超有效的初中数学几何解题套路秘籍

合集下载

初二数学几何题解题技巧

初二数学几何题解题技巧

初二数学几何题解题技巧(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初二数学几何题解题技巧初二数学几何题解题技巧简述初二数学是初一数学的继续,那么,对于初二数学的学习,有哪些好方法呢?下面是本店铺为你搜集到的初二数学几何题解题技巧,希望可以帮助到你。

超有效的初中数学几何解题套路秘籍

超有效的初中数学几何解题套路秘籍

超有效的初中数学几何解题套路秘籍几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

立体几何是中学数学的一个难点,学生普遍反映几何比代数难学但很多学好这部分的同学,又觉得这部分很简单。

这不,从学霸手里拿到的解题秘籍!大家快来学习吧!证明两线段相等1. 两全等三角形中对应边相等。

2•同一三角形中等角对等边。

股33. 等腰三角形顶角的平分线或底边的高平分底边。

4. 平行四边形的对边或对角线被交点分成的两段相等。

5. 直角三角形斜边的中点到三顶点距离相等。

6. 线段垂直平分线上任意一点到线段两段距离相等。

7. 角平分线上任一点到角的两边距离相等。

8. 过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9•同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11 •两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12. 两圆的内(外)公切线的长相等。

13. 等于同一线段的两条线段相等。

证明两个角相等1. 两全等三角形的对应角相等。

2•同一三角形中等边对等角。

3. 等腰三角形中,底边上的中线(或高)平分顶角。

4. 两条平行线的同位角、内错角或平行四边形的对角相等。

5•同角(或等角)的余角(或补角)相等。

6•同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7•圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9•圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等证明两直线平行1•垂直于同一直线的各直线平行。

2. 同位角相等,内错角相等或同旁内角互补的两直线平行。

3. 平行四边形的对边平行。

4. 三角形的中位线平行于第三边。

5. 梯形的中位线平行于两底。

6. 平行于同一直线的两直线平行。

初中数学几何模型的60种解题技巧

初中数学几何模型的60种解题技巧

初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。

掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。

本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。

1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。

2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。

3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。

4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。

5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。

6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。

7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。

8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。

9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。

10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。

11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。

12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。

13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。

数学几何题解题技巧简述

数学几何题解题技巧简述

数学几何题解题技巧简述数学几何题解题技巧简述初中数学的学习是非常重要的,数学成绩也决定了我们中考成绩的好坏,在数学大大小小的考试中,几何证明题是必考知识点,但是很多同学对于这种题型不知道如何下手,下面就让小编给大家带来数学几何题解题技巧,希望大家喜欢!数学几何题解题技巧1、两全等三角形中对应边相等。

2、同一三角形中等角对等边。

3、等腰三角形顶角的平分线或底边的高平分底边。

4、平行四边形的对边或对角线被交点分成的两段相等。

5、直角三角形斜边的中点到三顶点距离相等。

6、线段垂直平分线上任意一点到线段两段距离相等。

7、角平分线上任一点到角的两边距离相等。

8、过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9、同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10、圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11、两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12、两圆的内(外)公切线的长相等。

13、等于同一线段的两条线段相等。

证明两个角相等1、两全等三角形的对应角相等。

2、同一三角形中等边对等角。

3、等腰三角形中,底边上的中线(或高)平分顶角。

4、两条平行线的同位角、内错角或平行四边形的对角相等。

5、同角(或等角)的余角(或补角)相等。

6、同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7、圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8、相似三角形的对应角相等。

9、圆的内接四边形的外角等于内对角。

10、等于同一角的两个角相等证明两直线平行1、垂直于同一直线的各直线平行。

2、同位角相等,内错角相等或同旁内角互补的两直线平行。

3、平行四边形的对边平行。

4、三角形的中位线平行于第三边。

5、梯形的中位线平行于两底。

6、平行于同一直线的两直线平行。

7、一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

初中数学几何解题方法技巧归纳

初中数学几何解题方法技巧归纳

初中数学几何解题方法技巧归纳在数学问题的研究中,我们常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

下面是小编为大家整理的关初中数学几何解题方法,希望对您有所帮助!初中数学几何解题方法(一)角度与弧度的计算1、三角形和四边形的角的计算主要依据⑴三角形的内角和定理及推论。

⑵四边形的内角和定理及推论。

⑶ 圆内接四边形性质定理。

2、弧和相关的角的计算主要依据⑴圆心角的度数等于它所对的弧的度数。

⑵圆周角的度数等于它所对的弧的度数的一半。

⑶弦切角的度数等于所夹弧度数的一半。

3、多边形的角的计算主要依据⑴n边形的内角和=(n—2)_180⑵正n边形的每一内角=(n—2)_180⑷ 正n边形的任一外角等于各边所对的中心角且都等于(二)长度的.计算1、三角形、平行四边形和梯形的计算用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。

关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。

2、有关圆的线段计算的主要依据⑴切线长定理⑵圆切线的性质定理。

⑶垂径定理。

⑸ 圆外切四边形两组对边的和相等。

⑹ 两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。

3、直角三角形边的计算直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。

4、成比例线段长度的求法⑴平行线分线段成比例定理;⑵相似形对应线段的比等于相似比;⑶射影定理;⑷相交弦定理及推论,切割线定理及推论;⑸正多边形的边和其他线段计算转化为特殊三角形。

(三)图形面积的计算1、四边形的面积公式⑴S□ABCD = a⑵S菱形 = 1/2ab (a、b为对角线)⑶S梯形 = 1/2(a + b)h = mh (m为中位线)2、三角形的面积公式⑴S△ = 1/2 a⑵S△ = 1/2 Pr(P为三角形周长,r为三角形内切圆的半径)3、 S圆 =4、S扇形 = n5、S弓形 = S扇—S△九、证明两线段相等的方法:1、利用全等三角形对应线段相等;2、利用等腰三角形性质;3、利用同一个三角形中等角对等边;4、利用线段垂直平分线;5、角平分线的性质;6、利用轴对称的性质;7、平行线等分线段定理;8、平行四边形性质;9、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

八年级下册数学几何题解题技巧(一)

八年级下册数学几何题解题技巧(一)

八年级下册数学几何题解题技巧(一)
八年级下册数学几何题解题技巧
1. 了解基本概念
•了解几何相关的基本术语和定义,例如直线、线段、角等。

•熟悉各种几何图形的性质和特点,例如三角形、四边形等。

2. 利用图形给出的条件
•仔细阅读题目,并将给出的条件用图形表示出来。

•利用图形的性质和条件,进行分析和推理,找到解题的线索。

3. 运用几何定理和公式
•熟悉几何中的定理和公式,例如勾股定理、相似三角形的性质等。

•根据给出的条件,结合几何定理和公式,进行计算和推导。

4. 运用代数的解题方法
•将几何问题转化为代数表达式,利用代数的解题方法进行求解。

•设定未知量和方程式,利用代数技巧进行求解。

5. 利用图像和图形的对称性
•观察图形的对称性,利用对称性质解题。

•利用对称图形的性质,推导解题过程。

6. 总结归纳解题思路
•经常总结不同类型的几何题目的解题思路和方法,形成自己的思维模式。

•将解题思路和方法进行分类整理,方便日后的学习和参考。

7. 实践演练
•频繁进行几何题目的练习和演练,提高解题能力和速度。

•多参加数学竞赛和讨论,和他人一起交流解题技巧和经验。

通过掌握以上的技巧,相信你在八年级下册数学几何题解题中将能更加游刃有余。

继续努力,加油!。

初三数学几何题解题技巧

初三数学几何题解题技巧

初三数学几何题解题技巧
1. 嘿,你知道吗?初三数学几何题解题可有着不少巧招呢!就像要找宝藏,你得有把好钥匙呀!比如说做一道证明两个三角形全等的题,咱就先仔细观察图形,找到对应的边和角,这不就像在迷宫里找到正确的路嘛,这招灵得很呢!
2. 哇塞,一定要学会画辅助线啊!这就好比给几何题搭了个桥,一下子就能过去了。

就像有个题目里,一个四边形不好下手,咱画条对角线,嘿,豁然开朗了呀,不信你试试!
3. 哎,注意那些特殊图形啊!等腰三角形、正方形啥的,那可都是突破口呀!就像打仗找到敌人的弱点一样,一旦抓住,解题那叫一个顺溜。

比如说看到一个正方形,那它的边相等、角是直角不就都能利用起来嘛!
4. 别忘了利用已知条件啊!这可是解题的宝贝呢。

好比做饭有了好食材,能做出美味大餐呀!像知道一个角的度数,说不定就能推出其他角的度数,神奇吧?
5. 哼,可别小瞧了几何定理哦!那可是我们的有力武器呀。

比如勾股定理,遇到直角三角形就派上大用场了,感觉自己就像个大侠,拿着宝剑大杀四方呢!
6. 哈哈,多尝试几种方法呀!解题又不是只有一条路。

就像去一个地方,可以走大道,也可以穿小路呀。

比如一道题,既能用全等证明,也能走相似的路呀,多有趣!
7. 呀,要仔细分析题目中的隐含条件呀!那可是藏起来的宝贝呢。

好比找宝藏时那些隐藏的线索,一旦发现,哇,就好办了呀!
8. 嘿嘿,一定要有耐心呀!几何题可不是一下就能搞定的。

就像爬山,得一步一步来。

只要坚持,最后肯定能爬到山顶,看到美丽的风景,也就是解出题目啦!
我的观点结论就是:初三数学几何题解题技巧超重要,掌握了这些,几何题就不再可怕啦!。

初中几何题窍门秘诀四步法

初中几何题窍门秘诀四步法

初中几何题窍门秘诀四步法1.能够更加清楚地理解题目中的图形,避免理解错误。

2.能够更加自由地在图上标注信息,方便后续的解题。

3.能够更好地锻炼自己的几何直觉和手绘能力。

在例题一中,我们需要画出三角形ABC和平移后的三角形FDG,以及四边形FECG。

在例题二中,我们需要画出两个正方形和阴影部分。

画图是解决几何题的第一步,一定要认真对待。

几何题做法第二步第二步是标注已知信息和要求信息。

在大图上标注出所有已知的线段长度、角度大小、图形面积等信息,以及题目中要求求解的信息。

这个步骤非常重要,因为只有清楚了已知和要求,才能有针对性地进行解题。

在例题一中,我们需要标注出AB=7,BD=5,DE=3,以及要求求解的四边形FECG的面积。

在例题二中,我们需要标注出两个正方形的面积和阴影部分的面积,以及要求求解的A-B。

几何题做法第三步第三步是利用几何定理和公式进行推导和计算。

在大图上根据已知信息和要求信息,利用几何定理和公式进行推导和计算。

这一步需要对各种几何定理和公式有一定的掌握和理解,所以平时要多做练,多掌握几何知识。

在例题一中,我们可以利用平移的几何性质,推导出FD=AB=7,DG=BD=5,以及FC=GE=DE=3.然后利用四边形面积公式计算出四边形FECG的面积。

在例题二中,我们可以利用正方形的性质计算出阴影部分的面积,然后用面积差公式计算出A-B。

几何题做法第四步第四步是检查答案。

在大图上检查计算出的答案是否符合题目要求,是否合理。

如果不符合要求,需要重新检查前面的步骤是否出错。

在例题一中,我们需要检查计算出的四边形FECG的面积是否符合要求,是否合理。

在例题二中,我们需要检查计算出的A-B是否符合要求,是否合理。

通过以上四步,我们就可以解决几何题了。

当然,这只是一个通用的思路,具体的题目还需要根据题目特点进行具体分析。

但是,只要掌握了这个通用思路,就能够更加有条理地解决几何题,提高解题效率。

首先,要画好几何图,必须仔细读题,避免因自己粗心而无法画出正确的图形。

初中数学知识归纳几何证明题的解题思路与方法

初中数学知识归纳几何证明题的解题思路与方法

初中数学知识归纳几何证明题的解题思路与方法几何证明题在初中数学中占据着重要的位置,它既考察了学生对基本几何知识的理解,又培养了学生的逻辑思维和推理能力。

本文将对初中数学中归纳几何证明题的解题思路与方法进行归纳总结,帮助学生更好地应对这类题目。

解题思路一:利用基本图形性质归纳几何证明题中经常会涉及到基本图形性质的运用,例如利用三角形的性质、四边形的性质等。

在解题过程中,可以先观察题目中给出的图形,根据其中的线段、角等要素,运用基本图形性质进行推理。

举例说明:证明一个角是直角。

首先,可以观察该角所在的图形,是否能够应用直角三角形的性质进行推理。

如果能找到一个直角三角形,并且该角是该直角三角形的内角或外角,那么该角就是直角。

解题思路二:利用各种等式与平行线性质初中几何证明题还涉及到线段、角的等式,以及平行线性质的应用。

在解题过程中,可以根据题目条件,利用各种等式与平行线性质进行推导与证明。

举例说明:证明两条线段相等。

可以根据题目给出的条件,利用等式性质进行推导。

比如,如果给出了两个三角形的一边和该边对应的角相等,那么可以根据等式来证明两条线段相等。

解题思路三:利用三角形相似性质在初中数学中,三角形相似性质是一个重要的内容。

在解决几何证明题时,可以利用三角形相似性质进行推理与证明。

要注意观察题目中给出的图形,找到相似的三角形,并利用相似比例进行推导。

举例说明:证明两条线段成比例。

可以根据题目给出的条件,利用相似三角形性质进行推导。

如果题目给出了两个三角形中的两条边成比例,那么可以根据相似比例来证明两条线段成比例。

解题思路四:利用等腰三角形与等边三角形性质等腰三角形与等边三角形在初中数学中也是一个重要的内容,并且在几何证明题中经常会用到。

在解题过程中,可以根据题目给出的条件,利用等腰三角形与等边三角形的性质进行推导与证明。

举例说明:证明某个角是等腰三角形的顶角。

可以根据题目给出的条件,利用等腰三角形的性质进行推理。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初中几何解题技巧口诀

初中几何解题技巧口诀

初中几何解题技巧口诀
1、解决几何形运动问题,求空间位置要定位;
2、解决几何形空间问题,先求几何体的表面;
3、面积求解分三角形,体积积分球体中;
4、求几何体的表面积,可用三角形求和;
5、求几何体的体积,积分球体中心可计;
6、求向量的积分,将其分成三角形;
7、求多边形的面积,可以用叉积的方式;
8、求投影的几何性质,可以用叉积的方式;
9、求变换矩阵公式,向量积求导可以;
10、求三角形内接圆,便是内切圆即可求;
11、椭圆曲线跟踪求,可以用相似三角形;
12、构图交汇线求解,求投影即为求解;
13、求圆锥的奥林匹斯,可以用螺旋线的概念。

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧1.相似三角形定理:两个三角形中,三个对应的角相等,对应的边成比例。

2.相等三角形的性质:两个三角形中,三边分别相等,或者两边分别相等且夹角相等。

3.三角形中,一个内角和一边:根据一个三角形角度和一边的已知信息,可以推导出其他角度和边的关系。

4.三角形的面积计算公式:可以根据底边和高的关系来计算三角形的面积。

5.正方形的性质:四个内角都是直角,四条边相等。

6.正方形的对角线:两条对角线相等且垂直。

7.矩形的性质:四个内角都是直角,对角线相等。

8.矩形的面积:可以通过长和宽的长度相乘计算矩形的面积。

9.菱形的性质:对角线互相垂直,对角线互相平分。

10.菱形的面积:可以通过对角线的乘积除以2来计算菱形的面积。

11.平行四边形的性质:对边平行,对角线互相平分。

12.平行四边形的面积:可以通过底边长度乘以高来计算平行四边形的面积。

13.梯形的性质:有两条平行边。

14.梯形的面积:可以通过上底和下底的和乘以高除以2来计算梯形的面积。

15.直角三角形的性质:有一个内角是直角。

16.直角三角形的勾股定理:直角三角形的两个直角边的平方之和等于斜边的平方。

17.直角三角形的正弦定理:直角三角形的斜边和对应的直角边之间的正弦值成比例。

18.直角三角形的余弦定理:直角三角形的斜边的平方等于两个直角边的平方之和减去两倍直角边的乘积。

19.直角三角形的正切定理:直角三角形的两个直角边的商等于对应的正切值。

20.平行线与横截线的性质:平行线与横截线之间的对应角相等。

21.平面镜映射的性质:物体与其镜像之间的对应角相等。

22.等腰三角形的性质:两个底角相等。

23.等边三角形的性质:三个内角都是60度。

24.角平分线的性质:角平分线可以将一个角分成两个相等的角。

25.外角的性质:外角等于其对应的内角的补角。

26.平面图形的旋转:点、线、图形按一定角度旋转后,与原来的点、线、图形相对应。

27.平行线的判定:两条直线的斜率相等即为平行线。

几何60种解题技巧

几何60种解题技巧

几何60种解题技巧一、三角形相关1. 找全等三角形- 看边边边(SSS):如果三个边都对应相等,那就直接喊“全等啦”,就像三条腿一样长的凳子肯定是一样的嘛。

- 边角边(SAS):两边和它们的夹角相等,这就好比两个人胳膊一样长,夹着的角度也一样,那他们的姿势就一样,三角形也就全等啦。

- 角边角(ASA)和角角边(AAS):有两个角相等,再加上一条边,这就像两个人长得有点像(角相等),再有个部位一样(边相等),那就是全等的。

2. 三角形内角和- 三角形内角和是180度这个得牢记。

如果给了两个角,求第三个角,直接用180度减去那两个角就行,就像从一个大蛋糕(180度)里切走两块(已知的两个角),剩下的就是第三个角啦。

3. 等腰三角形- 等腰三角形两腰相等,底角也相等。

如果知道是等腰三角形,又给了一个角,要分清楚这个角是顶角还是底角哦。

如果是底角,那另一个底角也一样;如果是顶角,就用180度减去顶角再除以2就得到底角啦,就像平分两个一样的东西。

4. 等边三角形- 等边三角形三边相等,三个角都是60度。

看到等边三角形就像看到三个一模一样的小士兵,啥都一样。

二、四边形相关1. 平行四边形- 平行四边形对边平行且相等。

如果要证明是平行四边形,可以找对边平行或者对边相等。

就像两列火车轨道,平行而且长度一样。

- 平行四边形对角线互相平分。

如果给了平行四边形的对角线相关的条件,就可以利用这个性质,就像把一个平行四边形从中间切开,两边分得的线段是一样长的。

2. 矩形- 矩形是特殊的平行四边形,四个角都是直角。

如果知道是矩形,就可以用直角这个性质,比如在计算边长或者角度关系的时候。

3. 菱形- 菱形的四条边相等,对角线互相垂直平分。

看到菱形就想到四条边像四个等长的小棍,对角线像交叉的十字剑,还互相垂直平分呢。

4. 正方形- 正方形是最特殊的四边形,既是矩形又是菱形,四条边相等,四个角都是直角,对角线互相垂直平分且相等。

初中平面几何神书:十大几何最值技巧

初中平面几何神书:十大几何最值技巧

初中平面几何神书:十大几何最值技巧
1、垂线段最短,这一类问题通常是和动点结合在一起,常常用找轨迹或构造全等转换线段,从而间接找到关键线段的最大值或最小值。

垂线段最短
2、轨迹法,非常简单而又美学,不拖泥带水,一般能根据动点提点找到线段轨迹或圆轨迹。

轨迹法1
轨迹法2
3、旋转法,乾坤大挪移+斗转星移,转换线段非常给力。

旋转法
4、对称法,将军饮马。

对称法
5、平移法,还是转换思想。

平移法
6、线段和最小值。

2边之和大于第三边。

7、定边定角,找隐圆准没错,构造法颇为高级,值得一试。

定边定角
8、定高定角,探照灯模型,找隐圆或构造
定角定高
9、面积问题最值,研究底或高的最值。

10、系数不为一,胡不归+阿氏圆找轨迹比较好。

初中数学解决几何问题的技巧与方法

初中数学解决几何问题的技巧与方法

初中数学解决几何问题的技巧与方法几何问题在初中数学的学习过程中占有重要的地位。

解决几何问题需要掌握一定的技巧和方法。

本文将介绍一些初中数学解决几何问题的常用技巧与方法,希望能够帮助同学们更好地应对几何问题。

一、几何图形的认识和性质分析在解决几何问题之前,首先需要对几何图形进行认识和性质分析。

对于常见的几何图形如圆、三角形、四边形等,我们需要熟悉它们的定义和性质。

例如,对于圆,我们需要知道它的定义是由平面上所有到圆心距离相等的点组成的图形。

而对于三角形,我们需要了解它的内角和为180度。

通过对几何图形的认识和性质分析,我们可以更好地理解和解决与几何有关的问题。

二、运用画图辅助分析在解决几何问题时,可以借助画图来辅助分析。

画图可以帮助我们更好地理解问题,找到问题的关键点,并且可以通过观察图形来寻找解决问题的线索。

例如,在解决与三角形有关的问题时,可以通过画出三角形的形状,找出其中的相等角、相等边等特点,从而推导出问题的解。

因此,画图辅助分析是解决几何问题中常用的方法之一。

三、利用几何定理和公式求解几何学中存在着许多定理和公式,利用它们可以解决各种几何问题。

例如,对于直角三角形,我们可以利用毕达哥拉斯定理来求解两条直角边的长度。

对于正方形,我们可以利用正方形的性质求解其周长和面积。

因此,掌握几何定理和公式,可以帮助我们更快地解决与几何相关的问题。

四、建立几何问题的方程有些几何问题可以转化成代数问题,通过建立方程来求解。

通过将几何问题转化为方程问题,可以利用代数的方法解决。

例如,在解决线段分割比例问题时,可以建立方程来表示原长度与分割后长度的关系,从而求解未知数。

因此,建立几何问题的方程是解决某些几何问题的有效方法之一。

五、反证法和归纳法在解决几何问题时,还可以运用反证法和归纳法。

反证法通常用于证明几何命题的矛盾性,通过假设命题不成立,通过推理推导出矛盾的结论,从而说明原命题成立。

而归纳法则用于找到几何问题的规律,通过观察问题的特点,总结出一般性的结论。

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧1.了解基本图形的性质,如正方形、长方形、三角形、圆等。

2. 利用相似三角形或等比例线段解决问题。

3. 利用勾股定理或勾股定理的逆定理解决问题。

4. 利用平移、旋转、翻转的性质解决问题。

5. 利用圆的性质解决问题,如切线定理、弦切角定理等。

6. 利用三角形内部角的性质解决问题,如角平分线定理、外角定理等。

7. 利用平行线的性质解决问题,如平行线截割定理、平行四边形性质等。

8. 利用角度的概念解决问题,如同位角、对顶角等。

9. 利用中垂线的性质解决问题,如中垂线定理等。

10. 利用重心的性质解决问题,如重心定理等。

11. 利用向量的概念解决问题,如向量的加减、数量积等。

12. 利用相交线的性质解决问题,如对角线定理、相交弦定理等。

13. 利用相似形的性质解决问题,如面积比、周长比等。

14. 利用三角形的中线、角平分线、高线等性质解决问题。

15. 利用角度的平分线定理、角的外接圆等性质解决问题。

16. 利用正方形、长方形、菱形等图形的性质解决问题。

17. 利用圆锥、圆柱、圆台等图形的性质解决问题。

18. 利用立体几何的性质解决问题。

19. 利用等比例线段的性质解决问题,如中线定理等。

20. 利用三角形的外心、内心、垂心等点的性质解决问题。

21. 利用连线的性质解决问题,如割线定理等。

22. 利用三角形的面积公式解决问题。

23. 利用数学归纳法解决问题。

24. 利用解析几何解决问题。

25. 利用三角函数解决问题。

26. 利用平行四边形的性质解决问题。

27. 利用平面向量的性质解决问题。

28. 利用勾股定理的推广形式解决问题。

29. 利用相似三角形的性质解决问题,如三线共点定理等。

30. 利用相似形与等比例线段的性质解决问题。

31. 利用垂直线的性质解决问题,如垂心定理等。

32. 利用圆的弧长、扇形面积等性质解决问题。

33. 利用三角形的周长、面积等性质解决问题。

34. 利用对称和旋转的性质解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超有效的初中数学几何解题套路秘籍
几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

立体几何是中学数学的一个难点,学生普遍反映“几何比代数难学”。

但很多学好这部分的同学,又觉得这部分很简单。

这不,从学霸手里拿到的解题秘籍!大家快来学习吧!
证明两线段相等
1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等
1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等
1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等
1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

证明比例式或等积式
1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

证明四点共圆
1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆。

几何图形变换题解题方法分析
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。

对于中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。

中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。

有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

相关文档
最新文档