数学人教版《三角形的边》完美版

合集下载

八年级数学上册《三角形的边》教学设计 新人教版

八年级数学上册《三角形的边》教学设计 新人教版

《三角形的边》教学设计【教材分析】1.地位与作用:三角形是最常见的几何图形之一,在生产和生活中有广泛的应用,也是我们认识其他图形的基础。

2.重点与难点:重点是三角形三边之间的关系及其应用;难点是理解“首尾顺次相接”等关键语句;利用三角形三边关系熟练解决实际问题。

3.教法:动手操作、自主探索、合作交流。

【教材问题诊断】学生在七年级已经学过一些三角形的有关知识,如线段、角以及相交线、平行线等知识,这一些都是学习三角形有关内容的基础。

而学生在学习本节内容时,往往忽略构成三角形的三边之间的关系:两边之和大于第三边(或两边之差小于第三边),因此,在教学过程中,同学学生观察、动手操作等方法,让学生自己亲身感受体验,并归纳出三角形的三边之间的关系。

【教学目标】1.知识目标:①通过具体事例,进一步认识三角形的概念及其基本要素;②学会三角形的表示及掌握对边与对角的关系;③掌握三角形三边之间的关系。

2.能力目标:①在一个较为复杂的图形中能熟练找出其中的三角形并表示出来;②熟练判断三条线段能否组成三角形;③用三角形三边关系能熟练解决与三角形的边有关的实际问题。

3.情感态度与价值观:通过本节课的学习,使学生体会数学的应用价值及其学习数学的重要性、必要性,从而激发学生的求知欲。

【教学过程】(一)创设情境导入新课教师展示图片(悬浮桥上的钢索、金字塔、大棚人字形屋架),和学生一块感受三角形无处不在及三角形的美。

既然,在现实生活和工农业生产中到处有三角形的形象,那三角形具体有哪些性质呢?从本节课开始,我们一块来探索三角形的有关知识(引入课题)。

【设计意图】从学生身边的生活说起,学生通过举出三角形的实际例子认识和感受三角形,形成三角形的概念,让学生将实际问题数学化,培养学生的建模意识,并导入新课。

(二)回顾旧知学习定义问题:谁能告诉老师你了解三角形哪些知识?说出来,和同学分享。

【设计思路】由旧的知识点引入新知,符合学生的认知规律。

人教版数学《三角形全等的判定》_课件-完美版

人教版数学《三角形全等的判定》_课件-完美版

变形题:
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
已知AB=CD,AD=CB,求证:∠B=∠D
证明:连接AC, 在△ABC和△ ADC中 A
AB=CD(已知)
BC=AD(已知)
AC=AC(公共边)
B
∴ △ ABC≌ △ CDA(SSS)
D C
∴ ∠B=∠D(全等三角形对应角相等)
A
证明:在△ABC和△ADC中
B
D
AB=AD (已知)
BБайду номын сангаас=CD (已知)
AC = AC (公共边)
C
∴ △ABC ≌ △ADC(SSS)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
你能说明AB∥CD,AD∥BC吗?
• 证明:在△ABD和△CDB中 D
C
AB=CD(已知)
AD=CB(已知) A
BD=DB (公共边)
B
∴△ABD≌△ACD(SSS)
∴ ∠ A= ∠ C (全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
∴∠B=∠C(全等三角形的对应角相等)
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
【获奖课件ppt】人教版数学《三角形 全等的 判定》 _课件- 完美版 1-课件 分析下 载
1、如图,在四边形ABCD中,AB=CD,AD=CB, 求证:∠ A= ∠ C.

人教版八年级数学上册教案《三角形的边》人教)

人教版八年级数学上册教案《三角形的边》人教)

《三角形的边》“三角形的边”是第十一章三角形的第一节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在小学已学过三角形的初步知识以及对三角形的表象认识的基础上,本节课给出了“严格”的定义,进一步深入了解三角形的特征、性质,为今后学习多边形作好准备,本课设计的思路是学生通过了解三角形的定义,进而质疑三角形的三边长度有没有一定的规律,通过观察分析、比较以及推断等过程,得出三角形的三边的关系。

【知识与能力目标】1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题。

【过程与方法目标】经历摆三角形,画三角形、测量三角形的三边长度的过程,培养学生自主、合作、探索的学习方式,并锻炼其发现问题、提出问题、分析问题和解决问题的能力。

【情感态度价值观目标】认识到通过观察、比较、推断获得解决实际问题的方法,使学生体会到数学源于生活,而又在生活实践探索中得到解决,这样培养了学生学习数学的兴趣。

【教学重点】理解三角形三边不等关系。

【教学难点】三角形三边不等关系的应用。

相应课件;三角尺等。

一、情景导入三角形是一种最常见的几何图形,如古埃及金字塔,埃菲尔铁塔,自行车等等,处处都有三角形的形象。

那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC用符号表示为△ABC。

三角形ABC的顶点C所对的边AB可用c 表示,顶点B 所对的边AC可用b表示,顶点A所对的边BC可用a表示。

三、三角形三边的不等关系abc(1)CBA任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B →C ,(2)从B →A →C ;不一样, AB+AC >BC ①;因为两点之间线段最短。

人教版四年级下册数学第五单元《三角形三边的关系》教学课件(新插图)

人教版四年级下册数学第五单元《三角形三边的关系》教学课件(新插图)

(2)4、5、9。
(3)3、6、10。
(4)8、11、11。
每组纸条都能摆出三角形吗?
探究新知
(√1) 6
6 7
7
8
(×3)
3 6
130 6 10
(×2)
4 5
94 5 9
(√4)8
8 11 11
111
探究新知
(√1)
6 7
8
(×2)
4 5
9
6+7>8,6+8>7,8+7>6 4+5=9,4+9>5,9+5>4
3.有两根树干,一根长12米,另一根长8米,要做一个三 角形屋架。请你想一想,第三根树干可能有多长?
4 < 第三根树干的长度
< 20
谢谢观赏
人教版四年级下册数学
教学课件
第五单元 三角形
三角形的边(教材P60例3、例4)
情境导入
小明上学走哪条路最近?
情境导入
小明从家到学校有几条路线?
共有3条路线。
情境导入
3条路线这中是哪什条么最原短因呢呢??
中间的路线最短。
探究新知
你是怎么判断的呢?
探究新知
通过测量比一比,发 现走中间的路最近。
(×3)
3 6
(√4)
8 11
三角形任意
10
11
两边的和大 于第三边。 3+6<10,6+10>3,3+10>6 8+11>11,(1)两点间线段长度小于曲线长度。 (2)三角形中两边的和大于第三边。
用今天学过的知识说一说 为什么中间的路线最短。

人教版八年级数学上册11.1.1《三角形的边》教学设计

人教版八年级数学上册11.1.1《三角形的边》教学设计

人教版八年级数学上册11.1.1《三角形的边》教学设计一. 教材分析人教版八年级数学上册11.1.1《三角形的边》是三角形这一章的第一节,主要介绍了三角形的三条边的关系。

本节内容是学生学习三角形其他性质的基础,对于学生理解三角形的特点,以及后续学习三角形判定定理具有重要意义。

教材通过丰富的图形和实例,引导学生探究三角形边的关系,培养学生的观察、思考和动手能力。

二. 学情分析八年级的学生已经学习了多边形的概念,对多边形的性质有一定的了解。

但是,对于三角形这种特殊的图形,学生可能还存在着一些模糊的认识。

因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和直观的图形,帮助学生建立三角形的边的关系。

三. 教学目标1.知识与技能:使学生掌握三角形的三条边的关系,能够运用这些关系解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的动手能力和探究能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探究、积极思考的精神。

四. 教学重难点重点:三角形的三条边的关系。

难点:如何引导学生通过观察和操作,发现三角形边的关系。

五. 教学方法采用问题驱动法、观察操作法、讨论交流法等,引导学生主动探究,合作学习。

六. 教学准备1.准备一些三角形的模型或图片,用于引导学生观察和操作。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些三角形的模型或图片,引导学生观察并思考:这些三角形有什么共同的特点?你能否找出一些特殊的三边关系?2.呈现(10分钟)教师通过PPT或黑板,呈现三角形的三条边的关系,如:任意两边之和大于第三边,任意两边之差小于第三边。

同时,引导学生进行操作,自己发现这些关系。

3.操练(10分钟)学生分组进行讨论,每组找出一些三角形,验证这些三角形是否符合三角形的三边关系。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师出示一些练习题,让学生独立完成,检验学生对三角形三边关系的掌握情况。

人教版数学八年级上册《11.1.1 三角形的边》课件精品

人教版数学八年级上册《11.1.1 三角形的边》课件精品
∴ x + 2x + 2x = 18,解得 x = 3.6. ∴ 三边长分别为 3.6 cm、7.2 cm、7.2 cm. (2) ∵ 长为 4 cm 的边可能是腰,也可能是底边, ∴ 需要分情况讨论:
① 若底边长为 4 cm,设腰长为 x cm,则有 4 + 2x = 18,解得 x = 7.
②若腰长为 4 cm,设底边长为 x cm,则有 2×4 + x = 18,解得 x = 10. ∵ 4 + 4<10,不符合三角形三边关系, ∴ 该情况不存在. 综上可知,可以围成底边长是 4 cm,腰长是 7 cm 的 等腰三角形.
解:设第三根木棒长为 x,则应有 7 - 2 < x < 7 + 2, 即 5 < x < 9. 则用长度为 4 或 11 的木棒都不能和它们拼成三 角形. 第三根木棒长的范围为 5 < x < 9.
归纳 三角形的第三边长 x 满足两边之差<x<两边之和.
例2 用一条长为 18 cm 的细绳围成一个等腰三角形. (1) 如果腰长是底边长的 2 倍,那么各边的长是多少? (2) 能围成有一边的长是 4 cm 的等腰三角形吗?为什么? 解:(1) 设底边长为 x cm,则腰长为 2x cm,
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
典例精析
例1 下列长度的三条线段能否拼成三角形?为什么? (1)3 cm、8 cm、4 cm;(2)5 cm、6 cm、11 cm; (3)5 cm、6 cm、10 cm. 解:(1)不能,因为 3 cm + 4 cm < 8 cm.
人教版数学八年级上册教学课件
第十一章 三角形
11.1 与三角形有关的线段 11.1.1 三角形的边

人教版四年级下册数学 第五单元 三角形 第二课时《三角形3条边的关系》 教学课件PPT

人教版四年级下册数学 第五单元 三角形 第二课时《三角形3条边的关系》 教学课件PPT

(2) ×
4
5
49
5
9
(4)
8
11 11
探究新知
(1)

6
7
8
(2) ×
4
5
9
三角形任意两边的和大于
130
6
10
(4) √8
8 11 11
111
易错举例
判断:4根同样长的小棒,可以首尾相连地摆成一个三角形。
(其中2根小棒可以摆成三角形的一条边)
( ×√ )
错题分析:
此题错在没有完全掌握三角形 3条边之间的关系。两边之和 等于第三边,不能围成三角形
探究新知
两点间所有连线中线段最短,这条 线段的长度叫做两点间的距离。
探究新知
例4.剪出下面4组纸条(单位:cm) (1)6、7、8。 (2)4、5、9。 (3)3、6、10。 (4)8、11、11。
每组纸条都能摆出三角形吗?
我们来做个实验。
探究新知
(1) √
6
67 7 88
(3) 3 6 10
温馨提示:
只有当任意两边的和大于第 三边时,才能围成三角形, 等于或者小于第三边,都不 能围成。
巩固拓展 判断下面哪三条线段可以组成一个三角形。(单位:厘米)
(1)4 3 5 √ (2)2 6 7 √ (3)4 4 9 (4)3 9 8 √
课堂小结 同学们,这节课你们都学会了哪些知识?
两点间所有连线中线段最短,这条线 段的长度叫做两点间的距离(注意是线 段的长度,不是连接两点的线段)。 三角形的任意两边的和大于第三边。
《三角形3条边的关系》 第二课时
复习旧知
什么样的图形是 三角形?
由三条线段围成的图形是三角形。

新人教版八年级数学上学期《三角形全等的判定边角边》优课件

新人教版八年级数学上学期《三角形全等的判定边角边》优课件
三角形全等的判定
---边角边
温故知新
1. 如果两个三角形只有一组对应相等的 元素,那么它可以分为几种情况? 不一定全
一边、一角

2. 如果两个三角形只有两组对应相等的
元素,那么它可以分为几种情况? 不一定全
一边一角、两边、两角

3. 如果两个三角形有三组对应相等的元 素,那么它可以分为几种情况?
两边一角、两角一边、三角、三边 ?
谢谢观赏
You made my day!
我们,还在路上……
C
C′
A
B
A′
B′
符号语言: 在△ABC和△A′B′C′中
∵ AB=A′B′
说明这两个三角形全等
∠A=∠A′
AC=A′C′ ∴ △ ABC ≌△ A′B′C′(S.A.S.)

如图,已知两条线段和一个角,以长的线段为已
一 知角的邻边,短的线段为已知角的对边,画一个三角
做 形.
2.5cm
3cm
45°
把你画的三角形与其他同学画的三角形进行比 较,所画的三角形都全等吗?
1.根据下面的条件,能否判断如图所示的两
个三角形全等?
(1)AC=DF,∠C=∠F,BC=EF;
BF A

D
C(
E 1)
(2) BAC=BAD, ∠ABC=∠ABD.A
C B
不能

D
(2)
2. 如图3,已知线段AC、BD相交于点E,
1
C
CB=CE .
2
求证:AB=DE .
E
D
图5
课本第65页 第2、3题
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月10日星期日2022/4/102022/4/102022/4/10 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/102022/4/102022/4/104/10/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/102022/4/10April 10, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

人教版八年级数学上册 《三角形的边》三角形PPT课件

人教版八年级数学上册 《三角形的边》三角形PPT课件

A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个; 直角三角形有3个;
钝角三角形有1个。 25 第二十五页,共二十六页。
忆一忆
今天我们学了哪些内容?
1.三角形的有关概念(边、角、顶点)
2.会用符号表示一个三角形.
3.通过实践了解三角形的三边不等关系.
26
第二十六页,共二十六页。
电线杆
自行车
5
第五页,共二十六页。
读一读 阅读课本P1~2,并回答以下问题:
(1)什么叫三角形? (2)三角形有几条边?有几个内角?有几个顶点? (3)三角形ABC用符号表示________. (4)三角形ABC的边AB、AC和△BAC可BC用小写字 母分别表示为________.
c、b、a
6
第六页,共二十六页。
A
B D
E
C
13
第十三页,共二十六页。
下面图形中一共有多少个三角形?锐角三角 形、直角三角形、钝角三角形各有多少个?
A
B D
E
C
14
第十四页,共二十六页。
下面图形中一共有多少个三角形?锐角三角
形、直角三角形、钝角三角形各有多少个?
A
3
B D
E
C
15
第十五页,共二十六页。
下面图形中一共有多少个三角形?锐角三角形、 直角三角形、钝角三角形各有多少个?
A
3
2
B D
E
C
1
这个图形中一共有6个三角形。
锐角三角形有2个;
21
第二十一页,共二十六页。
下面图形中一共有多少个三角形?锐角三角形、 直角三角形、钝角三角形各有多少个?

人教版数学八年级上册11.1.1《三角形的边》教学设计

人教版数学八年级上册11.1.1《三角形的边》教学设计

人教版数学八年级上册11.1.1《三角形的边》教学设计一. 教材分析人教版数学八年级上册11.1.1《三角形的边》是学生在学习了平面几何基本概念的基础上,进一步研究三角形的性质。

本节课主要让学生了解三角形的三边关系,学会用不等式表示三角形的三边关系,并能够运用这一性质解决一些实际问题。

教材通过生活中的实例引入,激发学生的学习兴趣,接着引导学生通过观察、操作、推理等过程,发现三角形的边长之间存在的关系,培养学生的几何直观能力和逻辑思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具有一定的观察、操作和推理能力。

但部分学生对抽象的几何概念理解不够深入,对三角形的边长关系理解起来可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习差异,引导学生通过实际操作和几何直观图,更好地理解三角形的边长关系。

三. 教学目标1.理解三角形的三边关系,并能用不等式表示。

2.学会运用三角形的三边关系解决一些实际问题。

3.培养学生的几何直观能力和逻辑思维能力。

4.激发学生学习数学的兴趣,提高学生合作交流的能力。

四. 教学重难点1.重点:三角形的三边关系,三角形三边关系的应用。

2.难点:三角形三边关系的证明和灵活运用。

五. 教学方法1.情境教学法:通过生活中的实例引入,激发学生的学习兴趣。

2.观察操作法:引导学生观察三角形模型,操作实践,发现边长关系。

3.推理教学法:引导学生运用逻辑推理,证明三角形的三边关系。

4.合作交流法:鼓励学生分组讨论,分享学习心得,提高合作交流能力。

六. 教学准备1.教学课件:制作三角形的性质课件,用于辅助教学。

2.几何模型:准备一些三角形模型,让学生观察和操作。

3.练习题:准备一些有关三角形边长关系的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实例,如:帆船比赛中的三角形帆船,引出三角形的三边关系。

引导学生关注三角形在实际生活中的应用,激发学生的学习兴趣。

《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册

《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
2.教学难点
(1)三角形的内角和定理的应用:在解决具体问题时,学生可能难以灵活运用内角和定理;
突破方法:通过设置不同类型的练习题,让学生多角度、多层次的运用内角和定理,提高其解决问题的能力。
(2)三角形两边之和大于第三边的原理的理解:学生对这一原理的理解可能不够深入,难以应用到实际问题中;
突破方法:通ห้องสมุดไป่ตู้举例、画图等方式,让学生直观地理解这一原理,并引导他们将其应用于解决实际问题。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
一、教学内容
《11.1.1三角形的边》教案教学反思,选自2023-2024学年数学人教版八年级上册第十一章第一节的课程内容。本节课主要围绕以下知识点展开:
1.三角形的定义及其基本性质;
2.三角形的分类:按边分(不等边三角形、等腰三角形、等边三角形)和按角分(锐角三角形、直角三角形、钝角三角形);
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、内角和定理以及两边之和大于第三边的原理等重要知识点。同时,我们也通过实践活动和小组讨论加深了对三角形边的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对三角形的边这一知识点表现出较大的兴趣。通过引入日常生活中的例子,同学们能够更好地理解三角形的概念和性质。以下是我对今天教学的一些思考:
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版八年级数学上册《三角形的边》教学教案

人教版八年级数学上册《三角形的边》教学教案

《三角形的边》精品教案【教学目标】1.知识与技能(1)理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数;(2)能利用三角形的三边关系判断三条线段能否构成三角形;(3)三角形在实际生活中的应用。

2.过程与方法通过观察、操作、交流等活动发展空间观念和推理能力。

3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

【教学重点】(1)认识三角形的顶点、边、角。

(2)三边关系的应用。

【教学难点】三角形三边关系的应用【教学方法】自学与小组合作学习相结合的方法【课前准备】教学课件,几个不同的三角形板。

【课时安排】1课时【教学过程】一、情境导入展示两张图片。

【过渡】这两张图片中,都应用到了三角形,大家找一下吧。

(学生根据观察,找到图片中的三角形)【过渡】大家都找到了这两张图片中用到的三角形,其实,在生活中,有很多设计师会选择三角形来作为创作的原型。

展示三角形状的建筑图片【过渡】为什么会有这么多地方用三角形呢?三角形有什么特别的地方吗?三角形的定义又是什么呢?今天我们就来学习一下关于三角形的基础知识。

二、新课教学1.三角形的基本概念【过渡】现在,老师想让大家做一个小活动,大家拿三支笔,然后动手摆一个三角形吧。

(老师巡视,同时指出不足)【过渡】大家可以看看,自己摆的三角形有什么特点呢?三角形需要满足什么条件?(引导学生回答)(1)三角形的定义:不在同一直线上三条线段首尾顺次相接组成的图形叫做三角形。

【过渡】在这里,大家要注意“首尾相接”这四个字,也就是说如果三条线段没有连接,就不能构成三角形。

课件展示几种形状,让学生判断是否为三角形。

然后再画出正确的三角形,强调两个注意点。

(老师可以拿三支笔进行演示,不相接的不能称为三角形)(2)三角形的基本概念课件展示三角形ABC。

【过渡】现在我们观察这个三角形,我们看到,在三角形的三个点,标有ABC,这三个点,我们称之为顶点,而这个三角形我们称之为三角形ABC,写作△ABC。

人教版数学八年级上册11.1.1《三角形的边》说课稿

人教版数学八年级上册11.1.1《三角形的边》说课稿

人教版数学八年级上册11.1.1《三角形的边》说课稿一. 教材分析《三角形的边》是人教版数学八年级上册第11章第1节的内容。

本节课主要让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。

在教材中,通过引入“三角形的边”的概念,让学生在探究过程中发现三角形的边长之间的相互关系,从而培养学生的观察能力、操作能力和推理能力。

二. 学情分析八年级的学生已经掌握了平面几何的基本概念,具备了一定的观察、操作和推理能力。

但对于三角形边长的特性和关系,可能还比较陌生。

因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过观察、操作、猜想、验证等方法,探究三角形边长之间的关系,提高学生的几何思维能力。

三. 说教学目标1.知识与技能:让学生了解三角形的三条边之间的关系,掌握三角形的边长特性。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:三角形的三条边之间的关系,三角形的边长特性。

2.教学难点:如何引导学生发现并证明三角形边长之间的关系。

五. 说教学方法与手段1.教学方法:采用观察、操作、猜想、验证的教学方法,引导学生主动探究三角形边长之间的关系。

2.教学手段:运用多媒体课件、几何画板等教学辅助工具,直观展示三角形边长的特性。

六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入新课。

2.探究三角形边长之间的关系:让学生分组讨论,每组设计实验,观察、操作、猜想三角形边长之间的关系,并尝试用语言描述。

3.验证猜想:引导学生利用几何画板等工具,验证猜想的正确性。

4.归纳总结:师生共同总结三角形边长的特性,得出结论。

5.巩固练习:设计一些具有代表性的练习题,让学生巩固新知识。

6.课堂小结:回顾本节课的学习内容,总结三角形边长的特性。

七. 说板书设计板书设计如下:三角形的三条边:1.任意两边之和大于第三边2.任意两边之差小于第三边八. 说教学评价本节课的教学评价主要从学生的知识掌握、能力培养、情感态度三个方面进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学人教版《三角形的边》完美版1
数学人教版《三角形的边》完美版1
5.若三角形的两边长分别是2和7,第三边长为奇数,求 第三边的长. 解:设第三边长为x,根据三角形的三边关系,可得,
7-2<x<7+2,即5<x<9, 又x为奇数,则第三边的长为7.
数学人教版《三角形的边》完美版1
数学人教版《三角形的边》完美版1
数学人教版《三角形的边》完美版
二 三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等

角:∠A,∠B,∠C叫作三角形的内角,简称三角
形的角.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
记法:三角形ABC用符号表示_△__A_B_C___.
边的表示:三角形ABC的边AB、AC和BC可用小写字
母分别表示为_c_,__a_,__b_. 顶点A

边c
边b
角 顶点B

边a
顶点C
讲授新课 数学人教版《三角形的边》完美版
一 三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三
角形?
A
定义:由不在同一条直线上的三条
线段首尾顺次相接所组成的图形叫
作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边.
顶点:点A,B,C是三角形的顶点,
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
三角形的对边与对角:
A
B
C
在△ABC中,
AB边所对的角是: ∠C
∠A所对的边是: B C 再说几个对边与对角的关系试试.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
辨一辨:下列图形符合三角形的定义吗?
不符合
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
基本要素: 三角形的边:边AB、BC、CA; 三角形的顶点:顶点A、B、C; 三角形的内角(简称为三角形的角):∠ A、 ∠ B、 ∠ C. 特别规定: 三角形ABC的三边,一般的顶点对的边记作 a,顶点B所对的边记作b,顶点C所对的边记作c.
数学人教版《三角形的边》完美版
顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
思考:等边三角形和等腰三角形之间有什么关系?
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版1
课堂小结 数学人教版《三角形的边》完美版1
三角形
数学人教版《三角形的边》完美版1
定义及其 基本要素
分类
顶点、角、边
按角分类
不重不漏
按边分类分类
原理 两点之间线段最短
三 边 关 系 内容 应用
两边之和大于第三边 两边之差小于第三边
|a-b|<x<a+b (a>b,x为 第三边)
路线2:沿线段AB走. 请问:路线1、路线2
哪条路程较短,你能
说出根据吗?
A
B
解:路线2较短;两点之间线段最短.
由此可以得到:A CBC AB
A BBC AC AC AB BC
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
议一议 1.在同一个三角形中,任意两边之和与第三边有什么
大小关系?
归纳 判断三条线段是否可以组成三角形,只需 说明两条较短线段之和大于第三条线段即可.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
例2 一个三角形的三边长分别为4,7,x,那么
x的取值范围是( A )
A.3<x<11
B.4<x<7
C.-3<x<11
D.x>3
解析:∵三角形的三边长分别为4,7,x, ∴7-4<x<7+4,即3<x<11.
不符合
不符合
数学人教版《三角形的边》完美版
要点提醒 三角形应满足以下两个条件: ①位置关系:不在同一直线上; ②联接方式:首尾顺次相接. 表示方法: 三角形用符号“△”表示;记作“△ABC”,读作 “三角形ABC”,除此△ABC还可记作△BCA, △ CAB, △ ACB等.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
我们可以把三角形按照三边情况进行分类
不等边三角形
三角形按边 分类
等腰三角形
腰和底不等的 等腰三角形
等边三角形 (三边都相等
的三角形)
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
判断: (1)一个钝角三角形一定不是等腰三角形.( × ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
归纳 判断三角形边的取值范围要同时运用两边 之和大于第三边,两边之差小于第三边.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
飞机机翼
氨 气 分 子 结 构 示 意 图
数学人教版《三角形的边》完美版
问题: (1)从古埃及的金字塔到现代的飞机,从宏伟的建筑
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
三 三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B
路线,难道小狗也懂数学?
C
A
B
AC+CB>AB(两点之间线段最短)
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
C
路线1:从A到C再到B的路线走;
2.在同一个三角形中,任意两边之差与第三边有什么 大小关系?
3.三角形三边有怎样的不等关系?
通过动手实验同学们可以得到哪些结论?理由是什么?
归纳总结
三角形两边的和大于第三边. 三角形两边的差小于第三边.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版
典例精析 例1 有两根长度分别为5cm和8cm的木棒,用长度 为2cm的木棒与它们能摆成三角形吗?为什么?长 度为13cm的木棒呢? 解:取长度为2cm的木棒时,由于2+5=7<8,出 现了两边之和小于第三边的情况,所以它们不能 摆成三角形.取长度为13cm的木棒时,由于 5+8=13,出现了两边之和等于第三边的情况,所 以它们也不能摆成三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
解:在△BDC 中, 有 BD+DC >BC(三角形的 任意两边之和大于第三边). 又因为 AD = BD, 则BD+DC = AD+DC = AC, 所以 AC >BC.
数学人教版《三角形的边》完美版1
当堂练习 数学人教版《三角形的边》完美版1
4+2x=18.
解得
x=7.
②若腰长为4cm,设底边长为xcm,则有
2×4+x=18. 解得 x=10.
因为4+4<10,不符合三角形两边的和大于第三边,
所以不能围成腰长是4cm的等腰三角形.
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
数学人教版《三角形的边》完美版
数学人教版《三角形的边》完美版1
拓展提升 6.若a,b,c是△ABC的三边长,化简|a-b-c| +|b-c-a|+|c+a-b|.
解:根据三角形的三边关系,两边之和 大于第三边,得 a-b-c<0,b-c-a<0,c+a-b>0. ∴|a-b-c|+|b-c-a|+|c+a-b| =b+c-a+c+a-b+c+a-b =3c+a-b.
数学人教版《三角形的边》完美版
D A
(4)以∠D为角的三角形有哪些?
E △ BCD、 △DEC.
B
C
(5)说出△BCD的三个角和三个顶点所对的边.
△BCD的三个角是∠BCD、∠BDC、∠CBD.顶点B 所对应的边为DC,顶点C所对应的边为BD,顶点D 所对应的边为BC.
数学人教版《三角形的边》完美版
八年级数学上(RJ)
第十一章 三角形
11.1.1三角形的边
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.认识三角形并会用几何语言表示三角形,了解三角
形分类.
2.掌握三角形的三边关系.(难点)
3.运用三角形三边关系解决有关的问题.(重点)
导入新课
埃及金字塔
数学人教版《三角形的边》完美版 数学人教版《三角形的边》完美版
1.下列长度的三条线段能否组成三角形?为什么?
相关文档
最新文档