地形因子计算详解
DEM坡面地形因子提取与分析
DEM坡面地形因子提取与分析
一、实验目的
了解基于DEM坡面地形因子提取的原理;掌握坡度、坡向、坡面曲率因子的提取方法及坡度分级图的制作;能够利用坡面地形因子与其它空间分析方法相结合以解决实际应用问题。
二、实验数据
一幅5m分辨率的黄土地貌DEM数据
三、实验步骤
3.1坡度
1、提取坡度
图1、坡度数据
2、3度等间距分级
3、土地利用模式分级
3.2坡向
图4、坡向图
3.3提取地面变率因子
1、坡度变率(SOS)
2、坡向变率(SOA)
3.4提取DEM层的反地形;
图7、DEM反地形提取
3.5DEM的平均曲率
图9、平均曲率计算
图10、平均曲率图与光照晕渲图叠加
四、思考
对于平均地形因子的提取,我认为可以通过邻域分析,计算窗口的最大最小值,求其平
均值,再不断扩大,知道窗口扩大到整个DEM。
实验五DEM坡面地形因子提取
实验五DEM坡面地形因子提取实验目的:通过数字高程模型(DEM)数据提取坡度和坡向地形因子,以分析地形特征对水文过程和土地利用分布的影响。
实验步骤:1.数据准备a) 获取高分辨率的地形DEM数据,可以选择使用Lidar数据或者采用其他方式获取DEM数据。
b)进行数据预处理,包拟合DEM数据,去除噪声和突出值等。
2.坡度计算a)在DEM上采样,计算每个像元上的坡度。
b)坡度计算可以通过以下公式进行计算:Slope(i,j) = arctan(sqrt((dz/dx)^2 + (dz/dy)^2))其中,Slope(i,j)代表坡度, dz/dx代表DEM在x方向的梯度,dz/dy代表DEM在y方向的梯度。
3.坡向计算a)在DEM上采样,计算每个像元上的坡向。
b)坡向计算可以通过以下公式进行计算:Aspect(i,j) = arctan(dz/dx / dz/dy)其中,Aspect(i,j)代表坡向, dz/dx代表DEM在x方向的梯度,dz/dy代表DEM在y方向的梯度。
4.地形指数计算a)根据坡度和坡向的计算结果,可以进一步计算其他地形指数,例如地形湿度、地形开阔度等。
b)地形湿度可以通过计算每个像元周围的流通路径长度来估算。
c)地形开阔度可以通过计算每个像元周围的可见面积来估算。
5.结果分析a)可视化坡度和坡向地形因子,以了解地形特征。
b)利用地形指数,可以分析地形特征对水文过程和土地利用分布的影响。
实验结果分析:通过提取DEM的坡度和坡向地形因子,可以分析出地形特征,进而对水文过程和土地利用分布进行预测和分析。
例如,通过分析坡度可以了解一个地区的地势起伏程度,从而对洪水灾害的发生概率进行预测。
通过分析坡向可以了解水流在地表的流向,从而对土壤侵蚀和水资源分布进行预测。
此外,通过计算其他地形指数,还可以分析地形湿度和地形开阔度对生态环境的影响,为环境管理和规划提供数据支持。
总结:本实验通过DEM数据的处理和分析,提取了坡度和坡向地形因子,并通过计算其他地形指数,以分析地形特征对水文过程和土地利用分布的影响。
6 地形分析坡面因子提取
3.2 山脊线、山谷线的提取
求出已提取的概略地形特征线与DEM 格网 线的交点,在该交点附近的一个小区域, 对DEM 数据进行几何分析,即找出该区域 内与概略的地形特征线正交方向地形断面 上高程变化的极值点,该点即为该条地形 特征线的精确位置。
3.2 山脊线、山谷线的提取
平面曲率与坡位组合法 : 利用DEM数据提取地面的平面曲率及地面 的正负地形,取正地形上平面曲率的大值 即为山脊,负地形上平面曲率的大值为山 谷。 提取的山谷和山脊可以通过曲率的值 来进行调节。
1,表示谷点 1,表示脊点 VR i,j 2,表示鞍点 0,表示其他点
(i+1,j-1)
(i+1,j)
(i+1,j+1)
差分算法示意图
山顶点
鞍பைடு நூலகம்点
图例
等高线
山顶点
鞍部
利用ArcView GIS 软件及DEM数据提取的山顶、鞍部
3.2 山脊线、山谷线的提取
山谷线 山脊线与山谷线
2.3 坡面复杂度因子
坡面复杂因子是宏观的地形信息因子,包括地 形起伏度、地形粗糙度、地表切割深度和沟壑 密度等 ;
地形起伏度:是在所指定的分析区域内所有栅 格中最大高程与最小高程的差,
RFi H max H min
.
中国1:100万DEM 提取的中国陆地区域地形起伏度图
2.3 坡面复杂度因子
3.2 山脊线、山谷线的提取
基本思想 首先用较稀的DEM格网 数据用地形流水物理分 析方法提取区域内概略 的地形特征线,然后用 其引导,在其周围邻近 区域对地形进行几何分 析来精确确定区域的地 形特征线。
概略DEM建立 地形流水物理模拟
地形因子计算详解
第七章1、本章主题编号2、本章内容概述(1)概述●坡面因子的分类及提取方法●确定坡面因子提取的算法基础●提取坡面因子的常用分析窗口(2)坡度、坡向●坡度的提取●坡向的提取(3)坡形●宏观坡形因子●地面曲率因子●地面变率因子(4)坡长(5)坡位(6)坡面复杂度因子3、本章内容3.1概述(1)坡面因子的分类及提取方法●坡面因子的分类按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。
常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。
常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。
按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。
一阶坡面地形因子主要有坡度和坡向因子。
二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。
复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。
按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。
●提取坡面因子的基本方法首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。
(2)确定坡面因子提取的算法基础● DEM格网数据的空间矢量表达(如图7.1)图7.1 DEM格网数据的空间矢量模型●基于空间矢量模型的差分计算算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。
其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。
ArcGIS 第7章 坡面地形因子提取
区域水土流失地形因子定量指标的制定
本章结束!
• L指坡长,m指地表面沿流向的水流长度, • θ指水流地区的地面坡度值。
5. 坡 位
• ������ 坡位是指坡面所处的地貌部位。 • ������ 正地形、负地形 • ������ 沟间地(沟壑区<25⁰,塬墚区<15⁰) • 沟谷地 • 沟坡地
6. 坡面复杂度因子
地表粗糙度
• ������ R = S曲面/ S水平 R = 1/cos(S)
坡面因子分类体系
DEM误差分类体系
坡面因子分类体系
提取坡面因子的基本方法
• • • • ������ ������ ������ ������ 明确各个坡面因子的数字特征 建立解译模型 研究基于DEM的提取方法 软件实现
坡面因子提取的算法基础
• ������ DEM格网数据的空间矢量表达
坡面因子提取的算法基础
地面曲率因子
• 地面曲率是对地形表面一点扭曲变化程度的定量化度量因 子,地面曲率在垂直和水平两个方向上的分量分别称为 • 平面曲率和剖面曲率
地面变率因子
• ������ • ������ 坡度变率(SOS) 坡向变率(SOA)
4. 坡 长
• 坡长通常是指在地面上一点沿水流方向到其流向 起点间的最大地面距离在水平面上的投影长度。
简化的差分公式
• fx是X方向高程变化率,fy是Y方向高程变化率
坡 向
坡向的计算
3. 坡 形
指局部地表坡面的曲折程度,宏观上讲,可分为 直线形斜坡、凸形斜坡、凹形斜坡和台阶形斜坡。 从微观角度上看, 一般可采用地面曲 率因子和地面变率 因子度量地面一点 的弯曲变化程度。
• 宏观坡形因子
DEM坡面地形因子提取技术文档
DEM坡面地形因子提取技术文档一、引言坡面地形因子(Terrain Factors)是描述地形地貌特征的一种指数,它在地质、地形、水文及环境科学研究中扮演着重要的角色。
地形因子通常由数字高程模型(DEM)数据中提取而得,其中包括坡度、坡向、高程等。
在本文中,我们将介绍一种提取DEM坡面地形因子的技术。
二、技术原理1.DEM数据预处理首先,需要对DEM数据进行预处理。
预处理包括裁剪、填充、平滑等操作,以去除无效数据和噪声干扰。
这样可以得到一份清洁、准确的DEM数据供后续分析使用。
2.坡度计算坡度是地形表面在一个给定点处的曲率。
坡度可以通过计算DEM中两个相邻像元之间的高度差来获得。
大致可以使用以下公式计算坡度:坡度= arctan(√((∂z/∂x)^2 + (∂z/∂y)^2))其中,z是DEM中其中一像元的高程,x和y是该像元与其相邻像元的水平位置。
通过计算所有像元的坡度,即可获得整个地形表面的坡度分布。
3.坡向计算坡向是地表倾斜的指向,即地面水流流向的方向。
坡向可以通过计算DEM中每个像元的局部水平面斜率及其方向来获得。
常用的计算方法有以下两种:-最大坡向:将DEM视为一个等高线,计算累积坡度最大的方向作为坡向。
-朗巴特坡向:根据DEM的高程变化来计算坡向。
该方法利用光学效应的原理,将DEM分成若干小块,分别计算每个块中的坡向,再通过插值方法将坡向合并为整体。
4.高程计算高程是地表在垂直方向上的绝对高度。
在DEM数据中,高程信息已经包含在每个像元的值中。
因此,只需简单地读取DEM数据中的高程值即可获得地形表面的高程分布。
三、技术流程1.获得并预处理DEM数据,去除无效数据和噪声干扰。
2.计算坡度:计算DEM中每个像元的坡度值。
3.计算坡向:根据所选择的坡向计算方法,计算DEM中每个像元的坡向值。
4.计算高程:读取DEM数据中每个像元的高程值。
四、技术应用坡面地形因子对地质、地形、水文及环境科学研究具有广泛的应用。
江西省地形因子(LS)分析
4).得到洼池填平图
• 3.水流方向计算
• 操作步骤: • 1)打开Arctoolbox,在Arctoolbox列表框中 点击Spatial Analysis Tool\Hydrology,双击 Flow Direction,打开Flow Direction操作的对 话框。 • 2)在Input surface raster下拉列表框中选择 经过填充的DEM图层,在Output flow direction raster文本框中确定输出文件的名 称及路径,点击选中Force all edge cells to flow outward前的复选框
• 1)点击Spatial Analyst 工具条上的Spatial Analyst/ Raster Calculator,打开Raster Calculator对话框。
• 2)利用公式 LS Am (sin ) n 来计算地形 因子LS。其中,A是汇流累积量(FlowAcc), β是坡度(slope,单位为角度),m=1.6, n=1.3。
• 主要因子包括:坡度、坡向、平面、水流 长度。大多数的地形因子由地形表面的方 向导数计算而成。它们可通过一个二阶差 分格式或者满足DEM的一个二元插值函数 z=f(x, y)计算获得,之后计算函数的导数。 或许,我们想先计算出DEM的低洼地,就 必须指出一个或多个规则来决定排水方向 和每个像元间的联系,以便计算水流长度 和上坡汇水区域。目标是能够利用计算出 的因子来描述形态测量学、汇水位置以及 山坡和组成流域通道的地表因子。 1. 《地理信息系统在流域生态水文过程模 拟研究中的应用》,夏佰成、胡金明、宋 新山,水土保持研究,2004,11 • 2. 《不受DEM 空间分辨率影响的地形指数 计算》,徐静,任立良,程媛华,袁飞,清华大 学学报(自然科学版),2008年第48卷第6期
pva计算公式
pva计算公式PVA(Porosity Coefficient) 计算公式是土壤力学中一个重要的参数,用于描述土壤孔隙结构的状况,其大小直接影响土壤的承载压力和水土保持性能。
下面是常见的 PVA 计算公式及其解释:1. 常规 PVA 计算公式常规 PVA 计算公式为:PVA = (1 - A%)/100其中,PVA 为土壤孔隙率 (Porosity Coefficient),A%为土壤固体颗粒含量 (Adhesion Coefficient)。
该公式基于土壤孔隙率和固体颗粒含量之间的关系,通过将土壤孔隙率降低到 100% 以下,可以将土壤孔隙率表示为土壤固体颗粒含量的百分比。
2. 地形因子 PVA 计算公式地形因子 PVA 计算公式为:PVA = (1 - B%)/100其中,PVA 为地形因子 (Topographic Coefficient),B%为土壤粘粒含量 (Bogosity Coefficient)。
该公式基于土壤孔隙率和粘粒含量之间的关系,考虑了地形对土壤孔隙率的影响。
在地形因子的计算中,通常会考虑到地形高度、坡度和地形复杂度等因素。
3. 水文 PVA 计算公式水文 PVA 计算公式为:PVA = (1 - C%)/100其中,PVA 为水文 PVA(Hydrologic Porosity Coefficient),C%为土壤孔隙中水分含量 (Water Content Coefficient)。
该公式基于土壤孔隙率和水分含量之间的关系,考虑了土壤孔隙对水分的容纳能力。
在水文 PVA 的计算中,通常会考虑到土壤的饱和度、湿度、孔隙大小等因素。
以上是常见的 PVA 计算公式,这些公式可以帮助工程师和研究人员更好地理解和预测土壤的力学性质和水文特性。
同时,PVA 计算公式也是土壤力学和水土保持领域中重要的研究内容之一。
dem 地形因子计算公式
dem 地形因子计算公式地形因子是描述地表地形特征的数值指标,可以反映地势的陡峭程度、坡度、坡向等信息。
在地理科学中,地形因子的计算对于土地利用规划、水文模拟、生态研究等领域具有重要意义。
下面我们将介绍几个常用的DEM地形因子计算公式。
1. 坡度(slope):坡度是地表在某一点上的陡峭程度,常用角度或百分比来表示。
坡度的计算公式为:坡度 = arctan(sqrt((dz/dx)^2 + (dz/dy)^2))其中,dz表示高程差,dx和dy表示在水平方向上的水平距离。
坡度的计算结果可以反映地表的陡峭程度,对于土地利用规划、泥石流预警等具有重要意义。
2. 坡向(aspect):坡向是地表在某一点上的方向,通常使用角度来表示。
坡向的计算公式为:坡向 = arctan(dz/dy) / arctan(dz/dx)其中,dz表示高程差,dx和dy表示在水平方向上的水平距离。
坡向的计算结果可以反映地表的方向特征,对于太阳辐射、水文模拟等具有重要意义。
3. 山体阴影(hillshade):山体阴影是根据地形的坡度和坡向,模拟太阳光照射地表产生的阴影效果。
山体阴影的计算公式为:阴影值 = cos(坡度) * cos(太阳高度角) + sin(坡度) * sin(太阳高度角) * cos(太阳方位角 - 坡向)其中,坡度和坡向是通过上述公式计算得到的。
山体阴影可以帮助我们直观地了解地表地形特征,对于可视化地理数据和地形分析有很大的帮助。
除了上述常用的DEM地形因子,还有其他一些因子,如曲率、流向、流量等,都是通过DEM数据计算得到的。
这些地形因子可以帮助我们深入了解地表地形特征,揭示地理现象的规律和影响因素。
DEM地形因子的计算可以使用地理信息系统(GIS)软件来实现,如ArcGIS、QGIS等。
这些软件提供了丰富的工具和函数,可以方便地进行DEM地形因子的计算和分析。
在地理研究中,DEM地形因子的应用非常广泛。
(12-)空间分析地形因子计算
r>1,目标物为膨胀型。
第三十页,编辑于星期五:二十二点 二十一分。
三) 空间物体距离
第三十一页,编辑于星期五:二十二点 二十一 分。
第三十二页,编辑于星期五:二十二点 二十一 分。
第三十三页,编辑于星期五:二十二点 二十一 分。
第三十四页,编辑于星期五:二十二点 二十一 分。
思考:多段线的最短、最大距离?
第十三页,编辑于星期五:二十二点 二十一分。
格网DEM中两点通视性判断
– 1、绘制OP的剖面图。
– 2、计算OP倾角 :
tan
zpz0
xpx02ypy02
第十四页,编辑于星期五:二十二点 二十一分。
– 3、计算观察点与各交点的倾角
tan
zi z0
xi x02yi y02
– 4、若 tan max i, i( tA ,a B ,C n)
人口中心变迁
第二十一页,编辑于星期五:二十二点 二十一 分。
二) 几何量测
几何量算对点、线、面、体4类 目标物而言,其含义不同的:
– 点状目标:坐标; – 线状目标:长度、曲率、方向; – 面状目标:面积、周长等;
– 体状目标:表面积、体积等。
第二十二页,编辑于星期五:二十二点 二十一 分。
① 距离量算
如果一区域中所有的性质与方向无关,则称为 各向同性区域。以旅行时间为例,如果从某一点 出发,到另一点的所耗费的时间只与两点之间的 欧氏距离成正比,则从一固定点出发,旅行特定 时间后所能达到的点必然组成一个等时圆。而现 实生活中,旅行所耗费的时间不只与欧氏距离成 正比,还与路况、运输工具性能等有关,从固定 点出发,旅行特定时间后所能到达的点则在各个 方向上是不同距离的,形成各向异性距离表面。
地形因子
测量方法
关于海拔高度的测量,目前主要有机械式、GPS定位式和气压式3 种海拔高度测量系统。 机械式海拔高度仪的精度有限,体积大,携带不方便。 GPS定位能提供定位信息,但在近地面时准确度较差,而且输出的 位置信息为经度纬度和大地高,不能直接得到海拔高度,实际应用很 不方便。 气压式高度测量,利用大气压力值和环境温度值,经换算可得到海 拔高度 采用一般气压传感器测量受环境温度等影响,其测量精度往往 达不到要求 。
3.纬度
纬度可分为天文纬度,大地纬度,地心纬度。 地心纬度是指某点与地球球心的连线和地球赤道面所成的线面角。 大地纬度是指某地地面法线对赤道面的夹角。 天文纬度指该地铅垂线方向对赤道面的夹角。 我们通常说的纬度指的是大地纬度。其数值在0至90度之间。位于赤道 以北的点的纬度叫北纬,记为N;位于赤道以南的点的纬度称南纬,记为S.
对于北半球而言,辐射收入南坡最多,其次为东南坡和西南坡,再次为东 坡与西坡及东北坡和西北坡,最少为北坡。
熊秀海,代侦勇,熊斌梅,谢翠容. 绿色空间生态服务与地形因子的相关性分析 [J/OL]. 测绘地理信息,2017,42(03):
摘要:绿色空间生态服务(green space ecosystem services,GSES)与地形因 子(坡度、海拔、坡向)有密切的关系,研究其关系对区域生态服务功能的修复、 完善和可持续发展具有重要意义。通过奉化市绿色空间地类的划分和生态服务 的计算模型获得GSES的价值。利用GIS技术提取坡度、海拔、坡向3个地形因子, 同时分别获得每个因子对应的GSES值,最后选择Spearman相关分析模型对 GSES价值与地形因子值进行检验。
大气压强传感器TP015P在海拔高度测量中的应用[J]. 赖武刚,郭勇,詹鹏. 电子 元器件应用. 2010(08) 摘要:TP015P是APM公司生产的大气压强传感器,该器件的测量范围为0~ 100kPa。工作温度范围为-40℃~125℃,文中介绍了一种基于大气压强传感器 TP015P的数字海拔仪的设计方法,详细地给出了该仪器的系统原理框图,并对 仪器硬件电路进行了阐述,给出了相应部分的电路原理图,同时给出了软件实 现流程图。
测绘技术中的地形因子计算方法
测绘技术中的地形因子计算方法地形因子是指地形特征对于某一过程或现象的影响程度。
在测绘技术中,地形因子的计算是一项重要的工作。
它可以用于土地利用规划、环境保护、灾害风险评估等领域。
本文将介绍几种常见的地形因子计算方法。
一、高程因子高程因子是地形因子中最常见且最重要的一个。
它用来描述地表高程对于水分分布、土地利用和植被分布的影响程度。
高程因子的计算方法有多种,其中一种常用的是基于等高线的方法。
这种方法首先需要获取地形图或高程数据,然后根据等高线的间距将地块划分成多个等高线间距相同的小区域。
接下来,通过计算每个小区域内的坡度和坡向,可以得到地块的高程因子。
具体的计算公式如下:高程因子 = (坡度 + 坡向)/2二、坡度因子坡度因子描述了地表坡度对于水分自流、侵蚀和土壤侵蚀的影响程度。
坡度因子的计算同样可以利用等高线数据。
首先,将地块划分成多个等高线间距相同的小区域,然后计算每个小区域内的坡度。
坡度的计算方法有多种,其中一种简单且常用的方法是利用两个相邻等高线之间的高差和两个等高线之间的距离计算坡度。
具体的计算公式如下:坡度 = 高差 / 距离同样,通过计算每个小区域的坡度,可以得到地块的坡度因子。
三、曲率因子曲率因子描述了地表曲率对于水流方向的影响程度。
它可以用于地形阴阳坡划分、水流路径确定等应用。
曲率因子的计算方法也可以利用等高线数据。
通过计算每个小区域内的凹曲率和凸曲率,可以得到地块的曲率因子。
具体的计算公式如下:凹曲率 = 2 * H / (X^2 + Y^2)凸曲率 = 2 * H / (X^2 + Y^2)其中,H为地块的高程,X和Y为地块的坐标。
四、可见性因子可见性因子描述了地形对于视线可见性的影响程度。
它可以用于风景规划、电磁波传播和战术作战等领域。
可见性因子的计算方法较为复杂,一种常用的方法是利用地块的高程数据和方位角数据计算地块之间的互相可见性。
具体计算方法可参考光学几何的原理,将地块之间的可见性进行数学建模和计算。
ArcGIS中坡度坡长等地形因子分析过程
地形因子LS制图过程DEM (1:5万)填充后生产河流流向图填充后生成坡度图90m格网DEM 非累计流量分析生成坡度图S=10.8sin B+0.036 0<5 °S=16.8sin 0-0.5 5 °«90S=21.9sin 0-0.96 0 祀°m=0.2 0<1 °m=0.3 1 °冬3 m=0.4 3 °V5 m=0.5 0蓉°坡度因子S图坡长因子L图根据上图及公示生成坡度因子图自L*r*rc-@ EE3■° - J.WSWTWcon( [Slope] < 5,10.8 * Sin( [Slope]) + 0.036,c on ([Slope] < 10,16.8 Sin ([Slope]) - 0.5,21.9 * Sin ([Slope]) - 0.96))计算坡度因子过程图con( [Slope] < 5,10.8 * Sin([Slope] * 3.1415926 / 180) +0.036,con([Slope] >= 10,21.9 * Sin([Slope] * 3.1415926 / 180)-0.96,16.8 * Sin([Slope] * 3.1415926 / 180) - 0.5))•P轧/»和畑Icfftlir.hJi缶1ASn ICbi I Jl&l ITtfi■XT”-□ #i3 iSSMtlW - 9 -jr^S&gJI] 巾他因曲・用WTE2SS口23 MCKtt ■列珂聲8?■胸M SHU1U4J 和5L/H9L3W3Fi]].a»qua 时.三 O *3-tVhU U2T«iW- .IL*■■Mild二盟KUHW- - 3 ]»»TII■W JJWFW -弭■■ ■MBTH - KI 33EKMB■ti UBIK4 - P KM 咖■专.HVIX1M " >M KWIIW!■ ewscmw - 9El FilL_dmiiO丄丄|oW|融P H•:耳悯』叶[I八卄卜创叶:h II.叭・加吟M H攀13 ■-1KQ□KK -! w■ 0* ! »-・a3I□ DinvILKZ— -■骨I■•暮nmvusL n t - 3宦£!■a・Ki 3K -3■» 4■» ££J » . -_ H -二.X 35 ; D _■祐 suhT:¥f x t s■H9-9-Ss Ful —do£lJ■ B ^. -sb*亍亍-•,□■ K £-- r&EI E E -H H S H --• •r _・・n ^T £L1 17匕・cniRTWT!r=?・wTt-d v T ..r ■ K E Y S E S r _v f x -»f £ =EI ・r ・r f巨 LIEJCMlJMLy "I_L ■-£F^B-H E -i T・・11"■r L .U J> M .a L t o CWJb-iTImlF s z ^ V -=E ■p A r b c i * 仲 -・V 7E ?% FE&>-r I L-a -e—*r .B rr m>Fin- U A V .&-V -\n E f t - F "E J E v »r i r t - 督 F 31- F --T -^f f -31 J B -4+』g-H-FA豐Fj 占血I £_令■ E p •--V-V +二▼亍・H暮J - VhsgrFlzr・・・iJ-- V r A ^-S M--V M -w on -・&・・|0■v F ni m•el -Z E -S・ Q E i ES 3 S S 4J Hconasope;lo.2bonas-ope;3o3conas-ope〕A 5040.5)))c F 3a _-aI 3J fluWO ER -L :■F■中I s■K.4Hgll・■ Ln- - 0M - SJ S B />»£H-Ish s x-■:旳KXu 刃! B N -2.H UMKK1T ■ 's ^£1■ ILS a s . ■a s s -u - □ w U S 25E ・ s L s f i J - — - > c *-L T M - I B 三LTM-■ F 7--EHJ r u 4K 7«£ff-f u v .H "HA A M U .r4-kLvn-xr• -^^3? Jfth-•*!=■■mBnT<<-•・ilu4wT.M1E.r »F b i £-E 4 EmLeT r «r -"-F »-?L - F rir-• XP.TA^IrrillnLT .M F-L + 直・KM2(T5a.■J4-巴易%f E>H l y r wr w l -V -3-1 u £c~、ff d -1 £<■V v u -x f _.>y ■%-?L4rllA4L M E L UEF L g■l p =m l"=-iM i u J l fnv a -s uEarM r t K-£ M r i -n x r»Li'-・■ l L m ・--・■ u2Taa_ Tr・E .3言 5*riEL3 ■: □ 诅强《2V^uHijjK asY^u.Hi#.:金餉■洛 Q m-Cd ; nla'i^.■o -1 ■s* ■ssifi'm■氐 RZKZJE* zin 口 li k^lCliH- ZJ I5< 12KA51E-■皱*1.1畑 ■曲 1M7IHJ(i 也HMITII 1MM«E I 弓J3a 机巒] i« iswm Z3 IllLTWil 曲细価 •MKhxaSMi T2 EC«5«II «3dnLi4<itiLL al-vr«LL求得流向图,为了算是否为根二con( [flowdir] == 2 | [flowdir] == 8 | [flowdir] == 32 | [flowdir]==128,1.414,1)■ L4nhffi!i - ]Calnla'.i^t^H-iK I 4H■ L H tlnljr«£.E ■:Xw_n> ■I0.T ■ D.3 ■ M■-□ Cklrjlkii-Md¥d.u■,由吐.0 £Is■E HF - Q W■Zalriiilhl itfi¥d.u_ »>**. 19 ms ■1 0妙■D - s. msEim■ 2. SMEITS! - E> BEEHZ2IT ■ L VS ^22I $ - ■ M订咖祸-jEi.l]u9L53l Oft UI0I5®亠14诡碾丹 ■ H LHfiCTB -血 4LLL7MIPow(90 * [xiu] / (Cos([Slope] * 3.1415926 / 180)* 22.1),[mfac])Silk t 屈蹈 Ik- I. fl ■ In>^ilUUC :< ■ I■i kUDUBi - i nim 拈WE 謝曲con( [slope] < 5,10.8 * Sin([slope] * 3.1415926 / 180) +0.036,con([slope] >= 10,21.9 * Sin([slope] * 3.1415926 / 180)-0.96,16.8 * Sin ([slope]* 3.1415926 / 180) - 0.5))T-U.W■ IF□Sa 4 □ 3同詁!*^W- ■血 4i*-P EJfJalii Tdw一』屮 皿亞耳 I I。
实验五地形模型(基本地形因子)提取
实验五地形模型提取一实验目的(ENVI)利用ENVI软件从DEM数据中提取地貌特性和地形特征,作为通视域分析和三维地形可视化的基础数据并熟练掌握处理步骤。
二实验环境安装ENVY软件的计算机一台。
三实验步骤使用8米的DEM数据和4米的正射影像图,数据情况如下:DEM.tif:8米空间分辨率的DEM数据Orthoimagery.tif:4米空间分辨率的航空正射影像数据Orthoimagery.hdr:头文件(一)地形模型的提取——工具ENVI地形模型工具作用在图像格式的DEM文件1.在Toolbox中,启动/Terrain/Topographic Modeling,选择DEM.tif文件,然后单击OK2.在Topo Model Parameters对话框中,选择地形核大小Topographic Kernel Size为5(分辨率低,地形核大。
)3.在Select topographic Measures to Compute列表中点击,选择要计算的地形模型4.如果选择了“Shaded Relief”,需要输入或计算太阳高度角和方位角。
单击Compute Sun Elevation and Azimuth,输入日期和时间,ENVI会自动地计算出太阳高度角和方位角。
5.选择输出路径及文件名,单击OK按钮,执行地形模型计算。
6.得到的结果是一个多波段图像文件,每一个地形模型组成一个波段在Select topographic Measures to Compute列表中,既可以选择一个地形模型,也可选择多个模型生成一个文件7.在使用时可以打开其中任何一个地形模型,并进行分类。
以下是地形模型的提取结果(二)地形模型的提取——结果1.坡度(Slope)2. 坡向(Aspect)3. 阴影地貌图像(Shaded Relief)4. 剖面曲率(Profile Convexity)5.水平曲率(Plan Convexity)6. 纵向曲率(Longitudnal Convexity)7.横向曲率(Cross Sectional Convexity)8.最小曲率(Minimum Curvature)9. 最大曲率(Maximum Curvature)10. 均方根误差(RMS Error)MAPGIS实验五坡面地形因子的提取一、实验目的了解坡面地形因子的定义,掌握用MAPGIS K9软件提取坡面地形因子的方法。
实验五地形模型(基本地形因子)提取
实验五地形模型提取一实验目的(ENVI)利用ENVI软件从DEM数据中提取地貌特性和地形特征,作为通视域分析和三维地形可视化的基础数据并熟练掌握处理步骤。
二实验环境安装ENVY软件的计算机一台。
三实验步骤使用8米的DEM数据和4米的正射影像图,数据情况如下:DEM.tif:8米空间分辨率的DEM数据Orthoimagery.tif:4米空间分辨率的航空正射影像数据Orthoimagery.hdr:头文件(一)地形模型的提取——工具ENVI地形模型工具作用在图像格式的DEM文件1.在Toolbox中,启动/Terrain/Topographic Modeling,选择DEM.tif文件,然后单击OK2.在Topo Model Parameters对话框中,选择地形核大小Topographic Kernel Size为5(分辨率低,地形核大。
)3.在Select topographic Measures to Compute列表中点击,选择要计算的地形模型4.如果选择了“Shaded Relief”,需要输入或计算太阳高度角和方位角。
单击Compute Sun Elevation and Azimuth,输入日期和时间,ENVI会自动地计算出太阳高度角和方位角。
5.选择输出路径及文件名,单击OK按钮,执行地形模型计算。
6.得到的结果是一个多波段图像文件,每一个地形模型组成一个波段在Select topographic Measures to Compute列表中,既可以选择一个地形模型,也可选择多个模型生成一个文件7.在使用时可以打开其中任何一个地形模型,并进行分类。
以下是地形模型的提取结果(二)地形模型的提取——结果1.坡度(Slope)2. 坡向(Aspect)3. 阴影地貌图像(Shaded Relief)4. 剖面曲率(Profile Convexity)5.水平曲率(Plan Convexity)6. 纵向曲率(Longitudnal Convexity)7.横向曲率(Cross Sectional Convexity)8.最小曲率(Minimum Curvature)9. 最大曲率(Maximum Curvature)10. 均方根误差(RMS Error)MAPGIS实验五坡面地形因子的提取一、实验目的了解坡面地形因子的定义,掌握用MAPGIS K9软件提取坡面地形因子的方法。
地理地貌公式总结报告
地理地貌公式总结报告地理地貌公式总结报告地形是地球表面上各种地貌形态的总称,包括山地、高原、丘陵、盆地、平原、河流、湖泊、海洋等。
地表形态的变化是地理研究的重要方向之一,也是地理学中的一个重要领域。
为了定量描述地理地貌的形态和变化规律,地理学家经过长期的观察和实践总结,提出了一系列地貌公式。
一、地形因子公式地形因子是指造成地形变化的主要因素,包括侵蚀、沉积、扭曲、抬升等。
地形因子公式是通过各种地貌因素之间的关系建立的数学关系式,用于分析和计算地理地貌的变化规律。
1. 侵蚀公式:侵蚀是地表岩石和土壤被水流、大气、地表运动等因素剥蚀和破坏的过程。
侵蚀公式可以用来计算侵蚀的速率和强度。
E = K * A * R * S其中,E表示单位时间内单位面积的侵蚀量,K表示侵蚀系数,A表示流域面积,R表示降雨量,S表示坡度。
2. 沉积公式:沉积是指流体中的颗粒物沉降到地表上的过程。
沉积公式可以用来计算沉积的速率和厚度。
S = V * t其中,S表示沉积的厚度,V表示沉积速率,t表示时间。
3. 抬升公式:抬升是指地壳的隆起和海水面的升降。
抬升公式可以用来计算抬升的速率和幅度。
U = R * t其中,U表示抬升的幅度,R表示抬升速率,t表示时间。
二、地形变化公式地形变化是指地貌形态不断发生变化的过程,包括地壳运动、河流侵蚀、风蚀、海平面变化等。
地形变化公式可以用来计算地形变化的速率和幅度。
1. 地壳运动公式:地壳运动是指地壳板块的运动和活动。
地壳运动公式可以用来计算地壳运动的速率和方向。
V = D / t其中,V表示地壳运动速率,D表示地壳运动距离,t表示时间。
2. 河流侵蚀公式:河流侵蚀是指河流对岩石和土壤的剥蚀和破坏。
河流侵蚀公式可以用来计算河流侵蚀的速率和强度。
E = Q * V * S其中,E表示单位时间内单位面积的侵蚀量,Q表示流量,V 表示流速,S表示河道坡度。
3. 气候变化公式:气候变化是指气候系统发生的长期变化。
DEM地形因子提取
DEM地形因子提取DEM(Digital Elevation Model)是指数字高程模型,通过将地表高程数据进行数字化处理,构建出来的地形数据模型。
DEM地形因子的提取是对DEM数据进行分析和处理,从中提取出一系列反映地形特征的参数或指标,用于地貌研究、水文模拟、地质勘探等领域。
1.高程因子:高程是指地表其中一点与一个确定的基准面的垂直距离。
高程因子主要是用来表示地形的海拔高度,通常以米为单位。
高程可以通过全球定位系统(GPS)或激光雷达等遥感技术获取,也可以通过实地测量获得。
2.坡度因子:坡度是指地表上两点之间的垂直距离和水平距离之比。
坡度因子可以用来衡量地表的陡峭程度,是地形分析和水文模拟中常用的指标。
坡度的计算方法有很多种,最简单的方法是使用两点之间的高差和水平距离进行计算。
3.坡向因子:坡向是指地表上其中一点相对于水平面的方向。
坡向因子可以表达地表的朝向特征,具有重要的地貌学意义。
坡向的计算方法有很多种,常用的方法是使用坡度和坡向角度进行计算。
4.流域面积因子:流域面积是指其中一点上游汇入该点的所有河流流域面积之和。
流域面积因子主要是用来描述河流的排水系统,是水文模拟和洪水预测中常用的指标。
流域面积可以通过DEM数据进行计算,常用的方法是根据流域边界进行面积统计。
5.曲率因子:曲率是指地表在其中一点的曲率半径。
曲率因子主要是用来描述地表的起伏变化,对地形研究和土地利用规划有很大的意义。
曲率的计算方法有很多种,最常用的方法是使用高程数据进行计算。
6.等高线密度因子:等高线密度是指在一定范围内等高线的数量和长度。
等高线密度因子可以用来反映地形的起伏程度和地貌类型。
等高线密度的计算方法是将DEM数据转换为等高线数据,然后统计等高线的数量和长度。
除了以上提到的几个常见的DEM地形因子,还有很多其他的因子可以从DEM数据中提取出来,如凸性、凹性、坡谷密度、地形湿度等。
这些地形因子的提取方法都有一定的理论基础和计算流程,需要根据具体应用进行选择和计算。
DEM坡面地形因子提取技术文档
DEM坡面地形因子提取技术文档DEM(数字高程模型)是用来表示地表高程信息的一种数值模型,可以通过遥感数据、雷达数据、激光测量数据等不同技术手段获取。
DEM数据中包含了大量的地形信息,可以用来进行地形分析和地形因子提取。
坡面地形因子是指地形和地貌特征对土地利用和土地覆盖的影响因素,常用的地形因子包括坡度、坡向、曲率等,并且这些地形因子对于土壤侵蚀、河流系统和水资源管理等都具有重要的意义。
因此,DEM坡面地形因子的提取是地表环境研究的重要一环。
1.数据准备:首先需要准备DEM数据,在遥感平台或GIS软件中导入DEM数据,确保数据的正确性和完整性。
2.预处理:对DEM数据进行预处理,包括数据的滤波、修正和插值等。
这一步骤主要是为了消除DEM数据中的噪音和不规则值,以得到更加准确和平滑的数据。
3.地形因子计算:根据DEM数据计算坡度、坡向和曲率等地形因子。
其中,坡度是指地表高程变化的速率,可以通过计算DEM数据在水平和垂直方向上的梯度来得到。
坡向是指地表的朝向,可以通过计算DEM数据的方向角来得到。
曲率是指地表高程的变化强度和变化方向,可以通过计算DEM数据的二次导数来得到。
这些地形因子的计算可以通过不同的数学公式和算法实现。
4.数据导出:将计算得到的地形因子数据导出到文件或数据库中,以便后续的分析和应用。
DEM坡面地形因子的提取涉及到许多数学和地理信息学的知识和技术,不同的方法和算法会对结果产生不同的影响。
因此,在进行DEM坡面地形因子提取时,需要根据具体需求和研究目标选择合适的方法和算法,并进行验证和比较,以确保提取结果的准确性和可靠性。
在实际应用中,DEM坡面地形因子的提取可以应用于土地资源管理、环境保护、水资源管理、城市规划等方面。
通过分析和研究地形因子的空间分布和变化规律,可以帮助我们更好地理解地表环境的特征和演化过程,为土地利用和资源管理提供科学依据。
总之,DEM坡面地形因子的提取是地表环境研究中的重要内容之一,通过利用DEM数据计算坡度、坡向和曲率等地形因子,可以帮助我们更好地理解地表环境特征和演化过程,并为相关的土地利用和资源管理提供科学依据。
DEM坡面地形因子提取与分析
DEM坡面地形因子提取与分析DEM(数字高程模型)是一种数字化的地形模型,它包含了地球表面的高程信息,通常以栅格形式进行存储。
DEM数据的应用十分广泛,可以用于地形分析、水文建模、环境监测等领域。
在DEM数据的基础上,可以提取出各种地形因子,帮助人们了解地形特征、进行地形分析和模拟。
其中,DEM坡面地形因子是指在地形上特定位置上的坡度、坡向、坡长等地形指标。
这些地形因子对于水文模型、土壤侵蚀模拟、地质灾害预测等具有重要作用。
在本文中,将介绍DEM坡面地形因子的提取方法和分析过程。
一、DEM坡度的计算DEM坡度是地形上特定点的高程变化率,它反映了地形的陡缓程度。
坡度的计算可以通过计算升降高度差来得到。
通常采用以下公式来计算坡度:\[ \text{坡度} = \arctan(\sqrt((\Delta Z_x)^2+(\DeltaZ_y)^2)/\Delta d) \]其中,\( \Delta Z_x \)和\( \Delta Z_y \)分别是水平方向和竖直方向的高程差,\( \Delta d \)是间距。
二、DEM坡向的计算DEM坡向是指地形上特定点的最大坡度方向,即水平方向的方向角。
坡向的计算方法有多种,其中最常见的是通过计算水平和竖直高程差的比值,然后再根据不同情况进行角度的划分。
在此不做详细展开,需要根据具体情况选择适用的方法。
三、DEM坡长的计算DEM坡长是指地形上其中一点到邻近下游的最大距离,即沿坡度最大的路径所经过的距离,通常也是用来反映地形地势的陡缓程度。
坡长的计算可以通过得到每个像元到下游的距离,然后再计算像元之间的累计距离。
常见的计算方法有累积高程坡长和累积水平坡长,根据需要进行选择。
四、DEM地形曲率的计算地形曲率是指地形曲率的变化率,它反映了地形的凹凸程度。
地形曲率是坡度和坡向的综合表征,可以通过求取DEM的高程的二阶和二阶导数计算得到。
常见的方法有计算h-和v-曲率,分别表示水平和竖直方向的地形曲率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章1、本章主题编号2、本章内容概述(1)概述●坡面因子的分类及提取方法●确定坡面因子提取的算法基础●提取坡面因子的常用分析窗口(2)坡度、坡向●坡度的提取●坡向的提取(3)坡形●宏观坡形因子●地面曲率因子●地面变率因子(4)坡长(5)坡位(6)坡面复杂度因子3、本章内容3.1概述(1)坡面因子的分类及提取方法●坡面因子的分类按照坡面因子所描述的空间区域范围,可以将坡面因子划分为微观坡面因子与宏观坡面因子两种基本类型。
常用的微观坡面因子主要有:坡度、坡向、坡长、坡度变率、坡向变率、平面曲率、剖面曲率等。
常用的宏观坡面因子主要有:地形粗糙度、地形起伏度、高程变异系数、地表切割深度,以及宏观坡形因子(直线形斜坡、凸形斜坡、凹形斜坡、台阶形斜坡)等。
按照提取坡面因子差分计算的阶数,可以将坡面因子分为一阶坡面因子、二阶坡面因子和高阶坡面因子。
一阶坡面地形因子主要有坡度和坡向因子。
二阶坡面因子主要有坡度变率、坡向变率、平面曲率、剖面曲率等因子。
复合坡面因子有坡长、坡形因子、地形粗糙度、地形起伏度、高程变异系数和地表切割深度等。
按照坡面的形态特征,可将坡面因子进一步划分为:坡面姿态因子,坡形因子,坡位因子,坡长因子以及坡面复杂度因子五大类。
●提取坡面因子的基本方法首先将坡面的形态特征或各个坡面因子进行定量化描述,完成求导的数学模型,在此基础上,建立其以DEM为基本信息源进行提取的技术路线,并通过软件实现形成一套易于计算机操作的方法。
(2)确定坡面因子提取的算法基础● DEM格网数据的空间矢量表达(如图7.1)图7.1 DEM格网数据的空间矢量模型●基于空间矢量模型的差分计算算法主要有数值分析方法、局部曲面拟合算法、空间矢量法、快速傅立叶变换等。
其中数值分析方法包含有简单差分算法、二阶差分、三阶差分(带权或不带权)和Frame差分;局部曲面拟合又有线性回归平面、二次曲面和不完全四次曲面(据刘学军,2002)。
(3)提取坡面因子的常用分析窗口●窗口分析(领域分析)的基本原理是:对栅格数据系统中的一个、多个栅格点或全部数据,开辟一个有固定分析半径的分析窗口,并在该窗口内进行诸如极值、均值、标准差等一系列统计计算,或进行差分及与其它层面信息的复合分析等,实现栅格数据有效的水平方向扩展分析。
●在坡面信息提取中,按照分析窗口的形状,可以将分析窗口划分为以下几类:矩形窗口:以目标栅格为中心,分别向周围八个方向扩展一层或多层栅格。
圆形窗口:以目标栅格为中心,向周围作一等距离搜索区,构成一圆形分析窗口。
环形窗口:以目标栅格为中心,按指定的内外半径构成环形分析窗口。
扇形窗口:以目标栅格为中心,按指定的起始和终止角度构成扇形分析窗口。
矩形窗口最为常用,一般采用3×3位基本分析窗口,然而,按照分析的需要,分析窗口也可以扩大为5×5、7×7 或更大。
3.2坡度、坡向●坡面姿态(坡度及坡向)是指局部地表坡面在空间的倾斜程度和朝向。
●坡度表示了该局部地表坡面的倾斜程度,坡度大小直接影响着地表物质流动与能量转换的规模与强度,是制约生产力空间布局的重要因子。
●坡向是决定地表面局部地面接收阳光和重新分配太阳辐射量的重要地形因子之一,直接造成局部地区气候特征的差异,同时,也直接影响到诸如土壤水分、地面无霜期以及作物生长适宜性程度等多项重要的农业生产指标。
(1)坡度的提取●严格地讲,地表面任一点的坡度是指过该点的切平面与水平地面的夹角。
坡度表示了地表面在该点的倾斜程度,在数值上等于过该点的地表微分单元的法矢量与z轴的夹角(如图7.2所示),即:Slope =(7.1)图7.2地表单元坡度示意图●基于DEM的坡度提取通常在3×3的DEM栅格分析窗口中,采用几何平面来拟合或差分计算的方法进行。
分析窗口在DEM数据矩阵中连续移动完成整个区域的计算工作。
(2)坡向的提取●坡向定义为:地表面上一点的切平面的法线矢量在水平面的投影与过该点的正北方向的夹角(如表7.1中的坡向示意图所示,x轴为正北方向)。
其数学表达公式为:(7.2)●对于地面任何一点来说,坡向表征了该点高程值改变量的最大变化方向。
坡向值有如下规定:正北方向为0度,按顺时针方向计算,取值范围为0°~360°。
●坡向可在DEM数据中用式7.2直接提取。
但应注意,由于式7.2求出坡向有与x轴正向和x轴负向夹角之分,此时就要根据fx和fy的符号来进一步确定坡向值(如表7.1所示)。
表7.1坡向值的判断fy fxα =Aspect 坡向示意=0 >0 ∕90 =0 ∕0 <0 ∕270>0 >0 0~90 α=0 0 0<0 -90~0 360+α<0 >0 -90~0 180+α=0 0 180 <0 0~90 180+α注:上述情况假定所建立的DEM数据从南向北获取的,且x轴与正北方向重合,否则上述公式求得的坡向值,还应加上x轴偏离正北方向的夹角值。
注:上述情况假定所建立的DEM数据从南向北获取的,且x轴与正北方向重合,否则上述公式求得的坡向值,还应加上x轴偏离正北方向的夹角值。
3.3坡形●坡形是指局部地表坡面的曲折状态。
宏观上讲,一般可分为直线形斜坡、凸形斜坡、凹形斜坡和台阶形斜坡四种基本类型。
从微观角度上,一般可采用地面曲率因子和地面变率因子度量地面表面一点的弯曲变化程度。
(1)宏观坡形因子●直线形斜坡:从分水岭到斜坡底部地面坡度基本上不变。
●凸形斜坡:地面坡度随着距分水岭距离增加而增加。
邻近分水岭附近的地面平缓,以后随坡长的增加,坡度亦增加。
●凹形斜坡:斜坡上半部坡度较陡,下半部坡度较缓。
此种坡形常以沉积为主,较多分别在山区与阶地平原接壤处或河谷的两岸。
●台阶形斜坡:台阶形斜坡是斜坡与阶地相间的复式,可以看作是凸形坡与凹形坡的组合。
(2)地面曲率因子●地面曲率是对地形表面一点扭曲变化程度的定量化度量因子,地面曲率在垂直和水平两个方向上分量分别称为平面曲率和剖面曲率。
●剖面曲率是对地面坡度的沿最大坡降方向地面高程变化率的度量。
数学表达式为:(7.3)●平面曲率指在地形表面上,具体到任何一点P,指用过该点的水平面沿水平方向切地形表面所得的曲线在该点的曲率值。
平面曲率描述的是地表曲面沿水平方向的弯曲、变化情况,也就是该点所在的微小范围内坡向变化程度的度量。
数学表达式为:(7.4)●曲率因子的提取算法的基本原理为:在DEM数据的基础上,根据其离散的高程数值,把地表模拟成一个连续的曲面,从微分几何的思想出发,模拟曲面上每一点所处的垂直于和平行于水平面的曲线,利用曲线曲率的求算方法的推导得出各个曲率因子的计算公式。
(3)地面变率因子●地面变率描述的是地表局部范围内坡度、坡向两个基本的地形指标的变化情况,它包括坡度变率、坡向变率两个基本因子。
●地面坡度变率,是地面坡度在微分空间的变化率,是依据坡度的求算原理,在所提取的坡度值的基础上对地面每一点再求算一次坡度。
即坡度之坡度(Slope of Slope, 简称SOS)。
●地面坡向变率,是指在地表的坡向提取基础之上,进行对坡向变化率值的二次提取,亦即坡向之坡度(Slope of Aspect, SOA)。
地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。
3.4坡长●坡长通常是指在地面上一点沿水流方向到其流向起点间的最大地面距离在水平面上的投影长度。
其数学表达为:(7.5)式中L指坡长,m指地表面沿流向的水流长度,θ指水流地区的地面坡度值。
●自然条件下,水流向低处流动,遇到洼地,首先将其填满,然后再从该洼地的某一最低出口流出。
但在一个连续的栅格中,地形洼地的存在,导致依据水流方向矩阵所提取的排水网络不连续,使自然水流不能畅通无阻地流至区域地形的边缘。
因此,对已有的DEM数据,首先要进行洼地填充,生成无洼地DEM。
DEM中的洼地可分为凹陷型洼地和阻挡型洼地。
一般情况下,对于阻挡型洼地,可降低阻挡物存在处的高程,使水流穿过障碍物;对于凹陷型洼地,采用常规的将洼地内所有栅格单元垫高至洼地周围最低栅格单元高程的方法。
坡长提取流程如图7.3。
● DEM数据中的平地,包括原始DEM中的平地和洼地填平产生的平地。
平地区域的存在使得该区于水流方向的确定出现不确定性,因此需要对平地区域进行处理。
基本的处理方法思想是对平地范围内的单元格增加一微小增量,每个单元格的增量大小是不一样的,这样每个单元格就有一个明确的水流方向,以便能够产生合理的汇流水系。
●水流方向是水流离开此格网时的指向。
确定水流方向的算法有很多,每一种算法的假设前提都不尽不同,因此得到的结果也有差异。
基本的算法根据其基本思想可以大致可以分为:单流向算法(SFD)和多流向算法(MFD)以及其他算法。
单流向算法是将某单元格上产生的径流都流向一个最低的相邻单元格,多流向算法将径流按一定的比例流向若干相对较低的相邻单元格。
根据流向对每个格网进行追踪,并记录其追踪路径的距离,即坡长结果。
3.5坡位●坡位是指坡面计算单元所整个大坡面的地貌部位。
例如,位于正地形还是负地形等;处于沟间地还是沟坡地。
从一定意义上讲,DEM单元栅格坡位的提取核心的工作是地貌部位、地貌类型的划分。
以黄土高原沟间地、沟谷地的划分为例来说明。
●黄土高原地区地形复杂,具有独特的堆积地貌特征,从侵蚀地貌形态的坡度组合特征、地貌成因的侵蚀特征和土地利用特征等三个主要方面,可以将该地区的区域地貌在垂直方向上划分为沟间地、沟坡地和沟底地三种基本类型。
沟间地是指黄土高原地区位于地形结构线(沟沿线)以上相对比较平缓的地形部分。
●基于DEM提取沟间地的基本方法是先从沟间地的形态特征和成因原理出发,根据坡度特征提取缓坡图层,再利用沟谷缓冲分析,获得沟谷图层,两层相减,得到沟间地。
3.6坡面复杂度因子(1)地形起伏度●地形起伏度是指,在所指定的分析区域内所有栅格中最大高程与最小高程的差。
●可表示为如下公式: (7.6) 式中,RFi指分析区域内的地面起伏度,Hmax指分析窗口内的最大高程值,Hmin 指分析窗口内的最小高程值。
●地形的起伏是反映地形起伏的宏观地形因子,在区域性研究中,利用DEM 数据提取地形起伏度能够直观的反映地形起伏特征。
在水土流失研究中,地形起伏度指标能够反映水土流失类型区的土壤侵蚀特征,比较适合区域水土流失评价的地形指标。
(2)地表粗糙度●地表粗糙度是反映地表的起伏变化和侵蚀程度的指标,一般定义为地表单元的曲面面积S曲面与其在水平面上的投影面积S水平之比。
●用数学公式表达为: R = S曲面 / S水平(7.7)●地表粗糙度能够反映地形的起伏变化和侵蚀程度的宏观地形因子。