汽车驱动桥壳现代设计方法的实例分析

合集下载

驱动桥壳设计

驱动桥壳设计

第六节驱动桥壳设计驱动桥课的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求:1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力.2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性.3)保证足够的离地间隙.4)结构工艺性好,成本低.5)保护装于其上的传动部件和防止6)拆装,调整,维修方便.一.驱动桥壳结构方案分析驱动桥壳大致可分为可分式、整体式和组合式三种形式。

1.可分式桥壳可分式桥壳(图5—29)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。

每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。

这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。

但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。

2.整体式桥壳整体式桥壳(图5—30)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。

它具有强度和刚度较大,主减速器拆装、调整方便等优点。

按制造工艺不同,整体式桥壳可分为铸造式(图5—30a)、钢板冲压焊接式(图5—30b)和扩张成形式三种。

铸造式桥壳的强度和刚度较大,但质量大,加:上面多,制造工艺复杂,主要用于中、·重型货车上。

钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。

3)组合式桥壳组合式桥壳(图5—31)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压入壳体两端,两者间用塞焊或销钉固定。

它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。

二.驱动桥壳强度计算对于具有全浮式半轴的驱动桥,强度计算的载荷工况与半轴强度计算的:三种载荷工况相同。

驱动桥壳毕业设计

驱动桥壳毕业设计

驱动桥壳毕业设计【篇一:驱动桥毕业设计111】某型重卡驱动桥设计摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。

它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。

数据确定后,利用autocad建立二维图,再用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳进行有限元分析。

关键词:驱动桥;cad;catia;有限元分析abstractdrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have adirect impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differentialmechanism,half shaft and axle housing,then check thestrength and life of them.after confirming theparameters, using autocad to establish 2 dimensionalmodel,then using catia establish 3 dimensional model. finally using the analysis module in catia to finite element analysis for the axle housing.key words: drive axle;cad;catia;finite element analysis目录1 绪论 (1)1.1 驱动桥简介 (1)1.2 国内外研究现状 (1)1.3 驱动桥设计要求 (1)2 驱动桥设计 (3)2.1 主减速器设计 (3)2.1.1 主减速器的结构形式 (3)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支撑方案 (4)2.1.4 主减速器基本参数选择与计算载荷的确定 (6)2.2 差速器设计 (17)2.2.1 对称锥齿轮式差速器工作原理 (17)2.2.2 对称式圆锥行星齿轮差速器的结构 (17)2.2.3 对称式圆锥行星齿轮差速器的设计 (18)2.3 驱动半轴的设计 (23)2.3.1 结构形式分析 (23)2.3.2全浮式半轴的结构设计 (24)2.3.3 全浮式半轴的强度计算 (24)2.3.4 半轴的结构设计及材料与热处理 (25)2.3.5 半轴花键的强度计算 (25)2.4 驱动桥壳的设计 (26)2.4.1整体式桥壳的结构 (27)2.4.2 桥壳的受力分析与强度计算 ......................................... 27 3 catia三维建模 ........................................ 错误!未定义书签。

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析JIU JIANG UNIVERSITY毕业论文题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院专业车辆工程姓名班级指导教师摘要本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。

作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析AbstractThis graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】 Finite element method,UG,ANSYS,Drive axlehousing,Static analysis,Modal analysis目录前言 1第一章绪论 21.1 汽车桥壳的分类 21.2 国内外研究现状 31.3 有限元法及其理论 51.4 ansys软件介绍 71.5 研究意义及主要内容 91.6 本章小结 10第二章驱动桥壳几何模型的建立 11 2.1 UG软件介绍 112.2 桥壳几何建模时的简化处理 11 2.3 桥壳几何建模过程 122.4 本章小结 24第三章驱动桥壳静力分析 25 3.1 静力分析概述 253.2 静力分析典型工况 253.3 驱动桥壳有限元模型的建立 27 3.3.1 几何模型导入 273.3.2 材料属性及网格划分 283.4 驱动桥壳各工况静力分析 293.4.1 冲击载荷工况 293.4.2 最大驱动力工况 323.4.3 最大侧向力工况 343.5 本章小结 37第四章驱动桥壳模态分析 384.1 模态分析概述 384.2 模态分析理论 384.3 驱动桥壳模态分析有限元模型的建立 40 4.4 驱动桥壳模态分析求解及结果 41 4.5 驱动桥壳模态分析总结 474.6 本章小结 47结论 48参考文献 50致谢 52前言在桥壳的传统设计中,往往采用类比方法,对已有产品加以改进,然后进行试验、试生产。

某车型桥壳结构性能分析及轻量化方案设计

某车型桥壳结构性能分析及轻量化方案设计

2.2 桥壳轻量化方案设计
为了将对现场的影响降到最低限度,本次轻量 化方案设计主要集中于上下半桥壳及 4 块连接板组 件,如图 8 所示 .
图 10 (网络版彩图)4.0 mm 桥壳结构应力分布云图
4.0 mm 厚度桥壳前四阶模态振型与图 2 所示基 本一致,但是固有频率数值略有下降 . 该桥壳结构 的自由模态前四阶固有频率如表 7 所示 .
124 902
三角形 单元数
2 106
三角形 单元比例/%
1.7
质量/kg 16.27
收稿日期:2021-03-05 基金项目:柳州市科学研究与技术开发项目(2017BH10303)资助 . 作者简介:朱华宇,工程师,研究方向:钢材在汽车零部件上的应用 . *通信作者:梁程华,博士,副教授,研究方向:射频系统及电子材料电特性表征,E-mail:chenghua.liang@.
494.832
4.5
85.508
299.278 0
513.048
4.4
88.721
310.523 5
532.326
4.2
95.736
335.076 0
574.416
4.0
103.851
363.478 5
623.106
3.8
114.282
399.987 0
685.692
3.6
126.306
442.071 0
频率/Hz 266.1 388.1 614.0 657.3
振型 一阶模态 二阶模态 三阶模态 四阶模态
P590QK 4.0
>460
>590
>1.77
>5.68
由表 6 可知,所设计的轻量化方案的疲劳强度 后备系数超过了标准要求(>1.40),而静强度后备 系数略低于标准要求(>6.00),但由于计算静强度 后备系数时采用的抗拉强度值是材料的最低值,而 材料实物的抗拉强度一般比最低值高出 20 MPa 以 上,故该方案的静强度后备系数是能够满足实际需 要的 .

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析JIU JIANG UNIVERSITY毕业论文题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院专业车辆工程姓名班级指导教师摘要本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。

作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析AbstractThis graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】 Finite element method,UG,ANSYS,Drive axlehousing,Static analysis,Modal analysis目录前言 1第一章绪论 21.1 汽车桥壳的分类 21.2 国内外研究现状 31.3 有限元法及其理论 51.4 ansys软件介绍 71.5 研究意义及主要内容 91.6 本章小结 10第二章驱动桥壳几何模型的建立 11 2.1 UG软件介绍 112.2 桥壳几何建模时的简化处理 11 2.3 桥壳几何建模过程 122.4 本章小结 24第三章驱动桥壳静力分析 25 3.1 静力分析概述 253.2 静力分析典型工况 253.3 驱动桥壳有限元模型的建立 27 3.3.1 几何模型导入 273.3.2 材料属性及网格划分 283.4 驱动桥壳各工况静力分析 293.4.1 冲击载荷工况 293.4.2 最大驱动力工况 323.4.3 最大侧向力工况 343.5 本章小结 37第四章驱动桥壳模态分析 384.1 模态分析概述 384.2 模态分析理论 384.3 驱动桥壳模态分析有限元模型的建立 40 4.4 驱动桥壳模态分析求解及结果 41 4.5 驱动桥壳模态分析总结 474.6 本章小结 47结论 48参考文献 50致谢 52前言在桥壳的传统设计中,往往采用类比方法,对已有产品加以改进,然后进行试验、试生产。

汽车驱动桥壳现代设计

汽车驱动桥壳现代设计

汽车驱动桥壳现代设计摘要在汽车设计教材和企业实际设计过程中, 汽车驱动桥壳的设计仍然采用传统的设计方法, 随着国内计算机应用水平大幅度的提高, 将CAD/ CAE 技术运用在汽车桥壳设计中是势在必行。

本文在以往汽车驱动桥壳CAD/ CAE 研究的基础上, 提出了一套桥壳的现代设计方法, 为改进传统设计方法提供了设计思路。

前言汽车驱动桥作为整车关键总成之一,直接影响着整车的安全性、承载性、平顺性和舒适性,其主要零件的设计至关重要。

但目前有关桥壳的设计方法却存在相对滞后的问题,在高校的汽车设计教材和车桥厂的实际设计过程中,仍然采用传统方法进行设计,这不可避免与现代设计方法发生脱节,造成产品更新换代慢、开发成本高等一系列问题。

因此非常有必要提出一套利用CAD/CAE技术进行驱动桥壳设计的现代方法。

本文以某车桥厂驱动桥壳设计为例提出了一套可行的现代设计方法,并进行了相关的试验,验证该计算的正确性,为改进传统设计方法提供了设计思路。

1研究汽车驱动桥壳现代设计方法的思路传统的汽车驱动桥壳设计方法是:将桥壳复杂的受力状况简化成三种典型的计算工况,即当车轮承受最大的铅垂力、承受最大切向力以及承受最大侧向力时。

只要在这三种载荷计算工况下桥壳的强度得到保证,就认为该桥壳在汽车各种行驶条件下是可靠的。

设计桥壳时将桥壳看成简支梁并校核某[1]在企业实际设计过程中,往往根据上述方法和经验,设计出驱动桥壳,然后进行试产,并对驱动桥壳进行台架试验。

在这个过程中,经常会有一些设计满足三种典型工况要求的桥壳,在台架试验中不符合标准。

因此设计过程是一个反复修改和调整的过程,费时费力。

由于按传统设计方法设计的桥壳最终应以台架试验为检验标准,并且经过大量的实践证明,当设计的驱动桥壳满足其台架试验标准时,桥壳在汽车各种工况下是可靠的。

因此汽车驱动桥壳现代设计方法的思路是:在计算机上根据经验建立汽车驱动桥壳的三维CAD初始模型,模拟其三种台架试验,以满足试验标准为设计要求,并对结构参数进行优化设计。

重型商用车驱动桥壳典型工况计算方法分析

重型商用车驱动桥壳典型工况计算方法分析

一轮 i 验地
— —
Y,=Y, l o o

汽 车 的簧上 载 荷 ,而沿 左右 轮胎 中心线 ,地 面给 轮
力 ( 胎时 则沿 双 胎 中心 ) 双 ,受 力如 图 1 示 。 所
轮与 胎】
2 驱 动桥 有 限 元计 算方 法
驱动桥有 限元计算的前期 环节是建立桥 壳几1
型 建立 的好 坏 直接关
系计算 结果 的正 确 与 否 ,针 对较 复 杂的桥
壳 结 构 , 用 三 维 软 采

1 l
件UG来 建 立 几何 模
型 ,如图2 示 。 所
在 有 限 元 分 析 图 1 驱动桥桥 壳受力示意 图
t 驱动 桥壳 是 汽 车的 主要 传 力件 和承 载件 ,而汽 车 车 亍 驶工 况 复杂 ,行 驶条 件 又是 千变 万化 ,因此要 精确
《 重型汽车》H A Y T U K 2 1 . E V R C 004
中 ,前处 理关 键环 节
图 2 后驱动桥几佰
是 网格划 分 ,一般 是将 导 入到An y 软 件 中的 ss 用 有限 元工 具 进行 网格划 分 ,模 型 采 用三 维 8
Qic ei h n is
施 一 围 — | 霸 } _ :
元 ,分 别用 8 4 0 6 7 个 实体单 元和 3 4 个 0 l 5 节 点 代 替 原 实 体 模
型 ,如 图3 示 。 所 本 文 采 用 先 利
车 向右 侧滑 ,作为 载荷 施加 在 有限 元 模型 的相 应 位置 ,然
后在 轮 距 的位置 增 加约 束 ,进 行求 解 计算 。两 种桥 壳 模型 的最 大变形 量分 别为 1 1 4 .6 mm和 1 1 7 . 5 mm,右侧 车轮板 簧 座 至过 渡 圆角处 的 桥壳 上 、下 表面 的 应力 值较 大 ,最 大等 图3 有 限元划 分 网格模 型 效应 力分 别为 l 8 a 1 5 a 3 MP 和 3 MP ,安 全 系数分 别为4. 3 1 和

驱动桥壳设计

驱动桥壳设计

第六节驱动桥壳设计驱动桥壳的主要功用是支承汽车质量,并承受由车轮传来的路面反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体。

驱动桥壳应满足如下设计要求:1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力。

2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性。

3)保证足够的离地间隙。

4)结构工艺性好,成本低。

5)保护装于其上的传动系部件和防止泥水浸入。

6)拆装、调整、维修方便。

一、驱动桥壳结构方案分析驱动桥壳大致可分为可分式、整体式和组合式三种形式。

1.可分式桥壳可分式桥壳(图5-29)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。

每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。

这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。

但拆装、调整、维修很图5—29 可分式桥壳不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。

2.整体式桥壳整体式桥壳(图5-30)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。

它具有强度和刚度较大,主减速器拆装、调整方便等优点。

按制造工艺不同,整体式桥壳可分为铸造式(图5-30a)、钢板冲压焊接式(图5-30b)和扩张成形式三种。

铸造式桥壳的强度和刚度较大,但质量大,加工面多,制造工艺复杂,主要用于中、重型货车上。

钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车图5—30 整体式桥壳及部分重型货车上。

a)铸造式b)钢板冲压焊接式3.组合式桥壳组合式桥壳(图5-3 1)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压人壳体两端,两者间用塞焊或销钉固定。

它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。

驱动桥的结构方案分析

驱动桥的结构方案分析

第二节驱动桥的结构方案分析
驱动桥的结构形式与驱动车轮的悬架形式密切相关。

当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥壳是一根连接左右驱动车轮的刚性空心梁(图5—1),而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。

当采用独立悬架时,为保证运动协调,驱动桥应为断开式。

这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架或车身作上下摆动,车轮传动装置采用万向节传动(图5—2)。

为了防止运动干涉,应采用滑动花键轴或一种允许两轴能有适量轴向移动的万向传动机构。

具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、客车及多数的越野汽车和部分小轿车上。

但整个驱动桥均属于簧下质量,对汽车平顺性和降低动载荷不利。

断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均车速;减小了汽车在行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增强了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。

这种驱动桥在轿车和高通过性的越野汽车上应用相当广泛。

图5—1 非断开式驱动桥
1一土减速器2一套筒3一差速器4、7一半轴5一调整螺母6一调整垫片
8一桥壳
图5—2 断开式驱动桥。

汽车驱动桥实验报告(3篇)

汽车驱动桥实验报告(3篇)

第1篇一、实验目的本次实验旨在通过搭建驱动桥模型,对汽车驱动桥的结构、工作原理及对车辆性能的影响进行深入研究,验证理论知识的正确性,并提高实际操作能力。

二、实验原理汽车驱动桥是汽车传动系统的重要组成部分,其主要功能是将发动机输出的动力传递到车轮,实现车辆的行驶。

驱动桥通常由主减速器、差速器、半轴和桥壳等部件组成。

在实验中,我们将通过搭建驱动桥模型,观察各部件的协同工作,了解驱动桥的工作原理。

三、实验器材1. 驱动桥模型:包括主动轴、从动轴、齿轮、传动轴等。

2. 测量工具:游标卡尺、角度测量仪等。

3. 计算机软件:Matlab、Origin等。

四、实验步骤1. 搭建驱动桥模型:将主动轴、从动轴、齿轮和传动轴等部件按照设计要求组装成驱动桥模型。

2. 观察驱动桥结构:观察各部件的安装位置和连接方式,了解驱动桥的结构特点。

3. 测量齿轮参数:使用游标卡尺和角度测量仪,测量齿轮的直径、宽度、齿数等参数。

4. 分析驱动桥工作原理:观察主动轴转动时,动力如何通过齿轮、差速器、半轴传递到从动轴,进而驱动车轮。

5. 验证驱动桥性能:通过改变齿轮参数、差速器参数等,观察驱动桥的性能变化,分析其对车辆性能的影响。

6. 数据处理与分析:使用Matlab、Origin等软件对实验数据进行处理和分析,得出结论。

五、实验结果与分析1. 驱动桥结构分析:在实验中,我们搭建的驱动桥模型主要由主动轴、从动轴、齿轮、传动轴等部件组成。

主动轴通过齿轮与从动轴连接,实现动力传递。

差速器用于实现两侧车轮的差速作用,保证内、外侧车轮以不同转速转向。

2. 齿轮参数对驱动桥性能的影响:在实验中,我们改变了齿轮的直径和齿数,观察驱动桥的性能变化。

结果表明,增大齿轮直径可以增大驱动桥的传动比,提高车辆的爬坡能力;增大齿轮齿数可以减小齿轮的转速,降低驱动桥的噪音。

3. 差速器参数对驱动桥性能的影响:在实验中,我们改变了差速器的齿数和宽度,观察驱动桥的性能变化。

某车型桥壳结构性能分析及轻量化方案设计

某车型桥壳结构性能分析及轻量化方案设计

某车型桥壳结构性能分析及轻量化方案设计在车辆设计中,桥壳结构的性能分析和轻量化方案设计是非常重要的。

桥壳结构是指车辆底盘中起到桥梁作用的结构,是连接车轮的关键部分。

其性能的好坏直接影响着车辆的安全性、操控性和舒适性。

桥壳结构的性能分析要从结构强度、刚度和振动特性等方面进行。

首先是结构强度的分析,要通过有限元分析等方法,在实际工作状态下对桥壳结构的强度进行计算和模拟,以确定其是否满足承载要求,避免发生破损和断裂等危险情况。

其次是结构的刚度分析,要对桥壳结构的刚度进行评估,确保其刚度足够满足操控性要求,避免出现过大的变形和扭曲。

最后是振动特性的分析,要分析桥壳结构在行驶过程中的振动情况,确保其不会对车辆的舒适性产生不良影响。

在性能分析的基础上,轻量化方案设计是为了减少桥壳结构的重量,提高整车的燃油经济性和操控性能。

一种常见的轻量化方案是采用高强度材料,如高强度钢、铝合金等,来替代传统的材料,以达到在保证结构强度的前提下减轻重量的效果。

另外,也可以通过优化设计来减少不必要的结构部件和连接件,降低整体重量。

此外,采用复合材料和新型材料也是一种有效的轻量化方案,它们具有高强度、高刚度、低密度等优势,可以在保证结构性能的同时减轻重量。

需要注意的是,在轻量化设计中,要充分考虑到结构的可靠性和耐久性。

因为轻量化往往会以一定的强度牺牲为代价,所以要保证结构在各种工况下都能够满足要求,避免提升轻量化效果的同时降低了结构的可靠性。

总之,桥壳结构的性能分析和轻量化方案设计是车辆设计中十分重要的一环。

通过对桥壳结构的性能进行全面的分析和评价,并设计合理的轻量化方案,可以提高整车的性能和经济性,同时保证车辆的安全性和可靠性。

重型货车驱动桥桥壳结构分析及其轻量化研究

重型货车驱动桥桥壳结构分析及其轻量化研究

重型货车驱动桥桥壳结构分析及其轻量化研究一、本文概述随着全球经济的不断发展和贸易活动的日益频繁,重型货车作为物流运输的重要工具,其性能和效率的提升成为了行业关注的焦点。

作为货车关键部件之一,驱动桥桥壳的结构设计和轻量化研究对于提高货车的承载能力和燃油经济性具有重要意义。

本文旨在深入分析重型货车驱动桥桥壳的结构特点,探讨其受力特性和优化设计方案,并在此基础上研究轻量化技术在桥壳结构中的应用,以期达到提高货车性能、降低能耗和减少环境污染的目的。

文章首先将对重型货车驱动桥桥壳的基本结构进行概述,介绍其常见的材料、制造工艺以及结构形式。

随后,通过有限元分析等数值计算方法,对桥壳在不同工况下的受力状态进行详细分析,揭示其应力分布规律和失效模式。

在此基础上,结合结构优化设计理论,提出改进桥壳结构的方案,以提高其承载能力和耐久性。

接下来,文章将重点探讨轻量化技术在重型货车驱动桥桥壳结构中的应用。

通过对比分析不同轻量化材料的性能特点,研究其在桥壳结构中的适用性。

结合先进的制造工艺和结构设计理念,探索实现桥壳结构轻量化的有效途径。

通过对比分析轻量化前后的桥壳性能变化,评估轻量化技术在实际应用中的效果和潜力。

文章将对重型货车驱动桥桥壳结构分析和轻量化研究的成果进行总结,并展望未来的研究方向和应用前景。

通过本文的研究,旨在为重型货车的设计和制造提供有益的参考和指导,推动物流运输行业的可持续发展。

二、重型货车驱动桥桥壳结构分析重型货车驱动桥桥壳作为车辆动力传递和承载的关键部件,其结构设计对于整车的性能和使用寿命具有至关重要的影响。

桥壳的主要功能是支撑车轮和差速器,并传递来自发动机和传动轴的扭矩,因此,其必须具备足够的强度和刚度,以承受复杂多变的工作环境和载荷条件。

桥壳的结构通常分为整体式和分段式两种类型。

整体式桥壳具有较高的结构刚性和强度,适用于承载要求较高的重型货车。

分段式桥壳则通过分段设计,实现了桥壳的轻量化,同时在一定程度上降低了制造成本。

基于有限元方法的汽车驱动桥壳分析

基于有限元方法的汽车驱动桥壳分析

作为汽车总成的重要组成部件,驱动桥壳支撑着汽车的质量,并将载荷传给车轮。

汽车在行驶过程中由于载荷作用产生振动,驱动桥壳振动特性直接影响驱动桥本身的振动和整车行驶的平稳性。

因此对驱动桥壳结构的研究很有必要。

文中利用有限元法进行静力分析和模态分析,为后续的动力学响应分析提供了参考指导。

一、驱动桥壳有限元分析方法以计算机和矩阵运算为基础的有限元法是对复杂工程问题或结构问题计算的近似的数值分析方法。

驱动桥壳需要有很大的强度和刚度,驱动桥壳传统的经验设计方法是利用数学、力学等理论知识进行计算。

这种方法计算量大且很复杂,很难模拟各种工况。

根据汽车驱动桥壳的结构、各种受力和约束,应用有限元法模拟,可以计算出驱动桥系统的动态响应,结果可信且接近实际,能较真实地模拟出驱动桥动态使用过程。

图1是汽车驱动桥壳有限元分析流程。

基于有限元方法的汽车驱动桥壳分析撰文/西华大学机械工程与自动化学院 吴超 廖敏 蚌埠学院机械与电子工程系 业红玲驱动桥桥壳作为汽车的重要承载和传力部件,其强度和动态性能直接影响汽车运行的安全、平顺性和舒适性。

本文运用有限元法研究了驱动桥壳在最大铅垂力工况下的静力分析,得出了驱动桥壳强度和变形符合要求;同时对驱动桥壳进行模态分析得出了驱动桥壳前六阶固有频率并给出了前四阶模态振型,分析结果表明桥壳结构合理。

上述研究得出的结论为后续驱动桥壳的优化和实验提供了重要的参考依据。

图1 桥壳有限元分析流程图首先要建立驱动桥壳的三维数值模型,结合桥壳的材料及属性转化为有限元分析模型,对有限元模型添加约束边界并施加载荷,然后计算求解,进行驱动桥壳的结构静力分析和动力学模态分析,通过有限元后处理分析结果可分别获得驱动桥壳的应力和变形、固有频率和振型,结合材料特性和使用要求进行驱动桥壳的强度和刚度判断,从而为改进和优化驱动桥壳设计提供可靠的数据支持。

二、驱动桥壳有限元模型建立在NX软件中建立某型汽车驱动桥壳的三维模型,由于汽车驱动桥桥壳结构形状较为复杂,包含许多复杂曲面。

基于有限元方法的汽车驱动桥壳分析

基于有限元方法的汽车驱动桥壳分析

基于有限元方法的汽车驱动桥壳分析简介汽车驱动桥壳是连接汽车发动机和驱动轮的重要组件,其中,壳体结构是至关重要的。

有限元方法是一种广泛应用于实际工程分析中的数值分析方法,可以模拟和优化设计。

本文将探讨如何使用有限元方法分析汽车驱动桥壳的结构。

建模几何模型汽车驱动桥壳一般采用加厚的柱壳结构,从而在较小的体积内承载高强度的扭转力。

为了对此结构进行有限元分析,需要先构建准确的几何模型。

可以使用计算机辅助设计软件建立三维模型,或者直接使用CAD工具绘制二维截面。

网格划分一旦有几何模型,就需要对其进行网格划分。

这是一项关键的步骤,因为它将直接影响最终分析的准确性和效率。

在划分网格时,需要注意以下几点:•网格大小应该能够适当地对结构进行描述,同时不会影响计算效率。

•网格应当满足光滑性要求,特别是在转角处。

•需要尽可能使用劣质网格,以确保准确性。

材料和边界条件分析所需的材料特性和边界条件有助于确定结构在应力下的响应。

材料的特性包括弹性模量、泊松比、屈服强度。

设置边界条件则包括固定点、负载、扭曲、压力等。

求解通过有限元分析软件可以进行模拟计算,并得出结构的应力状况和形变情况。

在此过程中,需要考虑以下因素:•材料的非线性特性•数值不稳定性问题•嵌套效应对模型的影响结果和分析有限元求解得出的结果需要进一步进行分析,以便深入理解结构的行为和性能。

通过对结果的分析,可以得到以下信息:•结构的应力、应变分布以及最大应力发生在哪里•结构的变形情况以及变形程度•破坏模式及其发生的位置和原因结论本文介绍了使用有限元分析方法分析汽车驱动桥壳的方法。

通过准确建立几何模型、网格划分、设置材料特性和边界条件并对结果进行分析,可以得到结论来评估设计的性能和研究规划的效果。

轻型汽车驱动桥桥壳建模与模态分析

轻型汽车驱动桥桥壳建模与模态分析

轻型汽车驱动桥桥壳建模与模态分析摘要:文章通过三维设计软件UG对某轻型汽车的驱动桥桥壳进行建模,并用NXNastran有限元分析软件对桥壳进行了强度计算和模态分析,得出了零件的应力和变形分布。

通过对比不同厚度下驱动桥壳的各阶固有频率,选出了最优的驱动桥桥壳厚度,其计算结果为汽车驱动桥桥壳的结构设计和优化提供了依据。

关键词:驱动桥桥壳;建模;模态分析1引言汽车驱动桥桥壳是汽车上的主要承载构件之一,其应有足够的强度和刚度,并在满足使用要求的前提下应尽可能便于制造。

根据汽车设计理论,驱动桥桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力。

由于这种设计方法有很多局限性,因此近年来许多研究人员利用有限元方法对驱动桥桥壳进行了计算和分析。

2有限元模型的建立本次课题的研究对象是某轻型汽车的后驱动桥桥壳。

由于整体式桥壳具有强度和刚度大,主减速器拆装、调整方便等优点,所以此次选择整体式桥壳作为分析对象。

它由钢板冲压焊接而成,主要结构有桥壳本体、半轴套管、后桥盖总成、钢板弹簧固定座总成、减振器下支架总成、后制动底板固定法兰、凸缘盘等。

2.1三维模型的建立实体建模时,尽量依照实际几何模型建立实体模型,但根据桥壳的实际受载情况,有些细节可以在建模时省略或简化。

去掉那些对分析影响不大的特征(如倒角、圆角等)和一些小孔,把桥壳中部的牙包简化为球体外形,略去连接座上的螺栓孔。

而轴肩处的圆弧不能省略,因为此处可能正是应力集中的地方。

本次设计通过UG软件建立的驱动桥壳模型如图1所示:图1汽车驱动桥壳前侧2.2确立有限元类型及网格划分在UG的CAE模块中进行有限元分析,可以直接引用Scenario模型,并以下步骤进行:1.新建FEM与仿真部件:设置求解器为NXNastran,分析类型为结构分析,结算方案设置成迭代求解,默认温度20摄氏度。

2.理想化模型:由于部件三维模型中的细节将影响整个结构的网格分布,增加网格的数量会使模型过于复杂。

驱动桥壳分析

驱动桥壳分析

新产品 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛| 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿基于ANSYS 的汽车驱动桥壳的有限元分析作者:武汉理工大学 杨波 罗金桥析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。

经过近50年的发展,有理论日趋完善,已经开发出了一批通用和专用的有限元软件。

ANSYS 是当前国际上流行的有软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械SYS 软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对行图形显示和结果输出,对结构的动态特性作出评价。

它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。

驱动桥壳应有足够的强度和刚于主减速器的拆装和调整。

由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造体式桥壳,分段式桥壳和组合式桥壳三类。

整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用是由于其形状复杂,因此应力计算比较困难。

根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。

因此近年来,许多研究人员利用有限元行了计算和分析。

本文中所研究的对象是在某型号货车上使用的整体式桥壳。

桥壳强度分析计算视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

某车型桥壳结构性能分析及轻量化方案设计

某车型桥壳结构性能分析及轻量化方案设计

某车型桥壳结构性能分析及轻量化方案设计一、引言车型桥壳结构是汽车关键部件之一,对于整车的性能起着至关重要的作用。

因此,对桥壳结构进行性能分析及轻量化方案设计显得十分必要。

本文将对车型桥壳结构进行性能分析,并提出相应的轻量化方案设计。

二、性能分析1.强度分析:通过有限元分析方法,对桥壳结构进行强度分析。

首先,对桥壳结构进行刚度分析,得到其刚度参数;然后,进行静力强度分析,以确定结构的极限载荷;最后,进行疲劳强度分析,以确保结构在循环载荷下的寿命。

通过性能分析,可以找出桥壳结构的强度弱点和改进方向。

2.刚度分析:桥壳结构的刚度对于整车的操控性和行驶稳定性起着至关重要的作用。

通过有限元分析方法,可以对桥壳结构进行刚度分析,并找出刚度不足的地方。

对于刚度不足的部位,可以通过增加材料的强度或改变结构形式来提高刚度,从而改善整体性能。

3.疲劳寿命分析:疲劳寿命是桥壳结构的重要指标之一、通过有限元分析方法,可以进行疲劳寿命分析,并预测结构在循环载荷下的寿命。

对于寿命较短的部位,可以进行结构优化设计,采用新的材料或改变结构形式,以延长结构的疲劳寿命。

1.材料优化:通过选择高强度、低密度的材料,可以在不影响结构强度的前提下,实现结构的轻量化。

例如,可以采用高强度钢材或碳纤维复合材料来替代传统的钢材,从而减轻桥壳结构的自重,提高整车的燃油经济性。

2.结构优化:通过改变结构形式,可以实现结构的轻量化。

例如,可以采用空心结构或骨架结构来替代实心结构,从而减轻结构的重量。

此外,还可以采用变截面或加强筋等手段来改善结构的刚度分布,提高整体性能。

3.拓扑优化:通过拓扑优化方法,可以实现结构的最优轻量化设计。

拓扑优化是一种基于材料的优化方法,通过在结构内部删减多余材料,实现结构质量的最小化。

通过拓扑优化方法,可以得到一种最优材料分布方案,以实现结构的最优轻量化设计。

四、结论通过对车型桥壳结构的性能分析及轻量化方案设计,可以提高结构的强度、刚度和疲劳寿命,实现结构的轻量化设计。

汽车驱动桥壳现代设计方法的探讨

汽车驱动桥壳现代设计方法的探讨
然后 加 脉动载 荷 , 控制最 大 载荷 和最小 载荷 , 桥壳 至
图 2 力学模型
模 型采 用 三维 8节点 实 体单 元 , 节 点 的位 移 各
断裂 。 记录损坏时的循环次数 , 要求桥壳中值寿命达 到 8 万次 , 寿命不小于 5 万次。 0 最低 0
有三个独立分量 ,设沿 x轴方 向的位移为 U ,沿 Y 轴方 向的位移为 v沿 z轴方 向的位移为 W 因此该 , , 实体元素, 共有八节点 2 个 自由度 , 4 如图 3 所示 。
现 代设 计 方 法 , 改进传 统设 计方 法提供 了设 计 思路 。 为
关键词 : 动桥壳 驱
设 计 方法
有 限元
汽车驱 动桥 作为 整车关 键 总成 之一 ,直 接影 响
满足三种典型工况要求 的桥壳 , 在台架试验 中不符 合标准。因此设计过程是一个反复修改和调整的过
程, 费时费 力 。 由于 按 传 统 设 计 方 法设 计 的桥 壳 最终 应 以台 架 试 验 为检 验 标准 ,并 且 经 过大 量 的实 践证 明 , 当
经 验 , 计 出驱 动桥 壳 , 后 进行 试 产 , 对 驱 动 桥 设 然 并 壳 进行 台架 试验 。 这个过 程 中 , 常会 有一些 设计 在 经
点、 力点 、 测点的位置如图 1 所示。 垂直弯曲刚性试验过程中, 要求记录满载轴荷 和最大负荷 ( 对载货汽车 , 按满载轴荷 2 倍计算 ) . 5 时各测点的位移量。计算桥壳最大位移量与轮距之 比, 要求满载轴荷时比值不超过 1 m / 。 . mm 并画出满 5
在本文中 ,利用 A S S N Y 软件对桥壳进行有 限 元 的分 析 。首 先在 A S S中通 过 输人 接 口读 人 三 NY

轻型厢式载货汽车驱动桥结构设计

轻型厢式载货汽车驱动桥结构设计

轻型厢式载货汽车驱动桥结构设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言随着物流行业的快速发展,轻型厢式载货汽车在城市物流运输中扮演着日益重要的角色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车驱动桥壳现代设计方法的实例分析
传统设计方法设计的桥壳最终应以台架试验为检验标准, 传统的汽车驱动桥壳设计方法是: 桥壳复杂的受力状况简化成三种典型的计算工况, 即当车轮承受最大的铅垂力、承受最大切向力以及承受最大侧向力时。

只要在这三种载荷计算工况下桥壳的强度得到保证, 就认为该桥壳在汽车各种行驶条件下是可靠的。

设计桥壳时将桥壳看成简支梁并校核某特定断面的最大应力值.
传统的汽车驱动桥壳设计方法受力分析
现代设计方法的思路是: 在计算机上根据经验建立汽车驱动桥壳的三维CAD 初始模型, 模拟其三种台架试验, 以满足试验标准为设计要求, 并对结构参数进行优化设计。

利用UG软件进行桥壳建模。

设计的桥壳为整体式, 由钢板冲压焊接而成。

对模型作了必要的简化, 建成三维驱动桥壳初始模型。

利用ANSYS 软件对桥壳进行有限元的分析。

首先在ANSYS 中通过输入接口读入三维桥壳初始模型。

经分析和实践, 模型采用三维8节点实体单元.驱动桥壳垂直弯曲刚性试验模拟, 通过有限元的计算, 可得到桥壳各节点的位移量。

有限元分析力学模型
驱动桥壳垂直弯曲静强度试验模拟, 在有限元模型中, 驱动桥壳在满载工况下, 各点的位移及应力云图.为了尽量接近实际,对左端轮距位置的6 个节点进行X、Y、Z 方向自由度的约束, 右端轮距位置的6 个节点约束其Y、Z 方向的自由度。

观察节点当量应力云图。

位移和应力云图
除约束点出现应力集中外, 应力较大处位于钢板弹簧座两侧的上下表面. 根据标准规定, 驱动桥壳垂直弯曲失效后备系数Kn= Pn/P, 其中Pn为驱动桥壳垂直弯曲失效载荷, P 为满载轴荷。

在计算机上驱动桥壳垂直弯曲失效载荷的确定, 可用桥壳应力值达到材料的强度极限对应的载荷代替。

分别用不同的面载荷加载, 然后由有限元进行计算. 判断该桥壳垂直弯曲失效后备系数是否足够。

驱动桥壳垂直弯曲疲劳试验模拟, 根据以上的有限元应力分析结果, 选取板簧座附近应力最大的节点进行疲劳寿命计算。

输入材料的应力寿命曲线( S- NCurve)由于零件尺寸、几何形状变化、加工质量及强化因素等的影响, 使得零件的疲劳极限要小于材料试件的疲劳极限。

故先计算弯曲疲劳极限的应力集中系数SCF。

输入相关的数值, 模拟计算结果。

看结果是否低于行业标准中桥壳疲劳寿命不得低于50 万次的要求。

参数的优化设计,.结构参数的优化设计是驱动桥壳现代设计方法的组成部分。

当桥壳台架试验的模拟计算全部满足要求时, 可根据优化目标对可变设计参数进行优化, 使驱动桥壳的设计更理想更经济。

一般情况下,可以重量或体积最小为优化目标。

随着轻量化材料技术,包括生产工艺、装配、连接、材料性能等的不断发展和成熟, 针对不同轻质材料的不同性能,进行多材料混合结构设计,即同一部件的组成零件可由不同材料制造, 以实现所用的材料与零件功能达成最佳组合, 已经成为未来汽车设计发展的方向。

相关文档
最新文档