数学建模综合评价方法(定)
数学建模常用综合评价方法介绍PPT学习教案
0.4833
0.4805
0.4634
0.8178
0.4776
0.4482
0.3118
第29页/共102页
三、Topsis法
计算各列最大、最小值构成的最优、最劣向量分别为
Z+=(0.4833 0.4805 0.4634 0.8178 0.4776 0.4487 0.5612) Z-=(0.4142 0.4081 0.4321 0.2024 0.3916 0.4455 0.3118)
➢ 它是基于归一化后的原始数据矩阵,找出有限方案中最优方案和 最劣方案(分别用最优向量和最劣向量表示),然后分别计算诸 评价对象与最优方案和最劣方案的距离,获得各评价对象与最优 方案的相对接近程度,以此作为评价优劣的依据。
第25页/共102页
三、Topsis法
1. 设有n个评价对象、m个评价指标,原始数据可写 为矩阵X=(Xij)n×m
➢ 1.确定综合评价的目的 ➢ 2.确定评价指标和评价指标体系 ➢ 3.确定各个评价指标的权重 ➢ 4. 求单个指标的评价值 ➢ 5. 求综合评价值
第5页/共102页
1.指标的选取
➢ 筛选评价指标主要依据专业知识,即根据 有关的专业理论和实践,来分析各评价指 标对结果的影响,挑选那些代表性、确定 性好,有一定区别能力又相互独立的指标 组成评价指标体系。
➢ 2. 无量纲化处理
第7页/共102页
2. 权数的确定方法
➢ 按权数的表现形式分为:
• 绝对数权数; • 比重权数。通常采用比重权数——归一化权数。
➢ 按确定权数的方法分为:
• 主观赋权法; • 客观赋权法。
第8页/共102页
2. 权数的确定方法
➢ 主观赋权法
数学建模评价模型方法
四、数据建模的动态加权方法
2. 动态加权函数的设定
四、数据建模的动态加权方法
2. 动态加权函数的设定
四、数据建模的动态加权方法
2. 动态加权函数的设定
返回
四、数据建模的动态加权方法
3. 动态加权的综合评价模型
五、数据建模的综合排序方法
定的区间内为最好。
什么是一 致化处理? 为什么要
一致化?
二、数据处理的一般方法
1. 数据类型的一致化处理方法
二、数据处理的一般方法
1. 数据类型的一致化处理方法
二、数据处理的一般方法
2. 数据指标的无量纲化处理方法
常用方法: 标准差法、极值差法和功效系数法等 。
二、数据处理的一般方法
2. 数据指标的无量纲化处理方法 (1) 标准差方法
数据处理与数据建模方法
1. 一般数据建模问题的提出 2. 数据处理的一般方法 3. 数据建模的综合评价方法 4. 数据建模的动态加权方法 5. 数据建模的综合排序方法 6. 数据建模的预测方法
一、一般数据建模问题的提出 一般问题:
•实际对象都客观存在一些相关的数据信息;
•如何综合利用这些相关信息给出综合评价结果 、制定决策方案,或预测未来?
4. 其他综合评价法
因子分析 聚类分析 模糊评价 层次分析法等
四、数据建模的动态加权方法
1. 动态加权问题的一般提法
问题:如何对n个系统做出综合评价呢?
四、数据建模的动态加权方法
2005年中国大学生数学建模竞赛的A题:“长江水质的 评价和预测”问题的第一部份给出了17个观测站(城市)的 最近28个月的实际检测指标数据,包括反映水质污染程度的 最主要的四项指标:溶解氧(DO)、高锰酸盐指数(CODMn) 、氨氮(NH3-N) 和PH值,要求综合这四种污染指标的28个月 的检测数据对17个城市的水质情况做出综合评价。
综合评价决策模型方法_数学建模
综合评价决策模型方法_数学建模决策模型方法是一个重要的工具,用于解决复杂的决策问题。
综合评价决策模型方法是一个基于多个指标或因素对决策方案进行评价的方法。
该方法在数学建模中常用于分析多个决策方案的优劣,帮助决策者做出最优决策。
首先,层次分析法是一种定性与定量相结合的分析方法,用来解决多个指标之间的相对重要性问题。
它通过建立层次结构,将问题分解为若干个层次,并对各层次进行权值的确定,从而得到最终的评价结果。
层次分析法主要包括建立层次结构模型、构造判断矩阵、计算权重和一致性检验等步骤。
其优点是结构明确、能够定量地评价各指标之间的重要性,但也存在权重确定的主观性较强的问题。
其次,灰色关联度法是一种基于灰色理论的模型,用于评价多个指标之间的关联程度。
它通过建立灰色关联度模型,将多个指标的值转化为灰色数列,进行关联度计算,从而得到各指标的权重。
灰色关联度法主要包括灰色关联度计算和权重确定两个步骤。
其优点是能够考虑指标之间的关联关系,但也存在对指标值的灵敏度较高的问题。
再次,熵权法是一种基于信息熵的权重确定方法,用于评价多个指标的重要性。
它通过计算各指标的熵值和权重,得到最终的评价结果。
熵权法主要包括计算指标熵值、计算指标熵权和综合计算这三个步骤。
其优点是能够客观地确定指标的权重,但也存在对指标值范围要求较高的问题。
最后,矩阵法是一种定量化的综合评价方法,用于评价多个决策方案的优劣。
它通过构造评价指标矩阵,对各决策方案的各指标进行评分,并计算出加权总分,从而对决策方案进行排序。
矩阵法主要包括构造评价指标矩阵、对矩阵进行归一化和计算加权总分这三个步骤。
其优点是方法简单、易于理解和使用,但也存在在权重确定上存在一定主观性的问题。
总的来说,综合评价决策模型方法在数学建模中起着重要的作用。
不同的方法有不同的优缺点,适用于不同的决策问题。
决策者在选择合适的方法时,需要根据实际情况和需求综合考虑。
数学建模中的模型评价
数学建模中的模型评价数学建模是一种以数学方法和技巧解决实际问题的过程。
在实际应用中,我们往往需要选取和评价不同的模型,以确定最适合解决问题的模型。
本文将介绍数学建模中常用的模型评价方法,并分析其优缺点。
一、模型评价方法在数学建模中,常用的模型评价方法有以下几种:1. 残差分析法残差分析法是通过对模型的预测值与实际观测值之间的偏差进行统计分析,以评估模型的拟合程度。
残差是指模型的预测值与实际观测值之间的差值,利用残差可以判断模型是否存在系统误差或者随机误差。
2. 相对误差法相对误差法是通过计算模型预测值与实际观测值之间的相对误差,来评估模型的准确性。
相对误差是指模型预测值与实际观测值之间的差值与实际观测值的比值。
相对误差越小,说明模型的预测能力越强。
3. 决定系数法决定系数是通过计算模型预测值和实际观测值之间的相关性来评估模型的拟合优度。
决定系数的取值范围在0到1之间,越接近1表示模型的拟合效果越好。
4. 参数估计法参数估计法是利用统计学方法对模型中的参数进行估计,以评估模型的可靠性。
参数估计法主要通过最小二乘法来求解最佳参数值,使得模型的拟合误差最小化。
二、模型评价的优缺点每种模型评价方法都有其独特的优缺点,我们需要根据具体问题和模型的特点来选择合适的方法。
残差分析法的优点是可以直观地观察模型预测值和实际观测值之间的差异,可以发现模型中存在的问题,便于模型的改进。
然而,残差分析法也存在一些局限性,比如无法判断模型中存在的误差类型以及无法量化模型的拟合程度。
相对误差法的优点是可以量化模型的准确性,通过计算相对误差可以对比不同模型的预测能力。
然而,相对误差法没有考虑到误差的方向,只是简单地计算模型预测值与实际观测值之间的比值,可能忽略了误差值的正负。
决定系数法是一种常用的模型评价方法,可以直接判断模型的拟合优度,其计算简单直观。
然而,决定系数只考虑了模型预测值与实际观测值之间的相关性,没有考虑到其他可能的误差来源。
数学建模中的常见模型
数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
数学建模成绩评价
E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。
第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。
最后,以学校的建模水平进评比。
对于四个问题,对各高校建模获奖数据进行了统计分析。
在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。
在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。
通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。
关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。
2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。
在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。
通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。
数学建模评价方法
数学建模评价方法依据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重; 合理确定各单个指标的评价等级及其界限;依据评价目的,数据特征,选择适当的综合评价方法,并依据已掌握的历史资料,建立综合评价模型;2建模评价方法一现有的统计方法:主要为多元统计方法,如多元回归、逐步回归分析、判别分析、因子分析、时间序列分析。
模糊多元分析方法:由模糊数学发展而来,包括模糊聚类、模糊判别、模糊综合评价等方法。
简易方法:主要包括综合评分法、综合指数法、层次分析法、Topsis法、秩和比法等。
特点:①简单有用;②适用于各种资料;③存在一定的局限性。
确定多指标综合评价的等级数量界限,在对同类事物综合评价的应用施行中,对选用的评价模型进行视察,并不断修改补充,使之具有一定的科学性、有用性与先进性,然后推广应用。
3建模评价方法二建模方法"初等数学法。
主要用于一些静态、线性、确定性的模型。
例如,席位分配问题,同学成绩的比较,一些简单的传染病静态模型。
数据分析法。
从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。
仿真和其他方法。
主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,依据试验结果进行不断分析修改,求得所必须模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。
层次分析法。
主要用于有关经济计划和〔管理〕、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、猜测等。
该方法关键的一步是建立层次结构模型。
4建模评价方法三基本方法为:在建模的假设的基础上,进一步分析建模假设的条款,首先区分那些是常量,哪些是变量,哪些已知、未知,然后查出各种量所处的位置、作用和它们之间的关系 ,选择恰当的数学工具和构造模型的方法对其进行表征,构造出刻划实际问题的数学模型。
数学建模之Topsis评价方法
84.5 6.9 0.60 90.2 97.7 2.9
90.3 6.9 0.25 95.5 97.9 3.6
基于这种思想的综合评价方法称为逼近理想点的排序方法 ( The technique for order preference by similarity to ideal solution,简称为 TOPSIS)。
假设理想点为
(x1* ,
x
* 2
,,
x
* m
)
,对于被评价对象
(xi1 , xi2 ,, xim ) ,则定义二者之间的加权距离:
表3 归一化矩阵值
厂矿
粉尘几何平均浓度 指标
游离SiO2含量 指标
煤肺患病率 指标
白沙湘永煤矿 沈阳田师傅煤矿 抚顺龙凤煤矿 大同同家山煤矿 扎诺尔南山煤矿
0.1937 0.0492 0.1378 0.0999 0.9649
0.3281 0.2879 0.5643 0.3813 0.5879
0.0342 0.0413 0.0594 0.1101 0.9907
逼近理想点(TOPSIS)方法
设定系统指标的一个理想点 (x1* , x2* ,, xm* ) ,将
每一个被评价对象与理想点进行比较。
如果某一个被评价对象指标 (xi1, xi2 ,, xim ) 在某种意
义下与
(
x1*
,
x
* 2
,,
xm*
)
最接近,则被评价对象
(xi1, xi2 ,, xim ) 为最好的。
m
yi
w
j
f
( xij
x
* j
), i
1,2,,
n
,
数学建模评价类问题如何确定评价系统的指标权重?
数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。
指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。
而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。
在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。
1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。
这类方法中,非常具有代表性的就是层次分析法。
另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。
评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。
在这类方法中,应用比较广泛的有变异系数法和熵值法。
2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。
在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。
比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。
综合评价方法(参考)数学建模
第一章 综合评价概述
一、综合评价的目的 二、综合评价的一般步骤
一、综合评价的目的
*
综合评价一般表现为以下几类问题: a。分类——对所研究对象的全部个体进行分类,
但不同于复合分组(重叠分组); b。比较、排序(直接对全部评价单位排序,或
在分类基础上对各小类按优劣排序); c。考察某一综合目标的整体实现程度(对某一
• 指标的无量纲化就是把不同计量单位的 指标数值,改造成可以直接加总的同量 纲数值,。即通过数学变换,消除计量 单位对原数据的影响。
• 指标的无量纲化是综合评价的前提 • 多数场合下,同向化处理过程与无量纲
化过程是同时进行的。
*
数据指标的无量纲化处理方法
(1)标准差法:
xij
xij x j sj
– 相邻指标比较法;(先按重要性将全部评价指标排 序,再将相邻指标的重要性进行比较
– 层次分析法(AHP)——互反式两两比较构权法。 – 模糊综合评价——模糊评价法奠基于模糊数学。它
不仅可对评价对象按综合分值的大小进行评价和排 序,而且还可根据模糊评价集上的值按最大隶属度 原则去评定对象的等级。
*
2(x j Mj 2(M
Mj
mj mj j xj mj
) )
, ,
mj M
xj
j m 2
M j x
j j
mj 2
Mj
其中M j=max(xij ),m j min(xij )
*
•1.3 将区间型化为极大型
对某个区间型数据指标 x ,则
x
f (x) a ln x b , 3 x 5
其中, , a,b 为待定常数.
数学建模模型评价
数学建模模型评价
数学建模模型评价指对数学建模问题的建模过程和结果进行不同维度的评价。
其目的是验证模型的可行性、准确性和可用性,以推动数学建模的进一步发展。
评价标准主要包括以下几个方面:
1.模型准确性:即模型预测结果与实际情况的差距。
评价准确性的方法有误差分析、模拟实验等。
2.模型可行性:即模型输入数据是否可得、计算成本是否合理、计算难度是否合理等。
一般使用敏感度分析、论证分析等方法评价模型可行性。
3.模型稳定性:即模型在不同环境下是否具有稳定性,包括输入变化、参数变化、数据质量变化等。
评价模型稳定性主要使用鲁棒性分析、扰动分析等方法。
4.模型可解析性:即模型是否可以通过数学方法精确求解。
对于难以精确求解的模型,可以采用近似解法进行求解,评价模型可解析性的方法主要有数值分析、模拟实验等。
5.模型可用性:即模型是否符合实际使用需要,包括使用界面是否友好、使用方法是否便捷、可扩展性等。
评价模型可用性的方法主要有用户测试、专家评估等。
综合考虑上述评价标准,可以对数学建模模型进行全面的评价,并确定模型优化的方向和重点。
数学建模中综合评价模型
综合评价模型的未来发展方向
01
02
智能化
多元化
随着人工智能和大数据技术的不断发 展,综合评价模型将更加智能化,能 够自动进行数据筛选、处理和模型构 建,提高评价的准确性和效率。
未来综合评价模型将更加多元化,不 仅局限于某一特定领域或问题,而是 能够广泛应用于各个领域,满足不同 需求的评价任务。
03
综合性
综合评价模型能够综合考虑多个因素或指标,避免单一指标评价的片 面性。
客观性
综合评价模型采用数学方法进行数据处理和评估,能够减少主观因素 的影响。
可比性
综合评价模型所得出的评价结果可以进行横向和纵向的比较。
综合评价模型的重要性
提高决策的科学性
综合评价模型能够提供全面、客 观的评价结果,有助于提高决策 的科学性和准确性。
建立数学模型
根据选择的评价方法和评价指标体系,建立相应的数学模型,确保 模型能够客观、准确地反映评价对象的实际情况。
模型验证与优化
对建立的数学模型进行验证和优化,确保模型的准确性和可靠性。
04
CATALOGUE
综合评价模型的优化与改进
优化评价指标体系
评价指标的选取
在选择评价指标时,应遵循科学性、系统性、可操作性和可比较性等原则,确保评价指 标能够全面反映评价对象的特征和状况。
03
02
环境领域
用于评估环境质量、生态系统的健 康状况等。
科技领域
用于评估科技成果的创新性和实用 性等。
04
02
CATALOGUE
综合评价模型的分类
主观评价模型
专家打分法
根据专家对各指标的权重和评分进行综合评 价,主观性强,但易受专家知识水平和经验 的影响。
数学建模综合评价方法(定)
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有5A 、4A 、3A 、2A 和1A 之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类: (1)极大型指标(又称为效益型指标)是指标值越大越好的指标; (2)极小型指标(又称为成本型指标)是指标值越小越好的指标; (3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标; (4) 区间型指标是指标值取在某个区间内为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是(10%,5%)-+×标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4 评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标对极小型指标j x ,将其转化为极大型指标时,只需对指标j x 取倒数:1j jx x '=,或做平移变换:j j j x M x '=-,其中1 max{}j ij i nM x ≤≤=,即n 个评价对象第j 项指标值ij x 最大者.(2) 居中型指标化为极大型指标对居中型指标j x ,令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=,取2(),;2 2(),.2j j j j j j j j j j j j j j jj j x m M m m x M m x M x M m x M M m -+⎧≤≤⎪-⎪'=⎨-+⎪≤≤⎪-⎩就可以将j x 转化为极大型指标.(3) 区间型指标化为极大型指标对区间型指标j x ,j x 是取值介于区间[,]j j a b 内时为最好,指标值离该区间越远就越差.令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=, max{,},j j j j j c a m M b =--取1,;1, ; 1,.j jj j j j j j j j jj j j a x x a c x a x b x bx b c -⎧-<⎪⎪⎪'=≤≤⎨⎪-⎪->⎪⎩就可以将区间型指标j x 转化为极大型指标.类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规范化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n 个评价对象12,,,n S S S L ,每个评价对象有m 个指标,其观测值分别为(1,2,,;1,2,,)ij x i n j m ==L L .(1) 标准样本变换法 令* (1,1).ij jij jx x x i n j m s -=≤≤≤≤其中样本均值11n j ij i x x n ==∑,样本均方差j s =*ij x 称为标准观测值. 特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(0j s =)的情况不适用;对于要求指标评价值*0ij x >的评价方法(如熵值法、几何加权平均法等)不适用.(2) 线性比例变换法 对于极大型指标,令*11 (max 0, 1, 1).max ij ij ij i niji nx x x i n j m x ≤≤≤≤=≠≤≤≤≤对极小型指标,令*1min (1,1).iji nijijx x i n j m x ≤≤=≤≤≤≤或*111 (max 0, 1, 1).max ij ijij i niji nx x x i n j m x ≤≤≤≤=-≠≤≤≤≤该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的*1ij x =和*0ij x =不一定同时出现.特点:当0ij x ≥时,*[0,1]ij x ∈;计算简便,并保留了相对排序关系.(3) 向量归一化法 对于极大型指标,令* (1,1).ij x x i n j m =≤≤≤≤对于极小型指标,令*1,1).ij x x i n j m =≤≤≤≤优点:当0ij x ≥时,*[0,1]ijx ∈,即*21()1nij i x ==∑.该方法使*01ij x ≤≤,且变换前后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令*111min (1, 1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=≤≤≤≤-对于极小型指标,令*111max (1, 1).max min ij iji nijij iji ni nx x x i m j n x x ≤≤≤≤≤≤-=≤≤≤≤-其优点为经过极差变换后,均有*01ij x ≤≤,且最优指标值*1ij x =,最劣指标值*0ij x =.该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(0j s =)的情况不适用.(5) 功效系数法 令*111min (1,1).max min ij iji nijij iji ni nx x x c d i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-其中,c d 均为确定的常数.c 表示“平移量”,表示指标实际基础值,d 表示“旋转量”,即表示“放大”或“缩小”倍数,则*[,]ij x c c d ∈+.通常取60,40c d ==,即*111min 6040 (1,1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-则*ij x 实际基础值为60,最大值为100,即*[60,100]ij x ∈.特点:该方法可以看成更普遍意义下的一种极值处理法,取值范围确定,最小值为c ,最大值为c d +.3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等.对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0.对极大型和极小型定性指标常按以下方式赋值.(1) 极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.图8-2 极大型定性指标量化方法(2) 极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种内在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法. .隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴ 模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.① 以年龄为论域X ,在论域X 中取一固定样本点027x =.② 设*A 为论域X 上随机变动的普通集合,°A 是青年人在X 上以*A 为弹性边界的模糊集,对*A 的变动具有制约作用.其中°0x A ∈,或°0x A ∉,使得0x 对°A 的隶属关系具有不确定性.然后进行模糊统计试验,若n 次试验中覆盖0x 的次数为n m ,则称nm n为0x 对于°A 的隶属频率.由于当试验次数n 不断增大时,隶属频率趋于某一确定的常数,该常数就是0x 属于°A 的隶属度,即 °0()lim .n An m x nμ→∞=比如在论域X 中取027x =,选择若干合适人选,请他们写出各自认为青年人最适宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n 次试验中覆盖27岁的年龄区间的次数为m ,则称mn为27岁对于青年人的隶属频率,表8-4是抽样调查统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到027x =属于模糊集°A 的隶属度°(27)0.78Aμ=.试验次数n 1020 30 40 50 60 70 80 90 100110 120 129 隶属次数m6 1423 31 39 47 53 62 6876 85 95 101隶属频率m n0.60 0.70 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78③ 在论域X 中适当的取若干个样本点12,,,n x x x L ,分别确定出其隶属度°()(1,2,,)i Ax i n μ=L ,建立适当坐标系,描点连线即可得到模糊集°A 的隶属函数曲线. 将论域X 分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.分组频数 隶属频率 分组 频数 隶属频率13.5~14.5 2 0.016 25.5~26.5 103 0.798 14.5~15.5 27 0.210 26.5~27.5 101 0.783 15.5~16.5 51 0.395 27.5~28.5 99 0.767 16.5~17.5 67 0.519 28.5~29.5 80 0.620 17.5~18.5 124 0.961 29.5~30.5 77 0.597 18.5~19.5 125 1.00 30.5~31.5 27 0.209 19.5~20.5 129 1.00 31.5~32.5 27 0.209 20.5~21.5 129 1.00 32.5~33.5 26 0.202 21.5~22.5 129 1.00 33.5~34.5 26 0.202 22.5~23.5 129 1.00 34.5~35.5 26 0.202 23.5~24.5 129 1.00 35.5~36.5 10.008 24.5~25.5128 0.992⑵ 三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法.例如建立矮个子°1A ,中等个子°2A ,高个子°3A 三个模糊概念的隶属函数.设3{}P =矮个子,中等个子,高个子,论域X 为身高的集合,取(0,3)X =(单位:m).每次模糊试验确定X 的一次划分,每次划分确定一对数(,)ξη,其中ξ为矮个子与中等个子的分界点,η为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(,)ξη看作二图8-5 年轻人的隶属函数曲线维随机变量,进行抽样调查,求得ξ、η的概率分布()P x ξ、()P x η后,再分别导出°1A 、°2A 和°3A 的隶属函数±1()A x μ、±2()A x μ和±3()Ax μ,相应的示意图如图8-6所示. ±1()(),A x x P t dt ξμ+∞=⎰ ±3()(),A xx P t dt ημ+∞=⎰±±±213()1()().A A A x x x μμμ=--通常ξ和η分别服从正态分布211(,)N a σ和222(,)N a σ,则°1A 、°2A 和°3A 的隶属函数分别为±111()1,Ax a x μσ⎛⎫-=-Φ ⎪⎝⎭±322()1,A x a x μσ⎛⎫-=-Φ ⎪⎝⎭ ±22121().Ax a x a x μσσ⎛⎫⎛⎫--=Φ-Φ ⎪ ⎪⎝⎭⎝⎭其中22().t xx dt -Φ=⎰⑶ 模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形.若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向. 偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为°1, ;()(),.Ax a x f x x a μ≤⎧=⎨>⎩偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为°0, ;()(),.Ax a x f x x a μ<⎧=⎨≥⎩中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.图8-6 由概率分布确定模糊集隶属函数①矩形(或半矩形)分布(a)偏小型(b)偏大型(c)中间型°1,; ()0,.Ax a xx aμ≤⎧=⎨>⎩°0,;()1,.Ax axx aμ<⎧=⎨≥⎩°0,;()1,;0,.Ax ax a x bx bμ<⎧⎪=≤≤⎨⎪>⎩此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图②梯形(或半梯形)分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.Ax ab xx a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,;(),;1,.Ax ax ax a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,,;,;()1,;,;Ax a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎪≤<⎪-=⎨≤<⎪⎪-≤<⎪-⎩梯形(或半梯形)分布的示意图如图8-8所示.③抛物形分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.kAx ab xx a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,;(),;1,.kAx ax ax a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,,;,;()1,;,;kAkx a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎛⎫⎪≤<⎪⎪-⎪⎝⎭=⎨≤<⎪⎪-⎛⎫⎪≤<⎪-⎪⎝⎭⎩抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型(a)偏小型(b)偏大型(c)中间型图8-8梯形(或半梯形)分布示意图④ 正态分布(a)偏小型(b)偏大型(c)中间型°21, ;(),.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭≤⎧⎪=⎨⎪>⎩°20, ;()1,.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭<⎧⎪=⎨⎪-≥⎩ °2().x a Ax e σμ-⎛⎫- ⎪⎝⎭=正态分布的示意图如图8-10所示.(a)偏小型(b)偏大型(c)中间型°1, ;()1,.1() (0,0)Ax a x x a x a βμααβ≤⎧⎪=⎨>⎪+-⎩>> °0, ;()1,.1() (0,0)Ax a x x a x a βμααβ-≤⎧⎪=⎨>⎪+-⎩>> °1(),1()(0,).Ax x a βμααβ=+->为正偶数柯西形分布的示意图如图8-11所示.(a)偏小型(b)偏大型(c)中间型°()1, ;(),.k x a Ax a x e x a μ--≤⎧=⎨>⎩°()0, ;()1,.k x a Ax a x ex a μ--≤⎧=⎨->⎩°()(),;()1, ;,.k x a Ak b x e x a x a x b ex b μ----⎧<⎪=≤<⎨⎪≥⎩ (a)偏小型 (b)偏大型 (c)中间型图8-9 抛物形分布示意图(a)偏小型 (b)偏大型 (c)中间型 图8-10 正态分布示意图 (a) 偏小型 (b)偏大型 (c)中间型 图8-11 柯西分布示意图k>.Γ型分布的示意图如图8-12所示.其中0(a) 偏小型(b)偏大型(c)中间型图8-12 Γ型分布示意图。
数学建模评价模型方法
数学建模评价模型方法目标评价方法是通过对建模目标进行分析和评价,从而确定模型的合理性和准确性。
常用的目标评价方法有以下几种:1.目标一致性评价:通过比较建模目标与实际需求的一致性,评估模型是否能够准确反映实际问题的特征。
可以通过专家访谈、问卷调查等方式,收集相关数据,然后通过定量或定性分析的方法来评价目标一致性。
2.目标完备性评价:评估模型是否能够完整地描述问题的各个方面。
可以通过检查模型的输入、输出和求解方法,判断是否包括了问题的所有关键要素,从而评价模型的完备性。
3.目标可行性评价:评估模型是否能够在给定的条件下实现。
通过对模型中所涉及的参数、约束条件和假设进行分析,判断模型是否符合实际操作的限制和要求。
效果评价方法是通过对模型的输出结果进行分析和评价,从而判断模型的有效性和可靠性。
常用的效果评价方法有以下几种:1.精度评价:评估模型的输出结果与实际观测值或已知数据之间的偏差程度。
可以采用各种统计指标,如均方根误差、平均绝对百分比误差等,来度量模型的精度。
2.稳定性评价:评估模型在不同条件下的输出结果是否稳定。
可以通过对输入条件的变化、参数的敏感性分析等方法,来评估模型的稳定性。
3.可行性评价:评估模型的输出结果是否满足实际的约束条件和要求。
可以通过比较模型的输出结果与给定的约束条件来判断模型的可行性。
在实际应用中,常常需要综合考虑目标评价和效果评价方法来对建模进行综合评价。
可以根据实际情况,确定评价指标的权重,并运用多指标综合评价方法来评价模型的综合效果。
总之,数学建模评价模型方法是评估模型合理性、准确性和可行性的重要手段。
通过目标评价和效果评价方法的综合应用,可以对建模过程和建模结果进行全面评估,为实际问题的求解提供科学的依据和方法。
学生成绩综合评价模型(数学建模)
对于每名学生基于其四个学期成绩及成绩变化做单因素评价:
首先我们确定优良中差的比例固定为1:4:4:1,这样就能使学生评价处于平均,增强学生的学习动力。
1、对于平均分
因为不同基础的同学对某一得分同学的评价不同,所以当一名学生得60分时,得分大于80分的同学会认为其基础差。所以对学生的分数进行优良中差的比例分类:
预测成绩表
学生序号1 2 3 4 5 6 7 8 9 10
第5学期74.64 81.1866.6477.4878.7276.3467.7859.0367.4370.71
第6学期77.97 78.9669.7176.6777.8275.6168.3760.0671.9270.11
最后,我们对我们所建立的模型进行了客观的比较,并对其应用前景进行了展望。
4符号的说明
:学期
:学生序号
D:总评价得分
:第i个学生的第j学期的原始成绩。
:第 个决策单元
:因素集
:评语集
其他主要符号将在模型建立的时候详细说明。
5模型的建立
5.1数据标准化
为了避免现行评价方式中仅根据“绝对分数”评价学生学习状况,设计出一种新型的发展性目标分析法,必须考虑到户律基础条件的差异,学生原有的学习基础,也注意到学生学习的进步因素。
在本题中,附件给出了 名学生连续四个学期的综合成绩。要求我们做到以下三点:
1.根据附件数据,对这些学生的整体情况进行分析说明;
2.根据附件数据,采用两种及以上方法,全面、客观、合理的评价这些学生的学习状况;
3.根据不同的评价方法,预测这些学生后两个学期的学习情况。
数学建模综合评价方法
别
称
方法 次序法来排序与 策者、多指标、 因素的对
评价
动态的对象
象
4.运筹 数据包 以相对效率为基 可以评价多输 只表明评 评价经济学中生产
学方法 络分析 础,按多指标投 入多输出的大 价单元的 函数的技术、规模有
(狭义) 模型 入和多指标产 系统,并可用 相对发展 效性,产业的效益评
出,对同类型单 “窗口”技术 指标,无法 价、教育部门的有效
好
on 法 告诉决策者来评
价结果。如果认
为已经满意则迭
代停止;否则再
根据决策者意见
进行修改和再计
算,直到满意为
止
9. 智能 基于 BP 模拟人脑智能化 网络具有自适 精度不高, 应用领域不断扩大, 化评价 人工神 处理过程的人工 应能力、可容 需要大量 涉及银行贷款项目、
方法 经网络 神经网络技术, 错性,能够处 的训练样 股票价格的评估、城
的评价 通过 BP 算法, 理非线形、非 本等
市发展综合水平的
学习或训练获取 局域性与非凸
评价等
方法类 方法名 方法描述
优点
别
称
知识,并存储在 性的大型复杂
神经元的权值
系统
中,通过联想把
相关信息复现。
能够“揣摩”“提
炼”评价对象本
身的客观规律,
进行对相同属性
评价对象的评价
缺点
适用对象
如表所示,各种方法都有自身的优缺点以及适用的范围。
等指标
的对象
经济分 通过可行性分
析法 析、可靠性评价
等
3.多属 多属性 通过化多为少、 对评价对象描 刚性的评 优化系统的评价与
性决策 和多目 分层序列、直接 述比较精确, 价,无法涉 决策 ,应用领域广
数学建模中的评价方法
数学建模中的评价方法综合评价有许多不同的方法,如综合指数法、TOPSIS法、层次分析法、RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊。
依据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即依据有关的专业理论和施行,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2方法一:提升分析、理解、阅读能力阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。
如1999年高考题第22题给出冷轧钢带的过程表达,给出了"减薄率'这一专门术语,并给出了即时定义,能否深入理解,反映了自身综合素养,这种理解能力直接影响数学建模质量。
3方法二:层次分析法在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下分解假设干层次。
同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或收到下层因素的作用,而同一层的各因素之间尽量互相独立。
最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常为准则或标准层。
当准则过多时(比如多于9个)应进一步分解出自准则层。
4方法三:综合评价法FCE借助于模糊数学,运用模糊关系合成原理将模糊概念定量化,以此对评判对象的优劣等级进行综合评价。
基本思想是:把模糊因素集U对应的模糊权向量集W,依据单因素评判矩阵R采用合适的合成算子o进行模糊变幻,得到一个模糊综合评判结果B,并对结果进行比较分析来评价事物的优劣。
简化图形为:输入 W模糊变幻器 R输出 B=WоR。
模糊评价法常用于不能准确度量的事物的评价,如质量评估、风险决策等。
在对结果向量进行比较分析时可采纳两种方法,即最大隶属度法和加权平均法。
以上就是一些数学建模中的评价方法的相关建议了,希望对大家有所帮助!。
综合评价方法数学建模
综合评价方法数学建模综合评价方法在数学建模中被广泛应用,用于对模型的准确度和可靠性进行评估。
综合评价方法是通过分析模型的输入、输出和处理过程,结合实际情况来评价模型优劣的一种方法。
本文将介绍几种常见的综合评价方法,并分析它们的优点和不足。
一、误差分析法误差分析法是基于模型输出与实际数据之间的误差来评估模型准确度和可靠性的方法。
该方法通过计算模型的预测值与实际观测值之间的差异,来评估模型的拟合程度。
常用的误差指标包括残差平方和、均方根误差等。
优点是计算简单,直观易懂;缺点是只能评估模型的输出,在一些情况下无法全面评估模型的有效性。
二、参数敏感度分析法参数敏感度分析法是通过改变模型的输入参数,观察模型输出的变化情况,来评估模型的稳定性和可靠性的方法。
该方法通过计算参数的敏感度指标,来评估每个参数对模型输出的影响程度。
常用的敏感度指标包括偏导数、敏感度系数等。
优点是能够全面评估模型的输入对输出的影响;缺点是对于复杂的模型,计算量较大。
三、模型效果评估法模型效果评估法是通过对模型的输出进行评估来评价模型的准确度和可靠性的方法。
该方法通过建立与模型输出相对应的评价指标,来评估模型的效果。
常用的评价指标包括相关系数、拟合好坏指标等。
优点是对模型的整体效果进行综合评估;缺点是评价指标的选择和建立需要考虑实际问题的特点。
四、灵敏度分析法灵敏度分析法是通过改变模型的输入条件,观察模型输出的变化情况,来评估模型的可靠性和鲁棒性的方法。
该方法通过计算输入条件的灵敏度指标,来评估输入条件对模型输出的影响程度。
常用的灵敏度指标包括变动范围、影响程度等。
优点是能够评估模型对输入条件的容忍程度;缺点是对于复杂的模型,计算量较大。
五、假设验证法假设验证法是通过比较模型预测结果与实际观测结果,来评估模型的可靠性和适用性的方法。
该方法通过对模型的假设条件进行验证,来检验模型的合理性和适用性。
常用的方法包括残差分析、拟合优度检验等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所谓指标就是用来评价系统的参量•例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标•一般说来,任一个指标都反映和刻画事物的一个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值•例如,旅游景区质量等级有5A、4A、3A、2A和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是(10%, 5%) X标的价,超过此围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么式对指标进行分类,不同类型的指标可以通过相应的数学法进行相互转换8.2.4评价指标的预处理法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定法和评价模型中,指标一致化处理也有差异.(1)极小型指标化为极大型指标对极小型指标X j,将其转化为极大型指标时,只需对指标X j取倒数:1 X j X j或做平移变换:X j M j X j ,其中M j max©”},即n 个评价对象第j 项指标值X j 最大者.J 1 i n J(2) 居中型指标化为极大型指标 对居中型指标X j ,令M jmax{xd , m 」min{^},取1 i n1 i n2(X j m j )M j m jM j m j j j 22(M j xj M j m jj j , j jx j M M j m j 2 j就可以将X -转化为极大型指标.(3) 区间型指标化为极大型指标 对区间型指标X - , X -是取值介于区间 差.令 M - max{x -}, m - min{x -},1in1inc - max{a - m -,M - b -},取’ a - x -, x - a -; c -X - 1,a -x -b -;X - b -1 - L ,x - b -.c-就可以将区间型指标 X -转化为极大型指标.类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指 标. 2 •指标的无量纲化处理所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数 值数量级影响的过程•因此,就有指标的实际值和评价值之分.一般地,将指标无量纲化处理以后的值 称为指标评价值•无量纲化过程就是将指标实际值转化为指标评价值的 过程.对于n 个评价对象S 1,S 2,L ,S n ,每个评价对象有 m 个指标,其观测值分别为X i-(i 1,2丄,n; j 1,2,L ,m).(1) 标准样本变换法 令X j[a -,b -]时为最好,指标值离该区间越远就越特点:样本均值为0 ,差为1 ;区间不确定,处理后各指标的最大值、 最小值不相同; 对于指标值恒定(S j 0)的情况不适用;对于要求指标评价值 X * 0的评价法(如熵值法、 几加权平均法等)不适用.(2)线性比例变换法对于极大型指标,令min X j X* 4(1 i n,1 j m).X ij该法的优点是这些变换式是线性的,且变化前后的属性值成比例•但对任一指标来说, 变换后的X * 1和X *0不一定同时出现.特点:当X ij 0时,X * (3) 向量归一化法 对于极大型指标,令正逆向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同. (4)极差变换法 对于极大型指标,令*X j rniri 舛Xj J (1 i n, 1 j m). max X ij min X ijX ijX ij X jS j(1 其中样本均值X ji n,1 j m).1 ~n (X j X j )2 , n i iX *称为标准观测值.*X ij对极小型指标,令X ij(max 刍 maX ^j 1 i n0, 1 i n, 1 jm).*X jX ij maX X ij(maX X ij0, 1 i n, 1 j m).[0,1];计算简便,并保留了相对排序关系.m).j m).优点:当X ij 0时,X i j[0,1],即(X j )21 . 该法使0 x * 1,且变换前后-X j ,样本均差S j n i i对于极小型指标,令i 1i n,1 j i n,1对于极小型指标,令* rpax 勺X jX j 亠(1 i m, 1 j n).max x ij min 为1 i n 1 i n其优点为经过极差变换后,均有0 X* 1,且最优指标值X* 1,最劣指标值X* 0 •该法的缺点是变换前后的各指标值不成比例,对于指标值恒定(S j 0)的情况不适用.(5)功效系数法令* X j河詳X* c —— d (1 i n,1 j m).maxX i mi nx”1 i n 1 i n其中c,d均为确定的常数.c表示平移量”,表示指标实际基础值,d表示旋转量”,即表示放大”或缩小”倍数,则X* [c,c d].通常取c 60,d 40,即* X j円詳X j 60 g 40 (1 i n ,1 j m).maxX i min X i1 i n 1 i n则x*实际基础值为60,最大值为100,即X* [60,100].特点:该法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为c, 最大值为c d.3 .定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等•对于这些指标,在进行综合评价时,必须先通过适当的式进行赋值,使其量化•一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0 .对极大型和极小型定性指标常按以下式赋值.(1)极大型定性指标量化法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.图8 -2极大型定性指标量化法(2)极小型定性指标量化法对于极很低低一般高言,如果I~I --------------------- 1 --------------- 1--------------- L 分为很0 1.0 3.0 5.0 7.0低和很低等很咼9.0小型定性指标而n------ 指标能够10.0 咼、咼、一般、五个等级,则可以分别取量化值为 1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很咼高一般 低很低1 1 0 1.01 3.01 5.01 7.01 9.01 10.0模糊综合评价法在客观世界中,存在着多不确定性现象,这种不确定性有两大类:一类是随机性现 象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可 预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现 象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡 结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到 客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.模糊数学就是用数学法研究和处理具有 模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的 因素定量化,进行综合评价的一种法. •隶属度函数的确定法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学法 建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶 属函数的法.⑴模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观法,是在模糊统计的基 础上根据隶属度的客观存在性来确定的•下面以确定青年人的隶属函数为例来介绍其主 要过程.① 以年龄为论域 X ,在论域X 中取一固定样本点 X 。
27 .* ° *② 设A 为论域X 上随机变动的普通集合,A 是青年人在 X 上以A 为弹性边界的*O模糊集,对 A 的变动具有制约作用.其中 X 。
A ,或X o A ,使得x o 对°的隶属关系 具有不确定性•然后进行模糊统计试验,若n 次试验中覆盖X o 的次数为m n ,则称m n 为nOX o 对于°的隶属频率.由于当试验次数 n 不断增大时,隶属频率趋于某一确定的常数,O该常数就是X o 属于°的隶属度,即27,选择若干合适人选,请他们写出各自认为青年人最适 宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n 次试验中覆盖 27(X o )limn比如在论域X 中取X o岁的年龄区间的次数为m,则称m为27岁对于青年人的隶属频率,表8-4是抽样调查n统计的结果.由于27岁对于青年人的隶属频率稳定在0. 78附近,因此可得到X。
27属O于模糊集A的隶属度°(27) 0.78 .试验次数n102030405060708090100110120129隶属次数m61423313947536268768595101隶属频率m0.600.700.770.780.780.760.760.780.760.760.750.790.78n③在论域X中适当的取若干个样本点X I,X2,L ,X n ,分别确定出其隶属度OA(x)(i 1,2丄,n),建立适当坐标系,描点连线即可得到模糊集A的隶属函数曲线.将论域X分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效法•特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.分组频数隶属频率分组频数隶属频率13.5~14.520.01625.5~26.51030.79814.5~15.5270.21026.5~27.51010.78315.5~16.5510.39527.5~28.5990.76716.5~17.5670.51928.5~29.5800.62017.5~18.51240.96129.5~30.5770.59718.5~19.5125 1.0030.5~31.5270.20919.5~20.5129 1.0031.5~32.5270.20920.5~21.5129 1.0032.5~33.5260.20221.5~22.5129 1.0033.5~34.5260.20222.5~23.5129 1.0034.5~35.5260.20223.5~24.5129 1.0035.5~36.510.00824.5~25.51280.992⑵三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观法•例如建立矮个子O O OA i,中等个子A2,高个子A3三个模糊概念的隶属函数•设P3 {矮个子,中等个子,高个子},论域X为身高的集合,取X (0,3)(单位:m).每次模糊试验确定X的一次划分,每次划分确定一对数图8-5年轻人的隶属函数曲线(,),其中为矮个子与中等个子的分界点,为、’中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(,)看作二O维随机变量,进行抽样调查,求得、 的概率分布P(x)、P (X )后,再分别导出 °、OO°2和A 3的隶属函数± (x)、± (x)和± (x),相应的示意图如图 8-6所示.±(x) x P(t)dt, ±(x) x P(t)dt, ±2(x) 1 ±(x) ±(x).⑶模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数 (论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形•若模糊集定义在实数域 R 上,则模糊集的隶属函数便称为 模糊分布.下面给出几种常用的模糊分布,在以后确定隶属 函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求 出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致向.偏小型模糊分布适合描述像 现象,其隶属函数的一般形式为通常和 分别为其中(x) 分别服从正态分布 N(a i , i 2)和N (a ?,±(x) 1x a ii±(x) 12 2),则°、A 2和A 3的隶属函数x a 22(x)t 2dt.x a 22x a 1小”、冷”、青年”以及颜色的 淡”等偏向小的一的模糊 °(X)1, x a; f (x), x a.偏大型模糊分布适合描述像现象,其隶属函数的一般形式为 大”、热”、老年”以及颜色的浓”等偏向大的一的模糊X1中间型模糊分布适合描述像 中”、属面数可以通过中间型模糊分布表示.①矩形(或半矩形)分布(a)偏小型(b)偏大型 (c)中间型1, x a;0, X a;0, X a;A(X )A (X)彳A(X )1, a X b; 0, X a. 1, X a.0, X b.此类分布是用于确切概念•矩形(或半矩形)分布相应的示意图如图8-7所示.111J■■ …—i i Ii i 1 1 i1 I i ■ 1 i1 1 i I * 1 i I 1ii*________ L _aa i口7Qa(a)偏小型 (b)偏大型(c)中间型③ 抛物形分布(a)偏小型(b)偏大型(c)中间型(a)偏小型 (b)偏大型 (c)中间型1,X a;,、 b x」A(X )—, a X b; b a 0, X b.0,X a;/、 x a 」A (X ), a X b;b a 1,X b.0,X a,x d;X a, , a X b; (、b aA(X)1,b X c;d X,------ ,c X d; d c图8-7矩形(或半矩形)分布示意图A(X )0, X a; f (x), x a.暖和、‘中年”等处于中间状态的模糊现象,其隶②梯形(或半梯形)分布0, x a, x d;(a)偏小型1,A (X) 11 (x a)x a;x a. A(x)(0, 0)(b)偏大型0,11 (x a)(0, 0)x a;x a.(c)中间型A(x) ---------- 1-----1 (x a)(0,为正偶数). 抛物形分布的示意图如图8-9所示.④正态分布(a)偏小型(b)偏大型(c)中间型1, x a;0, x a;2x a A(X)二2A (x) = 21 e , x a.A(X)e—.e , x a.⑤柯西分布1,a; 0, x a;x b;0, x b.kx a 「----- ,a x b; b a1, x b.A(X)x ab a1,a x b;b x c;c x d;(c)中间型Word资料.。