改性纳米氧化锌的光催化性能研究
纳米氧化锌的制备、表征和光催化性能分析
液) 的紫外 一 见吸 收光谱 图 , 5为纳 米 Z ( 存 在 下经 太 阳 可 图 n) 光2 h光 催化 降解 后 的甲基橙 溶液 紫外一 可见 吸收 光谱 图 。
2 4 光 致发 光 ( L) . P 光谱
为 了探 讨 纳米 Z O粒 子光 催化 的动 , n 分别 测量 了纳 米 氧化 锌 ( 、 N) 商品 Z (( 的激 发 光 谱 。图 6是 N 的 光敛 发 n )c) 光 ( I 谱 , 中 3个 主峰分 别 是 紫色 发光 峰 ( 9 . 6 m) 较 P ) 图 33 5n 、 强 的蓝 色可 见发光 峰 ( 4 . 5 m, 4 5 5 n 该主 峰 有一 个伴 峰 ) 一 个 、 次 强的绿 色 发光峰 ( 6 . 4 m, 主 峰两侧 有多 个伴 峰 ) 4 75 n 该 。前 两个 峰 属于带 边 自由激 子发 光 , 一个 峰 可能 为 束缚 激 子 发 第 -
W ANG il n Ju i g a
( Re l g f n h n Unv r i Ii nCol eo e Ya s a iest y,Qih a g a 6 0 4 n u n d o0 6 0 )
Ab ta t sr c Na o Z O y t e ie y t em e h d o n f r p e i i t n i i h p fs h r F smi ro e , n n s n h s d b h t o fu i m r c p t i s n s a e o p e e O i l n s z o a o a
关 键 词 纳米材料 氧化锌 制备技术 光催化剂 催化特性 中 图分 类号 : 4 . 063 3 文献标识码 : A
Pr pa a i n a e r to nd Cha a t r z t0 f Na o ZnO nd I s Ana y i r c e ia i n o n a t lss o o o c t l tc Pr pe te fPh t ’ a a y i o r i s
大学材料化学实验报告
一、实验目的1. 掌握材料化学实验的基本操作方法。
2. 了解纳米材料的基本制备方法。
3. 学习利用紫外-可见光谱(UV-Vis)对材料进行表征。
4. 熟悉纳米材料的光学性能测试。
二、实验原理纳米材料是指尺寸在1-100纳米范围内的材料,具有独特的物理、化学和机械性能。
本实验以纳米氧化锌(ZnO)的制备为例,通过水热法制备纳米ZnO,并利用UV-Vis光谱对其光学性能进行表征。
水热法是一种制备纳米材料的方法,通过在高温高压条件下使前驱体溶解并发生化学反应,从而制备出具有特定形貌和尺寸的纳米材料。
纳米ZnO具有优异的光学性能,可用于光催化、太阳能电池等领域。
三、实验仪器与药品1. 仪器:高压反应釜、超声波清洗器、紫外-可见分光光度计、电子天平、烧杯、滴定管等。
2. 药品:六水合硝酸锌(Zn(NO3)2·6H2O)、氢氧化钠(NaOH)、蒸馏水。
四、实验步骤1. 配制前驱体溶液:称取0.1摩尔六水合硝酸锌,溶解于50毫升蒸馏水中,加入0.5摩尔氢氧化钠溶液,搅拌均匀,室温下静置过夜。
2. 水热反应:将上述溶液转移至高压反应釜中,在160℃下反应6小时。
3. 冷却与过滤:自然冷却至室温,过滤得到纳米ZnO沉淀,用蒸馏水洗涤三次。
4. 干燥:将洗涤后的纳米ZnO沉淀在60℃下干燥12小时。
5. UV-Vis光谱测试:将干燥后的纳米ZnO粉末分散于无水乙醇中,配制成0.01g/mL的溶液,在紫外-可见分光光度计上测试其在200-800nm范围内的吸收光谱。
五、实验结果与讨论1. 纳米ZnO的制备:通过水热法成功制备了纳米ZnO,其形貌和尺寸可通过SEM 进行观察。
2. UV-Vis光谱测试:纳米ZnO在紫外光区具有明显的吸收峰,表明其具有良好的光学性能。
六、分析与讨论1. 影响纳米ZnO制备的因素:前驱体浓度、反应温度、反应时间等都会对纳米ZnO的形貌和尺寸产生影响。
实验中,通过优化反应条件,得到了形貌和尺寸良好的纳米ZnO。
化学之光氧化锌的光催化性质
化学之光氧化锌的光催化性质化学之光:氧化锌的光催化性质引言光催化是一种重要的催化过程,在化学、环境和能源领域都具有广泛的应用前景。
氧化锌是一种常见的光催化材料,具有独特的光催化性质,被广泛研究和应用。
本文将就氧化锌的光催化性质进行探讨,旨在深入了解其在环境净化、光电器件和能源转化等方面的潜在应用。
一、氧化锌的基本性质和结构氧化锌(ZnO)是一种具有广泛用途的化合物,它是一种白色固体,具有光电、磁电和压电性质。
ZnO晶体结构为六方紧密堆积,晶格常数较小,催化活性高。
此外,氧化锌可通过不同的合成方法制备出不同形貌的纳米结构,如纳米线、纳米颗粒和纳米片等。
二、氧化锌的光催化机制氧化锌作为一种光催化剂,其光催化机制主要涉及以下几个方面:1. 光生载流子的产生当氧化锌吸收光能时,电子从价带跃迁到导带,形成光生载流子。
光生载流子在氧化锌表面活化了催化反应,是光催化反应的关键步骤。
2. 氧化锌的带隙结构氧化锌的带隙宽度约为3.37 eV,属于宽带隙半导体材料。
带隙宽度决定了其能够吸收的光谱范围,从紫外到可见光,在光催化反应过程中能够有效利用太阳光能。
3. 氧化锌表面的活性位点氧化锌表面具有丰富的活性位点,如氧空位、锌空位和亚表面氧等。
这些活性位点吸附和激活反应物,提高了光催化反应的速率和效率。
三、氧化锌的光催化应用1. 环境净化氧化锌的光催化性质可以被用于空气和水的净化。
以空气净化为例,氧化锌可以将有害气体如一氧化氮、二氧化硫等转化为无害物质。
通过调节氧化锌的形貌和控制光照条件,可以提高空气净化的效果。
2. 光电器件氧化锌的光催化性质使其成为制备光电器件的理想材料。
例如,氧化锌纳米线可以用于制备染料敏化太阳能电池,其高光催化活性和导电性能使得光电转化效率显著提高。
3. 能源转化氧化锌的光催化特性可应用于能源转化领域,例如水分解制氢和二氧化碳还原制备可燃气体等。
这种基于氧化锌的光催化方法为可持续能源发展提供了新途径。
纳米氧化锌光催化降解性能影响因素研究进展
纳米氧化锌光催化降解性能影响因素研究进展摘要:纳米氧化锌因为纳米材料本身独特的效应,使其有着独特的物理和化学性能,在日益重视环境的现在来说,纳米氧化锌的光催化降解性能越来越使人重视,本文对纳米氧化锌光催化降解性能的研究进行综述。
关键词:纳米氧化锌光催化性能影响1引言近年来随着社会科技的不断发展,社会污染也越来越严重,一些污染物自然降解较慢,随着人们的深入研究发现作为半导体的氧化锌因其独特的物理和化学性能,可使污染物在光催化下分解,自半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用。
作为一种重要的光催化剂,纳米氧化锌有着比块体氧化锌更强的光催化能力。
一方面,这是因为量子尺寸效应会使半导体能隙变宽,导带电位变得更负,而价带电位变得更正,从而使纳米氧化锌获得了更强的氧化还原能力;另一方面,纳米氧化锌有比块体氧化锌大得多的比表面积,高比表面积使得纳米材料具有强大的吸附污染物的能力,这对提高催化反应的速度是十分有利的。
[1]2纳米氧化锌的光催化性能影响因素2.1形貌对光催化性能的的影响纳米氧化锌的制备技术决定了纳米氧化锌的微观形貌,进一步决定了其不同的光催化性能,纳米氧化锌的主要形貌有花状、棒状、片状、颗粒状等其他特殊结构。
周小岩等[2制备出三种不同形貌的纳米ZnO粉体,分别为纺锤状,棒状和片状。
纺锤状和棒状显露的(001)晶面相对非极性面其面积很小。
片状ZnO显露的(001)晶面相对非极性面其面积较大。
因此3种相貌的ZnO样品显露(001)晶面的大小顺序依次是:片状>棒状>纺锤状,其光催化活性大小也是片状>棒状>纺锤状。
经比较得出片状ZnO呈现出较高的光催化活性的结论。
其原因是ZnO晶体显露极性面的面积相对非极性面越大,其光催化活性越高。
特殊形貌的纳米氧化锌也同样受到重视,余花娃等[3],以乙酸锌和氢氧化钾为原料合成纳米ZnO,该产物呈现形貌均一的海胆状结构。
微波法制备纳米氧化锌及其光催化性能研究
中图分类 号 :T 3 B4
文献标 识码 :A
文章 编 号 :1 1=l 8 lo 82 2 1
备的纳米氧化锌的性能 ,结果表 明,不同反应 时问制备的纳米氧化锌均为六方晶系的纤锌矿结 构,颗粒大小平均为5. n 21 m,反应时间、反应物浓度及焙烧温度对纳米氧化锌的光催化性能均 4 有一定的影响。反应时间1 h . ,硫酸锌的浓度02m l 、焙烧温/4 0 时,纳米氧化锌的光催 5 . oL 5 /  ̄ 5 ̄ t C
P e a e y M ir wa e He tn r p r d b c o v ai g
MA i .Y G L— h r N Ln AN izei ,“ F y a  ̄ u
(ei ste f r h o m n a0 , 嗣i l O Bi g n itoGa iCm ui in 播 n 睨6 j I t p c n u ci g
m罐 tee tl t c r f n l  ̄s r t eo O i asu u Z
W utt o hxgn rs lnd e n a tnt n eae g at l s ewl 2 4 t 铀 er c o me。 s a w r i f eao a c t i r tei meadt vr ep rc z g A nn ze l yai f e r o i h a ie i # ̄ , at nt e i i
c n e t t n o a tns a dra t gtmp rtr a f c ntep oo c tlt rp r e f o c nri fr ca t. n o s n ao e i e eaue h de e to h t- aayi p o et so 箍 锨 ie T ee p r h c i d . h x i e -
纳米ZnO材料的合成及其光催化应用
纳米ZnO材料的合成及其光催化应用郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【摘要】纳米氧化锌(ZnO)作为一种半导体金属氧化物功能材料,它的诸多特性如荧光性、光催化活性、紫外激光发射、紫外线吸收、光电及压电性等被人们陆续发现并广泛应用于荧光体、高效催化剂、紫外线遮蔽材料、气体传感器、图像记录材料及压电材料等多个领域.ZnO由于其绿色、环保和高效等优点,近年来在环境污染控制方面受到人们的广泛关注.通过合成技术和条件控制纳米ZnO材料的粒径、表面态和形貌等参数可以提高光催化材料的光催化活性和量子产率.本文综述了本课题组对纳米ZnO材料的合成技术及其在光催化领域的应用研究,主要探讨了影响纳米ZnO材料光催化性能的相关参数.【期刊名称】《吉林师范大学学报(自然科学版)》【年(卷),期】2018(039)001【总页数】7页(P30-36)【关键词】纳米氧化锌;合成方法;光催化活性;应用【作者】郎集会;吴思;王勇;王瑛琦;刘畅;李秀艳;杨景海【作者单位】吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000;吉林师范大学物理学院,吉林四平136000【正文语种】中文【中图分类】O614.2;O643.30 引言近年来,半导体金属氧化物由于其绿色、环保、高效等优点,在环境污染控制方面得到了广泛关注,可以说是目前重要的光催化剂之一[1-3].随着纳米科技的高速发展,人们对材料的性质有了更深入的认识,为纳米光催化技术的应用提供了极好的机遇.控制纳米材料的粒径、表面态、形貌等技术手段日趋成熟,通过材料设计,提高光催化材料的光催化活性和量子产率成为可能[4-5].而纳米半导体金属氧化物,如TiO2、ZnO纳米材料,促进了光催化学科与纳米半导体材料学科的交叉融合,使纳米半导体金属氧化物这类光催化材料的制备及其光催化性能研究成为近年来科学领域关注的热点[6-11].氧化锌(ZnO)是一种宽带隙半导体金属氧化物功能材料,具有直接带隙、高电子迁移率等诸多优点.最近研究结果表明,与TiO2相比,ZnO在处理废水中某些难降解的有机污染物时具有更好的光催化效果[12-17].Juan Xie等[18]采用水热法合成了ZnO花状和片状结构,并对不同形貌的ZnO材料进行光催化降解甲基橙研究.研究表明,在紫外灯的照射下,由于两种材料带隙的不同导致片状ZnO比花状ZnO具有更优异的光催化活性.Jagriti Gupta等[19]通过软化学法改变OH-离子浓度合成了不同形貌的ZnO纳米材料,在OH-离子浓度较低时合成了直径为8 nm球状纳米颗粒,在OH-离子浓度较高时合成了长度为30~40 nm的ZnO纳米棒.研究结果表明,材料的缺陷对其光催化活性有很大的影响.在紫外灯照射下降解甲基蓝的催化结果表明,由于球状ZnO纳米颗粒具有较多的氧空位,因此其光催化活性最佳.Manoj Pudukudy等[20]采用简单的共沉淀法合成了准球形和胶囊形ZnO纳米材料,研究了反应温度对材料光催化活性的影响.研究结果表明,在低温下准球形ZnO纳米材料形成,而高温下胶囊形ZnO纳米材料形成.在紫外灯下对染料甲基蓝的催化降解表明,退火温度的提高有利于提高材料的光催化降解率.尽管这些ZnO纳米材料具有较高的光催化活性,但是其禁带宽度的限制极大制约了ZnO对太阳光辐射的利用率和实际生活中的广泛应用.此外,ZnO光催化剂中的光生电子-空穴复合率高,导致光量子利用率低,易发生光化学腐蚀等问题,从而降低其光催化效率.因此,有必要采用各种手段提高该类催化剂的光催化活性和化学稳定性.纳米ZnO材料作为一种重要的半导体金属氧化物功能材料具有广泛的应用前景,特别是在环境有机污水处理方面引起人们极大的关注.因此,人们研发了不同的纳米ZnO材料的合成方法,主要方法见图1所示.图1 纳米ZnO材料的合成方法Fig.1 The synthesis method of ZnO nanomaterials基于此,本课题组做了一些相关研究工作,采用了不同的合成方法来制备纳米ZnO材料,如:化学溶液沉积法、水热法、两步化学合成法、化学刻蚀法、模板法等,并对影响材料光催化活性的相关参数进行了研究和分析.1 纳米ZnO材料的水热法合成及其光催化性能研究水热法是利用水热反应得到纳米ZnO材料的一种方法.水热反应是在高温高压条件下进行的一种化学反应[21].依据反应类型的不同,水热反应可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等.相比较其他制备方法而言,该方法具有很多优点,如:晶粒发育完整、分散性好、纯度高、晶形好且生产成本较低.图2 六方纳米盘状ZnO(A)、“汉堡包”状ZnO(B)的FE-SEM图及其光催化降解曲线(C) [22]Fig.2 FE-SEM image of (A) ZnO hexagonal platforms and (B) hamburger-like ZnO nanostructures,and (C) their curves of degradation efficiency versus reaction time[22]课题组Yang等[22]采用水热法成功合成出六角纳米盘状和“汉堡包”状的ZnO催化剂,并将合成的催化剂对RhB染料进行紫外灯下光催化降解(图2).研究表明:与“汉堡包”状的ZnO催化剂相比,六角纳米盘状的ZnO催化剂具有更好的光催化活性,认为与裸露的极性面和表面缺陷氧空位有关.在此研究基础上,同样采用水热法通过改变不同表面活性剂合成了不同形貌的纳米ZnO材料,如纳米盘、纳米颗粒,同样在紫外灯照射下对催化剂的光催化活性进行了研究(图3)[23].研究表明:催化剂的尺寸和表面氧空位的数量对催化剂的光催化活性有很大的影响,其中尺寸较小的催化剂拥有较大的BET表面积和较多的表面氧空位,因此具有较强的光催化活性.由此可知,影响纳米ZnO材料的光催化活性的因素有:裸露的极性面、表面缺陷氧空位、形貌、尺寸大小.此外,Wang等[24]同样采用该方法合成了具有磁性可分离与重复利用的Fe3O4@ZnO纳米核壳结构.研究结果表明:与纯ZnO纳米粒子相比,由于Fe3O4@ZnO 核壳纳米粒子的表面氧空位浓度更高且核壳结构中的Fe3+离子有利于提高材料的光催化性能,因此合成的Fe3O4@ZnO纳米核壳结构具有更为优异的光催化性能且循环性较好.另外,由于核壳结构中的Fe3O4使该核壳结构具有较好的稳定性和可重用性.图3 不同形貌纳米ZnO材料的SEM图(A—E)及其光催化降解曲线(F—H) [23]Fig.3 (A—E) SEM images and (F—G) photocatalytic degradation curves of all the ZnO nanomaterials[23]2 纳米ZnO材料的CBD法合成及其光催化性能研究化学溶液沉积法(CBD)是湿化学方法的一种,主要指在常温常压条件下,通过较为温和的化学反应来合成材料的方法.这种方法具有操作简单、溶液控制、成本低廉、环保、反应条件温和、耗能低及实验条件简单等优点.课题组先后采用了该方法合成了不同形貌的纳米ZnO材料,如纳米棒、纳米花、纳米带等.其中,Li等[25-26]采用CBD法在衬底上合成了不同尺寸的纳米ZnO棒状结构,并研究了材料的光催化性能.如图4所示,研究表明,尺寸对材料的光催化性能有很大的影响.另外,其他参数如取向度、形貌等对材料的光催化活性也有一定的影响.但在其他参数一定条件下,材料的尺寸越小,其光催化活性越高.其中,当纳米棒的尺寸为70 nm时,在紫外灯照射下其降解甲基橙180 min,其降解率可达98.6%.课题组Yang等[27]同样采用该方法在硅片上合成了ZnO薄膜,并研究了不同溶剂对材料光催化性能的影响规律(图5—图6).研究表明,采用水、乙醇和丙醇三种溶剂所制备样品的形貌、尺寸和缺陷都有所不同.采用水、乙醇和丙醇三种溶剂在硅衬底上形成材料的形貌分别为纳米棒、微米椭圆和微米盘,其中以水为溶剂所制备的ZnO薄膜的光催化性能最佳,在紫外灯照射下对罗丹明B(RhB)进行光催化降解,5 h后降解率可达95.4%.图4 不同尺寸的纳米ZnO纳米棒的SEM图及其光催化降解图 [25]Fig.4 SEM image of ZnO nanorods with different sizes and their diagrams of degradation efficiency[25]图5 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的SEM(A1—C1)和TEM(A—F)图[27]Fig.5 (A1—C1)SEM and (A—F)TEM images of ZnO nanomaterials with different solvents[27]图6 分别采用水溶剂、乙醇溶剂和丙醇溶剂在硅衬底上生长纳米ZnO材料的光催化降解曲线[27]Fig.6 The curves of degradation efficiency versus reaction time of ZnO nanomaterials[27]3 纳米ZnO材料的化学沉淀法合成及其光催化性能研究化学沉淀法是将不同化学成分的物质溶液按比例混合,并在其中加入适当的沉淀剂制备出沉淀物前躯体,然后再将生成的沉淀物前躯体在一定条件下进行干燥或锻烧处理,最终得到粉体颗粒,其包括直接沉淀法和均匀沉淀法[21].该方法具有制备成本较低、纯度较高、产量较大等优点.课题组[28]采用化学沉淀法合成了稀土Ce掺杂的ZnO纳米颗粒,并在紫外灯照射下用于降解染料甲基橙(图7).图7 不同稀土Ce掺杂浓度(0%、0.5%、1%、1.5%、2%)ZnO纳米颗粒的TEM(A—E)、PL(F)和光催化降解图(G—H) [28]Fig.7 (A—E)TEM,(F)PL and (G—H)photocatalytic degradation drawing of ZnO nanoparticles with different Ce doping concentrations[28]如图7所示,研究结果表明,稀土Ce离子的掺杂有利于提高ZnO纳米颗粒的光催化活性.稀土Ce离子有俘获电子的能力,可以减少光生电子-空穴复合的几率,从而提高材料的光催化活性.另外,随着Ce掺杂浓度的增加,ZnO主体材料中的缺陷浓度随之增加,这也有利于光催化性能得提高.同时,Ce的掺杂也略改变了ZnO的带隙.课题组Wang等[29]采用该方法合成了Fe3O4@SiO@ZnO,并对进行了负载Ag.研究结果表明,在紫外灯照射下降解RhB染料时Fe3O4@SiO@ZnO-Ag比Fe3O4@SiO@ZnO具有更佳优异的光催化活性,且该新型核壳结构具有很好的化学稳定性、可重复和可回收性.可见,对材料的适当修饰和改性(离子掺杂、负载等)可以提高材料的光催化性能,拓宽材料的光催化应用.4 结论本文简述了课题组合成纳米ZnO材料的一些实验方法,并对其光催化性能进行了总结和分析.实验得出了影响纳米ZnO材料光催化性能的相关参数,如纳米材料的尺寸、材料的缺陷、形貌、取向性等,同时也采取了掺杂和负载等技术手段来提高材料的光催化应用.参考文献【相关文献】[1]XIE Y P,LIU G,YIN L C,et al.Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion[J].J Mater Chem,2012,22(14):6746-6751.[2]MAURO A D,FRAGALM E,PRIVITERA V,et al.ZnO for application in photocatalysis:From thin films to nanostructures[J].Mat Sci Semicon Proc,2017,69:44-51.[3]WANG D D,YANG J H,LI X Y,et al.Preparation of morphology-controlled TiO2 nanocrystals for the excellent photocatalytic activity under simulated solarirradiation[J].Mater Res Bull,2017,94:38-44.[4]BORA T,LAKSHMAN K K,SARKAR S,et al.Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin[J].Beilstein J Nanotechnol,2013,4:714-725.[5]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnOnanoparticles[J].Ceram Int,2016,42:14175-14181.[6]EISENBERG D,AHN H S,BARD A J.Enhanced photoelectrochemical water oxidationon bismuth vanadate by electrodeposition of amorphous titanium dioxide[J].J Am Chem Soc,2014,136(40):14011-14014.[7]YU Z B,YIN L C,XIE Y P,et al.Crystallinity-dependent substitutional nitrogen doping in ZnO and its improved visible light photocatalytic activity[J].J Colloid Interface Sci,2013,400:18-23.[8]LIU G,YIN L C,WANG J Q,et al.A red anatase TiO2 photocatalyst for solar energy conversion[J].Energy Environ Sci,2012,5(11):9603-9610.[9]LIU G,PAN J,YIN L C,et al.Heteroatom-modulated switching of photodatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J].Adv Funct Mater,2012,22(15):3233-3238.[10]ELAMIN N,ELSANOUSI A.Synthesis of ZnO nanostructures and their photocatalytic activity[J].Journal of Applied and Industrial Sciences,2013,1(1):32-35.[11]BANSAL K S,SINGHA S,Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursormethod[J].Physica B,2013,416:33-38.[12]PALOMINOS R A,MONDACA M A,GIRALDO A,et al.Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions[J].Catal Today,2009,144:100-105.[13]TIAN C,ZHANG Q,WU A,et al.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation[J].Chem Comm,2012,48:2858-2860.[14]DUAN X W,WANG G Z,WANG H Q,et al.Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity[J].CrystEngComm,2010,12:2821-2825.[15]CAO X L,ZENG H B,WANG M,et rge scale fabrication of quasi-aligned ZnO stacking nanoplates[J].J Phys Chem C,2008,112:5267-5270.[16]XU L P,HU Y L,PELLIGRA C,et al.ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity[J].Chem Mater,2009,21:2875-2885.[17]ZHANG L Y,YIN L W,WANG C X,et al.Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity[J].ACS Appl Mater Interface,2010,2:1769-1773.[18]XIE J,WANG H,DUAN M,et al.Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method[J].Appl Surf Sci,2011,257:6358-6363.[19]GUPTA J,BARICK K C,BAHADUR D.Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures[J].J Alloy Compd,2011,509:6725-6730.[20]PUDUKUDY M,HETIEQA A,YAAKOB Z.Synthesis,characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures[J].Appl Surf Sci,2014,319:221-229.[21]杨景海,徐松松,郎集会,等.稀土掺杂 ZnO 纳米材料的合成方法研究进展[J].吉林师范大学学报(自然科学版),2015,35(2):10-13.[22]YANG J H,WANG J,Li X Y,et al.Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties[J].J Alloy Compd,2012,528:28-33. [23]WANG J,YANG J H,LI X Y,et al.Effect of surfactant on the morphology of ZnO nanopowders and their application for photodegradation of rhodamine B[J].Powder Technology 2015,286:269-275.[24]WANG J,YANG J H,LI X Y,et al.Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles[J].Physica E,2016,75:66-71.[25]LI X Y,WANG J,YANG J H,et parison of photocatalytic activity of ZnO rod arrays with various diameter sizes and orientation[J].J Alloy Compd,2013,580:205-210.[26]LI X Y,WANG J,YANG J H,et al.Size-controlled fabrication of ZnO micro/nanorod arrays and their photocatalytic performance[J].Mater Chem Phys,2013,141:929-935. [27]YANG J H,WEI B,LI X Y,et al.Synthesis of ZnO flms in dierent solvents and theirphotocatalytic activities[J].Cryst Res Technol,2015,50(11):840-845.[28]LANG J H,WANG J Y,ZHANG Q,et al.Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles[J].Ceram Int,2016,42:14175-14181.。
纳米氧化锌的制备与光催化性能的研究
分 析天平 , X 4 0 S型 , U -2 0 岛津 国际 贸 易上 海有
限公 司 ; 式 电 阻炉 ,X -— 北 京 电炉 厂 ; 外 箱 S 241 0, 紫
毒 、 味 , 分解 、 变 质 、 定 性 好 , 皮 肤 无 刺 无 不 不 稳 对
析, 结果 表 明 , 同 焙 烧 温 度 下 得 到 的 纳 米 氧 化 锌 均 为 六 不 方 晶 系的 纤 锌 矿 结 构 , 均 粒 径 大 小 在 1 5 n 样 品颗 平 0~ 5 m。
粒 形 状 基 本 上 为 球 形 , 品颗 粒 大 小 比 较 均 匀 。 以 甲基 橙 样 溶 液 为 模 拟 污 染 物 对 纳 米 Z O 的 光 催 化 性 能进 行 了研 究 , n 结 果 表 明 , 烧 温度 对 纳 米 氧 化 锌 的光 催 化 性 能 有 一 定 影 焙
照射 , 在水 和空气 ( 氧气 ) , 自行 分解 出 自由移 中 能
动 的带 负 电 的 电子 ( 一 , 时 留 下带 正 电 的空 穴 e) 同 ( 。这种 空 穴可 以将 空 气 中的 氧 变 成 活性 氧 , H) 有 极 强 的化 学活性 , 与大 多数有 机物 发生 氧化 反 能 应 ( 括细 菌 类 的有 机 物 ) 从 而 可 以 把 大 多数 的 包 , 病菌 和 病 毒 杀 死 ¨ 。此 外 , 米 氧 化 锌 材 料 无 纳
第2 0卷
第 2期
北 京 印 刷 学 院 学 报
Ju n l fB in nt ueo a hcC mmu iain o ra ej gIsi t fGrp i o o i t nct o
21 0 2年 4月
Ap .201制 备 与 光 催 化 性 能 的 研 究
氧化锌纳米材料的制备及其光催化性能的研究
摘要近年来,随着工业的迅猛发展,各类工业废水、废气、废弃物等急剧增加,水污染问题成为全球性问题之一。
水污染的治理因此受到更多科研工作者的关注。
ZnO 作为一种直接带隙宽禁带半导体材料,具有较高的电化学稳定性和热稳定性,能很好的吸收紫外光,在光激发下可有效地降解有机污染物,被广泛地应用于光催化领域。
但ZnO 光催化剂普遍存在着比表面积较小、载流子复合率高等自身缺点,限制了其光催化反应过程中的降解效率。
另外,ZnO 粉体光催化剂在回收利用过程中不仅操作繁琐复杂,难以简便将光催化剂从水溶液中分离出来,而且残留在水溶液中的光催化剂会对环境造成二次污染。
本论文主要研究了两种具有不同形貌特征的ZnO 光催化剂—ZnO 空心球薄膜和Na 掺杂ZnO 纳米线,探讨了提高其光催化活性的可能性。
借助多种材料表征手段,分析了材料的形貌、结构和光学性能。
对比研究了各种光催化剂降解甲基橙水溶液的光催化性能,并探讨了光催化反应的机理。
主要研究内容如下:(1) 以浸渍-提拉法制备的单分散六方密排PS 微球为模板,利用磁控溅射法沉积ZnO 薄膜,结合煅烧去除模板,制备了不同粒径大小的ZnO 空心球薄膜。
根据SEM 和TEM 的结果分析,证明了ZnO 纳米球的空心结构成功构筑。
样品在紫外光波段均有较强的吸收峰,对空心球内部的光路研究发现,这种空心球结构的ZnO薄膜不仅具有高的比表面积,而且能在球体的空心内部形成光陷阱,有效地提高了光的利用率。
在各粒径ZnO 空心球薄膜与ZnO薄膜降解甲基橙水溶液的对比实验中,空心球的光催化效率普遍较高,且400 nm ZnO 空心球薄膜的光催化效率最高。
(2) 在ZnO 空心球薄膜的基础上,经过溅射沉积Au 纳米颗粒构筑了Au/ZnO 空心球复合薄膜。
在紫外光照射下,对比分析了各粒径大小的ZnO 空心球薄膜和Au/ZnO 空心球复合薄膜降解甲基橙水溶液的光催化性能。
Au 纳米颗粒的沉积明显提高了ZnO 空心球薄膜的光催化速率。
纳米氧化锌的制备与光催化性能的研究
摘 要: 氧化锌是一种高效、无毒性、价格低廉的重要光催
化剂。以乙酸锌和草酸为原料,采用溶胶-凝胶法制备纳米
ZnO。采用 XRD、SEM 对纳米 ZnO 的结构和形貌进行了分
析,结果表明,不 同 焙 烧 温 度 下 得 到 的 纳 米 氧 化 锌 均 为 六
方晶系的纤锌矿结构,平均粒径大小在 10 ~ 55nm。样品颗
图 2 350℃样品 SEM 扫描图
图 3 450℃样品 SEM 扫描图
从图 2 和图 3 可以看出,样品颗粒形状基本
78
北京印刷学院学报
2012 年
上为球形,颗粒大小比较均匀,在空间上颗粒之间 有序分布。 2. 3 焙烧温度对纳米 ZnO 光催化性能的影响
以浓度为 20mg / L 的甲基橙溶液为模拟污染 物,改 变 焙 烧 温 度 ( 温 度 分 别 为 350℃ 、450℃ 、 550℃ 、650℃ 、750℃ ) 制备的纳米 ZnO,考察在光照 40min 时,焙烧温度对纳米氧化锌光催化降解甲基 橙效果的影响。如图 4 所示。
第 20 卷 第 2 期 Vol. 20 No. 2
北京印刷学院学报 Journal of Beijing Institute of Graphic Communication
2012 年 4 月 Apr. 2012
纳米氧化锌的制备与光催化性能的研究
姚 超,李福芸,龙辰宇,杨丽珍
( 北京印刷学院,北京 102600)
D = ( A1 - At) / A1 式中,D 为降解率; A1 为甲基橙溶液初始浓度 对应的吸光值; At 代表 t 时刻甲基橙溶液浓度对应 的吸光值。
图 1 纳米氧化锌进行焙烧处理的 X 射线衍射
表 1 焙烧温度与样品颗粒粒径
试分析纳米氧化锌的制备及其光催化性能
试分析纳米氧化锌的制备及其光催化性能摘要:纳米氧化锌是一种面向21世纪的半导体材料,在陶瓷、化工医药、生物等领域得到了广泛的使用。
近年来,纳米氧化锌不断得到重视,对于纳米氧化锌的研究也逐渐增多,并且在试验中制备了不同结构的氧化锌材料,并研究了纳米氧化锌的性能。
纳米氧化锌的重要作用使得对于纳米氧化锌的研究具有了非常重要的现实意义。
本文将主要分析纳米氧化锌的特性、性质、应用和制备办法,以及它的光催化性能。
关键词:纳米氧化锌制备催化性能纳米氧化锌由于具有粒径小、比表面积大的特点,具有宏观物体所不具有的量子尺寸效应、表面效应以及体积效应等。
近年来,随着研究人员对纳米氧化锌的研究日益加深,发现纳米氧化锌在磁学、光学和力学等方面具有特殊的功能,其应用价值也不断得到重视和体现。
纳米氧化锌的制备成为当前科研工作的热门话题,也关系着纳米氧化锌能否用于治理环境污染。
因此,开展纳米氧化锌的制备以及催光性能的研究有十分重要的意义。
1 纳米材料的特性1.1 表面效应表面效应是指纳米材料性质上发生的变化,它是由表面原子和总原子数之比随着粒径的变化而引起的。
一般说来,当粒径减小时,表面原子的数量会快速增加,并且会随着粒径的减小,表面的原子会越多。
表面原子的悬空键增多,具有不饱和的性质,化学性能强,容易和其他原子相结合。
随着表面能的增加,表面原子数增多,表面原子和总原子数之比不断增大,“表面效应”便相继产生。
1.2 体积效应纳米粒子的尺寸和德布罗意波长相比,相似或者较小的时候,会破坏粒子周期性的边界条件,粒子的磁性、内压、热阻、熔点等发生了改变,这就是所谓的体积效应。
1.3 小尺寸效应超微细粒的尺寸和光波波长、德布罗意波长以及透射深度等相比,尺寸相似或者较小,边界条件就会被破坏,导致非晶态粒子的表面原子密度变小,造成声、光、电、热等性能发生改变,这就是所谓的小尺寸效应。
2 纳米氧化锌的制备方法纳米氧化锌的制作方法有多种,主要是分为物理法和化学法。
纳米氧化锌催化剂
纳米氧化锌催化剂
纳米氧化锌(ZnO)催化剂是一种具有广泛应用前景的半导体催化剂。
由于其独特的物理
和化学性质,纳米氧化锌在许多领域表现出优异的催化性能。
以下是一些关于纳米氧化锌催化剂的主要特点和应用:
1. 光催化性能:纳米氧化锌具有较高的光催化活性,可在光照条件下降解有机污染物、抗菌和防腐蚀。
在环境治理领域,纳米氧化锌光催化剂可用于处理水体中的有害物质,如降解水中的重金属离子、去除染料和有机污染物等。
2. 电催化性能:纳米氧化锌具有优异的电催化性能,可用于氧还原反应(ORR)和氧
析出反应(OER)。
在能源领域,纳米氧化锌可作为催化剂应用于燃料电池、电解水制氢
和锂离子电池等。
3. 催化剂载体:纳米氧化锌具有较大的比表面积和良好的分散性,可作为催化剂载体,提高催化剂的活性和稳定性。
例如,在固相催化剂中,纳米氧化锌可作为载体提高金属催化剂的催化性能。
4. 抗菌性能:纳米氧化锌具有优异的抗菌性能,可广泛应用于抗菌材料、抗菌涂料、纺织品等领域。
5. 防腐蚀性能:纳米氧化锌可作为防腐蚀涂料的添加剂,提高涂料的防腐蚀性能。
纳米氧化锌催化剂的研究重点包括提高催化性能、改善稳定性和活性、优化制备方法以及探索新的应用领域。
随着纳米技术的发展,纳米氧化锌催化剂在未来有望在更多领域发挥重要作用。
纳米氧化锌的制备及其在太阳光下的光催化性能
第2 6卷第 1 期 2 0 l 0年 1月
无
机
化
学
学
报
Vo 1 . 26 No . 1 9 6 . 1 o 0
CHI NE S E J 0URN AL 0F I N0RGAN I C C HEMI S T RY
纳米 氧化锌 的 制备及ቤተ መጻሕፍቲ ባይዱ其在 太 阳光 下 的光催 化性 能
苏碧 桃 胡 常 林 左显 维 雷 自强
( 西北师 范大 学化 学化 工 学院 , 省部 共 建 生态环境 相 关 高分 子材 料教 育部 重点 实验 室 ,
纳米氧化锌材料的制备及其光催化性能研究
纳米氧化锌材料的制备及其光催化性能研究纳米氧化锌材料的制备方法有很多种,常用的方法包括溶剂热法、水热法、溶胶-凝胶法等。
其中,溶剂热法是一种常用的制备方法。
这种方法主要通过在高温、高压条件下,将溶液中的锌源与氧化剂反应生成纳米氧化锌颗粒。
溶胶-凝胶法是另一种常用的方法,通过将金属盐溶解在溶液中,并加入适当的酸或碱调节溶液的酸碱度,使其产生胶体,然后经过凝胶、干燥和焙烧等步骤得到纳米氧化锌。
纳米氧化锌材料具有较大的比表面积和较高的光吸收能力,这使得其具有优异的光催化性能。
纳米氧化锌在光照条件下,可以吸收光能,激发电子从价带向导带跃迁,产生电子空穴对。
这些电子空穴对具有强氧化性,可以氧化有机物质和降解有害物质。
此外,纳米氧化锌还具有良好的光电化学性能,可以用于光电池、光催化分解水等领域。
纳米氧化锌材料的光催化性能可以通过一系列实验来研究。
首先,可以通过紫外可见漫反射光谱(UV-Vis DRS)分析材料的光吸收能力,并确定其能带结构和能带宽度。
其次,可以采用光电流-电势曲线(I-V)测试技术来评估光电转化效率。
再次,可以通过光催化降解有机染料等实验,研究材料的光催化活性。
此外,还可以通过表面等离子体共振(SPR)等技术,研究纳米氧化锌材料的光吸收特性和光催化过程中的电荷传输过程。
纳米氧化锌材料在光催化领域的应用前景非常广阔。
其在环境污染治理方面可以应用于有机物的降解和水的净化;在能源方面可以应用于光电池、光催化分解水等;在生物医学方面可以应用于抗菌剂和药物传递等。
然而,纳米氧化锌材料的应用也面临一些挑战,如光催化剂的稳定性、光催化效率的提高等。
因此,未来的研究应进一步探索纳米氧化锌材料的制备方法和性能改进,以实现纳米氧化锌材料在各领域的广泛应用。
总之,纳米氧化锌材料通过特殊的制备方法可以得到,且具有优异的光催化性能。
纳米氧化锌的光催化性能可以通过一系列实验来研究,包括光吸收能力、光电转化效率以及光催化活性等。
纳米氧化锌/γ-氧化铝复合物制备及其光催化性能研究
由于 Z O和 一 1 n A : 部分衍射峰位置很接近 , 以 0 所 负载后谱图中 —A , l 衍射峰与 Z O部分衍射峰 0 n
出 现 重 叠 现 象 。利 用 shr r公 式 可 以 根 据 cer e
A , 1 载体 , 0 加入适量去离子水 , 8 9 在 5— 5℃蒸 氨 4h冷却陈化 lh 过滤 , , , 水洗 , 无水乙醇 ( 分析纯 ) 洗 涤 , 得到 的产物 于 l0℃烘 干 1h 然后 放 人 马 将 1 ,
无 机 盐 工 业
3 2
第4 3卷 第 l 2期
21 0 1年 1 2月
I NORGANI C CHEMI CALS I NDUS TRY
纳 米 氧化 锌/ 一氧 化 铝 复 合 物 制备 及 其 光 催 化 性 能 研 究
曲 华
( 天津工业大学理学 院, 天津 3 0 6 ) 0 10
Ke od : icoieau iu xd ;oypey pl(xe yee e e;hnlp o etyi yw r s z x ;lm nm oie nnlhnl o oyt l )t rp eo;h t a l s n d y h n h o a s
用半导 体材 料光催 化 氧化有 机物 是一 种新 型水
使用 日 本理学( i k ) / a — b x射线粉 Rg u D m x r 型 a 末衍 射 仪 对 复合 物 的物 相结 构 进行 分 析。通 过 JM一 5 型扫描 电镜对复合物表面形貌进行观察。 s 3C 使用 Ht h 7 ici 0—3 a 2 0红 外光 谱 仪 对 复合 物 进 行
ter d g a ain r ts w r e r a i g w t h nt lc n e t t n e h n e n . h i e d t ae e e d c e s i t e i i a o c nr i n a c me t r o n h i ao
不锈钢丝网上氧化锌纳米线阵列的可控生长及光催化性能研究
关键 词 : 氧化锌纳米线 : 光催化 ; 不 锈钢 丝 网 ; 水 热
中 图分 类号 : T O1 3 2 . 4 1 文献 标 识 码 : A 文章 编 号 : 1 0 0 6 — 4 9 9 0 ( 2 0 1 3 ) 1 2 — 0 0 5 3 — 0 4
Pr e p a r a t i o n a n d J h o t o c a t a l y t i c p e r f o r ma n c e o f Zn O n a n o wi r e a r r a y s o n s t a i n l e s s s t e e l me s h
Ab s t r a c t : Z n O n a n o wi r e a r r a y s w e r e s u c c e s s f u l l y f a b ic r a t e d o n s t a i n l e s s s t e e l me s h b y h y d r o t h e r ma l me t h o d . T h e S H r f a c e
( 青 岛农 业 大 学化 学 与 药 学 院 , 山 东青 岛 2 6 6 1 0 9 )
摘 要 : 利用水热 法在不锈 钢丝 网上制备 了氧化锌纳米 线阵列 , 借 助 扫 描 电镜 ( S E M) 对 产 物 的形 貌 进 行 了表 征. 探 讨 了反 应 物 浓 度 和 反应 时 间 对 产 物 形 貌 的影 响 , 并 以 橙 黄 Ⅱ为 目标 降 解 物 , 研 究 了不 同 生 长 条 件 下 氧 化 锌 纳 米 线 阵 列 的光 催 化 降 解 性 能 。 研究结果表明 : 硝 酸 锌 浓 度 和 反 应 时 间 对 氧 化锌 纳米 线 阵列 的密 度 、 长度、 直 径 和 晶形
纳米氧化锌的制备及其光催化性能研究
第3 卷 第 6 1 期
20 0 8年 6月
合肥 工 业 大 学 学报 ( 自然科学版)
J OURNAL OF HEF EIUNI VERS TY OF TE I CHNOLOGY
Vo. 1No 6 13 .
J n 08 u .2 0
l n h u l h ep ciey a dt emeh l rn ewa sd a h bet a a dt es ni t s e t l , n h t y- a g su e steo jc.Th x ei n a mp g r v o ee p r me tl
r s lsid c t h tt en n - n p wd rwh c sacn d a 1 ℃ h sg o h t c t l t cii e u t iae t a h a o Z O o e ih wa lie t3 0 n a o dp o o aay i a tv— c
x射线粉末衍射 、 电镜 等手 段对 样品进行 了表征 ; _ 透射 以纳米 Z O作为光 催化剂 , n 分别利 用 30W 高压 汞灯 0 和太 阳光为光源对 甲基橙溶液进行光催化实验 。实验 结果表 明 , 30℃焙烧 温度制 备 的纳 米 Z O具有 较 以 1 n
好 的光催化性能 , 在太 阳光下 的最佳投加 量为 1 5 L。 .
关键词 : 纳米 l 光催化 ;甲基橙 0; 中图分 类号 : QO 2 4 X73 1 T 3 . ; o . 文献标 识码 : A 文章编号 :0 35 6 (0 8 0 ~8 80 10 —0 0 2 0 ) 60 9 —4
S u y o r p r to fn n - O n t h t c t l t ci iy t d n p e a a in o a o Zn a d isp o o a a y i a tv t c
纳米氧化锌材料在催化剂中的应用研究
纳米氧化锌材料在催化剂中的应用研究随着工业化和现代化的发展,各种污染物和废弃物的产生也在不断增加,对环境造成的影响不容忽视。
因此,研究高效催化剂来降解有毒有害物质已成为环境保护领域的重要研究方向之一。
近年来,纳米材料在催化剂中的应用引起了广泛的关注。
其中,纳米氧化锌材料因其抗氧化性好、稳定性高、表面活性位点丰富等优良性能而被视为具有潜在应用前景的催化剂。
一、纳米氧化锌的制备方法纳米氧化锌材料的制备方法包括物理、化学和生物方法三种。
其中最常见的是化学合成法,它包括溶胶-凝胶法、水热法、微波辅助合成法等。
溶胶-凝胶法的原理是在适当的溶剂中溶解锌盐和沉淀剂,形成胶体溶液,通过干燥和成胶凝胶的方式得到纳米氧化锌。
水热法的原理是将金属盐和氢氧化物混合后,在高温高压下反应生成氧化物。
微波辅助合成法通常是先将氧化锌微粉分散在水中,再加入不同浓度的肼,经微波辐射后得到纳米氧化锌。
二、纳米氧化锌在催化剂中的应用纳米氧化锌具有良好的催化性能,在各种催化反应中都有广泛应用,如有机合成、氧化、还原、脱除污染物等。
针对目前环境污染日益严重的问题,纳米氧化锌在环境治理中也得到了广泛应用。
(一)有机合成反应纳米氧化锌可用作烷基化、醇缩合成醚、酯化反应的催化剂。
如:甲醇和芳香酚醚化成芳香醚;苯甲烷和甲醛缩合生成甲基苯甲醇等。
(二)氧化反应纳米氧化锌可用于二氧化碳的光催化还原制备甲烷,降低大气中二氧化碳的含量。
此外,还可用于有机物的光降解和分解水分子生成氧气等反应。
(三)去除污染物纳米氧化锌可以作为催化剂用于各种氧化和还原反应,如催化裂解废纸、木材、废旧塑料等来去除有毒有害物质,通过合成活性炭支撑纳米氧化锌可以降解水中有机物,有利于水的净化。
三、纳米氧化锌催化剂的优缺点(一)优点1. 纳米氧化锌表面具有大量活性位点,可提高反应速率和反应活性。
2. 由于其特殊的晶体结构和小颗粒大小,纳米氧化锌比大颗粒氧化锌在催化活性、选择性和稳定性等方面都具有更好的性能。
纳米ZnO及复合物的可控制备与光催化性能研究
纳米ZnO及复合物的可控制备与光催化性能研究一、本文概述随着环境问题的日益严重和能源需求的不断增长,光催化技术作为一种高效、环保的能源转换和污染物降解手段,受到了广泛的关注和研究。
在众多光催化剂中,氧化锌(ZnO)因其独特的物理和化学性质,如宽禁带、高激子结合能以及优异的光电性能,被认为是一种理想的光催化材料。
然而,ZnO在实际应用中仍面临一些挑战,如光生电子-空穴对的快速复合、可见光利用率低等。
为了解决这些问题,研究者们尝试通过制备ZnO复合物、调控其形貌和结构等方式来提高其光催化性能。
本文旨在研究纳米ZnO及其复合物的可控制备方法,并探讨它们的光催化性能。
我们将介绍纳米ZnO及其复合物的制备方法,包括溶胶-凝胶法、水热法、微波辅助法等,并对比各种方法的优缺点。
然后,我们将重点讨论如何通过调控制备条件,如温度、浓度、时间等,来实现纳米ZnO及其复合物的形貌、结构和性能的调控。
接着,我们将对所制备的纳米ZnO及其复合物进行光催化性能评价,包括光催化降解有机物、光催化产氢等方面,并通过对比实验,探究不同制备方法和条件对光催化性能的影响。
我们将总结本文的主要研究成果,并提出未来可能的研究方向和应用前景。
通过本文的研究,我们期望能够为纳米ZnO及其复合物在光催化领域的应用提供理论基础和技术支持,同时也为其他光催化材料的研究和开发提供借鉴和参考。
二、文献综述纳米ZnO及其复合物作为一种重要的半导体材料,近年来在光催化领域受到了广泛关注。
其独特的物理和化学性质,如大的比表面积、高的光催化活性以及良好的稳定性,使得纳米ZnO在光催化降解有机物、光解水产氢、太阳能电池和气体传感器等领域具有广阔的应用前景。
早期的研究主要集中在纳米ZnO的合成方法上,如溶胶-凝胶法、化学沉淀法、水热法、气相法等。
随着纳米科技的不断发展,研究者们开始关注纳米ZnO的形貌控制,以期获得具有更高光催化活性的材料。
例如,通过调节反应条件,可以制备出不同形貌的纳米ZnO,如纳米颗粒、纳米棒、纳米线、纳米花等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改性纳米氧化锌的光催化性能研究
改性纳米氧化锌的光催化性能研究
摘要:本文考察了光降解时间、亚甲基蓝溶液的PH值、亚甲基蓝溶液的初始浓度、催化剂的用量等对亚甲基蓝光催化降解率的影响。
实验结果表明,纳米ZnO具有荧光性,掺入不同的金属离子能够改变纳米ZnO对亚甲基蓝溶液的降解效果,其中掺铈纳米ZnO降解效果最好;掺铬纳米ZnO的降解率最低。
关键词:纳米ZnO 掺杂光降解亚甲基蓝溶液
氧化锌,俗称锌白,属六方晶系纤锌矿结构,白色或浅黄色晶体或粉末,无毒,无臭,系两性氧化物,不溶于水和乙醇,溶解于强酸和强碱,在空气中能吸收二氧化碳和水。
ZnO是具有较大能隙及优良光学性质的n-型半导体材料,常被用于制备场发射显示器及阴极射线发射装置,光催化材料,紫外半导体激光的发生介质,这些应用主要利用了纳米ZnO粒子吸收紫外光后发出荧光的特点。
所吸收与发出的荧光波长取决于其能隙大小。
如何降低纳米氧化锌等材料的制备成本、也是纳米氧化锌能否应用于环境污染物治理的关键因素之一,因此探讨氧化锌的光催化性能具有十分重要的意义。
一、实验试剂和实验装置图
(一)仪器试剂
79-1磁力加热搅拌器(江苏金坛市中大仪器厂);UV751GD紫外可见分光光度计(重庆医药股份有限公司化玻分公司);真空干燥箱(重庆银河试验仪器有限公司);高硼紫外线杀菌灯管(ZGZ30W启东市海联有限公办公司);水浴锅;电子天平;马弗炉
乙酸锌、二乙醇胺、四水硫酸铈、硝酸镍、硫酸铬、硝酸铁、无水乙醇、亚甲基蓝均为国产分析纯。
二、纯纳米ZnO和掺杂纳米ZnO的制备
量取50ml无水乙醇置于烧杯中,开始搅拌。
称取二水乙酸锌约4.39g(0.02mol),搅拌下加入,缓慢滴加二乙醇胺约2ml。
在二乙醇胺溶解之后室温下反应3h,静置陈化24h,水浴锅中控制水温在蒸
90℃,并在烘箱中烘干,再在马弗炉中150℃预烧结2h后加热至450℃热处理3h,备用。
量取50ml无水乙醇置于烧杯中,开始搅拌。
称取二水乙酸锌约4.39g(0.02mol),九水硝酸铁约0.04g,搅拌下加入,缓慢滴加二乙醇胺约2ml。
在二乙醇胺溶解之后室温下反应3h,静置陈化24h,水浴锅中控制水温在蒸90℃,并在烘箱中烘干(80℃-100℃),再在马弗炉中150℃预烧结2h后加热至450℃热处理3h。
即得到掺铁纳米ZnO,备用。
使用上述方法,其中分别加入硝酸铬0.04g,硝酸镍0.04g,50%的硝酸锰0.0178g,硫酸铈0.0404g,分别制得掺铬、掺铈、掺镍纳米ZnO。
三、纳米ZnO催化氧化的影响
(一)纳米ZnO用量对降解亚甲基蓝的影响(测得10mg/l的初始吸光度为2.611)
分别量取四份10mg/L的亚甲基蓝溶液各50ml,然后再分别加入0.025g,0.050g,0.075g,0.1g纳米ZnO,在搅拌的情况下,用30W 的紫外灯照射,每隔0.5h取一次样,用分光光度计在最大吸收波长665nm处测定其吸光度值,并计算其降解率,连续记录4次。
可以得出的结论是,纳米ZnO的用量多少对亚甲基蓝溶液的降解率是有影响的,过多或过少都会抑制其降解率,只有在加入0.075g 的纳米ZnO时对亚甲基蓝的降解率达到最佳值。
(二)不同掺杂物的纳米ZnO对亚甲基蓝降解率的影响
取四个小烧杯,每个烧杯中分别加入配制好50ml浓度为10mg/l 的亚甲基蓝溶液,再分别称取0.100g不同种类的光催化剂样品,其中分别包括纳米ZnO、掺铈纳米ZnO、掺铁纳米ZnO、掺铬纳米ZnO 等,将四种催化剂分别加入到放有亚甲基蓝液体的小烧杯中,并做好标记,在搅拌的情况下用30W的紫外灯照射,每隔30min取一次样。
用分光光度计在最大吸收波长为665nm处测定其吸光度值,并计算其降解率,连续记录4次。
可以得出的结论是,不同掺杂物的纳米ZnO对亚甲基蓝溶液的降解率的影响是不同的,其中纳米ZnO中掺入金属铈以后能够促进其对
亚甲基蓝溶液的降解率,而掺入金属铁和铬以后则是抑制其的降解率,金属铬的抑制作用更大。
(三)溶液的pH对降解率的影响
分别用浓硫酸和氢氧化钠溶液调节浓度为10mg/L的亚甲基蓝溶液的pH值为3、5、7、9、11,并各取50ml不同pH值的亚甲基蓝液体,放到烧杯中做好标记,再同时加入0.1g纳米ZnO,在搅拌的情况下,用30W的紫外灯照射,每隔0.5h取一次样。
取样后用分光光度计(751GD)在最大吸收波长为665nm时测定其吸光度值,并计算其降解率,连续计算4次。
当纳米ZnO在亚甲基蓝溶液的pH=11时,对亚甲基蓝溶液的降解率达到最大值。
(四)亚甲基蓝初始浓度对降解率的影响
分别配制1mg/L,2mg/L,3mg/L,4mg/L,5mg/L的亚甲基蓝溶液,再分别取50ml放入到烧杯中,再同时加入0.1g的纳米ZnO,在搅拌的情况下,用30W的紫外灯照射,每隔0.5h取一次样,用分光光度计(751GD)在最大吸收波长为665nm处测定其吸光度值,并计算其降解率,连续记录4次。
可以看出当亚甲基蓝初始浓度不同时,在其他实验条件一致的情况下,纳米ZnO对各个溶液的降解率是随浓度的升高而降低的,浓度越大降解率就越小。
(五)时间的影响
量取10mg/L的亚甲基蓝溶液50ml,将其倒入小烧杯中,然后再加入0.1g纳米ZnO,在搅拌的情况下,用30W的紫外灯照射,每隔0.5h取一次样,取样后用分光光度计(751GD)在最大吸收波长665nm 处测定其吸光度值,并计算其降解率,连续记录4次。
可以看出在紫外光灯照射下,纳米ZnO对亚甲基蓝溶液的降解率是随时间的推移而递增的,时间越长降解率就越大。
可以想象,如果时间足够长的话,降解率是可以无限接近100%的。
四、结论
(一)随着纳米ZnO的量的增加其对亚甲基蓝溶液的降解效果呈抛物线趋势,加入0.075g的纳米ZnO时对亚甲基蓝的降解率达到最
佳值。
(二)制备的掺铈纳米ZnO对亚甲基蓝溶液的降解效率高于掺铁、掺铬纳米ZnO以及纯的纳米ZnO。
(三)纳米ZnO对溶液的降解率是随浓度的升高而降低的,浓度越大降解率就越小。
(四)pH=11时亚甲基蓝的降解率最高,并且催化剂在碱性性范围内比在酸性范围内的光催化效果好。
(五)紫外光照射的时间越长,亚甲基蓝的降解率越高。
参考文献
[1]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999,11(1):1-8.
[2]赵红雁,张敬畅,曹维良.纳米TiO2 光催化降解苯酚[J].石油化工,2003,32(3):247-250.
[3]辛显双,等.纳米氧化锌的研究进展[J].化学研究与应
用.2003,15(5):603-605.
------------最新【精品】范文。