 中,BG=5+2=7,DG=23,∴BD=()22723+=61,∵AD ∥BC ,∴54BO BC DO DF ==,∴BO=59BD=5619.故选C. 10.如图1,点P 为△ABC 边上一动点,沿着A →C →B 的路径行进,点P 作PD ⊥AB ,垂足为D ,设AD =x ,△APD 的面积为y ,图2是y 关于x 的函数图象,则依据图中的数量关系计算△ACB 的周长为( )A. 14+3B.15C. 9+33D. 7+25C 【解析】由图像可知函数图像的拐点处坐标为(4,6),结合图3可知,当点P 运动到C 点时,y 有最大值6,可知:y= 12AD ·CD ,代入数据得CD=3,在Rt △ADC 中,2243+, 当点D 运动到B 点时,函数值为0,故AB= 4+333在Rt △BDC 中,33得∠B=60°,由BD=BC ·cos60°,得BC= 23∴△ABC 的周长为:5+ 233= 9+33故选:C.二、填空题(每小题3分,共15分)11.计算:()10120202π-⎛⎫-+- ⎪⎝⎭= . -1【解析】原式=1+(-2)=-1.故答案为:-1.12.不等式组235112x x +≤⎧⎪⎨+>-⎪⎩的解集为 . 31x -<≤【解析】235112x x +≤⎧⎪⎨+>-⎪⎩①②,解不等式①得1x ≤;解不等式②得3x >-; ∴原不等式组的解是31x -<≤,故答案为:31x -<≤.13.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是 . 13【解析】依据题意,画树状图如下:由树状图知,共有12种等可能结果,其中抽到的汉字恰为相反意义的有4种结果, 所以“抽到的汉字恰为相反意义”的概率为P=412=13,故答案为:13. 14.△ABC 为等边三角形,点O 为AB 边上一点,且BO=2A0=4,将△ABC 绕点O 逆时针旋转 60°得△DEF ,则图中阴影部分的面积为 .14533π-【解析】连接OC ,OF ,作CG ⊥AB ,OM ⊥BC , FH ⊥AB 的延长线于点H . ∵BO=2A0=4,∴AO=2,AB=6, ∵CG ⊥AB ,∴BG= AG=12AB=3,CG=BC ·sin60°= 33, ∴OG=3-2=1,Rt △OGC 中,OG=1,CG=33,∴()22133+7,易证△NEC ,△AOD ,△BOE 为等边三角形,四边形AOEF 为等腰梯形,∴AF=OE=4,CE=AO=2,OM=HF=4×sin60°=23∵′COF S 扇形= ()26027360π= 143π, OEC S △=AOF S △= 12232⨯⨯= 3AOEF S 梯形= ()26232+⨯83, NEC S △= 1232⨯3∴S 阴影=COF S 扇形+ OEC S △+AOF S △-AOEF S 梯形-NEC S △=14533π-.故答案为14533π-. 15.如图,Rt △ACB 中,∠ACB=90°,AC=2BC=4,点P 为AB 边中点,点E 为AC 边上不与端点重合的一动点,将△ADP 沿着直线PD 折叠得△PDE ,若DE ⊥AB ,则AD 的长度为 .552-或552+【解析】分类讨论如下:①当点E 在直线AC 上方时,如图1,设DM=x. ∵∠A=∠A ,∠AMD=∠C ,∴△AMD ∽△ACB ,∴AM:MD=AC:BC=2,∴AM=2x,在Rt △AMD 中,AM=2x,DM=x,∴AD=()222x x +=5x ,∴DE=AD=5x ,∴ME=()5+1x , 在Rt △ACB 中,AC=4,BC=2,∴AB=2224+=25,∴AP=12AB=5,∴MP=52x - ∵∠E=∠A ,∴tan ∠E=MP ME =12,即:()52125+1x x -=,解得:512x -=,∴AD=5x =552-;②当点E 在直线AC 上方时,如图2,设DN=y.∵DN=y,同①可得5,AN=2y ,∵5,∴PN=25y ,EN=)51y , ∵tan ∠E=PN NE =12,()51251y =-,解得:51y +=555+ 55-55+ 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2213222x x x x x -+⎛⎫÷-- ⎪++⎝⎭,请从-2,-1,0,1,中选择一个合适的值代入求值.解:原式=()221122x x x x --÷++=()()()212211x xx x x-+++-=11xx -+;∵当x取-2,-1,1,原分式无意义,∴x只能取0,当x=0时,原式=1010-+=1.17.(9分)如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当∠AEG=°时,四边形ABOF是菱形;②若OC=2DC,当AB=时,△AGE为等腰直角三角形.证明:(1)如图,连接OA,OF,AF,∵AG=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠GDC=90°,∴∠ACO+∠DEC=90°,∵∠DEC=∠GEA,∴∠GEA+∠ACO=90°,∵OA=OC,∴∠CAO=∠ACO,∴∠CAO+∠GAE=90°,即∠GAO=90°,∵OA为半径,∴AG为⊙O的切线;(2)答案为:60°;42提示如下:①若四边形ABOF为菱形,∴AB=AO,又∵AO=BO,∴△AOB为等边三角形,∴∠ABC=60°,∴∠ACB=90°-60°=30°,∴∠AEG=∠DEC=90°-30°=60°;②如图所示,若△AGE为等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC和△BAC都是等腰三角形,在等腰Rt△BAC中,AO为斜边中线,∴∠AOC=90°,∵∠AOC=∠ODG=∠AGE=90°,∴四边形AODG为矩形,∵OC=2DC,∴OD=DC=AG,易证△AGE≌△CDE,∴2AG=22AB=AC=2AE=42故答案为:60°;2.18.(9分)某中学疫情期间为了切实抓好“停课不停学”活动,借助某软件平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图.请你根据以上信息回答下列问题(1)本次调查的人数为,学习时间为7小时的所对的圆心角为;(2)补全频数分布直方图;(3)若全校共有学生1800人,估计有多少学生在线学习时间不低于8个小时.解:(1)50,86.4°,解答如下:本次调查的人数为:20÷40%=50(人),学习时间为9小时的人数为:50×30%=15(人),学习时间为7小时的人数为:50-15-20-3=12(人),所对的圆心角为:360°×1250=86.4°;故答案为:50,86.4°;(2)依据(1)中相关数据,补全频数分布直方图如下:(3)1800×(30%+40%)=1260(人).答:估计全校有1260在线学习时间不低于8个小时.19.(9分)如图所示,一副篮架由配重、支架、篮板与篮筐组成,在立柱的C点观察篮板上沿D点的仰角为45°,在支架底端的A点观察篮板上沿D点的仰角为54°,点C与篮板下沿点E在同一水平线,若AB=1.91米,篮板高度DE为1.05米,求篮板下沿E点与地面的距离.(结果精确到0.1m,参考数据:sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)解:过D作DF⊥AB的延长线于F,连接CE.在Rt△DEC中,∠DCE=45°,DE=1.05(米),∴CE=DE=1.05(米),∵∠CBF=∠F=∠CEF=90°,∴四边形CBFE为矩形,∴CE=BF=1.05(米),∴AF=AB+BF=2.96(米),在Rt△AFD中,AF=2.96(米),∠DAF=54°,由DF=AF·tan54°得DF≈3.94(米),∴EF=3.94-1.05≈2.9(米).答:篮板下沿E点沿与地面的距离为2.9米.20.(9分)为了迎接体育理化加试,九(2)班同学到某体育用品商店采购训练用球,已知购买3个A品牌足球和2个B品牌足球需付210元;购买2个A品牌足球和1个B品牌足球需付费130元.(优惠措施见海报)(1)求A ,B 两品牌足球的单价各为多少元?(2)为享受优惠,同学们决定购买一次性购买足球60个,若要求A 品牌足球的数量不低于B 品牌足球数量的3倍,请你设计一种付费最少的方案,并说明理由.解:(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,根据题意得:322102130x y x y +=⎧⎨+=⎩,解得5030x y =⎧⎨=⎩,答:A 品牌足球的单价为50元,B 品牌足球的单价为30元;(2)设购买A 品牌足球为a 个,则购买B 品牌足球为(60﹣a )个,根据题意得: ()360a a ≥-,解得45a ≥,故A 品牌足球可享8折,B 品牌足球原价;设购买A ,B 两品牌足球的总费用为W 元,则W =0.8×50a+30(60﹣a )=10a+1800, ∵k =10>0,∴W 随x 的增大而增大,∴当a =45时,花费最少,最少费用为:10×45+1800=2250(元).答:购买A 品牌足球45个,B 品牌足球15个花费最少,最少费用为2250元.21.(10分)如图,单位长度为1的网格坐标系中,一次函数 y kx b =+与坐标轴交于A 、B 两点,反比例函数m y x =(x >0)经过一次函数上一点C (2,a ). (1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图像; (2)依据图像直接写出当0x >时不等式m kx b x +>的解集; (3)若反比例函数m y x=与一次函数y kx b =+交于C 、D 两点,使用直尺与2B 铅笔构造以C 、D 为顶点的矩形,且使得矩形的面积为10.解(1)由图知点A 坐标为(0,4),点B 的坐标为(8,0),一次函数y kx b =+经过A 、B 两点,∴408b k b =⎧⎨=+⎩,解得:124k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:142y x =-+, ∵142y x =-+经过点C (2,a ),∴143a =-+=,∴点C 坐标为(2,3), ∵反比例函数m y x=经过点C (2,3),∴236m =⨯=,∴反比例函数解析式为:6y x =; (2)描绘出反比例函数m y x=(x >0)的图像如下: 依据函数图像可得,当0x >时,不等式m kx b x +>的解集为26x <<; (3)由图像可知点C 的坐标为(2,3),点D 的坐标为(6,1),依据勾股定理可得CD=2224+=25,已知矩形面积为10的情况下,分类讨论:若以CD 为边构造矩形,则矩形的另一边为5;若以CD 为对角线的情况下构造矩形,此时矩形为正方形,得其边长为10,故构造符合题意的矩形共有两个,如图所示.22.(10分).问题发现:(1)如图1,在Rt △ABC 中,∠BAC=30°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC , ∠BCD 的度数是 ;线段BD ,AC 之间的数量关系是 .类比探究:(2)在Rt △ABC 中,∠BAC=45°,∠ABC =90°,将线段AC 绕点A 逆时针旋转,旋转角α=2∠BAC ,请问(1)中的结论还成立吗?;拓展延伸:(3)如图3,在Rt △ABC 中,AB =2,AC =4,∠BDC =90°,若点P 满足PB =PC ,∠BPC =90°,请直接写出线段AP 的长度.解:(1)如图3,过点D 作DE ⊥BC ,垂足为E ,设BC=m.在Rt △ABC 中,∠BAC=30°,由BC=AB ·tan30°,BC=AC ·sin30°,得AC=2m,BC=3m , ∵AC=AD ,∠CAD=2×30°=60°,∴△ACD 为等边三角形,∴∠ACD=60°,CD=AC=2m , ∴∠BCD=60°×2=120°,在Rt △DEC 中,∠DCE=180°-120°=60°,DC=2m ,∴CE=CD ·cos60°=m ,DE=CE ·tan60°=3m ,∴在Rt △BED 中,BD=()()2232m m +=7m , ∴BD AC=72m m =72,故BD=72AC.故答案为:120°;BD=72AC. (2)不成立,理由如下:设BC=n ,在Rt △ABC 中,∠BAC=45°,∠ABC=90°,∴BC=AB=m ,AC=2BC=2n , ∵AC=AD ,∠CAD=90°,∴△CAD 为等腰直角三角形,∴∠ACD=45°,CD=2AC= 2n , ∴∠BCD=2×45°=90°,在Rt △BCD 中,BD=()222n n +=5n , ∴BD AC =52n n =102,,故BD=102AC.答案为:90°;BD=102AC.故结论不成立. (3)AP 的长为2或32.;解答如下:∵PB=PC ,∴点P 在线段BC 的垂直平分线上,∵∠BAC=∠BCP=90°,故A 、B 、C 、P 四点共圆,以线段BC 的中点为圆心构造⊙O ,如图4,图5,分类讨论如下:①当点P 在直线BC 上方时,如图4,作PM ⊥AC ,垂足为M ,设PM=x.∵PB=PC ,∠BPC=90°,∴△PBC 为等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP 为等腰直角三角形,∴AM=PM=x ,22x ,在Rt △ABC 中,AB=2,AC=4,∴222+45PC=BC ·sin45°10在Rt △PMC 中,∵∠PMC=90°,PM=x ,PC=10,CM=4-x ,∴()()222410x x +-=, 解得:11x =,23x =(舍),∴AP=2x =2;②当点P 在直线BC 的下方时,如图5,作PN ⊥AB 的延长线,垂足为N ,设PN=y.同上可得PB=10,△PAN 为等腰三角形,∴AN=PN=y ,∴BN=y-2,在Rt △PNB 中,∵∠PNB=90°,PN=y ,BN=y-2,PB=10,∴()()222210y y +-=, 解得:13y =,21y =-(舍),∴AP=2y =32.故AP 的长度为:2或32.23.(11分)已知:如图,直线3y x =--交坐标轴于A 、C 两点,抛物线2y x bx c =++过A 、C 两点.(1)求抛物线的解析式;(2)若点P 为抛物线位于第三象限上一动点,连接PA,PC ,试问△PAC 是否存在最大值,若存在,请求出△APC 取最大值以及点P 的坐标,若不存在,请说明理由;(3)点M 为抛物线上一点,点N 为抛物线对称轴上一点,若△NMC 是以∠NMC 为直角的等腰直角三角形,请直接写出点M 的坐标.解:(1)3y x =--交x 轴于A (-3,0),交y 轴于C (0,-3),∵抛物线2y x bx c =++经过点A (-3,0),点C (0,-3), ∴3093c b c =-⎧⎨=-+⎩,解得23b c =⎧⎨=-⎩,∴抛物线解析式为:223y x x =+-; (2)△APC 的面积存在最大值为,此时点P 的坐标为:;解答如下:过点P 作PQ ⊥x 轴,垂足为Q ,直线PQ ,AC 交于点P ,设点P 的坐标为(m ,223m m +-),则点D 的坐标为(m ,3m --),∴线段PD 的长为:(3m --)-(223m m +-)=23m m -+, ∵12PAD S PD AQ =△,12PCD S PD OQ =△, ∴PAC S △=PAD PCD S S +△△=1122PD AQ PD OQ +=12PD AO =23327228m ⎛⎫--+ ⎪⎝⎭, ∵302a =-<,∴当32m =时候,△PAC 的面积又最大值,最大值为278, 此时点P 的坐标为(32-,154-);(3)点M 的坐标为322⎛⎫--- ⎪ ⎪⎝⎭,或522⎛--- ⎝⎭,..提示如下: ①如图3,当点M 在对称轴左侧时,构造矩形EFCG ,设点M 的坐标为(n ,223n n +-), 易证△MEN ≌△CFM ,得抛物线223y x x =+-的对称轴为直线x=-1,则MF=()()2233n n +---=22n n +,NE=1n --,∵MF=NE ,∴221n n n +=--,解得1n =(舍),2n =,故点M 的坐标为⎝⎭; ②当点M 在对称轴的右侧时,过点M 作EF ∥x 轴,分别交对称轴与y 轴于点E 和点F. 设点M 的坐标为(k ,223k k +-),易证△MEN ≌△MFC ,抛物线对称轴为直线x=-1, 则ME= ()1k --=1k +,CF= ()()2323k k --+-= 22k k --,∵ME=CF ,∴221k k k --=+,解得:1k =(舍),2k =,故的点M 的坐标 为522⎛⎫-- ⎪ ⎪⎝⎭,;③如图4,作ME ⊥对称轴,垂足为E,ME 交NC ,交点为F.设点M 的坐标为(k ,223k k +-),则ME= 1k +,CF= 22k k +, 易证△MNE ≌△CFM ,∵ME=CF ,故221k k k +=+,解得:115k -+=,215k --=(舍), 故点M 15-+55-+; ④如图6,作MF ⊥y 轴,垂足为F,MF 交对称轴于点E ;设点M 的坐标为(k ,223k k +-),则ME= 1k --,CF= 22k k --, 易证△MNE ≌△CFM ,∵ME=CF ,故221k k k +=+,解得:1152k -+=(舍),2152k -=, 故点M 的坐标为(152-,552--); 综上可得点M 的坐标为:355+5---⎝⎭,或3+555---⎝⎭,或(15-+,55-+15--55--).。
2020河南中考数学模拟测试卷答案
中考模拟测试卷1.B6.C 【解析】∵一元二次方程2x 2+3x +m =0有两个相等的实数根,∴b 2-4ac =32-4×2m =9-8m =0,解得:m =98.故选C .7.A 【解析】∵Rt △ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,∴CD =12AB=.∵CF =13CD ,∴DF =23CD =23×=3.∵BE ∥DC ,∴DF 是△ABE 的中位线,∴BE =2DF =6.故选A.8.D 【解析】当a =0时,此时y =2x +1,不经过第四象限,满足题意;当a ≠0时,此时抛物线y =ax 2+2x +1的对称轴为:x =-1a ,由于抛物线必过(0,1)且不经过第四象限,所以⎩⎪⎨⎪⎧-1a <0a >0,故a >0,综上所述a ≥0,故选D .9.A 【解析】如解图,连接BH 、BH 1,∵∠ACB =90°,∠CAB =30°,BC =2,∴AB =4,∴AC =AB 2-CB 2=23,在Rt △BHC 中,CH =12AC =3,BC =2,根据勾股定理可得:BH=7;∴S 阴影=S 扇形BHH 1-S 扇形BOO 1=120π×7-120π×4360=π.10.C 【解析】∵2017=6×336+1,∴第2017秒时,点P 运动到点C ,作CH ⊥x 轴于H ,如解图,∵六边形ABCDEF 是半径为2的正六边形,∴OB =BC =2,∠BCD =120°,∴∠BCH =30°,在Rt △BCH 中,BH =12BC =1,CH =3BH =3,∴OH =OB -BH =1,∴C 点坐标为(1,-3),∴第2017秒时,点P 的坐标是(1,-3).故选C .14.12 【解析】根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则AB =8-4=4,当直线经过D 点,则DF =32,作DM ⊥AB 于点M.∵y =-x 与x 轴形成的角是45°,又∵AB ∥x 轴,∴∠DFM =45°,∴DM =DF ·sin 45°=32×22=3,则平行四边形的面积是:AB ·DM =4×3=12. 15.3或6 【解析】∵AD =8,AB =6,四边形ABCD 为矩形,∴BC =AD =8,∠B =90°,∴AC =AB 2+BC 2=10.△EFC 为直角三角形分两种情况:①当∠EFC =90°时,如解图①所示.∵∠AFE =∠B =90°,∠EFC =90°,∴点F 在对角线AC 上,∴AE 平分∠BAC ,BE 2+(10-6)2=(8-BE )2,即BE 6=8-BE 10,∴BE =3;②当∠FEC =90°时,如解图②所示.∵∠FEC =90°,∴∠FEB =90°,∴∠AEF =∠BEA =45°,∴四边形ABEF 为正方形,∴BE =AB =6.综上所述BE 的长为3或6.16.解:原式=(x +1)2x (x +1)(x -1)·xx +1=1x -1. 当x =3+1时,原式=13+1-1=33. 17.解:(1)进行该试验的车辆数为:9÷30%=30(辆), (2)B :20%×30=6(辆), D :30-2-6-9-4=9(辆), 补全频数分布直方图如解图:(3)900×9+9+430=660(辆),答:该市约有660辆该型号的汽车,在耗油1L 的情况下可以行驶13 km 以上. 18.解:(1)如解图,连接CE ,∵在△ABC 中,AC =BC ,∠ACB =90°, ∴∠B =45°,∴∠COE =2∠B =90°,∵EF 是⊙O 的切线,∴∠FEO =90°,∴EF ∥OC , ∵DE ∥CF ,∴四边形CDEF 是平行四边形;(2)如解图,过G 作GM ⊥BC 于M ,∴△GMB 是等腰直角三角形,∴MB =GM ,∵四边形CDEF 是平行四边形,∴∠FCD =∠FED ,∵∠ACD +∠GCB =∠GCB +∠CGM =90°,∴∠CGM =∠ACD , ∴∠CGM =∠DEF ,∵tan ∠DEF =2,∴tan ∠CGM =CMGM =2,∴CM =2GM ,∴CM +BM =2GM +GM =3,∴GM =1,∴BG =2GM = 2.19.解:(1)如解图,过点E 作EM ⊥AB ,垂足为M . 设AB 为x .Rt △ABF 中,∠AFB =45°, ∴BF =AB =x ,∴ME =BC =BF +FC =x +13,在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =x -2,tan22°=AM ME, 则x -2x +13≈25, 解得:x ≈12,即教学楼的高约12 m.20.解:(1)将x =1代入y =3x ,得:y =3, ∴点A 的坐标为(1,3), 将A(1,3)代入y =kx,得:k =3,∴反比例函数的解析式为y =3x ;(2)在y =3x 中y =1时,x =3,∴点B(3,1),如解图,S △AOB =S 矩形OCED -S △AOC -S △BOD -S △ABE =3×3-12×1×3-12×1×3-12×2×2=4.21.解:(1)设每台A 型电脑销售利润为x 元,每台B 型电脑的销售利润为y 元,根据题意得⎩⎪⎨⎪⎧10x +20y =400020x +10y =3500,解得⎩⎪⎨⎪⎧x =100y =150.答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元;(2)①据题意得,y =100x +150(100-x ), 即y =-50x +15000,②据题意得,100-x ≤2x ,解得x ≥3313,∵y =-50x +15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100-x =66, 即商店购进34台A 型电脑和66台B 型电脑的销售利润最大. 22.解:(1)结论:△FGH 是等边三角形.理由如下:如解图①中,连接BD 、CE ,延长BD 交CE 于M ,设BM 交FH 于点O. ∵△ABC 和△ADE 均为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE , ∴△BAD ≌△CAE ,∴BD =CE ,∠ADB =∠AEC , ∵EG =GB ,EF =FD ,∴FG =12BD ,GF ∥BD ,∵DF =EF ,DH =HC ,∴FH =12EC ,FH ∥EC ,∴FG =FH ,∵∠ADB +∠ADM =180°,∴∠AEC +∠ADM =180°,∴∠DMC +∠DAE =180°,∴∠DME =120°,∴∠BMC =60°∴∠GFH =∠BOH =∠BMC =60°,∴△GHF 是等边三角形; (2)如解图②,连接AF 、EC.易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF =22-12=3,在Rt △ABF 中,BF =AB 2-AF 2=6,∴BD =CE =BF -DF =6-1,∴FH =12EC =6-12;(3)存在.理由如下.由(1)可知,△GFH 是等边三角形,GF =12BD ,∴△GFH 的周长=3GF =32BD ,在△ABD 中,AB =a ,AD =b ,∴BD 的最小值为a -b ,最大值为a +b , ∴△FGH 的周长最大值为32(a +b),最小值为32(a -b).23.解:(1)∵点B (4,m )在直线y =x +1上,∴m =4+1=5,∴B (4,5),把A 、B 、C 三点坐标代入抛物线解析式可得⎩⎪⎨⎪⎧a -b +c =016a +4b +c =525a +5b +c =0,解得⎩⎪⎨⎪⎧a =-1b =4c =5,∴抛物线解析式为y =-x 2+4x +5;(2)①设P (x ,-x 2+4x +5),则E (x ,x +1),D (x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|,∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P (2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合不合题意,舍去,∴P (6,-7);综上可知P 点坐标为(2,9)或(6,-7);②设P (x ,-x 2+4x +5),则E (x ,x +1),且B (4,5),C (5,0), ∴BE =(x -4)2+(x +1-5)2=2|x -4|,CE =(x -5)2+(x +1)2=2x 2-8x +26,BC =(4-5)2+(5-1)2=26,当△BEC 为等腰三角形时,则有BE =CE 、BE =BC 或CE =BC 三种情况, 当BE =CE 时,则2|x -4|=2x 2-8x +26,解得x =34,此时P 点坐标为(34,11916);当BE =BC 时,则2|x -4|=26,解得x =4+13或x =4-13,此时P 点坐标为(4+13,-413-8)或(4-13,413-8);当CE =BC 时,则2x 2-8x +26=26,解得x =0或x =4,当x =4时E 点与B 点重合,不合题意,舍去,此时P 点坐标为(0,5);综上可知存在满足条件的点P ,其坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5).。
2020河南省中考数学模拟试卷(三) (含解析)
2020河南省中考数学模拟试卷(三)一、选择题(本大题共10小题,共30.0分) 1. 下列几组数中互为相反数的是( )A. −17和0.7B. 13和−0.333C. −(−6)和6D. −14和0.252. 某图书馆有图书约927000册,数据927000用科学记数法可表示为( )A. 927×103B. 92.7×104C. 9.27×105D. 0.927×1063. 如图,直线a//b ,射线DC 与a 相交于点C ,过点D 作DE ⊥b 于点E ,∠1=25°,则∠2度数为( )A. 115°B. 125°C. 155°D. 165°4. 下列运算正确的是( )A. a 2+a 3=a 5B. 2a −a =2C. √a +√b =√abD. a 6÷a 3=a 35. 如图,图1是由5个完全相同的正方体搭成的几何体,现将标有E的正方体平移至图2所示的位置,下列说法中正确的是( ) ①左、右两个几何体的主视图相同 ②左、右两个几何体的俯视图相同 ③左、右两个几何体的左视图相同.A. ①②③B. ②③C. ①②D. ①③6. 已知关于x 的一元二次方程x 2+mx −8=0的一个实数根为2,则另一实数根及m 的值分别为( )A. 4,−2B. −4,−2C. 4,2D. −4,27. 为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( ). 月用电量(度)25 30 40 50 60 户数12421A. 极差是3B. 众数是4C. 平均数是40D. 中位数408.若A(2,y1)、B(−√5,y2)、C(−2,y3)是抛物线y=x2−2x上的三个点,则y1、y2、y3的大小关系是()A. y1<y3<y2B. y3<y1<y2C. y3=y1<y2D. y2<y3<y19.如图,DE分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则AC⌢与BC⌢的大小关系是()A. =B. >C. <D. 不能确定10.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2019的坐标为()A. (1009,0)B. (1009,1)C. (1010,0)D. (1010,1)二、填空题(本大题共5小题,共15.0分)11.计算:√3−√27=______.12.不等式组{2(x+1)>5x−7x+103>2x的解集是______.13.写有“2π”、“cos60∘”、“227”、“√8”的四张卡片,从中随机抽取一张,抽到卡片上的数为无理数的概率是______.14.如图,在圆心角为90°的扇形ACB中,半径CA=6,以AC为直径作半圆O.过点O作BC的平行线交两弧于点D、E,则图中阴影部分的面积是______.15.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为__________.三、计算题(本大题共1小题,共8.0分)16.先化简,再求值:(x−1x2−1+1x+1)÷4x2+x,其中x=−2.四、解答题(本大题共7小题,共67.0分)17.如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD与点E,GC是⊙F的切线;CG交AD于点G.(1)求证:GC⊥AD.(2)填空:①若△BCF的面积为15,则△BDA的面积为______.②当∠GCD的度数为______时,四边形EFCD是菱形.18.红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?19.如图,九年级学生在一次社会实践活动中参观了具有深厚文化底蕴的观音山后感概万千,这座观音多高呢?为了测量这座观音像的高度AB,数学兴趣小组在C处用高为1.5米的测角仪CE,测得观音像的顶端A的仰角为42°,再向观音像方向前进12米到达D点,又测得观音像的顶端A的仰角为61°,求这座观音像的高度AB.(参考数据:sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)20.某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t 天后的质量为m(kg),销售单价为y 元/kg.根据以往经验可知:m 与t 的函数关系为m ={20000(0≤t ≤50)100t +15000(50<t ≤100);y 与t 的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 与t 的函数关系式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大?并求出最大值.(利润=销售总额−总成本)21. 如图,AB 为半圆O 的直径,半径的长为4cm ,点C 为半圆上一动点,过点C 作CE ⊥AB ,垂足为点E ,点D 为弧AC 的中点,连接DE.如果DE =2OE ,求线段AE 的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小何假设AE的长度为x cm,线段DE的长度为y cm.(当点C与点A重合时,AE长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数) (1)通过取点、面图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在上图中帮助小何完成作图,并使用刻度尺度量出此时线段DE的长度,填写在表格空白处;(2)建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,面出该函数的图象;(3)结合画出的函数图象解决问题:当DE=2OE时,AE的长度约为________cm.22.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)问题发现:如图1,若∠DAB=120°,且∠B=90°,直接写出AD,AB,AC的数量关系____________(2)思考探究:如图2,若将(1)中的条件“∠B=90°”去掉,则(1)中的结论是否仍成立?请说明理由;(3)拓展应用:如图3,若∠DAB=90°,AD=2,AB=3,求线段AC的长度.23.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC//x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:D解析:本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 根据只有符号不同的两数叫做互为相反数解答. 解:−17和0.7,13和−0.333,−(−6)和6,−14和0.25中, 只有−14和0.25是互为相反数. 故选D .2.答案:C解析:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于927000有6位,所以可以确定n =6−1=5. 解:927000=9.27×105, 故选C .3.答案:A解析:解:如图,过点D 作c//a . 则∠1=∠CDB =25°. 又a//b ,DE ⊥b , ∴b//c ,DE ⊥c ,∴∠2=∠CDB +90°=115°. 故选:A .如图,过点D 作c//a.由平行线的性质进行解题.本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.解析:解:A、a2+a3不能合并同类项,故A错误;B、2a−a=a,故B错误;C、√a+√b不能合并同类二次根式,故C错误;D、a6÷a3=a3,故D正确.故选:D.各项化简得到结果,即可作出判断.此题考查了合并同类项,同底数幂的除法以及二次根式的加减,熟练掌握运算法则是解本题的关键.5.答案:B解析:此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.直接利用已知几何体分别得出三视图进而分析得出答案.解:①左、右两个几何体的主视图为:,故不相同;②左、右两个几何体的俯视图为:,故相同;③左、右两个几何体的左视图为:,故相同.故选:B.解析:【试题解析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.解:由根与系数的关系式得:2x2=−8,2+x2=−m,解得:x2=−4,m=2,则另一实数根及m的值分别为−4,2,故选D.7.答案:D解析:本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.根据极差、平均数、中位数、众数的概念求解.解:这组数据按照从小到大的顺序排列为:25,30,30,40,40,40,40,50,50,60,极差为:60−25=35,众数为:40,中位数为:40,=40.5.平均数为:25+30+30+40+40+40+40+50+50+6010故选D.8.答案:A解析:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.分别计算出自变量为2,−√5和−2所对应的函数值,然后比较函数值的大小即可.解:当x=2时,y1=x2−2x=4−4=0;当x=−√5时,y2=x2−2x=5+2√5;当x=−2时,y3=x2−2x=4+4=8;所以y1<y3<y2.故选A.9.答案:A解析:本题考查了圆心角、弦、弧的关系及全等三角形的判定(SAS)与性质,难度一般.已知CD⊥OA,CE⊥OB⇒∠CDO=∠CEO=90°,CD=CE,CO=CO⇒△COD≌△COE.根据圆心角、弧、弦的关系(在同圆或等圆中,如果两个圆心角、两条弧、两条弦中只要有一组量相等,那么它们所对应的其余各组量都分别相等.)可得AC⏜=CB⏜.解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,∵CD=CE,CO=CO,∴△COD≌△COE,∴∠AOC=∠BOC,∴AC⏜=CB⏜.故选A.10.答案:A解析:本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循环节是解决本题的关键.根据图形可找出点A3、A7、A11、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+3(2n+ 1,1)(n为自然数)”,依此规律即可得出结论.解:结合图象可知:纵坐标每四个点循环一次,而2019=504×4+3,故A 2019的纵坐标与A3的纵坐标相同,都等于0,由A3(1,0),A7(3,0),A11(5,0)…可得到以下规律,A4n+3(2n+1,0)(n为自然数),当n=504时,A2019(1009,0).故选A.11.答案:−2√3解析:解:原式=√3−3√3=−2√3. 故答案为:−2√3.直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.答案:x <2解析:解:解不等式2(x +1)>5x −7,得:x <3,解不等式x+103>2x ,得:x <2,则不等式组的解集为x <2,故答案为:x <2.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.答案:12解析:本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比;易错点是得到无理数的个数.用无理数的个数除以数的总个数即为抽到无理数的概率.解:因为一共4个数,其中“2π”,“√8”两个是无理数,cos60∘=12、227是有理数, 所以抽到无理数的概率为24=12.故答案为12. 14.答案:512π−12√3解析:解:如图,连接CE .∵AC ⊥BC ,AC =BC =2,以AC 为直径作半圆,圆心为点O ;以点C 为圆心,BC为半径作AB⏜,∴∠ACB=90°,OA=OC=OD=1,BC=CE=2.又∵OE//BC,∴∠AOE=∠COE=90°.∴在直角△OEC中,OC=12CE,∴∠OEC=30°,OE=√3.∴∠ECB=∠OEC=30°,∴S阴影=S扇形ACB−S扇形AOD−S扇形ECB−S△OCE=90π×22360−90⋅π×12360−30⋅π×22360−12×1×√3=512π−12√3.故答案为512π−12√3.如图,图中S阴影=S扇形ACB−S扇形AOD−S扇形ECB−S△OCE.根据已知条件易求得OA=OC=OD=2,BC=CE=4.∠ECB=∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可.本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.15.答案:5.解析:本题考查了矩形的性质以及勾股定理,在Rt△FC′D中,利用勾股定理找出关于FC′的长度的一元一次方程是解题的关键.设FC′=x,则FD=9−x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.解:设FC′=x,则FD=9−x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,∴FC′2=FD2+C′D2,即x2=(9−x)2+32,解得:x=5.故答案为5.16.答案:解:原式=2x+1÷4x(x+1)=2x+1×x(x+1)4=x2,当x=−2时,原式=−22=−1.解析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.答案:(1)证明:∵AB=AD,FB=FC,∴∠B=∠D,∠B=∠BCF,∴∠D=∠BCF,∴CF//AD,∵GC是⊙F的切线,∴CG⊥CF;∴CG⊥AD;(2)①60;②30°.解析:本题是圆的综合题目,考查了切线的判定、圆的半径相等、等腰三角形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定、菱形的判定等知识;熟练掌握切线的判定方法,证明CF//AD是解决问题(1)的关键.(1)由等腰三角形的性质得出∠D=∠BCF,证出CF//AD,由已知条件得出CG⊥CF,即可得出结论;(2)①根据平行线的性质得出△BCF∽△BDA,得出BFBA =12,△BCF的面积:△BDA的面积=1:4,即可得出结果;②∠GCD=30°时,证出△BCF是等边三角形,得出∠BFC=60°,再分别证出△ABD、△AFE均是等边三角形,则CF=12AD=AE,则CF=ED,证出四边形EFCD是平行四边形,再由FC=FE即可得出结论.(1)见答案;(2)①∵CF//AD,∴△BCF∽△BDA,∴BFBA =12,∴△BCF的面积:△BDA的面积=1:4,∴△BDA的面积=4×△BCF的面积=4×15=60;故答案为:60;②当∠GCD的度数为30°时,四边形EFCD是菱形.理由如下:∵CG⊥CF,∠GCD=30°,∴∠FCB=60°,∵FB=FC,∴△BCF是等边三角形,∴∠BFC=60°,∵CF//AD,∴∠A=60°,∵AB=AD,∴△ABD是等边三角形,∴CF=12AB=12AD,∵∠A=60°,AF=EF,∴△AEF是等边三角形,∴AE=AF=FC=12AD,∴CF=DE,又∵CF//AD,∴四边形EFCD是平行四边形,∵CF=EF,∴四边形EFCD是菱形.故答案为:30°.18.答案:解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.解析:【试题解析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.19.答案:解:如图,记EF的延长线交CD于H,根据题意得:BH=CE=DF=1.5m,EF=CD=12m,设AH=xm,在Rt△AEH中,∠AEH=42°,AH═xm,∴EH=AHtan42∘=xtan42∘,在Rt△AFH中,∠AFH=61°,AH=xm,∴FH=AHtan61∘=xtan61∘,∵EF=EH−FH=x0.9−x1.8=12,∴x=21.6,∴AB=1.5+21.6≈23m,答:这座观音像的高度AB约为23m.解析:根据题意得到BH =CE =DF =1.5m ,EF =CD =12m ,设AH =xm ,解直角三角形即可得解.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是灵活运用所学知识解决问题,本题的突破点是利用EF =EH −FH =12建立方程,属于中考常考题型.20.答案:解:(1)由题意,得:{10a +b =0.0420a +b =30.8, 解得{a =0.04b =30, 答:a 的值为0.04,b 的值为30;(2)①当0≤t ≤50时,设y 与t 的函数解析式为y =k 1t +n 1,将(0,15)、(50,25)代入,得:{n 1=1550k 1+n 1=25, 解得:{k 1=15n 1=15, ∴y 与t 的函数解析式为y =15t +15;当50<t ≤100时,设y 与t 的函数解析式为y =k₂t +n₂,将点(50,25)、(100,20)代入,得:{50k 2+n 2=25100k 2+n 2=20, 解得:{k 2=−110n 2=30, ∴y 与t 的函数解析式为y =−110t +30;②由题意,当0≤t ≤50时,W =20000(15t +15)−(400t +300000)=3600t ,∵3600>0, ∴当t =50时,W 最大值=180000(元);当50<t ≤100时,W =(100t +15000)(−110t +30)−(400t +300000)=−10t²+1100t +150000=−10(t −55)²+180250,∵−10<0,∴当t =55时,W 最大值=180250(元),综上所述,放养55天时,W 最大,最大值为180250元.解析:本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式,根据相等关系列出利润的函数解析式及二次函数的性质是解题的关键.(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t ≤50、50<t ≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额−总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.21.答案:解:(1)通过取点、画图、测量可得x=6时,y=5.3cm,(2)利用描点法,图象如图所示:(3)2.6cm或6.8cm.解析:本题考查圆综合题、坐标与图形的关系等知识,解题的关键是理解题意,学会用测量法、图象法解决实际问题,属于中考压轴题.(1)利用取点,测量的方法,即可解决问题;(2)利用描点法,画出函数图象即可;(3)结合画出的函数图象,当DE=2OE时,AE的长度约为2.6cm或6.8cm.解:(1)通过取点、画图、测量可得x=6时,y=5.3cm,故答案为5.3.(2)见答案;(3)结合画出的函数图象,当DE=2OE时,AE的长度约为2.6cm或6.8cm.故答案为2.6cm或6.8cm.22.答案:解:(1)AD+AB=AC;(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=√2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=AC cos45°=√2AC,∴AD+AB=√2AC.∴AC=√2=52√2.解析:本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.(1)结论:AC=AD+AB,只要证明AD=12AC,AB=12AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可得AD+AB=√2AC,进而求解AC.解:(1)如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AD+AB=AC.故答案为AD+AB=AC;(2)见答案;(3)见答案.23.答案:解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x−1)(x−3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2−4x+3;(2)如图2,∵△AOE的面积是定值,所以当△OEP面积最大时,四边形AOPE面积最大,设P(m,m2−4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG//y轴,交OE于点G,∴G(m,m),∴PG=m−(m2−4m+3)=−m2+5m−3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG⋅AE,=92+12×3×(−m2+5m−3),=−32m2+15m2,=−32(m−52)2+758,∵−32<0,∴当m=52时,S有最大值是758;(3)分四种情况:①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2−4m+3),则−m2+4m−3=2−m,解得:m=5+√52(舍)或5−√52,∴P的坐标为(5−√52,1−√52);②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2−m=m2−4m+3,解得:m1=3+√52(舍)或m2=3−√52,③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF ,∴PN =FM ,则−m 2+4m −3=m −2,解得:x =3+√52或3−√52(舍);P 的坐标为(3+√52,1−√52); ④当P 在对称轴的右边,且在x 轴上方时,同理得m 2−4m +3=m −2,解得:m =5+√52或5−√52(舍)P 的坐标为:(5+√52,√5+12); 综上所述,点P 的坐标是:(5+√52,√5+12)或(5−√52,1−√52)或(3+√52,1−√52)或(3−√52,1+√52).解析:【试题解析】本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.(1)利用对称性可得点D 的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m 2−4m +3),根据OE 的解析式表示点G 的坐标,表示PG 的长,根据面积和可得四边形AOPE 的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.。
2020年河南省中考数学模拟考试试卷(经典一) (解析版)
2020年河南省中考数学模拟试卷(经典一)一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013 3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=45.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.58.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.129.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)二.填空题(共5小题)11.﹣3﹣1=.12.不等式组的解集是.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.【解答】解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.2019年上半年,河南接待海内外旅游人数4.9亿人次,旅游总收入5150亿元,数据“5150亿”用科学记数法表示为()A.5150×108B.5.15×1011C.515×109D.0.515×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5150亿=515000000000=5.15×1011.故选:B.3.下列四个图案中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:A.4.下列运算结果正确的是()A.(﹣a3)2=﹣a6B.a8÷a2=a4C.(a+b)2=a2+b2D.(﹣)﹣2=4【分析】分别根据积的乘方运算法则,同底数幂的除法法则,完全平方公式以及负整数指数幂的定义逐一判断即可.【解答】解:A.(﹣a3)2=a6,故本选项不合题意;B.a8÷a2=a6,故本选项不合题意;C.(a+b)2=a2+2ab+b2,故本选项不合题意;D.(﹣)﹣2=,符合题意.故选:D.5.如图由6个等大的小立方体搭成的,有关三视图的说法正确的是()A.正视图(主视图)面积最大B.左视图面积最大C.俯视图面积最大D.三种视图面积一样大【分析】根据三视图可得主视图,左视图,俯视图都是4个正方形,因此面积一样大.【解答】解:正视图(主视图),左视图,俯视图都是4个正方形,因此面积一样大,故选项A、B、C错误,D正确;故选:D.6.一元二次方程(2x+1)(2x﹣1)=8x+15的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:方程化为x2﹣2x﹣4=0,∵△=(﹣2)2﹣4×(﹣4)=20>0,∴方程有两个不相等的实数根.故选:A.7.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:95×20%+90×30%+85×50%=19+27+42.5=88.5(分).故选:A.8.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.﹣12B.﹣6C.6D.12【分析】设菱形的两条对角线相交于点D,如图,根据菱形的性质得OB⊥AC,BD=OD =2,CD=AD=3,再由菱形ABCD的对角线OB在y轴上得到AC∥x轴,则可确定C (﹣3,2),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:设菱形的两条对角线相交于点D,如图,∵四边形ABCD为菱形,∴OB⊥AC,BD=OD=2,CD=AD=3,∵菱形ABCO的对角线OB在y轴上,∴AC∥x轴,∴C(﹣3,2),∴k=﹣3×2=﹣6.故选:B.9.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S=CD•OE四边形OCED【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S=CD•OE,四边形OCED但不能得出∠OCD=∠ECD,故选:C.10.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O…依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为()A.(22019,22019)B.(﹣22019,22019)C.(﹣22020,22020)D.(22020,22020)【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).故选:D.二.填空题(共5小题)11.﹣3﹣1=.【分析】首先计算乘方、开方,然后计算减法,求出算式的值是多少即可.【解答】解:﹣3﹣1=3﹣=故答案为:.12.不等式组的解集是x<5.【分析】此题可通过对不等式组里的两个一元一次不等式求解,再写出两个不等式的公共解集.【解答】解:解不等式①得:x<5,解不等式②得:x≤9,∴不等式组的解集为x<5,故答案为:x<5.13.同时掷两枚普通的骰子,“出现数字之积为奇数”的概率为.【分析】列举出所有情况,看出现数字之积为奇数的情况数占所有情况数的多少即可.【解答】解:根据题意列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)共有36种等情况数,其中数字之积为奇数的有9种情况,所以“出现数字之积为奇数”的概率是=;故答案为:.14.如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是9π.【分析】根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积﹣小扇形CBC′的面积.【解答】解:根据旋转变换的性质,△ABC≌△A′BC′,∵∠BCA=90°,∠BAC=30°,AB=6,∴BC=AB=3,∴阴影面积=﹣=9π.15.如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为3或6.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时四边形ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC==10,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故答案为:3或6.三.解答题(共8小题)16.先化简,再从2、3、4中选一个合适的数作为x的值代入求值.()÷【分析】首先计算括号里面的减法,然后再算括号外的除法,化简后,根据分式有意义的条件确定x的取值,再代入x的值即可.【解答】解:原式=[﹣]•,=(﹣)•,=•,=x+2,∵x﹣2≠0,x﹣4≠0,x+2≠0,∴x≠2或4或﹣2,∴x取3,当x=3时,原式=3+2=5.17.在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.【分析】(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)解:∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.18.九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)6000×=1800(人),答:在试卷评讲课中,“独立思考”的初三学生约有1800人.19.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A 型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于点A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及B点坐标;(2)求△ABC的面积.【分析】(1)先把A(1,a)代入y=2x中求出a得到A(1,2);再把A点坐标代入y=中可确定k的值,然后利用反比例函数和正比例函数图象的性质确定B点坐标;(2)设C(1,t),根据两点间的距离公式和勾股定理得到(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,求出t得到C(1,﹣3),从而得到AC的长,然后关键三角形面积公式求得即可.【解答】解:(1)把A(1,a)代入y=2x得a=2,则A(1,2);把A(1,2)代入y=得k=1×2=2,∵点A与点B关于原点对称,∴B(﹣1,﹣2);(2)∵CA∥y轴,∴C点的横坐标为1,设C(1,t),∵∠ABC=90°.∴BC2+AC2=AB2,即(1+1)2+(t+2)2+(1+1)2+(2+2)2=(2﹣t)2,解得t=﹣3,∴C(1,﹣3),∴AC=5,=AC(x A﹣x B)==5.∴S△ABC22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE ∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.23.如图,直线y=﹣2x+12与x轴交于点C,与y轴交于点B,抛物线y=3ax2+10x+3c经过B,C两点,与x轴交于另一点A,点E是直线BC上方抛物线上的一动点,过E作EF∥y轴交x轴于点F,交直线BC于点M.(1)求抛物线的解析式;(2)求线段EM的最大值;(3)在(2)的条件下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【分析】(1)点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c 经过B,C两点,则3c=12,将点C的坐标代入抛物线表达式,即可求解;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=﹣2x2+12x,即可求解;(3)分AM是边、AM是对角线两种情况,分别求解即可.【解答】解:(1)直线y=﹣2x+12与x轴交于点C,与y轴交于点B,则点C、B的坐标分别为:(6,0)、(0,12),抛物线y=3ax2+10x+3c经过B,C两点,则3c=12,故抛物线的表达式为:y=3ax2+10x+12,将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣2x2+10x+12;(2)设点E(x,﹣2x2+10x+12),则点M(x,﹣2x+12),EM=(﹣2x2+10x+12)﹣(﹣2x+12)=﹣2x2+12x,∵﹣2<0,故EM有最大值,最大值为18,此时x=3;(3)y=﹣2x2+10x+12,令y=0,则x=﹣1或6,故点A(﹣1,0),由(2)知,x=3,则点M(3,6),设点P的横坐标为:m,点Q的坐标为:(,s),①当AM是边时,当点A向右平移4个单位向上平移6个单位得到点M,同样,点P(Q)向右平移4个单位向上平移6个单位得到点得到点Q(P),即m±4=,解得:m=﹣或,故点P(﹣,﹣)或(,﹣);②当AM是对角线时,由中点公式得:﹣1+2=m+,解得:m=﹣,故点P(﹣,);综上,点P的坐标为:(﹣,﹣)或(,﹣)或(﹣,).。
2020届中考模拟河南省中考数学模拟试卷(二)(含参考答案)
河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
2020年河南省郑州市中考数学模拟试卷(附答案)
2020年河南省郑州市中考数学模拟试卷一、选择题(3分×10=30分)1.(3分)下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣2.(3分)下列计算错误的是()A.2a2+3a2=5a4B.(3ab3)2=9a2b6C.(x2)3=x6D.a•a2=a33.(3分)2019年“十一”黄金周期间(7天),北京市接待旅游总人数为920.7万人次,旅游总收入111.7亿元.其中111.7亿用科学记数法表示为()A.111.7×106B.11.17×109C.1.117×1010D.1.117×108 4.(3分)如图所示的几何体,它的左视图是()A.B.C.D.5.(3分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2)B.(2,)C.(,2)D.(+1,6.(3分)太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程.根据规定,我市将垃圾分为了四类:可回收垃圾、餐厨垃圾、有害垃圾和其他垃圾.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投入进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.7.(3分)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.8.(3分)如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.189.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)10.(3分)如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△P AD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(3分×5=15分)11.(3分)计算:()﹣1﹣|﹣2|=.12.(3分)某市为治理污水,需要铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得.13.(3分)一次函数y1=mx+n与y2=﹣x+a的图象如图所示,则0<mx+n<﹣x+a的解集为.14.(3分)如图,在△OAB中,∠AOB=90°,AO=2,BO=4.将△OAB绕顶点O按顺时针方向旋转到△OA1B1处,此时线段OB1与AB的交点D恰好为线段AB的中点,线段A1B1与OA交于点E,则图中阴影部分的面积.15.(3分)如图,正方形ABCD中,AD=+2,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=.三、解答题(本大题共8题,共75分)16.(8分)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.17.(9分)某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元)频数频率0<x≤2600.152<x≤4180c4<x≤6920.236<x≤8a0.12x>8200.05合计b1根据以上信息解答下列问题:(1)统计表中,a=,b=,c=.(2)扇形统计图中,m的值为,“甜”所对应的圆心角的度数是.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?18.(9分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.19.(9分)某校王老师组织九(1)班同学开展数学活动,某天带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A的仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高AB.(结果用根号表示)20.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.21.(10分)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.22.(10分)问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.23.(11分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.。
(完整word版)2020年河南省中考数学模拟试卷解析版
2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。
3×106B.130×104C.13×105D.1。
3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。
2020届中考模拟河南省中考数学模拟试卷(含参考答案)(word版)
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E 为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010 D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3•x4=x7 D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E 为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.12.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,==π.∴S阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,. ∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m ﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。
河南2020年中考数学模拟试卷 三(含答案)
23.已知函数y1=x,y2=x2+bx+c,ɑ,β为方程y1-y2=0 的两个根,点M(t,T)在函数y2 的图象上.
(1)若
,求函数y2 的解析式;
(2)在(1)的条件下,若函数y1 与y2 的图象的两个交点为A,B,当△ABM的面积为 1/12 时, 求t的值;
过 A 作 AC⊥x 轴于点 C,过 B 作 BD⊥x 轴于点 D, (1)求 m,n 的值及反比例函数的解析式;
(2)请问:在直线 y=-x+2 上是否存在点 P,使得 S△P△AC =S PBD ?若存在,求出点 P 的坐标;
若不存在,请说明理由.
四、综合题 21.在平面直角坐标中,△ABC 三个顶点坐标为 A(﹣ ,0)、B( ,0)、C(0,3). (1)求△ABC 内切圆⊙D 的半径. (2)过点 E(0,﹣1)的直线与⊙D 相切于点 F(点 F 在第一象限),求直线 EF 的解析式. (3)以(2)为条件,P 为直线 EF 上一点,以 P 为圆心,以 2 为半径作⊙P.若⊙P 上存在 一点到△ABC 三个顶点的距离相等,求此时圆心 P 的坐标.
A.30°
B.40°
C.50°
4.下列根式是最简二次根式的是( )
A.
B.
C.
D.
5.将一个螺栓按如图放置,则螺栓的左视图可能是(
)
D.60°
6.不解方程,判别方程 2x2﹣3 x=3 的根的情况( )
A.有两个相等的实数根 C.有一个实数根
B.有两个不相等的实数根 D.无实数根
7.在样本频率分布直方图中,共有 9 个小长方形,若中间一个小长方形的面积等于其他 8 个小
河南省2020年中考数学模拟试题(含答案)
河南省2020年中考数学模拟试题含答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.4的平方根是 A .2 B .–2 C . ±2 D .±122.某种花粉粒的直径约为0.0000065米,若将0.0000065用科学计数法表示为6.5×10 n, 则n 等于 A .–5 B .–6 C .–7 D .–83.不等式组11223x x ìïï£ïíïï-<ïî的最小整数解为 A .–1 B .0 C .1 D .2 4.如图所示的几何体的左视图是5.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =50°,则∠1等于A .40°B .45°C .50°D .55°6.下列计算正确的是A .235B .(–3)2 =6C .(–a 3)2=a 6 D .a 2+a 3=a 57.合作交流是学习数学的重要方式之一,某校九年级每班的合作学习小组的个数分别是:(第4题图)A .B .C .D .(第5题图)E DCBA18,7,7,8,9,7,则由这组数据得到的结论中错误..的是 A .平均数是7 B .中位数是7.5 C .众数是7 D .极差是28.若关于的x 一元二次方程kx 2–2x –1=0有两个不相等的实数根,则k 的取值范围是 A .k >–1 B .k >–1且k ≠0 C .k <1 D .k <1,且k ≠0 9.如图,△ABC 中,点D ,E 分别在边AB ,AC 上, ∠AED =∠B ,若AD =2,AE =3,CE =1, 则BD 的长为A . 3B . 4C . 5D . 610.如图所示,平面直角坐标的原点是等边三角形的中心,A (0,1),把△ABC 绕点O 顺时针旋转,每秒旋转60°,则第2017秒时,点A 的坐标为 A .(0,1) B .(32-,12-) C .(32,12-) D .(32,12)二、填空题( 每小题3分,共15分)11.计算:2-+38-+(31-)0= .12.如图,将一个等腰直角三角板按右图方式放置在一个矩形纸片上,其中∠α=20°,则∠β的度数为 .13.一个不透明的袋子中有除颜色外其余都相同的红蓝黄色球若干个,其中红色球有6个,黄色球有9个,已知从袋子中随机摸出一个蓝色球的概率为25,那么随机摸出一个为红球的概率为 . 14.设点P 在函数6y x =的图象上,PC ⊥x 轴于点C ,交函数2y x =的图象于点A ,PD ⊥y 轴于点D ,交函数2y =的图象于点B ,则四边形PAOB 的面积为 .(第9题图)ED CBA(第10题图)OCBAy x(第12题图)βα(第14题图)DCBAP Oyx(第15题图)lFD CBA15.如图,等腰Rt △ABC 中,∠BAC =90°,AB =AC = 2,点F 是边BC 上不与点B ,C重合的一个动点,直线l 垂直平分BF ,垂足为D ,当△AFC 是等腰三角形时,BD 的长为 .三、解答题:(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2844x x x ++÷2224x xx --22x -+,其中x =4cos30°·sin45°﹣2.17.(9分)如图,C 、D 两点在以AB 为直径的半圆O 上,AD 平分∠BAC ,AB =20,AD =DE ⊥AB 于E .(1)求DE 的长. (2)求证:AC =2OE .18.(9分)某课外活动小组为了解本校学生上学常用的一种交通方式,随机调查了本校部分学生,根据调查结果,统计整理并制作了如下尚不完整的统计图表: 请根据以上信息解答下列问题:40%20%ABC D调查结果扇形统计图n m 864其它乘公交车骑自行车步行DC B A 频数(人数)上学常用的一种交通方式组别BA(1)参与本次调查的学生共有 人;(2)统计表中,m = ,n = ;扇形统计图中,B 组所对应的圆心角的度数为 ; (3)若该校共有1500名学生,请估计全校骑自行车上学的学生人数;(4)该小组据此次调查结果向学校建议扩建学生车棚,若平均每4平方米能停放5辆自行车,请估计在现有300平方米车棚的基础上,至少还需要扩建多少平方米才能满足学生停车需求.19.(9分)一棵大树AB (假定大树AB 垂直于地面)被刮倾斜15°后折断在地上,树的顶部恰好接触到地面D 处(如示意图所示),量得大树的倾斜角∠BAC =15°,大树被折断部分和地面所成的角∠ADC =60°,AD =4米,求大树AB 原来的高度是多少米?(结果保留整数,≈1.41.7≈2.4)20.(9分)如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x=(x <0), 2k y x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根. (1)求k 1,k 2的值;(2)连接AB ,求tan∠ OBA 的值.B'DCBA21.(10分)某景区售出的门票分为成人票和儿童票,购买3张成人票和1张儿童票共需350元,购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.22.(10分)如图,正方形ABCD的边长为12,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B'处.(1)当BECE=1时,如图1,延长A B',交CD于点M,①CF的长为;②求证:AM=FM.(2)当点B'恰好落在对角线AC上时,如图2,此时CF的长为;BECE=.(3)当BECE=3时,求∠DA B'的正弦值.图2图1AB CDEFB'B'MFEDCBA23.(11分)抛物线y =ax 2+bx +3经过点A ,B ,C ,已知A (-1,0),B (3,0). (1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△BDC 的面积最大时,求点P 的坐标;(3)如图2,在(2)的条件下,延长DP 交x 轴于点F ,M (m ,0)是x 轴上一动点,N 是线段DF 上一点,当△BDC 的面积最大时,若∠ MNC =90°,请直接写出实数m 的取值范围.图2图1OO xy yxABCDPF PDCB A参考答案及评分标准一、选择题二、填空题(注:第12题填25,不扣分) 三、解答题16.解:原式=28(2)x x +×(2)(2)(2)x x x x +---22x +=82x +-22x +=62x + …………………………………5分 ∵x =4cos30°·sin45°﹣2=4×2×2﹣2﹣2 …………7分 ∴将x ﹣2代入62x +………8分 17.解:(1)连接BD .∵AB 为直径,∴∠ADB =90°,在Rt △ADB 中,BD=S △ADB =12AD ·BD =12AB ·DE ∴AD ·BD=AB ·DE ,∴DE =AD BD AB×=20,即DE = …………………………………4分 (2)证明:连接OD ,作OF ⊥AC 于点F .∵OF ⊥AC ,∴AC =2AF ,∵AD 平分∠BAC ,∴∠BAC =2∠BAD . 又∵∠BOD =2∠BAD ,∴∠BAC =∠BOD ,B ARt △OED 和Rt △AFO 中,∵90BAC BOD AFO OEDOA ODì??ïïïï??íïï=ïïîo∴△AFO ≌△OED (AAS ),∴AF =OE ,∵AC =2AF ,∴AC =2OE .……………9分18.解:(1)160 …………………………………1分(2)m = 56 ,n = 32 ;B 组所对应的圆心角的度数为 126°;(填126,不扣分)…………………………………4分 (3)全校骑自行车上学的学生人数约有1500×56160=525(人)……………6分 (4)5255×4﹣300=120(平方米) ∴至少还需要扩建120平方米,才能满足学生停车需求.………………………9分 19.解:过点A 作AE ⊥CD 于点E ,如图,∵∠BAD =90°,∠BAC =15°∴∠DAC =∠BAD ﹣∠BAC =75°,∵∠ADC =60°,∠AED =90°,∠DAE =90°﹣∠ADC =30°.……………3分 在Rt △ADE 中,AE =AD ·sin60°=34分DE =AD ·cos60°=4·cos60°=2,……………5分在Rt △ACE 中,∠CAE =∠DAC ﹣∠DAE =45°, ∴CE =AE ·tan45°=3,……………6分 ∴AC =sin 45CE°=6,……………7分 AB =AC +CE +DE =6+32≈10(米),……………8分即大树AB 原来的高度约为10米.……………9分20.解:(1)∵k 1,k 2分别是方程x 2-x -6=0的两根,∴解方程x 2-x -6=0,得x 1=3,E B'DCBADCyxBA Ox2=-2.结合图像可知:k1<0,k2>0,∴k1=-2,k2=3.……………3分(2)如图,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.由(1)知,点A,B分别在反比例函数2yx=-(x<0),3yx=(x>0)的图象上,∴S△ACO=12×2-=1 ,S△ODB=12×3=32.∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD.又∵∠ACO=∠ODB=90°,∴△ACO∽△ODB.∴SSACOODBDD=2()OAOB=23,∴OAOB=±6(舍负取正),即OAOB=6.∴在Rt△AOB中,tan∠OBA=OAOB=63.……………9分21.解:(1)设每张成人票x元,每张儿童票y元.根据题意,得33502200x yx yì+=ïïíï+=ïî,解得10050xyì=ïïíï=ïî∴每张成人票100元,每张儿童票50元.……………3分(2)设参加旅游的儿童有m人,则成人有(30-m)人,根据题意,得:按团体票购买时总费用为100×80%×30=2 400.分别按成人票、儿童票购买时总费用为100(30-m)+50m=3 000-50m.……………7分① 3 000-50m=2 400,解得m=12.∴当儿童为12人时,两种购票方式花费相同.② 3 000-50m>2 400,解得m<12.∴当儿童少于12人时,选择购买团体票花费少.③ 3 000-50m<2 400,解得m>12.∴当儿童多于12人时,选择分别按成人票、儿童票购票花费少.……………10分22.解:(1)①CF 的长为 12 ;……………1分②证明:∵四边形ABCD 为正方形, ∴AB ∥CD ,∴∠ F =∠ BAF , 由折叠可知:∠ BAF =∠ MAF , ∴∠ F =∠ MAF ,∴AM =FM .……3分 (2)CF 的长为122;……………4分BE CE=22.……………5分(3)①当点E 在线段BC 上时,如图3,A B '的延长线交CD 于点M ,易证:△ABE ∽△FCE , ∴AB BE CF CE =,即123CF=,∴CF =4,由(1)②证明可知:AM =FM .设DM =x ,则MC =12-x ,则AM =FM =16-x , 在Rt △ADM 中,222AM AD DM =+, 即(16-x )2=122+x 2,解得:x =72, 则16-x =16-72=252,∴sin ∠DA B '=DM AM =725.……………8分②当点E 在BC 的延长线上时,如图4, 易证:△ABE ∽△FCE ,∴AB BE CF CE =,即123CF=,∴CF =4,则DF =12-4=8,设DM =x ,则AM =FM =8+x , 在Rt △ADM 中,222AM AD DM =+,即(8+x )2=122+x 2,解得:x =5,则AM =8+x =13,∴sin ∠DA B '=DM AM =513. 综上所述:当3BE CE =时,∠DA B '的正弦值为725或513.……………10分 图2图1ABCDEFB'B'MF EDC BA图3ABC D E FMB'图4ABC EFM B'D23.解:(1)由题意得:309330a b a b ì-+=ïïíï++=ïî,解得:12a b ì=-ïïíï=ïî, ∴抛物线解析式为y =-x 2+2 x +3. …………………………3分(2)在y =-x 2+2 x +3中,当x =0,y =3,即C (0,3),设直线BC 的解析式为y =kx +b ',则''330b k b ìï=ïíï+=ïî 解得'13k b ì=-ïïíï=ïî,. ∴直线BC 的解析式为y =-x +3. …………………………6分设P (x ,3-x ),则D (x ,-x 2+2 x +3) ∴S △BDC =S △PDC +S △PDB =12PD ·x +12PD ·(3-x ) =12 PD ×3=32(-x 2+3 x ) =32-(x 32-)2+278. …………………………8分 ∴当x =32时,△BDC 的面积最大, 此时P (32,32) …………………………9分 (3)0≤m ≤278…………………………11分 提示:将x =32代入y =-x 2+2 x +3,得 y =154,∴点D 的坐标为(32,154), 过C 点作CG ⊥DF ,则CG =32. ① 点N 在DG 上时,点N 与点D 重合时, 点M 的横坐标最大.∵∠ MNC =90°,∴222CD DM CM +=, ∵C (0,3),D (32,154),M (m ,0), ∴2222315315(0)(3)()(0)2424m -+-+-+-22(0)(03)m =-+-, 解得m =278.即点M 的坐标为(278,0),即m 的最大值为278; ② 点N 在线段GF 上时,设GN =x ,则NF =3-x ,易证:Rt △NCG ∽Rt △MNF ,G M (N )(N )O x y A B C D P F∴CG GN NF MF =,即323x x MF=-,整理得, MF =2223x x -+=2233()322x --+,∴当x =32时(N 与P 重合),MF 有最大值32, 此时,M 与O 重合,∴M 的坐标为(0,0),∴m 的最小值为0,故实数m 的取值范围为0≤m ≤278.。
2020年河南省中考数学模拟试卷及解析(经典二) - 副本
成面积相等的两部分时,求点 P 的坐标.
20.(9 分)某风景区内为了方便游客登上山顶,计划从山底 A 点到山顶 C 点修建观光缆车, 此时从 A 点观测 C 点的仰角为 45 度;施工组经过实地勘察后,为了安全,决定将观光 缆车的钢索改为 AD、CD 两段,D 点是半山腰上距离地面 AB30 米的一个支点,从 A 点 观测 D 点的仰角为 30°.从 D 点观测山顶 C 点的仰角为 75°,请你通过自己学过的知 识来求出这座山的高度 BC 约为多少米.(结果保留整数.可能用到的数据: ≈ 1.73.sin75°≈0.96.cos75°≈0.26.tan75°≈3.73)
长为半径作弧相交于点 D 和点 E,直线 DE 交 AC 于点 F,交 AB 于点 G,连接 BF,若 BF=3,AG=2,则 BC=( )
A.5
B.4
C.2
D.2
9.(3 分)如图,在平面直角坐标系中,四边形 ABCD 是菱形,BC∥x 轴.AD 与 y 轴交于
点 E,反比例函数 y= (x>0)的图象经过顶点 C、D,已知点 C 的横坐标为 5,BE=
A.73°
B.34°
C.45°
D.30°
7.(3 分)已知二次函数 y=ax2+bx 的图象开口向下,且与 x 轴的负半轴交于点 P,则一次
第1页(共29页)
函数 y=(﹣a﹣b)x+b 的图象经过的象限是( )
A.第一、二、三象限
B.第二、三、四象限
C.第一、二、四象限
D.第一、三、四象限
8.(3 分)如图,在 Rt△ABC 中,∠ABC=90°,分别以点 A 和点 B 为圆心,大于 AB 的
3DE,则 k 的值为( )
2020年河南省中考数学模拟试题一答案解析
则九年级约有
名女生参加此项目;
(3)分析这 15 名女生从上学期到本学期体质健康变化的总体情况.(从两个方面进行分 析)
第 4页(共 8页)
19.(9 分)为了测量山坡上的电线杆 PQ 的高度,某数学活动小组的同学们带上自制的测 倾器和皮尺来到山脚下,他们在 A 处测得信号塔顶端 P 的仰角是 45°,信号塔底端点 Q 的仰角为 30°,沿水平地面向前走 100 米到 B 处,测得信号塔顶端 P 的仰角是 60°,求 信号塔 PQ 得高度.
第 3页(共 8页)
b.上学期测试成绩在 80≤x<90 的是:
8081 83 84 84 88
c.两个学期测试成绩的平均数、中位数、众数如下:
学期
平均数
中位数
众数
上学期
82.9
n
84
本学期
83
86
86
根据以上信息,回答下列问题:
(1)表中 n 的值是
;
(2)体育李老师计划根据本学期统计数据安排 80 分以下的同学参加体质加强训练项目,
A.36
B.9
C.6
D.18
10.(3 分)如图,矩形 OABC 的顶点 O(0,0),B(﹣2,2 ),若矩形绕点 O 逆时针旋
转,每秒旋转 60°,则第 2017 秒时,矩形的对角线交点 D 的坐标为( )
A.(﹣1, ) B.(﹣1,﹣3)
C.(﹣2,0)
二.填空题(共 5 小题,满分 15 分,每小题 3 分)
字前面的 0 的个数所决定. 【解答】解:0.00000065=6.5×10﹣7.
故选:D. 【点评】本题考查用科学记数法表示较小的数,一般形式为 a×10﹣n,其中 1≤|a|<10,
河南省2020年中考数学模拟试卷(含答案)
2020年河南省普通高中自主招生数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D →E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2020年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D →E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ 的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ此时S的图象是关于t(2s<t≤4s)的一次函数.△BPQ∵斜率>0随t的增大而增大,直线由左向右依次上升.∴S△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y =﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:红1红2黄蓝红1红1红1红1红2红1黄红1蓝红2红2红1红2红2红2黄红2蓝黄黄红1黄红2黄黄黄蓝蓝蓝红1蓝红2蓝黄蓝蓝由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠FAD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x、y 的值代入化简后的式子即可解答本题.【解答】解:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB 的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA 的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC =DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,。
河南省2020年中招模拟考试数学试卷(含参考答案)
2020年中招模拟考试数学试题温馨提示:1、本试卷共6页,三大题,23小题,满分120分。
闭卷考试,独立答题,禁止讨论和翻阅资料。
请按答题卡上的要求直接在答题卡上作答。
2、答题前请认真阅读答题卡上的注意事项,把答题卡上的相关信息填写清楚,并粘贴条形码。
3、答题时请认真审题,规范作答,字体工整,卷面整洁。
一.选择题(共10小题,满分30分,每小题3分)1.4的绝对值为()A.±4 B.4 C.﹣4 D.22.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60~220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=42°,则∠1=()A.48°B.42°C.40°D.45°4.下列计算正确的是()=B.(a﹣b)2=a2﹣b2A8232C.a2+a3=a5D.(2a2b3)3=﹣6a6b35.如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变6.若关于x的一元二次方程x2﹣2x+a﹣1=0没有实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a>﹣27.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A .30元B .33元C .36元D .35元8.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若AD =AC ,∠A =80°,则∠ACB 的度数为( )A .65°B .70°C .75°D .80°9.抛物线y =mx 2+3mx +2(m <0)经过点A (a ,y 1)、B (1,y 2)两点,若y 1>y 2,则实数a 满足( )A.﹣4<a <1B. a <﹣4或a >1C.﹣4<a ≤32-D.32-≤a <110.如图△ABO 的顶点分别是A (3,1),B (0,2),O (0,0),点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP ⊥OD 交OD 的延长线于点P .若△APO 绕原点O 顺时针旋转,每次旋转90°,则第2020次旋转结束时,点P 的坐标是( )A .(2,1)B .(2,2)C .(二.填空题(共5小题,满分15分,每小题3分)11.计算:11()92-= .12.不等式组102431x x +⎧⎪⎨⎪-≥⎩>的解集是 .13.一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 .14.如图,矩形ABCD 的边AB =2,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是 .15.如图,在矩形ABCD 中,AB =6,AD =8,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对角线上,则AE的长为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(2﹣11xx-+)÷22691x xx++-,其中23x=-.17.(9分)如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD =2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE交于点F.(1)求证:CF为⊙O的切线;(2)填空:①若AB=4,当OB=BF时,BE=;②当∠CAB的度数为时,四边形ACFD是菱形.18.(9分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量不去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对防护知识的了解,通过微信宣传防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 8590 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 8095 75 80 90 70 80 95 75 100 90整理数据成绩x小区60≤x≤7070<x≤8080<x≤9090<x≤100甲小区 2 5 a b乙小区 3 7 5 5 分析数据统计量小区平均数中位数众数甲小区85.75 87.5 c乙小区83.5 d80应用数据(1)填空:a=,b=,c=,d=;(2)根据以上数据,(填“甲”或“乙”)小区对新型冠状病毒肺炎防护知识掌握得更好,理由是(一条即可)(3)若甲小区共有800人参加答卷,请估计甲小区成绩高于90分的人数.19.(9分)河南省开封铁塔始建于公元1049年(北宋皇佑元年),是国家重点保护文物之一.在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一处台阶的底部A处测得塔顶P点的仰角∠1=45°,走上台阶顶部B处,测得塔顶P点的仰角∠2=38.7°.已知台阶的高度BC=3米,点C、A、E在一条直线上,AC =10米,求铁塔的高度PE.(结果保留整数,参考数据:sin38.7°≈0.6,cos38.7°≈0.8,tan38.7°≈0.8)20.(9分)某口罩加工厂有A、B两组工人共150人,A组工人每人每小时可加工口罩70只,B组工人每人每小时可加工口罩50只,A、B两组工人每小时一共可加工口罩9300只.(1)求A、B两组工人各多少人;(2)根据疫情发展,A、B两组工人均提高了工作效率,一名A组工人和一名B组工人每小时共同可生产口罩200只,若A、B两组工人每小时至少加工15000只口罩,那么A组工人每人每小时至少加工多少只口罩?21.(10分)某学具制作小组在制作直角三角形和矩形学具时,运用数形结合思想探究两种学具的边长和面积或周长的数量关系.已知,制作矩形学具一组邻边长为x,y,周长为6,由矩形的周长计算公式,可得2(x+y)=6,从而得到y与x的函数关系是y=﹣x+3;制作的直角三角形学具的边长分别为x,y,面积为2,由三角形的面积计算公式,可得12 xy=2,从而得到y与x的函数关系是y=4x,其反比例函数图象如图所示.(1)在图中的直角坐标系中直接画出y=﹣x+3的图象;(2)把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=4x的图象有且只有一个交点,求此时a的值和公共点坐标.22.(10分)在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,MNPC的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的MNPC值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时PDMN的值.23.(11分)如图1,抛物线y=12x2﹣32x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求△APD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2020年中招模拟考试数学参考答案一.选择题(共10小题,满分30分,每小题3分)1.B.2.C.3.A.4.A.5.D.6.B.7.B.8.C.9.A.10.B.二.填空题(共5小题,满分15分,每小题3分)11.﹣1.12.﹣1<x≤1.13..14.6﹣π.15.3或.提示:∵矩形ABCD,∴∠A=90°,BD===10,当A′在BD上时,如图1所示:设AE=x,由翻折的性质得:EA′=AE=x,BA′=AB=6,∴ED=8﹣x,∠EFD=∠A=90°,∴A′D=10﹣6=4,在Rt△EA′D中,x2+42=(8﹣x)2,解得:x=3,∴AE=3;当点A′在AC上时,如图2所示:由翻折的性质得:BE垂直平分AA′,AC=10,由射影定理得:AB2=AG•AC,∴AG=,∵∠AGE=∠D=90°,∠EAG=∠CAD,∴△AEG∽△ACD,=,即=,∴AG=AE=,∴AE=.∴AE的长为3或.三.解答题(共11小题,满分75分)16.解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.证明:(1)连结OC,如图,∵OA=OC,∴∠OAC=∠OCA,∴∠BOC=∠A+∠OCA=2∠OAC,∵∠ABD=2∠BAC,∴∠ABD=∠BOC,∴OC∥BD,∵CE⊥BD,∴OC⊥CE,∴CF为⊙O的切线;(2)①∵AB=4,∴OB=BF=OC=2,∴OF=4,∵BE∥OC,∴,∴BE=1,故答案为:1;②当∠CAB的度数为30°时,四边形ACFD是菱形,理由:∵∠CAB=30°,∴∠COF=60°,∴∠F=30°,∴∠CAB=∠F,∴AC=CF,连接AD,∵AB是⊙O的直径,∴AD⊥BD,∴AD∥CF,∴∠DAF=∠F=30°,在△ACB与△ADB中,,∴△ACB≌△ADB(AAS),∴AD=AC,∴AD=CF,∵AD∥CF,∴四边形ACFD是菱形.故答案为:30°.18.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)根据以上数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是甲小区的平均数、中位数、众数都比乙小区的大.(3)800×=200(人).答:估计甲小区成绩高于90分的人数是200人.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.19. 解:设塔高PE =x 米 , 且EF =BC =3 米 , 则PF =PE -EF =(x -3)米 . ∵ 在 Rt △PBF 中 , ∠2=38.7°,tan38.7°=BF PF =F x B 3-≈0.8. ∴ BF =45(x -3) . ∴ CE =BF =45(x -3) . ∵ 在Rt △PEA 中 ,∠1=45°,∴ AE =PE =x .∵ AE +AC =CE , 且AC =10 米 ,∴ x +10=45(x -3) . 解得 x =55.答:铁塔的高度约为55米 .20.解:(1)设A 组工人有x 人、B 组工人有(150﹣x )人,根据题意得,70x +50(150﹣x )=9300,解得:x =90,150﹣x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200﹣a )只口罩;根据题意得,90a +60(200﹣a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.21.解:(1)函数y =﹣x +3的图象如图所示;(2)把直线y =﹣x +3的图象向上平移a (a >0)个单位长度后得y =﹣x +3+a , 解得,x 2﹣(3+a )x +4=0,∵把直线y=﹣x+3的图象向上平移a(a>0)个单位长度后与反比例函数y=的图象有且只有一个交点,∴△=a2+6a﹣7=0,∴a=﹣6或a=1,∵a>0,∴a=1,∴x2﹣(3+1)x+4=0,∴x=2,∴y=2,∴公共点坐标为(2,2).22.解:(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=∠P AD=60°,AC=AB,∴∠P AC=∠DAB,∵AP=AD,∴△P AC≌△DAB(SAS),∴PC=BD,∠ACP=∠ABD,∵AN=ND,AM=BM,∴BD=2MN,∴=.∵∠CGK=∠BGA,∠GCK=∠GBA,∴∠CKG=∠BAG=60°,∴BK与PC的较小的夹角为60°,∵MN∥BK,∴MN与PC较小的夹角为60°.故答案为,60°.(2)如图设MN交AC于F,延长MN交PC于E.∵CA=CB,P A=PD,∠APD=∠ACB=120°,∴△P AD∽△CAB,∴=,∵AM=MB,AN=ND,∴=,∴△ACP∽△AMN,∴∠ACP=∠AMN,==,∵∠CFE=∠AFM,∴∠FEC=∠F AM=30°.(3)设MN=a,∵==,∴PC=a,∵ME是△ABC的中位线,∠ACB=90°,∴ME是线段BC的中垂线,∴PB=PC=a,∵MN是△ADB的中位线,∴DB=2MN=2a,如图3﹣1中,当点P在线段BD上时,PD=DB﹣PB=(2﹣)a,∴=2﹣.如图3﹣2中,PD=DB+PB=(2+)a,∴=2+.23.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD=S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN =2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).。
2020年河南省中考数学模拟试卷(二)(含答案解析)
2020年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,共30.0分)1.|−5|的相反数是()A. 5B. −5C. 15D. −152.如图,是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.3. 3.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A. 3.82×107B. 3.82×108C. 3.82×109D. 0.382×10104.如图,直线a//b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A. 115°B. 110°C. 105°D. 100°5.关于x的一元二次方程(k+1)x2−2x−1=0有两个实数根,则k的取值范围是()A. k≥−2B. k>−2C. k≥−2且k≠−1D. k>−2且k≠−16.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:居民(户)1234月用电量(度/户)30425051那么关于这10户居民月用电量的说法错误的是()A. 中位数是50B. 众数是51C. 平均数是46.8D. 方差是427.已知一次函数y=kx+b−x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A. k>1,B. k>1,b>0C. k>0,D. k>0,b<08.下列调查中,适宜采用抽样调查方式的是()A. 学校在给学生定制校服前尺寸大小的调查B. 调查某品牌白炽灯的使用寿命C. 调查乘坐飞机的旅客是否携带了违禁物品D. 调查八年级某班学生的视力情况9.如图PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧AB⏜上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧AB⏜的长为()A. π3B. 2π3C. π2D. π10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(−1,0),则:①二次函数的最大值为a+b+c;②a−b+c<0;③b2−4ac<0;④当y>0时,−1<x<3.其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共15.0分)11.计算:(12)−1+(√3−1)0=______.12.如图(1),边长为a的大正方形中一个边长为b的小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2).这一过程可以验证的乘法公式是______ .13.推动学校师生共读,家庭亲子共读,已达成我国教育发展的共识,某校组织生“朗读经典,共享阅读”大赛活动,经过评选后有两名男同学和两名女同学获一等奖,学校将从这四名同学中随机挑选两名参加市教育局组织的决赛.则挑选的两名同学恰好是一男一女的概率是______.14.如图,在Rt△ABC中,∠B=90°,∠C=30°,BC=2√3,以点B为圆心,AB为半径作弧交AC于点E,则图中阴影部分面积是______.15.如图1,有甲、乙、丙三个大小相同的圆柱形杯子,杯深20cm,且各装有15cm高的水.如图2,将大小相同的弹珠丢入三个杯中(甲杯2颗,乙杯4颗,丙杯6颗),结果甲的水位上升到18cm,乙、丙两杯水满溢出.则丙溢出的水量是乙溢出的_______倍.三、解答题(本大题共8小题,共75.0分)16.请你先化简(2xx−3−xx+3)÷xx2−9,再从−3,0,2,3中选择一个合适的数代入求值.17.某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:九年级抽取部分学生成绩的频率分布表成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=______,b=______;(2)请补全频数分布直方图;(3)样本中,抽取的部分学生成绩的中位数落在第______段;(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?18.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD、CE,若CE是⊙O的切线.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,OC=7,求BD的长.19.如图,河的两岸m与n互相平行,A、B、C是m上的三点,P、Q是n上的两点,在A处测得∠QAB=30°,在B处测得∠QBC=60°,在C处测得∠PCB=45°,已知AB=BC=20米,求PQ的长(结果保留根号).20.如图,在▱OABC中,OA=2√2,∠AOC=45°,点C在y轴上,点D(x>0)的图象经过点A、D.是BC的中点,反比例函数y=kx(1)求k的值;(2)求点D的坐标.21.我市某风景区的门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队共有游客120人,乙团队不超过50人.设甲团队有x人,若甲、乙两团队分别购买门票,两团队的门票费用之和为W元.(1)求W关于x的函数解析式,并写出自变量x的取值范围.(2)若甲团队不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱.22.如图,已知△ABC中,CA=CB,CD⊥AB于D,点M为线段AC上一动点,线段MN交DC于点N,且∠BAC=2∠CMN,过C作CE⊥MN交MN的延长线于点E,交线段AB于点F,探索CEMN 的值.(1)若∠ACB=90°,点M与点A重合(如图1)时:①线段CE与EF之间的数量关系是=______._____________;②CEMN(2)在(1)的条件下,若点M不与点A重合(如图2)请猜想写出CE的值,并证明你的猜想;MN(3)若∠ACB≠90°,∠CAB=α,其它条件不变,请直接写出CE的值(用含有α的式子表示)MN23.如图,抛物线y=ax2+bx+c经过A(−3.0)、C(0,4),点B在抛物线上,CB//x轴,且AB平分∠CAO.(1)求点B的坐标和抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.-------- 答案与解析 --------1.答案:B解析:解:|−5|=5,5的相反数是−5,故选:B.根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数的定义,先求绝对值,再求相反数.2.答案:C解析:解:从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选:C.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.答案:B解析:根据题目中的数据可以用科学记数法表示出来,本题得以解决.【详解】解:3.82亿=3.82×108,故选:B.本题考查科学记数法−表示较大的数,解答本题的关键是明确科学记数法的表示方法.4.答案:A解析:解:如图,∵直线a//b,∴∠AMO=∠2,∵∠ANM=∠1,∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=115°.故选A.如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.5.答案:C解析:本题考查的是一元二次方程的概念,根的判别式有关知识首先根据题意可得Δ≥0且k+1≠0,然后再进行解答即可.解:由题意可得:Δ=(−2)2−4(k+1)×(−1)≥0且k+1≠0,解得:k≥−2且k≠−1.故选C.6.答案:D解析:解:10户居民2016年4月份用电量为30,42,42,50,50,50,51,51,51,51,(30+42+42+50+50+50+51+51+51+51)=46.8,平均数为110[(30−46.8)2+2(42−46.8)2+3(50−中位数为50;众数为51,极差为51−30=21,方差为11046.8)2+4(51−46.8)2]=42.96.故选D.根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.此题考查了方差,中位数,众数,熟练掌握各自的求法是解本题的关键.7.答案:A解析:本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.先将函数解析式整理为y=(k−1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.解:一次函数y=kx+b−x即为y=(k−1)x+b,∵函数值y随x的增大而增大,∴k−1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选A.8.答案:B解析:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A.学校在给学生定制校服前尺寸大小的调查,需作全面调查,不宜采用抽样调查,故本选项错误;B.调查某品牌白炽灯的使用寿命,具有破坏性,适宜采用抽样调查方式,故本选项正确;C.调查乘坐飞机的旅客是否携带了违禁物品,需作全面调查,不宜采用抽样调查,故本选项错误;D.调查八年级某班学生的视力情况,需作全面调查,不宜采用抽样调查,故本选项错误.故选B.9.答案:A解析:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.∠O,加上∠P=∠C可计算写出∠O=利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=1260°,然后根据弧长公式计算劣弧AB⏜的长.解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=1∠O,∠P=∠C,2∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB⏜的长.故选A.10.答案:B解析:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键,直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=−1时,a−b+c=0,故②错误;③图象与x轴有2个交点,故b2−4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(−1,0),∴A(3,0),故当y>0时,−1<x<3,故④正确.故选B.11.答案:3解析:解:原式=2+1=3.故答案为:3.直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.答案:(a+b)(a−b)=a2−b2解析:本题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2−b2;第二个图形阴影部分是一个长是(a+b),宽是(a−b)的长方形,面积是(a+b)(a−b);这两个图形的阴影部分的面积相等.解:阴影部分的面积=(a+b)(a−b)=a2−b2;因而可以验证的乘法公式是(a+b)(a−b)=a2−b2.故答案为(a+b)(a−b)=a2−b2.13.答案:23解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.画树状图展示所有12种等可能的结果数,找出挑选的两名同学恰好是一男一女的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中挑选的两名同学恰好是一男一女的结果数为8,所以挑选的两名同学恰好是一男一女的概率=812=23.故答案为23.14.答案:23π−√3解析:本题考查扇形面积的计算法,解答本题的关键是明确题意,求出相应的阴影部分的面积.根据勾股定理可以求得AB的长,然后根据扇形的面积公式和三角形的面积公式即可求得阴影部分的面积.解:连接BE,∵在Rt△ABC中,∠B=90°,∠C=30°,BC=2√3,∴AB=2,∠BAE=60°,∵BA=BE,∴△ABE是等边三角形,∴图中阴影部分面积是:60⋅π⋅22360−2×2×sin60°2=23π−√3.故答案为23π−√3.15.答案:4解析:本题考查了一元一次方程的实际应用,设一个弹珠的加入使水位上升x,则根据甲的水位上升到18cm,乙、丙两杯水满溢出列方程即可求解.解:设一个弹珠的加入使水位上升x,圆柱杯子的底面积为S.则有:2x=18−15,解得:x=1.5,乙杯溢出水的体积=(4×1.5−5)×S=S;丙杯溢出水的体积=(6×1.5−5)×S=4S;则丙溢出的水量是乙溢出的4倍.故答案为:4.16.答案:解:原式=2x(x+3)−x(x−3)(x+3)(x−3)⋅(x+3)(x−3)x=2x+6−x+3=x+9,∵x≠±3,x≠0,∴x=2,当x=2时,原式=2+9=11.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.答案:(1)180.18;(2)补全直方图如下:(3) 4解析:解:(1)本次调查的总人数为2÷0.04=50,则a=50×0.36=18、b=9÷50=0.18,故答案为:18、0.18;(2)见答案;(3)∵共有50个数据,∴其中位数是第25,26个数据的平均数,而第25,26个数据均落在第4组,∴中位数落在第4组,故答案为:4.(4)400×0.30=120,答:估计该年级成绩为优的有120人.(1)由x<60的频数及其频率求出被调查的学生总数,再根据频数=频率×总数求解可得;(2)根据(1)中所求结果补全图形可得;(3)根据中位数的定义求解可得;(4)总人数乘以样本中90≤x≤100的频率即可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.答案:(1)证明:连接OD∵四边形OABC是平行四边形,∴OC//AB.∴∠EOC=∠A,∠COD=∠ODA,∵AO=DO,∴∠A=∠ODA.∴∠EOC=∠COD∵OD=OE,OC=OC,∴△ODC≌△OEC.∴∠OEC=∠ODC,∵CE是⊙O的切线,∴∠OEC=90°,∴∠ODC=90°.∵OD是⊙O的半径,∴CD是⊙O切线;(2)连接DE,∵AE是⊙O直径,∴∠ADE=90°,∵∠ODC=90°.∴∠ADE=∠ODC ∵∠COD=∠ODA,∠A=∠ODA∴∠COD=∠A,∴△ADE∽△ODC.∴ADOD =AEOC.∵⊙O的半径为4,OC=7.∴AD=327,∴BD=177.解析:(1)通过证明△EOC≌△DOC,可得∠ODC=∠OEC=90°,从而得CD是⊙O的切线;(2)连接DE,根据相似三角形的判定和性质解答即可.本题考查了切线的判定、三角形全等的性质和判定,熟练掌握切线的判定方法是解题关键.19.答案:解:如图,过P、Q分别作PD⊥AC于D,QE⊥AC于E,在△ABQ中,∠QAB=30°,∠QBC=60°,∴BQ=AB=20米,在直角△BQE中,BQ=20米,∠QBC=60°,∵sin60°=QEBQ,∴QE=10√3米,∴PD=QE=10√3米,在直角△CDP中,∠PCB=45°,∴CD=PD=10√3米,∴BD=BC−CD=(20−10√3)米.在直角△AQE中,QE=10√3米,∠QAB=30°,∵tan30°=QE,AE∴AE=30米,∴PQ=DE=AE−AB−BD=30−20−(20−10√3)=(10√3−10)米.解析:【试题解析】本题考查解直角三角形的应用、锐角三角函数,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.如图,过P、Q分别作PD⊥AC于D,QE⊥AC于E,根据PQ=DE=AE−AB−BD,求出AE、AB、BD即可.20.答案:解:(1)∵OA=2√2,∠AOC=45°,∴A(2,2),∴k=4;(2)由(1)知y=4,x∵四边形OABC是平行四边形OABC,∴AB⊥x轴,∴B的横纵标为2,∵点D是BC的中点,∴D点的横坐标为1,∴D(1,4).解析:(1)根据已知条件求出A点坐标即可;(2)四边形OABC是平行四边形OABC,则有AB⊥x轴,可知B的横纵标为2,D点的横坐标为1,结合解析式即可求解;本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点B的横坐标是解题的关键.21.答案:解:(1)∵甲团队人数为x人,乙团队人数不超过50人,∴120−x≤50,解得:x≥70.①当70≤x ≤100时,W =70x +80(120−x)=−10x +9600;②当100<x <120时,W =60x +80(120−x)=−20x +9600.综上所述,W ={−10x +9600(70≤x ≤100)−20x +9600(100<x <120); (2)∵甲团队人数不超过100人,∴x ≤100,W =−10x +9600,∵70≤x ≤100,W 随x 的增大而减少,∴x =70时,W 取最大值,最大值=−10×70+9600=8900(元),若两团联合购票需120×60=7200(元),∴最多可节约8900−7200=1700(元),答:甲、乙两团队联合购票比分别购票最多可节约1700元钱.解析:本题考查了一次函数的应用,解题的关键:(1)根据x 的取值范围结合门票价与人数的关系分段寻找函数的解析式;(2)利用一次函数的单调性求取最值.本题属于中档题,难度不大,(1)需根据已知条件寻找x 的取值范围;(2)需根据一次函数的单调性求极值.(1)由甲团队人数为x 人,乙团队人数不超过50人,可得出关于x 的一元一次不等式,解不等式可得出x 的取值范围,结合门票价与人数的关系分段考虑,由总钱数=甲团队购票钱数+乙团队购票钱数得出函数关系式;(2)由甲团队人数不超过100人,选定所用W 关于x 的函数解析式,由一次函数的单调性结合x 的取值范围可得出W 的最大值,用其减去甲乙团队合作购票所需钱数即可得出结论.22.答案:解:(1)①CE =EF ; ②12;(2)CE MN =12.证明:如图2,过点M 作MG//AB ,交CD 于点H ,交CF 于点G .则∠CMG =∠A =45°,CH ⊥MG ,∴MH =HC .而∠CMG=∠CMN+∠NMG=∠BAC=2∠CMN,∴∠CMN=∠NMG,又∵CE⊥NM,ME=ME,∴△CME≌△GME,∴CE=EG,又∵∠NMH+∠MNH=∠CNE+∠GCH=90°,且∠MNH=∠CNE,∴∠NMH=∠GCH,在Rt△MHN和Rt△CHG中,∵∠MH=∠GCH,MH=HC,∠MHN=∠CHG=90°,∴Rt△MHN≌Rt△CHG,∴MN=CG=2CE,∴CEMN =12;(3)CEMN 的值为tanα2.理由:如图3,过点M作MG//AB,交CD于点H,交CF于点G.∴∠CAB=α=∠CMH,∴tanα=CHMH,由∠NMH=∠GCH,∠MHN=∠CHG=90°,可得△MNH∽△CGH,∴CGMN =CHMH=tanα,即CG=tanα⋅MN,由(2)可得,CE=12CG,∴CE=12tanα⋅MN,即CEMN =tanα2.解析:本题属于相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及解直角三角形的综合运用,解决问题的关键是作辅助线构造全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.(1)①依据∠CAE=∠FAE,∠AEC=∠AEF=90°,而AE=AE,可得△ACE≌△AFE(ASA),即可得出CE=EF;②判定△ADN≌△CDF,可得AN=CF,即MN=CF,由①可得,CE=12CF,即可得出CEMN=12;(2)过点M作MG//AB,交CD于点H,交CF于点G.依据△CME≌△GME,可得CE=EG,再根据Rt△MHN≌Rt△CHG,即可得到MN=CG=2CE,进而得出CEMN =12;(3)过点M作MG//AB,交CD于点H,交CF于点G.依据∠CAB=α=∠CMH,可得tanα=CHMH,根据△MNH∽△CGH,可得CGMN =CHMH=tanα,即CG=tanα⋅MN,由(2)可得,CE=12CG,即可得到CE=12tanα⋅MN,即CEMN=tanα2.解:(1)①线段CE与EF之间的数量关系CE=EF;理由:∵MN平分∠BAC,∴∠CAE=∠FAE,又∵AE⊥CF,∴∠AEC=∠AEF=90°,而AE=AE,∴△ACE≌△AFE(ASA),∴CE=EF;故答案为CE=EF;②∵CA=CB,CD⊥AB,∠ACB=90°,∴∠CAD=∠ACD=45°,∠ADN=∠CDF=90°,∴AD=DC,又∵AE⊥CF,∠AND=∠CNE,∴∠DAN=∠DCF,∴△ADN≌△CDF,∴AN=CF,即MN=CF,由①可得,CE=12CF,∴CE=12MN,即CEMN =12,故答案为12;(2)见答案;(3)见答案.23.答案:解:(1)如图1,∵A(−3,0),C(0,4),∴OA =3,OC =4.∵∠AOC =90°,∴AC =5.∵BC//AO ,AB 平分∠CAO ,∴∠CBA =∠BAO =∠CAB .∴BC =AC .∴BC =5.∵BC//AO ,BC =5,OC =4,∴点B 的坐标为(5,4).∵A(−3,0)、C(0,4)、B(5,4)在抛物线y =ax 2+bx +c 上,∴{9a −3b +c =0c =425a +5b +c =4解得:{a =−16b =56c =4∴抛物线的解析式为y =−16x 2+56x +4.(2)如图2,设直线AB 的解析式为y =mx +n ,∵A(−3,0)、B(5,4)在直线AB 上,∴{−3m +n =05m +n =4解得:{m =12n =32∴直线AB 的解析式为y =12x +32.设点P 的横坐标为t(−3≤t ≤5),则点Q 的横坐标也为t .∴y P=12t+32,y Q=−16t2+56t+4.∴PQ=y Q−y P=−16t2+56t+4−(12t+32)=−16t2+56t+4−12t−32=−16t2+t3+52=−16(t2−2t−15)=−16[(t−1)2−16]=−16(t−1)2+83.∵−16<0,−3≤t≤5,∴当t=1时,PQ取到最大值,最大值为83.∴线段PQ的最大值为83.(3)①当∠BAM=90°时,如图3所示.抛物线的对称轴为x=−b2a =−562×(−16)=52.∴x H=x G=x M=52.∴y G=12×52+32=114.∴GH=114.∵∠GHA=∠GAM=90°,∴∠MAH=90°−∠GAH=∠AGM.∵∠AHG=∠MHA=90°,∠MAH=∠AGM,∴△AHG∽△MHA.∴GHAH =AHMH.∴11452−(−3)=52−(−3)MH.解得:MH=11.∴点M的坐标为(52,−11).②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5−52=52,DG=4−114=54,∴BG=√BD2+DG2=√(52)2+(54)2=5√54.同理:AG=11√54.∵∠AGH=∠MGB,∠AHG=∠MBG=90°,∴△AGH∽△MGB.∴AGMG =GHGB.∴11√54MG=1145√54.解得:MG=254.∴MH=MG+GH=254+114=9.∴点M的坐标为(52,9).综上所述:符合要求的点M的坐标为(52,9)和(52,−11).解析:本题考查了平行线的性质、等腰三角形的判定、相似三角形的性质与判定、二次函数的最值等知识,考查了用待定系数法求一次函数及二次函数的解析式,考查了分类讨论的思想,综合性比较强.(1)如图1,易证BC=AC,从而得到点B的坐标,然后运用待定系数法求出二次函数的解析式.(2)如图2,运用待定系数法求出直线AB的解析式.设点P的横坐标为t,从而可以用t的代数式表示出PQ的长,然后利用二次函数的最值性质就可解决问题.(3)由于AB为直角边,分别以∠BAM=90°(如图3)和∠ABM=90°(如图4)进行讨论,通过三角形相似建立等量关系,就可以求出点M的坐标.。
河南2020中考数学综合模拟测试卷1(含答案及解析)
2020河南省普通高中招生模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中最大的数是( )A.5B.C.πD.-82.如图所示的几何体的俯视图是( )3.据统计,2014年我国高新技术产品出口总额达40570亿元.将数据40570亿用科学记数法表示为( )A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10124.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为( )A.55°B.60°C.70°D.75°的解集在数轴上表示为( )5.不等式组-6.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为( )A.4B.6C.8D.108.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线.点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( )A.(2014,0)B.(2015,-1)C.(2015,1)D.(2016,0)第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= .10.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC= .11.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k= .12.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.13.现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E.以点O为圆心,OC 的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B'处.若△CDB'恰为等腰三角形,则DB'的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:-÷-,其中a=+1,b=-1.-17.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连结PD,PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连结OD,当∠PBA的度数为时,四边形BPDO是菱形.18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.19.(9分)已知关于x的一元二次方程(x-3)(x-2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.20.(9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)21.(10分)某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22.(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连结DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连结PD,PE,DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.备用图答案全解全析:一、选择题1.A根据“正数都大于负数”,知-8最小.π在正整数3和4之间,利用平方法可以知道在1和2之间,由此可得最大的数是5.故选A.2.B根据俯视图的定义,可知选B.3.D40570亿=4057000000000=4.0570×1000000000000=4.0570×1012.故选D.4.A如图,∵∠1=∠2,∴a∥b.∴∠5=∠3=125°,∴∠4=180°-∠5=180°-125°=55°.故选A.评析本题考查了平行线的性质与判定,以及邻补角的关系,属容易题.5.C解不等式x+5≥0得x≥-5;解不等式3-x>1得x<2.∴-5≤x<2.在数轴上表示这一解集时,在-5的位置为实心点并向右画线,在2的位置为空心圆圈并向左画线.故选C.6.D∵=86,∴小王的成绩为86分.故选D.7.C设AE与BF交于点O.由题可知AF=AB,∠BAE=∠FAE,∴AE⊥BF,OB=BF=3,在Rt△AOB 中,AO=-=4.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴AE=2AO=8.故选C.8.B∵半圆的半径r=1,∴一个半圆的弧长=π,又∵每两个半圆为一个循环,∴一个循环内点P运动的路程为2π.÷2π=503……3,∴点P位于第504个循环的第二个半圆弧的中点位置(即第1008个半圆弧的中点),∴此时点P的横坐标为503×4+3=2015,纵坐标为-1,∴第2015秒时,点P(2015,-1).故选B.二、填空题9.答案解析(-3)0+3-1=1+=.10.答案解析∵DE∥AC,∴=,∴EC===.11.答案2解析把点A(1,a)代入y=,得a==2,∴点A的坐标为(1,2).把点A(1,2)代入y=kx,得2=1×k,∴k=2.12.答案y2<y1<y3解析解法一:∵A(4,y1),B(,y2),C(-2,y3)都在抛物线y=(x-2)2-1上,∴y1=3,y2=5-4,y3=15.∵5-4<3<15,∴y2<y1<y3.解法二:设点A、B、C三点到抛物线对称轴的距离分别为d1、d2、d3.∵y=(x-2)2-1,∴对称轴为直线x=2,∴d1=2,d2=2-,d3=4,∵2-<2<4,且a=1>0,∴y2<y1<y3.13.答案解析列表如下:所有等可能的情况有16种,其中两次抽出卡片所标数字不同的情况有10种,则所求概率P==.14.答案+解析连结OE.∵点C是OA的中点,∴OC=OA=1,∵OE=OA=2,∴OC=OE,∵CE⊥OA,∴∠OEC=30°,∴∠COE=60°.在Rt△OCE中,CE=OC·tan60°=,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°,∴S扇形OBE==,又S扇形COD==.因此S阴影=S扇形OBE+S△OCE-S扇形COD=+-=+.评析求不规则图形的面积可采用割补法,利用规则图形的面积的和差求解.15.答案16或4解析分三种情况讨论:(1)若DB'=DC,则DB'=16(易知此时点F在BC上且不与点C、B重合).(2)当CB'=CD时,连结BB',∵EB=EB',CB=CB',∴点E、C在BB'的垂直平分线上,∴EC垂直平分BB',由折叠可知点F与点C重合,不符合题意,舍去.(3)如图,当CB'=DB'时,作B'G⊥AB于点G,延长GB'交CD于点H.∵AB∥CD,∴B'H⊥CD.则四边形AGHD为矩形,∴AG=DH.∵CB'=DB',∴DH=CD=8,∴AG=DH=8,∴GE=AG-AE=5.又易知EB'=13,∴在Rt△B'EG中,由勾股定理得B'G=12,∴B'H=GH-B'G=4.在Rt△B'DH中,由勾股定理得DB'=4(易知此时点F在BC上且不与点C、B重合).综上所述,DB'=16或4.三、解答题÷-(4分)16.解析原式=--=-·-=.(6分)当a=+1,b=-1时,原式=-=-=2.(8分)17.解析(1)证明:∵D是AC的中点,且PC=PB,∴DP∥AB,DP=AB.∴∠CPD=∠PBO.(3分)∵OB=AB,∴DP=OB.∴△CDP≌△POB.(5分)(2)①4.(7分)②60°.(注:若填为60,不扣分)(9分)18.解析(1)1000.(2分)(2)54°.(注:若填为54,不扣分)(4分)(3)图略.(按人数为100正确补全条形图)(6分)(4)80×(26%+40%)=80×66%=52.8(万人).所以估计该市将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约为52.8万人.(9分)19.解析(1)证明:原方程可化为x2-5x+6-|m|=0.(1分)∴Δ=(-5)2-4×1×(6-|m|)=25-24+4|m|=1+4|m|.(3分)∵|m|≥0,∴1+4|m|>0.∴对于任意实数m,方程总有两个不相等的实数根.(4分)(2)把x=1代入原方程,得|m|=2,∴m=±2.(6分)把|m|=2代入原方程,得x2-5x+4=0,∴x1=1,x2=4.∴m的值为±2,方程的另一个根是4.(9分)20.解析延长BD交AE于点G,过点D作DH⊥AE于点H.由题意知,∠DAE=∠BGA=30°,DA=6,∴GD=D A=6.∴GH=AH=DA·cos30°=6×=3.∴GA=6.(2分)设BC=x米.在Rt△GBC中,GC=∠=°=x.(4分)在Rt△ABC中,AC=∠=°.(6分)∵GC-AC=GA,∴x-=6.(8分)∴x≈13.即大树的高度约为13米.(9分)21.解析(1)银卡:y=10x+150;(1分)普通票:y=20x.(2分)(2)把x=0代入y=10x+150,得y=150.∴A(0,150).(3分)联立得∴∴B(15,300).(4分)把y=600代入y=10x+150,得x=45.∴C(45,600).(5分)(3)当0<x<15时,选择购买普通票更合算;(注:若写为0≤x<15,不扣分)当x=15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,选择购买银卡更合算;当x=45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x>45时,选择购买金卡更合算.(10分)22.解析(1)①.(1分)②.(2分)(2)无变化.(注:若无判断,但后续证明正确,不扣分)(3分)在题图1中,∵DE是△ABC的中位线,∴DE∥AB.∴=,∠EDC=∠B=90°.如题图2,∵△EDC在旋转过程中形状大小不变,∴=仍然成立.(4分)又∵∠ACE=∠BCD=α,∴△ACE∽△BCD.∴=.(6分)在Rt△ABC中,AC===4.∴==,∴=.∴的大小不变.(8分)(3)4或.(10分)【提示】当△EDC在BC上方,且A,D,E三点共线时,四边形ABCD为矩形,∴BD=AC=4;当△EDC在BC下方,且A,E,D三点共线时,△ADC为直角三角形,由勾股定理可求得AD=8,∴AE=6,根据=可求得BD=.23.解析(1)抛物线的解析式为y=-x2+8.(3分)(2)正确.理由:设P-,则PF=8--=x2.(4分)过点P作PM⊥y轴于点M,则PD2=PM2+DM2=(-x)2+--=x4+x2+4=.∴PD=x2+2.(6分)∴PD-PF=x2+2-x2=2.∴猜想正确.(7分)(3)“好点”共有11个.(9分)在点P运动时,DE大小不变,∴当PE与PD的和最小时,△PDE的周长最小.∵PD-PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2.当P,E,F三点共线时,PE+PF最小.此时点P,E的横坐标都为-4.将x=-4代入y=-x2+8,得y=6.∴P(-4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点”.∴△PDE的周长最小时“好点”的坐标为(-4,6).(11分)【提示】△PDE的面积S=-x2-3x+4=-(x+6)2+13.由-8≤x≤0,知4≤S≤13,所以S的整数值有10个.由函数图象知,当S=12时,对应的“好点”有2个.所以“好点”共有11个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020河南省中考数学第一次模拟试题含答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟. 2.请用黑色水笔把答案直接写在答题卡上,写在试题卷上的答案无效.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母 涂在答题卡上.1.12-的倒数是 A .12- B .12 C . 2- D .22A .1与2B . 2 与3C .3与4D .4与5 3.有10位同学参加数学竞赛,成绩如下表:则上列数据中的中位数是 A . 80 B . 82.5 C . 85 D . 87.54.我国计划在2020年左右发射火星探测卫星,据科学研究测量,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法表示为 A .5.5×106B . 5.5×107C .55×107D .0.55×1085.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在n ,m 上,且∠C = 90°,若∠1= 40° ,则∠2的度数为 A . 130° B .120° C .110° D .100°6.如图所示是某个几何体的三视图,该几何体是 A . 圆锥 B .三棱锥 C .圆柱 D .三棱柱432190858075分数人数第5题图CAm n21第6题图7.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,则m 的取值范围是 A .m ≥ 54-B .m ≤ 54-C .m < 54-D .m > 54-8.在矩形ABCD 中,AD = 2AB = 4,E 为AD 的中点,一块 足够大的三角板的直角顶点与E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB 、BC (或它们的延长线) 于点M 、N ,设∠AEM = α(0°<α < 90°),给出四个结论: ①AM =CN ②∠AME =∠BNE ③BN -AM =2 ④上述结论中正确的个数是 A .1 B .2 C .3 D .4 二、填空题( 每小题3分,共21分) 931-的结果是 . 10.化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1= .11.有一个正五边形和一个正方形边长相等,如图放置,则∠1= .12.二次函数y =x 2-2x +3的图象向左平移一个单位,再向上平移两个单位后,所得二次函数的解析式 为 . 13.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高MN =1.5m ,他们的影子恰巧等于自己的身高,即BF =1.8m ,CN =1.5m ,且两人相距4.7m ,则路灯AD 的高度是 .14.如图,在△ABC 中,AB =AC ,∠A =36°,且BC =2,则AB = . 15.如图,在平面直角坐标系中,函数y =2x 和y =- x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2 作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去, 则点A 2017的坐标为 .第8题图NM ED ABCα第11题图G FABCD E1第13题图AEMA三、解答题:(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:11()11x x --+÷221x x +-,其中x =2sin30°+cos45°.17.(9分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不A 、B 与重合),过点 F 的反比例函数y =kx的图象与边BC 交于点E . (1)当F 为AB 的中点时,求该函数的解析式; (2)当k 为何值时,△EFA 的面积最大,最大面 积是多少?第17题图18.(9分)在甲、乙两名同学中选拔一人参加“中国诗词大会”,在相同的测试条件下,两人5次测试成绩(单位:分)如下: 甲:79,86,82,85,83 乙:88,79,90,81,72回答下列问题:(1)甲成绩的平均数是 ,乙成绩的平均数是 ; (2)经计算可知:S 2甲=6,S 2乙=42,你认为选谁参加竞赛比较合适,说明理由; (3)如果从两个人5次的成绩中各随机抽取一次进行分析,求抽到的两个人的成绩都大于80分的概率.19.(9分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D 作⊙O 的切线,交BA 的延长线于点E . (1)求证:AC ∥DE ;(2)连接CD ,若OA =AE =2时, 求出四边形ACDE 的面积.第19题图DOABC EF20.(9分)南沙群岛是我国的固有领土,现在我南海渔民要在南沙群岛某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1C 处, 为防止某国的巡警干扰,就请求我A 处的鱼监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.21.(10分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品商店购买直握球拍和横握球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直握球拍和15副横握球拍共花费9000元;购买10副横握球拍比购买5副直握球拍多花费1600元. (1)求两种球拍每副多少元?(2)若学校购买两种球拍共40副,且直握球拍数量不多于横握球拍的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.第20题图A22.(10分)如图(1),在正方形ABCD 中,点E 、F 分别是边BC ,AB 上的点,且CE =BF ,连接DE ,过点E 作EG ⊥DE ,使EG =DE ,连接FG ,FC .(1)请判断:FG 与CE 的数量关系是 ,位置关系是 ; (2)如图(2),若点E ,F 分别是CB ,BA 的延长线上的点,其它条件不变,(1)中的结论是否仍然成立?请作出判断并给出证明;(3)如图(3)若点E ,F 分别是BC ,AB 延长线上的点,其它条件不变,(1)中的结论是否仍然成立?请直接写出你的判断.(3)(2)(1)第22题图GGG A BC DEFABCDE FABC DEF23.(11分)如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B两点,点C 的坐标为(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从O 点出发,沿OB 以每秒两个单位长度的速度向点B 运动,同时动点Q 从点B 出发,沿BC 以每秒一个单位长度的速度向点C 运动,规定其中一个 动点到达端点时另一个动点也随之停止运动,设运动时间为t 秒,当t 为何值时,PA =QA ?;(3)在抛物线的对称轴上,是否存在点M ,使A ,B ,M 为顶点的三角形是等腰三角形?若存在,直接写出M 点的坐标;若不存在,请说明理由.备用图第23题图A OBCxy y x C BOA九年级数学第一次模拟考试参考答案及评分标准一、选择题(每题3分 共24分) 题号 1 2 3 4 5 6 7 8 答案 CCBBADDC二、填空题91 10.327 11.18° 12.y =x 2+4 13.4m 14115.(10082,10092) 三、解答题16.解:原式=2(1)(1)1x x x +---÷221x x +- ……………………3分=221x -×212x x -+ =22x + ……………………5分 ∵x =2sin30°+cos45° =2×12+×2=3, ……………………7分 ∴原式=22325=+. ……………………8分 17.解:(1)∵四边形OABC 是矩形,∴AB =OC =2,又∵F 是AB 的中点, ∴AF =1,∴F (3,1),∴k =3×1=3,∴反比例函数的解析式为y =3x……………………4分 (2)解:∵E (2k ,2),F (3,3k),∴S △EFA =12AF ×BE =12×3k ×(3-2k )=-112k 2+12k=-112(k -3)2+34,∴当k =3时,△EFA最大面积是34. ……………………9分18.解:(1)甲成绩的平均数是 83 ,第17题图乙成绩的平均数是 82 ;……………………2分(2)因为甲的平均成绩大于乙的平均成绩,且甲的方差小于乙的方差,说明甲的成绩更稳定,因此,选甲参加竞赛更合适;……………………4分(3)列表如下:设抽到的两个人的成绩都大于80分的概率为P则P=1225……………………9分19.证明:(1)∵F为弦AC(非直径)的中点,∴AF=CF,∴OD⊥AC,∵DE切⊙O于点D,∴OD⊥DE,∴AC∥DE.……………………3分(2)∵AC∥DE,且OA=AE,∴F为OD的中点,即OF=FD,又∵AF=CF,∠AFO=∠CFD,∴△AFO≌△CFD(SAS),∴S△AFO=S△CFD,∴S四边形ACD E=S△ODE在Rt△ODE中,OD=OA=AE=2,∴OE=4,∴DE222242OE OD--3∴S四边形ACDE=S△ODE=1×OD×OE=12×2×3=3……………………9分20.解:作AD ⊥BC 于D,设AD =x,依题意可知∠ABC=30°,∠ACB=45°,在Rt△ADC中,CD=AD=x,在Rt△ADB中∵ADBD=tan30°,∴BD33x,∵BC=CD+BD=x3=20(13),第19题图DOA BCEFD第20题图ABC北北81818181819090909090798888888888838383838385858585858282828282868686868672727272 79797979797979797972( ,)( ,)( ,)(,) ( , )72819079888385828679乙甲即x +3x =20(1+3),解之得x =20,∴AC =2AD =202.∴A 、C 之间的距离为202海里. ……………………9分21.解:(1)设直握球拍每副x 元,横握球拍每副y 元,依题意可得:20(102)15(102)90005(102)160010(102)x y x y ì+?+?ïïíï+?=+?ïî……………………3分解得:220260x y ì=ïïíï=ïî……………………5分∴直握球拍每副220元,横握球拍每副260元;(2)设购买直握球拍m 副,则购买横握球拍(40-m )副 ,则,m ≤3(40-m ),解之得:m ≤30 ……………………7分 设购买两种球拍的总费用为W 元,则W =(220+2×10)m +(260+2×10)(40-m )=-40 m +11200∵-40<0,∴W 随 m 的增大而减小,∴ m 取最大值30时,W 最小,此时40-m =10 即学校购买直握球拍30副,购买横握球拍10副时,费用最少,W =-40 m +11200=-40×30+11200=10000,∴最少费用为10000元. ……………………10分 22.(1)FG 与CE 的数量关系是FG =CE ,位置关系是FG ∥CE ; ……………………2分(2)(1)中结论仍然成立,证明:CE =BF ,∠ABC =∠ECD =90°,BC =CD ,∴△ECD ≌△FBC (SAS ),∴ED =FC ,∠DEC =∠CFB ,……………………5分 又∵EG =DE ,∴EG =FC ,又∵AB ∥CD ,∴∠CFB =∠FCD ,∴∠DEC =∠FCD ,∵∠DEC +∠EDC =90°, ∠FCD +∠EDC =90°,即∠CMD =90°,即ED ⊥FC ,又EG ⊥DE , ∴EG ∥FC ,又EG =FC ,∴四边形CEGF 为平行四边形,∴FG =CE ,FG ∥CE ; ……………………9分(3)(1)中结论仍然成立. ……………………10分23.解:(1)在y =-2x +10中,当x =0时,y =10,y =0时,x =5,∴A (5,0),B (0,10),∵抛物线经过O (0,0),故设过O ,A ,C 三点的抛物线的解析式为y =ax 2+bx (a ≠ 0),则25506484a b a b ì+=ïïíï+=ïî,解得:1656a b ìïï=ïïíïï=-ïïïî∴过O ,A ,C 三点的抛物线的解析式为y =16x 2-56x ,……………………2分 ∵BA 2=102+52=125,BC 2=82+62=100,AC 2=32+42=25,∴AC 2+BC 2=BA 2,即△ABC 为直角三角形,且∠ACB =90°;……………………3分 (2)作CE ⊥y 轴于E 点,QD ⊥y 轴于D 点,QF ⊥x 轴于点F ,△BEC 中,BE ︰EC ︰BC =6︰8︰10=3︰4︰5,∵CE ⊥y 轴,QD ⊥y 轴, ∴QD ∥ CE ,∴△BDQ ∽△BEC , ∴BD ︰DQ ︰BQ =BE ︰EC ︰BC =3︰4︰5,∵BQ =t ,∴BD =35t ,DQ =45t , ∴QA 2=QF 2+FA 2=(10-35t )2+(5-45t )2=t 2-20t +125PA 2=(2t )2+52=4t 2+25,若PA =QA ,则PA 2=QA 2,∴4t 2+25=t 2-20t +125,∴3t 2+20t -100=0, 解之得:t 1=103,t 2=-10,∵0≤t ≤5,∴t =103∴当t =103秒时,PA =QA ;……………………7分 (3)存在满足条件的点M .P F E D Q第23题图y xCBOA M(3)(2)(1)第22题图GGGAB CDEFABCDE F ABC DEFM 1(52,M 2(52,M 3(52),M 4(52).……………………11分。