气浮轴承的fluent 三维仿真
基于Fluent的孔式静压径向气体轴承承载性能分析
![基于Fluent的孔式静压径向气体轴承承载性能分析](https://img.taocdn.com/s3/m/7694580dcc17552707220876.png)
a ea e t ik e sa d t e d c e s fo f e n mb r v r g h c n s n h e r a e o r c u e . i i
Ke r s i e tn ;o d c p ct n me c lsmu ai n F u n y wo d :arb a g la a a i i y; u r a i l t ; le t i o
气体轴承具有高速度、 高旋转精度 、 零磨损和 长寿命的优点 , 了满足高转速 、 为 高精度 机床 的需
求, 研究气体轴承具有重要 意义。静压气体 轴承 在工 程 中应 用 广 泛 , 其 设 计 工 作 涉 及 的计 算 繁 但
i m n r n e rg o a e h fl e ta c e i n c n b a de a i y t e F u n u r a i lt n, h a it n o el a a a i e r n ld e sl b h l e t me i l mu ai y n c s o t e v r i ft d c p c t o b a - ao h o yf ig wi i e e te c nrct r n lz d n d t e l a a a i ft e b a n e r a e wi h n r a e o a l n t d f r n c e t i ae a ay e .a h o d c p c t o e r g d c e s t t e i c e s fg sf m h f i y y h i h i
摘 要 : 于 Fun 软件建 立 了孔式静压径 向气体轴 承的三维实体计算模 型 , 基 le t 并进行 了数值 模拟 , 分析 了偏 心率 、 节 流孔数和气膜平均厚度对轴 承承载力 的影 响。结 果表 明 : 用 Fu n 数值 模拟 可 以很 方便地 处理节 流d : 应 let ,L f 进入 到气膜 内区域 的复杂 流场 流动 , 得到不 同偏心率下轴承 的承载力变 化规律 , 且轴承 的承载力随着 气膜平均 厚 度的增大而减小 , 随着节流孔数 的减少 而减 小。 关 键词 : 体轴 承 ; 气 承载力 ; 数值模拟 ;le t Fun
基于Fluent的空气静压径向轴承动压效应的分析
![基于Fluent的空气静压径向轴承动压效应的分析](https://img.taocdn.com/s3/m/43ac7db3fd0a79563c1e727d.png)
和精度 。 空气静 压轴 承 中低 速工 作 时 , 表现 为静 压润 滑状态 , 但空 气静 压轴 承高速 工作 时 , 使原 本静压 空气 轴 承变 为动 静压混 合空气 轴 承 , 现 为动 、 压混 合润 滑状态 , 表 静 即动压效 应[ 。 1 由于 动压效 应对轴 承承 载力影 响 ]
文 章 编 号 : 0 8 3 8 ( 0 1 O 一O 4 一O 10 — 72 2 1 ) 4 0 3 4
基 于 Fu n le t的 空气 静 压径 向轴 承 动 压效 应 的分 析
李 国芹 , 红 新 , 艳梅 岳 郗
( 北 工程 技 术 高 等 专 科 学 校 电 力工 程 系 , 北 沧 州 河 河 010) 6 0 1
21 0 1年 l 2月 第 4期
河 北 工 程 技 术 高 等 专 科 学 校 学 报 J OURNALOF HE E NGI E I B I E NE R NG ANDTE HN C OL E C I AL c L GE
De . 0 1 c 2 1 NO. 4
的分 析 为动态 分 析 , 用解 析 法分 析气 体 的压力 分 布情况 、 使 求解 压 力 的大小 极其 困难 , 加上 计算 过 程要 做 再
一
些假 设条 件 , 而带 来一 些误 差 。F UE 从 L NT软 件是 一个用 来模 拟从不可压缩到可压缩范围内种复杂的流动和物理现象 , 采用不 同的离散格式和数值方法 , 在特定 的领域内使计算速度、 稳 定性和精度等方面达到最佳组合 , 从丽可以高效率的解决 各个领域 的复杂流动计算问题[ 。
4 4
河
北
工
程
技 术
高
等 专
科
学
基于fluent的气体止推轴承出口性能仿真与分析
![基于fluent的气体止推轴承出口性能仿真与分析](https://img.taocdn.com/s3/m/adcb0924ed630b1c59eeb52c.png)
图1 所示 , 气 体 轴 承 由滑 块 本 体 和 弹 性 薄板 组 该 成, 弹性 薄板上 的矩 形 跑 道 即为 弹性 均 压 槽 , 有 含 弹性 均压 槽 的气体 轴 承可 以显著 提 高 轴 承 的刚 度
及工 作稳 定性 , 。
cm a sno s ua o sl fh el m o a n og a , e  ̄i a anmbr f su pi s bu o p ro f i linr ut o ei a s ot w l druhw l vr n t t u e sm t n o t i m t e s t d h l a l i gh oa o a
ta i o a u r a i l t n i r e i l y t e mo e r l r a o a l . r dt n ln me c lsmu ai n o d rt s i i o o mp i h d lae a l e s n be f
Ke r s a e r g; a l o g n s ;a n rf w;u b ln o y wo d :g sb a n w u h e s l mi a o tr u e t w;f e t i lt n i l r l l f l n mu a i u s o! Q 二 兰 Z源自轴承2 1 年4 0 2 期
C 1—1 4 / Be rn 01 No 4 N4 1 8 TH a g 2 2, . i
基于 f et l n 的气体止推轴承 出 口性能仿真 与分析 u
王莉娜 , 刘波 , 张君安
( 西安工 业大学 机 电工程学院, 西安 703 ) 10 2
流 和湍 流模 型进行 对 比。 由于 气体 轴 承 的工作 表 面不 可能 绝 对 光 滑 , 以在 采 用 湍 流 模 型 仿 真 的 所 过程 中 , 壁 面粗糙 度 进行 了设 置 , 仿 真结 果 更 对 使
基于fluent的高精度气体静压轴承性能分析
![基于fluent的高精度气体静压轴承性能分析](https://img.taocdn.com/s3/m/4b4859f40740be1e640e9a3a.png)
基金项目:国家科技重大专项“大口径平面快速抛光机 床研制”(2017ZX04022001-202);国防科工局基础产品创新计 划车用动力科研专项 (DEDPZF)。
师 ,2016(11):74-77. [2] 航空弹射救生发射过程视景仿真技术研究 [D]. 中北大学 ,2015. [3] 冯卫权 . 某型飞机后椅启动时前椅弹射自动控制改进技术研究
[J]. 飞机设计 , 2016(1):68-73. [4] 关焕文 , 林贵平 , 宋文娟等 . 飞机救生爆炸切割冲击防护技术研
究 [J]. 火工品 ,2015(5):17-20. [5] 王炜 . 弹射救生技术的发展 [J]. 国际航空 ,2017. [6] 李 锋 , 姚 富 宽 . 某 型 飞 机 弹 射 救 生 分 离 特 性 仿 真 [J]. 飞 机 设
计 ,2016(1):61-67.
China 中国 Plant 设备
Research and Exploration 研究与探索·工艺与技术
基于 FLUENT 的 高精度气体静压轴承性能分析
曹明琛 1,赵惠英 1,朱生根 2,赵凌宇 1,顾亚文 1,刘孟奇 3 (1. 西安交通大学机械工程学院,陕西 西安 710049;
2. 哈尔滨工业大学机电工程学院,黑龙江 哈尔滨 150001;3. 北京微纳精密机械有限公司,北京 101300)
124 中国设备工程 2019.12 ( 下 )
基于FLUENT的气体静压轴承数值仿真与实验研究
![基于FLUENT的气体静压轴承数值仿真与实验研究](https://img.taocdn.com/s3/m/52c69e290812a21614791711cc7931b765ce7beb.png)
基于FLUENT的气体静压轴承数值仿真与实验研究吴定柱;陶继忠【摘要】应用基于有限体积法的计算流体动力学软件FLUENT进行数值模拟,对影响气体静压止推轴承静态性能的相关因素进行了分析研究,并给出了相应的变化曲线.在自行研制的实验平台上进行气体静压实验,实验与数值模拟计算的结果取得了较好的一致性,证明了将该方法应用在气体润滑领域的可行性,也为进一步改进小孔节流气体静压止推轴承的设计和改善、提高其性能提供了理论依据.【期刊名称】《机械设计与制造》【年(卷),期】2010(000)005【总页数】2页(P150-151)【关键词】空气静压轴承;有限体积法;静态特性【作者】吴定柱;陶继忠【作者单位】中国工程物理研究院,机械制造工艺研究所,绵阳,621900;中国工程物理研究院,机械制造工艺研究所,绵阳,621900【正文语种】中文【中图分类】TH117.21 引言气体静压轴承采用气体作为润滑介质,在轴承的活动面与静止面之间构成气膜,产生承载力,使二者避免接触,具有精度高、无磨损和寿命长的优点。
基于气体静压轴承的以上优点,其在精密工程、超精密工程、微细工程、空间技术、电子精密仪器、医疗器械及核子工程等领域中,有着十分广阔的应用[1][2]。
本文应用基于有限体积法的计算流体动力学软件FLUENT,对气体静压圆盘止推轴承内部流体的流动进行数值计算,给出了轴承的结构尺寸、供气压力等因素对气体静压轴承承载力和静态刚度的影响关系。
在自行研制的实验台上进行气体静压止推轴承实验,由此得到轴承的静态性能。
实验结果和理论计算之间的吻合良好,从而说明数值模拟的可行性。
2 数学模型的建立气体静压止推轴承结构,如图1 所示。
图1 小孔节流圆盘止推气体静压轴承当供气源气体压力为Ps时,气体经过节流孔后产生压降,在节流小孔与气膜间隙过度处压力降至Pd,然后沿着气膜间隙向外流动,在出口处压力为环境压力Pa。
由于空气静压止推轴承的两润滑面通常都是金属,轴承工作过程中产生的热量绝大部分随气体排出或由金属传递出去,故气体润滑过程可看成等温过程[4]。
基于FLUENT的径向静压气体轴承的静态特性研究
![基于FLUENT的径向静压气体轴承的静态特性研究](https://img.taocdn.com/s3/m/9e97c30358eef8c75fbfc77da26925c52dc59145.png)
基于FLUENT的径向静压气体轴承的静态特性研究于贺春;马文琦;王祖温;徐立芳【期刊名称】《润滑与密封》【年(卷),期】2009(034)012【摘要】以径向静压气体轴承为研究对象,研究动压效应及偏心率对轴承静态特性的影响,采用三维建模,结构化和非结构化网格相结合,运用有限体积法对三维稳态可压缩N-S方程进行求解.结果表明:承载能力随着偏心率的增大而增大;大偏心率高转速时,动压效应对承载能力的影响不可以忽略;大偏心率时,随着转速增加,沿旋转方向,最小气膜间隙处的压力分布不断增大;当转子静止时,刚度随偏心率的增大而先增大后减小;高转速时,刚度随偏心率增加而增加;计算结果与试验结果的对比表明该计算方法能够有效进行径向静压气体轴承流场特性分析.【总页数】5页(P77-81)【作者】于贺春;马文琦;王祖温;徐立芳【作者单位】大连海事大学交通与物流工程学院,辽宁大连,116026;大连海事大学交通与物流工程学院,辽宁大连,116026;大连海事大学交通与物流工程学院,辽宁大连,116026;大连海事大学交通与物流工程学院,辽宁大连,116026【正文语种】中文【中图分类】TG133.36【相关文献】1.基于FLUENT的小孔深浅腔动静压气体轴承静特性研究 [J], 李树森;潘春阳2.单狭缝节流径向静压气体轴承的静态特性研究 [J], 于贺春;李欢欢;胡居伟;张国庆;马文琦;赵则祥3.基于ANSYS-FLUENT的高精密液体静压径向轴承动静态特性研究 [J], 赵春明;马平;龚乘龙;牛兴4.基于Matlab的径向小孔节流静压气体轴承静态特性分析 [J], 李树森;元月;王也5.新型径向槽结构静压气体轴承静态特性研究 [J], 于普良; 胡江山; 李双; 秦丽; 黄千稳; 严迪因版权原因,仅展示原文概要,查看原文内容请购买。
基于FLUENT的轴承腔封严引气流动特性仿真分析及结构优化
![基于FLUENT的轴承腔封严引气流动特性仿真分析及结构优化](https://img.taocdn.com/s3/m/c4e06b3b1fd9ad51f01dc281e53a580217fc5062.png)
基于FLUENT的轴承腔封严引气流动特性仿真分析及结构优
化
冷子昊;程荣辉;郭松;张杰一;苏壮
【期刊名称】《机械工程师》
【年(卷),期】2024()3
【摘要】为降低轴承腔封严引气流阻,提升滑油系统封严可靠性,以航空发动机轴承腔封严引气结构为研究对象,针对发动机典型工况点,将引气管、轴心引气等三维模型导入CFD软件平台FLUENT划分网格,采用Realizable k-ε模型对流场进行三维数值模拟,流场分析结果与实际相吻合,能够准确地反映气体流动状态。
通过对2种引气管结构与3种轴心引气结构流动特性进行对比分析,得到典型工况下封严引气结构的流阻及出口流速等性能参数,最终确定多种封严引气结构对流动特性的影响,从而对引气结构进行改进设计,优化了引气流动特性,为轴承腔封严引气结构设计提供了参考。
【总页数】5页(P47-51)
【作者】冷子昊;程荣辉;郭松;张杰一;苏壮
【作者单位】中国航发沈阳发动机研究所;中国航空发动机集团航空发动机动力传输重点实验室
【正文语种】中文
【中图分类】V233.41
【相关文献】
1.基于Fluent的滑阀阀口流动特性仿真分析
2.基于Fluent的轴承腔温度场仿真分析
3.基于Fluent的带反洗阀封隔器的流阻特性仿真分析
4.基于Fluent的3D打印机成型腔内气固两相流动特性
5.基于Fluent的气液两相流喷嘴内部流动特性仿真
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Fluent的微孔节流气体静压止推轴承的参数设计与研究
![基于Fluent的微孔节流气体静压止推轴承的参数设计与研究](https://img.taocdn.com/s3/m/89fd6eeba0c7aa00b52acfc789eb172ded6399f6.png)
基于Fluent的微孔节流气体静压止推轴承的参数设计与研究于贺春;王广洲;王文博;张国庆;赵则祥
【期刊名称】《机床与液压》
【年(卷),期】2018(46)13
【摘要】为提高气体静压止推轴承的静态特性,针对所提出的微孔节流气体静压止推轴承,采用基于有限体积法的CFD软件Fluent进行三维建模仿真,分析了供气孔数目n、量纲一的供气孔分布半径M、供气孔直径d对轴承静态特性的影响规律.按照最大刚度原则,得到如下结论:供气孔数目n在180附近、量纲一的供气孔分布半径M约为0.7、供气孔直径d取最大值0.1 mm时,微孔节流气体静压止推轴承的静态特性最佳.
【总页数】4页(P130-133)
【作者】于贺春;王广洲;王文博;张国庆;赵则祥
【作者单位】中原工学院机电学院,河南郑州450007;中原工学院机电学院,河南郑州450007;中原工学院机电学院,河南郑州450007;中原工学院机电学院,河南郑州450007;中原工学院机电学院,河南郑州450007
【正文语种】中文
【中图分类】TH138;TH133.35
【相关文献】
1.小孔节流式盘状静压止推气体轴承主要几何参数的设计 [J], 郭良斌;宣立明;王卓;彭宝林
2.基于FLUENT的环面节流静压气体圆盘止推轴承二维流场仿真分析 [J], 于贺春;马文琦;王祖温
3.基于静特性分析的环面节流静压圆盘止推气体轴承参数设计 [J], 郭良斌
4.微孔节流气体静压止推轴承的静态特性研究 [J], 张素香;王仁宗;王广洲
5.微孔节流器静压气体止推轴承性能分析 [J], 罗舒元;刘波;赵晓龙;董皓;张君安因版权原因,仅展示原文概要,查看原文内容请购买。
基于fluent的气体止推轴承出口性能仿真与分析_王莉娜
![基于fluent的气体止推轴承出口性能仿真与分析_王莉娜](https://img.taocdn.com/s3/m/811f2c1c866fb84ae45c8d73.png)
观察气体轴承气膜压力及速度分布云图可以 看出: 弹性均压槽处的压力基本不变, 这是因为弹 性均压槽的深度比气膜间隙要高出一个数量级的 缘故。而从均压槽边沿到轴承边缘处的压力分布 呈逐渐递减的状态, 且在轴承边缘处的压力几乎 变为 0. 1 MPa。 在均压槽和大矩形的区域, 气体流动速度不 由于壁面间隙非常狭小, 所 大。但在气膜间隙里, 以紧挨壁面的速度稍小, 而中间层的气流速度非 常大, 类似于生活中常见的流动的自来水在突然 遇到狭小区域时所呈现的现象。 层流模型 和 湍 流 模 型 仿 真 的 结 果 如 图 5 所 示, 可以看出气膜出口处的压力值随着气膜间隙 的增大而缓慢减小。 在气膜间隙小于 15 μm 时, 湍流模型仿真的结果比层 流 模 型 仿 真 的 结 果 稍 大; 当气膜间隙大于 15 μm 时, 湍流模型仿真的结 并随着间隙的不 果比层流模型仿真的结果稍小, 断增大而最终趋于一致。
物理模型 含有弹性均压槽的矩形气体静压止推轴承如
1 —节流孔; 2 —滑块本体; 3 —气腔; 4 —弹性薄板; 5 —进气孔; 6 —上顶盖
图1
含有弹性均压槽的矩形气体静压止推轴承
收稿日期:2011 - 11 - 29 ; 修回日期:2012 - 01 - 11 基金项目:陕西省教育厅基金项目 ( 09JK484 )
1. 2 fluent 仿真模型的建立 1. 2. 1 二维层流模型的控制方程 根据边界层的特性 , 对连续性方程和 N - S 方
· 34·
《轴承》 2012. №. 4
程( Navier - Stokes Equations ) 进行简化, 得到适合 层流边界层内流动的基本微分方程为 2 1 p u u u u= +v = - + v 2, x y ρ x y p u v = 0, + = 0, y x y v 为速度矢量沿着 x, y 轴的速度分量; p 为 式中: u, 。 : y = 0 u = v = 0; 在 y = 压力 其边界条件为 在 处, u = v( x ) 。 δ 处, 1 . 2 . 2 二维湍流模型的控制方程 湍流模 型 很 多, 在 此 采 用 单 方 程 ( Spalart - Allmaras) 模型, 在各向同性的前提下, 其二维微分 表达式为 u , y 式中: μ t 为计算湍流黏性系数; ρ 为密度; u'v' 为速 度脉动的二阶关联量。 - ρ u'v' = μ t
多孔质气体静压径向轴承的Fluent仿真与实验研究
![多孔质气体静压径向轴承的Fluent仿真与实验研究](https://img.taocdn.com/s3/m/5eaebde4f80f76c66137ee06eff9aef8941e48c3.png)
多孔质气体静压径向轴承的Fluent仿真与实验研究张卫艳;林彬;张晓峰【摘要】多孔质气体静压轴承相比传统的小孔节流轴承具有更高的承载能力,更好的稳定性及便于加工等优点.应用基于有限体积法的软件Fluent分析偏心率、多孔质材料渗透率、轴承长径比和平均气膜厚度等关键因素对多孔质径向轴承静态性能的影响,分析结果显示,在给定轴承平均气膜厚度的情况下,存在最佳的渗透率区间使得承载能力最大,增加轴承长径比和减小平均气膜厚度均可以提高多孔质径向轴承的承载能力及刚度,但需要根据加工装配工艺要求及实际工况选择合适的参数.设计制造中心供气新形式的多孔质径向轴承,通过仿真得到气膜间隙的压力分布及承载能力,并通过实验验证仿真结果的正确性.仿真和实验结果表明,该结构形式的多孔质径向轴承承载性能优良.%Compared with conventional orifice air bearing,porous aerostatic bearings possess many advantages such as higher load capacity,better stability and manufacturing convenience.The effect of the key factors such as eccentricity,porous material permeability,bearing aspect ratio and average film thickness on the static performance of porous aerostatic bearings were analyzed with the commercial software Fluent which was based on finite volume method.The analysis results show that,there is an optimum permeability interval which can make the load capacity maximum under a certain average film thickness.The load capacity and stiffness of the porous air journal bearing can be improved by increasing the bearing aspect ratio and reducing the average film thickness.However,the parameters need to be carefully chosen by taking the requirements of manufacture,assembly and workingcondition into consideration.New form of centrally air supply porous journal bearing was designed and fabricated,the pressure distribution of gas film was obtained and load capacity was calculated.The validity of simulation results was verified by static performance experiment.The results of simulation and experiment indicate that the porous journal bearing with this structttral form has excellent performance.【期刊名称】《润滑与密封》【年(卷),期】2018(043)003【总页数】8页(P23-30)【关键词】多孔质径向轴承;渗透率;Fluent仿真;静态性能【作者】张卫艳;林彬;张晓峰【作者单位】天津大学先进陶瓷与加工技术教育部重点实验室天津300354;天津大学先进陶瓷与加工技术教育部重点实验室天津300354;天津大学先进陶瓷与加工技术教育部重点实验室天津300354【正文语种】中文【中图分类】TH133多孔质气体静压轴承是一种轴承工作表面随机地分布着无数微小供气孔的气体轴承,将采用粉末冶金方法制备出的多孔质材料作为静压气体轴承的节流器,可以获得比小孔节流轴承更高的承载能力及良好的阻尼特性及稳定性[1]。
基于Fluent的小孔节流式空气静压轴承特性研究
![基于Fluent的小孔节流式空气静压轴承特性研究](https://img.taocdn.com/s3/m/22c599686c175f0e7cd137c4.png)
基于Fluent 的小孔节流式空气静压轴承特性研究DOI :10.19557/ki.1001-9944.2019.04.018薛义璇,陆金生,侯志勇,王燎原,单鸿波(东华大学机械工程学院,上海201620)摘要:节流孔、气腔及气膜等结构参数是影响小孔节流式空气静压轴承特性的重要因素。
为系统地揭示多个设计变量对轴承静态性能的影响规律并提高轴承的气膜稳定性,建立了空气润滑轴承的理论模型,利用Fluent 软件的有限元模拟获得了空气轴承的静态曲线;结合DOE 仿真试验综合探究了结构参数对轴承性能的影响,并提出带倒角的气腔结构。
研究表明,轴承力学性能对气腔及节流孔直径的变化较为敏感,同时也在一定程度上受其长度的影响;带倒角的气腔结构可缓解气腔内的气体冗余现象,有助于轴承稳定性的提高。
该研究成果可有效地指导气体静压支撑系统的优化设计。
关键词:轴承特性模拟;有限元;小孔节流;气锤现象;气腔倒角中图分类号:TH133.36文献标志码:A文章编号:1001⁃9944(2019)04⁃0070⁃05Investigation on Characteristics of Orifice ⁃type Aerostatic Bearing Based on FluentXUE Yi ⁃xuan ,LU Jin ⁃sheng ,HOU Zhi ⁃yong ,WANG Liao ⁃yuan ,SHAN Hong ⁃bo(College of Mechanical Engineering ,Donghua University ,Shanghai 201620,China )Abstract :Structural parameters such as orifice ,gas chamber and gas film are important factors influencing the char ⁃acteristics of orifice ⁃type aerostatic bearings.In order to systematically reveal the influence law of multiple designvariables on the static performance of the bearing and improve the stability of gas film ,the theoretical model of the gas ⁃lubricated bearing was established ,and the static curve of the bearing was obtained with the Fluent bined with DOE simulation experiment ,the influence of structural parameters on bearing performance was compre ⁃hensively investigated ,and the gas ⁃chamber structure with chamfering was proposed.The results show that the me ⁃chanical properties of bearing are sensitive to the diameter changes of gas chamber and orifice ,and are also affectedby their length to some extent.The gas ⁃chamber structure with chamfering can alleviate the phenomenon of gas re ⁃dundancy in the gas chamber and improve the bearing stability.The research results can effectively guide the opti ⁃mization design of aerostatic supporting system.Key words :bearing characteristics simulation ;finite element method ;orifice throttling ;pneumatic hammer ;chamferedgas ⁃chamber收稿日期:2019-01-14;修订日期:2019-02-19作者简介:薛义璇(1993—),女,硕士,研究方向为工业设计、轴承产品的设计。
静压空气平面轴承节流器阵列的三维CFD仿真
![静压空气平面轴承节流器阵列的三维CFD仿真](https://img.taocdn.com/s3/m/00f86a7268eae009581b6bd97f1922791788be7b.png)
静压空气平面轴承节流器阵列的三维CFD仿真
杨涛;陈改革;韩宾;李磊民
【期刊名称】《系统仿真学报》
【年(卷),期】2011(23)12
【摘要】基于FLUENT实现了同孔径等间距孔式节流器阵列的三维CFD仿真,得到了七种阵列(1×1、2×1、2×2、3×2、3×3、4×3、4×4)的质量流量、气膜压力分布、速度分布等关键性能参数。
不同节流器阵列的仿真数据表明:总质量流量与节流器个数成比例,但各个节流器的质量流量不完全相等;在一定范围内增大节流器个数可以显著提高气浮垫的平均气膜压力即承载能力。
从气膜压力和速度关于位置坐标的累积分布曲线分别得到阵列气膜区压力、气体速度的耦合关系。
仿真结果不仅能指导静压空气平面轴承的优化设计,而且可用于辨识多节流器阵列气膜压力和气体速度分布等理论模型。
【总页数】6页(P2709-2714)
【作者】杨涛;陈改革;韩宾;李磊民
【作者单位】西南科技大学信息工程学院;西南科技大学国防科技学院
【正文语种】中文
【中图分类】V211;TH117
【相关文献】
1.空气静压轴承孔型节流器的CFD研究
2.螺旋油楔动静压滑动轴承三维CFD仿真分析
3.静压空气平面轴承特性与节流器间距关系的仿真研究
4.基于CFD的微孔空
气静压轴承节流性能仿真分析5.多孔集成节流器空气静压轴承承载性能计算与分析
因版权原因,仅展示原文概要,查看原文内容请购买。
基于FLUENT的气体静压轴承数值仿真与实验研究
![基于FLUENT的气体静压轴承数值仿真与实验研究](https://img.taocdn.com/s3/m/3052b8d050e2524de5187e53.png)
;推轴承静态性能的相关因素进行 了分析研究, 并给出了 相应的变化曲线。在 自 行研制的实验平台上进行 l 气体静压实验, 实验与数值模拟计算的结果取得 了 较好的一致性, 证明了将该方法应用在气体润滑领域
i 的可行性 , 也为进一步改进 小孔 节流 气体静压止推 轴承 的设计和改善 、 高其. 提 陛能提供 了理论依据 。
i Ke r sAeott e r g F nt ou to ;tt efr n e ywo d : rsai b ai ; ii v lmemeh d Sai p ro ma c c n e c
中图分类 号 : H172 文献标 识码 : T 1. A
在出 口处压力为环境压力 。由于空气静压止推轴承的两 气 体静 压 轴 承采 用 气体 作 为润 滑介 质 , 轴 承 的活 动 面与 静 流动 , 在 润滑面通常都是金属 , 轴承工作过程中产生的热量绝大部分随气 止面之 间构成气膜 , 产生承载力 , 使二者避免接触 , 具有精度高、
’ 5 5”
—
0
似
5 0
! : 5 5f 0 } 0
0
;
5 0 0 0 ! 5 :
s 口 0 0 0 ”
5
M
! 0 0 , :
5 ,
,
i
【 要】 基于有限 摘 应用 体积法的计算流 体动力学 软件 FU N 进行数值模拟, LET 对影响气体 静压止 l
l
§
关键词: 空气静压轴承; 有限体积法; 静态特性
【 bt c】 u e cliu i apoes i o p ti aHu ya i f a L E T A s atN m r as l o w s r s d t Cm u ol iD nmc s t r F U N r i m  ̄ n c e w h  ̄ n d s ow e
基于FLUENT的静压气体轴承节流孔系数研究
![基于FLUENT的静压气体轴承节流孔系数研究](https://img.taocdn.com/s3/m/c41c6b8b185f312b3169a45177232f60ddcce70f.png)
基于FLUENT的静压气体轴承节流孔系数研究
邓志芳;张建波;陈策;张坤;丁泊遥
【期刊名称】《润滑与密封》
【年(卷),期】2024(49)6
【摘要】在通过求雷诺方程来研究静压气体轴承的特性时,通常假设节流孔系数为常数0.8,这可能会影响雷诺方程求解的精度。
结合FLUENT软件和雷诺方程提出一种静压气体轴承节流孔系数的求解方法,该方法通过对比FLUENT和雷诺方程计算得到的质量流量求解节流孔系数;分析气膜厚度、供气压力、节流孔直径等参数对节流孔系数的影响。
结果表明:节流孔系数随着膜厚的增加先增大后减少,随着供气压力的增大而减少,随着节流孔直径的增大而增大,但节流孔系数对轴承半径和节流孔长度的变化并不敏感。
采用该节流孔系数求解雷诺方程得到的轴承承载力,与FLUENT计算得到的承载力结果基本一致,验证了该方法的正确性与可行性。
【总页数】6页(P195-200)
【作者】邓志芳;张建波;陈策;张坤;丁泊遥
【作者单位】中国航发湖南动力机械研究所;太行实验室;陆军航空兵研究所;中国通用技术(集团)控股有限责任公司
【正文语种】中文
【中图分类】TH117
【相关文献】
1.基于Fluent的孔式静压径向气体轴承承载性能分析
2.基于Fluent的微孔节流气体静压止推轴承的参数设计与研究
3.基于FLUENT的环面节流静压气体圆盘止推轴承二维流场仿真分析
4.基于Fluent的单排孔静压止推气体轴承数值模拟
5.基于分离变量算法的静压止推气体轴承节流孔特性研究
因版权原因,仅展示原文概要,查看原文内容请购买。
多孔质气体静压径向轴承的Fluent仿真与实验研究
![多孔质气体静压径向轴承的Fluent仿真与实验研究](https://img.taocdn.com/s3/m/175da491f61fb7360b4c65fa.png)
多孔质气体静压轴承是一种轴 承工作表 面随金 方法制备 出的多 孔质 材 料作 为静 压气 体 轴承 的节流
基 金 项 目: 国 家 自 然 科 学 基 金 青 年 科 学 基 金 项 目 (51205285). 收稿 日期 :2017—05—24:修 回 日期 :2017一O7—2l 作者 简介 :张卫 艳 (1992一 ),男 ,硕士研 究生 ,研 究方 向为 气 体润 滑 .E—mail:ZWyUSC@ 163.cor n. 通信 作者 :张 晓峰 (1982一 ),博士 ,讲师 ,研 究方 向为 超精 密 加工技 术及 装备 制 造.E—mail:xijiyu82@ 163.eom.
关键词 :多孔质径 向轴承 ;渗透率 ;Fluent仿真 ;静态性能 中图分 类 号 :TH133 文 献标 志 码 :A 文 章 编号 :0254—0150 (2018) 03—023—08
Fluent Sim ulation and Experim ental Study of Porous Aerostatic
indicate that the porous journal bearing with this structural form has excellent perform ance. Keywords:porous journal bearing;perm eability;Fluent simulation;static perform an ce
张卫艳 林 彬 张晓峰 (天津大学先进 陶瓷与加工技术教 育部重点实验 室 天津 300354)
摘要 :多孔质气体静压轴承相 比传统的小孔节流轴承具有更高的承载能力 ,更好的稳定性及便 于加工等优点。应 用基于有限体积法的软件 Fluent分析偏心率 、多孔质材料渗透率、轴承长径 比和平均气膜厚度等关键 因素对多孔质径 向轴 承静 态 性 能 的影 响 ,分 析 结 果显 示 ,在 给定 轴 承平 均 气 膜 厚度 的情 况 下 ,存 在 最 佳 的渗 透 率 区 间 使 得 承 载 能力 最 大 ,增加轴承长径 比和减小平均气膜厚度均可 以提高多孔质径向轴承的承载能力及 刚度 。但需要根据加工装 配工艺要 求 及 实 际工 况 选择 合 适 的参 数 。设计 制 造 中心供 气 新形 式 的 多 孔质 径 向轴 承 ,通 过 仿 真 得 到 气 膜 间 隙 的 压 力 分 布及 承 载 能 力 ,并 通 过 实验 验证 仿 真 结 果 的正 确 性 。仿 真 和实 验 结 果 表 明 ,该 结构 形 式 的多 孔 质 径 向轴 承 承 载性 能优 良。
静压止推气体轴承性能仿真
![静压止推气体轴承性能仿真](https://img.taocdn.com/s3/m/27c86524bfd5b9f3f90f76c66137ee06eff94ea7.png)
静压止推气体轴承性能仿真
黄灏;刘品宽;董泽光
【期刊名称】《计算机仿真》
【年(卷),期】2010(027)003
【摘要】运用计算流体力学软件FLUENT仿真静压止推气体轴承性能,分析轴承的几何参数对系统性能的影响.采用不同几何参数的静压止推气体轴承的气膜建模并划分网格;运用FLUENT软件对轴承的气膜流场进行数值仿真,计算轴承在不同几何参数下的承载能力和气体流量.仿真结果表明静压止推气体轴承的节流孔直径和气膜厚度越小,气腔直径越大,轴承的承载能力和气膜刚度越好,同时气腔深度对轴承性能影响较小.FLUENT软件可以有效的应用于静压止推气体轴承的性能分析,而优化了静压止推气体轴承的设计,达到优化效果.
【总页数】5页(P340-343,361)
【作者】黄灏;刘品宽;董泽光
【作者单位】上海交通大学机械与动力工程学院,上海,200240;上海交通大学机械与动力工程学院,上海,200240;上海交通大学机械与动力工程学院,上海,200240【正文语种】中文
【中图分类】TH133.35
【相关文献】
1.含均压槽静压止推气体轴承的气膜特性 [J], 皮骏;严国鑫;黄华
2.径向止推静压气体轴承流场特性仿真分析 [J], 马文琦;刘洋
3.双排孔静压止推气体轴承数值模拟 [J], 徐磊磊; 杨光伟; 阳红; 钟良
4.基于Fluent的单排孔静压止推气体轴承数值模拟 [J], 吴星宇;钟良;徐磊磊
5.双排孔静压止推气体轴承的静动态特性研究 [J], 刘锐;吴星宇;刘鑫莲;钟良因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Large eddy simulation of vortex shedding and pressurefluctuation in aerostatic bearingsJincheng Zhu a,Han Chen a,b,Xuedong Chen a,na State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan430074,Chinab Department of Mechanics,Huazhong University of Science and Technology,Wuhan430074,Chinaa r t i c l e i n f oArticle history:Received21May2012Accepted5March2013Available online28April2013Keywords:Aerostatic bearingLarge eddy simulationVortex sheddingPressure fluctuationVibrationa b s t r a c tIn aerostatic bearings,high speed air flow may induce small vibration,which has beenharmful to the improvement of moving and positioning accuracy of aerostaticallysupported devices in ultra-precision applications.In this paper,the transient flow fieldin the aerostatic bearing is numerically investigated using the large eddy simulationmethod.Turbulent structures are studied and vortex shedding phenomenon is discoveredin the bearing recess.Our computational results demonstrate that vortex shedding causespressure fluctuation in the bearing clearance.Relationship between pressure fluctuationand bearing vibration is established based on our simulation results and experimentallymeasured vibration strength.&2013Elsevier Ltd.All rights reserved.1.IntroductionAerostatic bearings have been widely used in ultra-precision moving and positioning equipments.Due to the merit of near-zero friction and low heat generation,applications of aerostatic bearings make it possible for supported devices to realize nanometer positioning accuracy.However,with the increasing demand of positioning accuracy,the inherent small vibration on the order of nanometers(Kawai et al.,2005)severely damages stability and precision of the bearing,especially in sub-nanometer positioning equipments.To understand and eventually suppress this harmful vibration,traditional design and analysis methods for mass flow rate and load carrying capacity do not suffice anymore,and lots of research efforts have been made on the air flow field in aerostatic bearings.Recently,the relationship between the high speed air flow and the small vibration in aerostatic bearings has been realized by many researchers.Kawai et al.(2005)studied the nano-vibration in ultra-precision machine tools and attributed it to air turbulence due to bearing surface roughness.Chen and He(2006)found vortex flow structures in the bearing recess by computational fluid dynamics(CFD)simulation of the steady air flow field,and suggested that these air vortices are responsible for the instability of the aerostatic bearing.Aoyama et al.(2006)also observed this air vortex flow by CFD simulation and reached a similar conclusion,and accordingly proposed a new restrictor design to weaken the vibration. Zhang et al.(2007)analyzed the high Reynolds number(Re)flow in the bearing clearance,and reduced the vibration of aerostatic bearings by flow laminarization.In a recent work,Yoshimura et al.(2012)attributed nano-vibration of aerostatic bearings with surface restriction to pressure fluctuation at the bearing outlet due to atmospheric turbulence.Although the flow-induced nature of bearing vibration has generally been recognized,the previous works only assumed a steady flowContents lists available at SciVerse ScienceDirectjournal homepage:/locate/jfsJournal of Fluids and Structures0889-9746/$-see front matter&2013Elsevier Ltd.All rights reserved./10.1016/j.jfluidstructs.2013.03.012n Corresponding author.Tel./fax:+862787557325.E-mail address:chenxd@(X.Chen).Journal of Fluids and Structures40(2013)42–51field or averaged the flow field in a Reynolds Averaged Navier –Stokes (RANS)sense.Since this flow-induced vibration is apparently a time dependent process,time dependent is necessary to investigate the transient air flow field in the bearing clearance in order to further understand this harmful small vibration.To numerically analyze the detailed flow characteristics in aerostatic bearings,the full Navier –Stokes equations for compressible fluids have to be solved.Since the high speed air flow in the bearing gap near the orifice outlet is turbulent,RANS simulation is usually employed,and numerical results demonstrate adequate accuracy in predicting mean flow characteristics (Chen and He,2006;Li and Ding,2007).Pressure depressions (Eleshaky,2009;Yoshimoto et al.,2007)and vortex flow structures (Chen et al.,2011)near the orifice outlet have also been reported using RANS simulation.However,RANS simulation adopts a statistical turbulent model and details of turbulent structures remain unresolved.Ideally,direct numerical simulation (DNS)can resolve the whole spectrum of turbulent scales as no turbulent model is assumed,but its computational cost is prohibitively huge.In large eddy simulation (LES),large scale turbulent eddies are solved directly and small scale turbulence is modeled by sub-grid scale models.Thus,coherent turbulent structures can be obtained with acceptable computational cost in LES,which has been validated in various applications (Cheng et al.,2012;Lam et al.,2010;Tucker,2011).In a previous study (Chen et al.,2011),steady RANS simulation method was used to study air flow fields in various aerostatic bearings with different parameters and recess shapes,and the relationship between vortex strength and vibration energy of the bearing was established.However,no transient flow characteristics in the aerostatic bearing could be resolved.In this paper,the transient air flow field is investigated numerically using the LES method.Our simulation results reveal vortex shedding and pressure fluctuation in the bearing recess.Vibration of the bearing is also measured experimentally,and it is demonstrated that vibration strength of the bearing increases with increasing pressure fluctuation induced by vortex shedding in the bearing recess.2.Numerical modeling 2.1.LESIn LES,large eddies of turbulence are directly resolved and eddies with scales smaller than grid spacing are modeled.The governing equations employed in LES are the time-dependent Favre Filtered Navier –Stokes equations,including continuity and momentum equations:∂ρ∂t þ∂∂x iðρ~ui Þ¼0;ð1Þ∂ðρ~u i Þþ∂j ðρ~u i ~u j Þ¼−∂p i þ∂~s ij j −∂jð~τij Þ;ð2Þthe Favre filter is the density-weighted filter,where density and pressure are spatial filtered (denoted by “–”)while velocityis density-weighted (e üρÃ=ρ,n denotes a general variable).In Eq.(2),s ij is the viscous stress tensor and τij is the subgrid-scale (SGS)stress,which are defined as~s ij ¼μ∂~u i ∂x j þ∂~u j ∂x i −23δij ∂~u k ∂x k;ð3Þ~τij ¼ρðu i u j $−~ui ~u j Þ;ð4ÞJ.Zhu et al./Journal of Fluids and Structures 40(2013)42–5143where τij needs to be modeled using a SGS rge turbulent eddies can be resolved directly by Eqs.(1)and (2),and turbulent eddies with scales smaller than grid size are modeled.As a SGS model,the Wall-Adapting Local Eddy-Viscosity (WALE)model (Nicoud and Ducros,1999)is adopted in this paper.In this work,LES simulations were performed in the CFD software ANSYS Fluent using the finite volume method.In Fluent,the Pressure-Implicit with Splitting of Operators (PISO)algorithm (Issa,1986)is adopted as the pressure –velocity coupling scheme.In order to minimize numerical dissipation,the second order upwind interpolation is chosen for the density,turbulent kinetic energy and turbulent dissipation rate,while the bounded central differencing is chosen for momentum interpolation in LES.As the transient formulation,the second order implicit scheme is adopted.The Non-Iterative Time-Advancement (NITA)scheme (Issa,1986)is used to improve the computational efficiency,and the time step size Δt ¼1Â10−8s is chosen according to the CFL condition u Δt =Δx o 1,where Δx is the size of control putational domainFor generality and simplicity,a circular pad aerostatic bearing with a single central orifice restrictor is considered as shown in Fig.1.The outer diameter of the bearing is d 2¼20mm and the orifice diameter is d 0¼0.15mm.The cylindrical recess has a diameter d 1¼3mm and depth H ¼0.1mm.The air film thickness is h ¼10μm.In our LES calculations,the air flow domain is divided into 12sections along the circumferential direction,and only one section (Fig.2)is used as the computational domain to reduce the computational cost.This simplification is reasonable for qualitative study on turbulent structures in the aerostatic bearing.In order to allow for a fine resolution of turbulent structures in the bearing recess,the Embedded LES (ELES)modeling technique in Fluent is adopted.Specifically,the computational domain is divided into three regions:orifice,recess and gas film (Fig.2).The realizable k −εmodel is used in the orifice region (RANS region);the flow in the air film is supposed to be laminar and LES is adopted in the recess region.An RANS –LES interface is used to connect the orifice region and the recess putational meshFig.3shows the computational mesh used in the LES,where non-conformal mesh is used.It is known that the accuracy of LES is sensitive to mesh resolution,so more refined mesh is generated in the recess region.Mesh independence tests (see Table 1)are performed until further refinement of the mesh results in insignificant changes in thecomputationalFig.1.Schematic of the aerostatic bearing.putational domain and ELES model.J.Zhu et al./Journal of Fluids and Structures 40(2013)42–5144results.The parameters in Table 1are described as follows.The total number and the volume of the mesh in various regionsare listed.The non-dimensional distance y +can reflect wall-adjacent mesh resolution,which is defined as y þ¼ffiffiffiffiffiffiffiffiρτw p y =μ,where y is the distance from the wall to the center of the first neighboring mesh,and τw is the wall shear stress.To resolve accurately turbulent eddies in the near-wall regions,y +is always guaranteed to be less than 1with local mesh refinement.As the calculation results,the mean values and the standard deviations of p A are compared between the coarse mesh case and the fine mesh case,where p A is the time variation (as described in Section 3.2)of area-weighted averaged pressure on the wall 2.2.4.Boundary and initial conditionsAs shown in Fig.2,pressure inlet boundary condition is specified at the orifice inlet,in which turbulent intensities of 1%,5%and 10%are considered;atmospheric pressure is specified at the bearing outlet;two symmetric boundaries are adopted on the two surfaces in the circumferential direction.On the solid walls,no-slip and no heat transfer conditions are specified.In addition,all the walls are assumed to be perfectly smooth.The air used in the simulations is assumed to obey the ideal gas law,hence the density varies according to the state equation.Other physical constants such as viscosity,molecular weight,specific heat and thermal conductivity are 1.7894Â10−5kg/(m s),28.966Â10−3kg/mol,1006.43J/(kg K)and 0.0242W/(m K),respectively.A steady RANS simulation result is used as the initial field of LES,which can help LES to converge quickly.2.5.Validation of numerical modelIn order to justify our numerical model,the existing experiment data (Yoshimoto et al.,2007)of pressure distribution of the aerostatic bearing are utilized as a comparison.Fig.4shows the comparison with our numerical result,where both the realizable k −εRANS result and the LES result are plotted.The LES result is the statistical mean pressure distribution in the bearing clearance.As can be seen in the figure,there is almost no discrepancy between our CFD results and the experimental data except for the region where r /r 2is between 0.034and 0.2.In this region near the orifice outlet,the LES result shows better agreement with experimental data than the RANS one.Therefore,the LES method can be employed in the calculation of the flow field of aerostaticbearings.XZputational mesh.Table 1Mesh refinement study,where Δdenotes mesh volume (μm 3),p A is the time variation of area-weighted averaged pressure (Pa)on the wall 2,E and s denote the mean value and standard deviation,respectively.MeshRecess Orifice Gas film Max y +Total numberMean E ðp A ÞFluctuation s ðp A ÞΔminΔmax Δmin Δmax Δmin Δmax Coarse 1.11129020.6076.271755716101.526807535062862Fine0.434370.651964435046367J.Zhu et al./Journal of Fluids and Structures 40(2013)42–51453.Transient flow characteristics 3.1.Flow structures and vortex sheddingFig.5displays the streamlines and the pressure contours computed from steady RANS simulation when P s ¼4atm,in which flow separation and vortex formation can been seen in the recess near the orifice outlet.It is noted that steady RANS simulation results in axisymmetric flow structures.Fig.6displays the corresponding instantaneous flow field obtained by LES at different times.In Fig.6(a),the iso-surfaces of instantaneous vorticity are depicted.In contrast to the single axisymmetric vortex in Fig.5,the coherent turbulent structure in the recess contains a series of vortices with varying sizes and shapes.The vortex shedding phenomenon can be observed.Specifically,the toroidal spanwise vortices develop after impinging of the orifice outflow on the bottom wall of the bearing,and then stretch in the radial direction along the wall surface with growing size through rolling-up process,and the convected wall vortices quickly break into more sophisticated small eddies downstream and finally are dissipated due to air viscosity.This vortex shedding phenomenon can also be explained as a typical flow pattern of the impinging jet (Lee and Lee,2000),since the high speed orifice outflow impinges perpendicularly on the solid wall.3.2.Pressure depression and fluctuationAs shown in Fig.5,pressure depression (sudden descent and ascent)can be observed near the orifice outlet where the minimum pressure occurs in the vortex core.However,with the vortex shedding displayed in the LES result,more local pressure minima corresponding to vortex centers are induced,as shown in Fig.6(b).Similarly,the positions and the magnitudes of these pressure minima are transiently changing.Fig.7shows an instantaneous pressure distribution on the0246p / P 0r / r 2Fig.4.Pressure distribution along radial direction in the aerostatic bearing:comparison of results among LES,RANS and the existing experiment.Fig.5.Streamlines and pressure contours obtained from steady RANS simulation.J.Zhu et al./Journal of Fluids and Structures 40(2013)42–5146bottom wall (the recess region)of the bearing.It can be seen that the repeated pressure up-and-downs are present not only in the radial direction,but also in the circumferential direction.Fig.8plots pressure variations with time at three different locations (y ¼0.055mm,r ¼0.2,0.5,1.0mm),which are distributed along the radial direction in the bearing recess.Pressure fluctuation can be clearly seen in this figure,which also weakens along the radial direction.Table 1lists some statistical results of the area-weighted averaged pressure variation with time,where s ðp A Þcan represent the intensity of pressure fluctuation.In our simulations,when the intensities of inflow turbulence are respectively set as 1%,5%and 10%,the corresponding s ðp A Þare 62,65and 73,hence the influence of inflow turbulent level on pressure fluctuation is very small.In summary,associated with repeated shedding and downstream advection of vortices is repeated pressure depression (in space)and fluctuation (in time).It should be noted that this repeated pressure depression and fluctuation is not resolvable in RANS due to its essence of statistical averaging.It is manifest that LES results indicate unsteady flow characteristic in the aerostatic bearing even if initial and boundary conditions are all constant.4.DiscussionsAs is known,air supply pressure has a significant influence on the flow field in the aerostatic bearing.Therefore,air supply pressure values are varied in our numerical simulations.Fig.9shows the contours of instantaneous vorticity in the bearing recess when P s ¼2,3and 4atm.From this figure,the air flow is steady and remains in the laminar regime when the supply pressure is 2atm,while becomes unsteady and so vortex shedding is observed in the other two cases.Furthermore,associated with increasing air supply pressure,vorticity magnitude of the flow increases correspondingly.It suggests that the flow in the bearing recess has a transition from lamina to turbulence with increasing supply pressure.The correspondinglocal Reynolds number Re ¼_m=πr μat the recess entrance (r ¼r 0)in each case is calculated,as shown in Table 2.It can be inferred that the flow transition will appear when the local Reynolds number is beyond a certain critical valuebetweenFig.6.Iso-surfaces of instantaneous vorticity (a)and pressure (b).J.Zhu et al./Journal of Fluids and Structures 40(2013)42–51471000and 1500.Once beyond this critical Reynolds number,the air flow is turbulent and so results in pressure fluctuation.It can be observed from Fig.10that this pressure fluctuation becomes more severe as supply pressure increases.For comparison,the transient flow field of the non-recessed bearing (other dimensions being the same)is also calculated.Fig.11displays the instantaneous flow field obtained from LES,where the streamlines show that only one tiny vortex is present near the orifice outlet,and the flow is steady and no air vortex shedding appears.The absence of vortex shedding in the non-recessed bearing can also be explained by the smaller Reynolds number which confines the local flow in a laminarregime.Fig.7.Instantaneous pressure distribution on the bottom wall (the recess region)of the bearing.3.403.443.483.523.56p (P a )5Fig.8.Time 1.0mm).Fig.9.Contours of instantaneous vorticity under different supply pressure values.J.Zhu et al./Journal of Fluids and Structures 40(2013)42–5148-300-1500150300t (ms)f o n o i t a u t c u l F P A (P a )Fig.10.Pressure fluctuations with different supply pressurevalues.Fig.11.Instantaneous flow field of non-recessed bearing.Fig.12.Photo of experimental set-up.Table 2Local Reynolds number computed in different cases.Case Recess P s (atm)_m(kg/s)Re 1Yes 2 2.66Â10−66312Yes 3 6.39Â10−615163Yes 4 1.06Â10−525154No44.52Â10−61070J.Zhu et al./Journal of Fluids and Structures 40(2013)42–5149Vibration of the recessed bearing and the non-recessed bearing is also experimentally measured.Fig.12shows our experimental set-up.The two bearing pads have the same surface roughness.The tested bearing is placed on a marble base (with roughness less than 1μm),and air supply pressure can be regulated with a proportional throttle valve.External loads are applied on top of the aerostatic bearing.The parallelization of the bearing is assured by the displacement sensor (LVDT)which measures the bearing clearance height at three locations.Signals of the vibration acceleration of the aerostatic bearing are obtained by an accelerometer (PCB CA-YD-106),a data acquisition device (LMS SCADAS III),and a data analysis software platform (LMS Test Lab).The spectrum characteristics of bearing vibration acceleration are plotted in Fig.13.It can be seen that the amplitude of vibration acceleration increases with increasing air supply pressure,and the vibration of the non-recessed bearing (Fig.13(b))is much weaker than that of the recessed bearing (Fig.13(a)).Comparing our LES and experimental results,the qualitative behavior of pressure fluctuation is consistent with that of the bearing vibration when subjected to the different air supply pressure values.Although the vibration is also measured in the recessed bearing when P s ¼2atm,it may attribute to bearing surface roughness effect.Specially,compared with the results of the recessed bearing,the non-recessed bearing study clearly indicates that the vibration is relatively small when no pressure fluctuation is induced.Therefore,it can be concluded that vortex shedding results in remarkable pressure fluctuation and can induce small vibration of aerostatic bearings.5.ConclusionsThis paper is focused on the transient flow characteristics in ultra-precision aerostatic bearings.In order to capture turbulent structures and fluctuations,LES method is employed to numerically calculate the transient flow field in the bearing clearance.Vortex structures and pressure fluctuation in the bearing clearance are analyzed.Qualitative behavior of pressure fluctuation,as well as vibration of aerostatic bearing,is also discussed.If ever possible,however,the quantity analysis of the relationship between pressure fluctuation and small vibration of aerostatic bearings is needed in the future work.From the results in this paper,the following conclusions can be drawn:1.Vortex shedding is present in the aerostatic bearing recess for sufficiently large air supply pressure,i.e.,air vortices are repeatedly generated,shed,advected downstream and dissipated.2.Repeated pressure depression (in space)and fluctuation (in time)can be observed in the bearing clearance when vortex shedding occurs.3.Once the flow Reynolds number is beyond a certain value at the recess inlet,vortex shedding in the bearing clearance results in remarkable increase of pressure fluctuation and vibration of the aerostatic bearing.AcknowledgmentsThis study was supported by the National Basic Research and Development Program of China (No.2009CB724205)and the National Natural Science Foundation of China (Nos.51121002and51175196).Fig.13.Influence of air supply pressure on vibration acceleration of the aerostatic bearings in frequency domain.(a)Recessed bearing and (b)non-recessed bearing.J.Zhu et al./Journal of Fluids and Structures 40(2013)42–5150J.Zhu et al./Journal of Fluids and Structures40(2013)42–5151 ReferencesAoyama,T.,Kakinuma,Y.,Kobayashi,Y.,2006.Numerical and experimental analysis for the small vibration of aerostatic guideways.CIRP Annals—Manufacturing Technology55(1),419–422.Chen,X.,Chen,H.,Luo,X.,Ye,Y.,Hu,Y.,Xu,J.,2011.Air vortices and nano-vibration of aerostatic bearings.Tribology Letters42(2),179–183.Chen,X.,He,X.,2006.The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography.Tribology International39(11),1336–1341.Cheng,S.Y.,Tsubokura,M.,Nakashima,T.,Okada,Y.,Nouzawa,T.,2012.Numerical quantification of aerodynamic damping on pitching of vehicle-inspired bluff body.Journal of Fluids and Structures30,188–204.Eleshaky,M.E.,2009.CFD investigation of pressure depression in aerostatic circular thrust bearings.Tribology International42(7),1108–1117.Issa,R.I.,1986.Solution of the implicitly discretised fluid flow equations by operator-splitting.Journal of Computational Physics62(1),40–65.Kawai,T.,Ebihara,K.,Takeuchi,Y.,2005.Improvement of machining accuracy of5-axis control ultraprecision machining by means of laminarization and mirror surface finishing.CIRP Annals—Manufacturing Technology54(1),329–332.Lam,K.,Lin,Y.F.,Zou,L.,Liu,Y.,2010.Investigation of turbulent flow past a yawed wavy cylinder.Journal of Fluids and Structures26,1078–1097.Lee,J.,Lee,S.J.,2000.The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet.International Journal of Heat and Mass Transfer43(4),555–575.Li,Y.,Ding,H.,2007.Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance.Tribology International40(7),1120–1126.Nicoud,F.,Ducros,F.,1999.Subgrid-scale stress modelling based on the square of the velocity gradient tensor.Flow,Turbulence and Combustion62(3), 183–200.Tucker,P.G.,putation of unsteady turbomachinery flows:Part2—LES and hybrids.Progress in Aerospace Sciences47(7),546–569. Yoshimoto,S.,Yamamoto,M.,Toda,K.,2007.Numerical calculations of pressure distribution in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet.Journal of Tribology—Transactions of the ASME129(2),384–390.Yoshimura,T.,Hanafusa,T.,Kitagawa,T.,Hirayama,T.,Matsuoka,T.,Yabe,H.,2012.Clarifications of the mechanism of nano-fluctuation of aerostatic thrust bearing with surface restriction.Tribology International48,29–34.Zhang,M.,Zhu,Y.,Ren,G.,Duan,G.,Gao,G.,2007.Finite element and experimental analysis on micro-vibration of ultra precision air bearing linear motion stage and methods of its elimination.In:Proceedings of ASME1st International Conference on Integration and Commercialization of Micro and Nanosystems,Parts A and B,pp.83–87.。