食品中的氨基酸、多肽及蛋白类物质的理化性质及应用
9-食品化学_氨基酸、肽和蛋白质-1部分
以最简单的甘氨酸(Gly)为例,在溶液中由于受 pH的影响可能有3 种不同的离解状态。
氨基酸的等电点(pI)是指在溶液中净电荷为零时的pH。
pKa1和pKa2分别代表α碳原子上的- COO-和NH3+的表观离 解常数,如果侧链基R上有离解基团,其表观电离常数用 pKaR表示。在中性pH范围,α-氨基和α-羧基都处在离子化 状态,因而当用酸滴定时,-COO-被质子化(-COOH);碱 滴定时,- NH3+发生去质子化。
芳香族氨基酸 Aromatic amino acids
亚氨基酸 Secondary amino acids
氨基酸分类
据侧链与水作用程度的不同将氨基酸分类: 非极性或疏水性侧链的氨基酸,如丙氨酸、异亮氨酸、亮 氨酸、甲硫氨酸、脯氨酸、缬氨酸、苯丙氨酸、色氨酸和 酪氨酸 ; 极性而不带电荷(亲水的)侧链的氨基酸,如丝氨酸、苏 氨酸和酪氨酸的极性与它们所含的羟基有关,天冬酰胺、 谷氨酰胺的极性同其酰胺基有关。而半胱氨酸则因含有巯 基,所以属于极性氨基酸,甘氨酸有时也属于此类氨基酸 ; 带正电荷侧链的碱性氨基酸,如赖氨酸、精氨酸和组氨酸, 它们分别具有ε-NH2、胍基和咪唑基(碱性)。这些基团 的存在是使它们带有电荷的原因 ; 带负电荷侧链的酸性氨基酸,如天冬氨酸和谷氨酸。由于 侧链为羧基(酸性),在中性pH 条件下带一个净负电荷。
脂肪族氨基酸 Aliphatic amino acids
羟基氨基酸 Hydroxy amino acids
酸性氨基酸 Acidic amino acids
氨基胺酰 Amide amino acids
碱性氨基酸 Basic amino acids
含硫氨基酸 Sulfur-containing amino acids
3蛋白质在食品加工中的应用
A B C
影响水化作用的因素
1.蛋白质自身的状况
形状、表面积大小、蛋白质粒子表面极性基
团数目、蛋白质粒子的微观结构是否多孔等。
2.蛋白质溶液的pH值
3.电解质
应用
1
脱 水 猪 肉 的 加 工
在加工脱水猪肉时,利用 蛋白质的水化作用,可提 高了脱水猪肉结合水的能 力,复水时较易嫩化。
疏水相互作用
二硫键
范德华引力
在蛋白质中结构的四种层次:
(a)一级结构(氨基酸序列)(b)二级结构(а-螺旋)(c)三级结构(d)四级结构
鲸肌红蛋白的三级结构
蛋白质的四级结构
2. 蛋白质与氨基酸的性质
一、 氨基酸的理化性质
(一)氨基酸的物理性质
1 2 3
溶解性 熔点 旋光性 味感
4
1溶解性
等电点沉淀
重金属盐沉淀
与带负电荷蛋白质结成不溶性盐
生物碱试剂和某些酸类沉淀
与带正电荷蛋白质生成不溶性盐
加热变性沉淀 天然结构解体,疏水基外露, 破坏水化层及带电状态
蛋白质的乳化性质与起泡性质
蛋白质是两性分子,能在 水-气界面和油-水界面形 成高黏弹性薄膜,而且比 低分子表面活性剂所稳定 的泡沫和乳状液更稳定。 因此,在食品中有着广泛 的应用。
蛋白质的沉淀作用
蛋白质沉淀的基本原理
蛋白质溶液是稳定胶体溶液的原因
水化膜
同性电荷
蛋白质沉淀:破坏其中的一个因素,都能使蛋白 质从溶液中析出。
在鸡蛋清 中加入硫酸 铵会发生什 么现象?
会产生两种现象
盐溶(低 浓度盐)
盐析(高 浓度盐)
盐溶原理 水化作用
蛋白质表面电荷吸附 某种盐离子后,带电 表层使蛋白质分子彼 此排斥,而蛋白质分 子与水分子间的相互 作用却加强,因而使 溶解度提高。
食品中的氨基酸、多肽及蛋白类物质的理化性质及应用
食品中的氨基酸、多肽及蛋白类物质主要内容1概述2蛋白质的理化性质3蛋白质的食品加工学特性4食品中常见的蛋白质1概述1.1氨基酸基本的理化性质一、基本物理学性质包括基本组成和结构、溶解性、酸碱性质、立体化学、熔点、沸点、光学行为、旋光性、疏水性等。
(一)溶解性质根据氨基酸侧链与水相互作用的程度可将氨基酸分作几类。
含有脂肪族和芳香族侧链的氨基酸,如Ala、Ile、Leu、Met、Pro、Val及Phe、Tyr,由于侧链的疏水性,这些氨基酸在水中的溶解度均较小;侧链带有电荷或极性集团的氨基酸,如Arg、Asp、Glu、His、Lys和Ser、Thr、Asn在水中均有比较大的溶解度;但根据电荷及极性分析也有一些例外,如脯氨酸属于带疏水基团的氨基酸,但在水中却有异常高的溶解度。
(二)氨基酸的疏水性氨基酸的疏水性,是影响氨基酸溶解行为的重要因素,也是影响蛋白质和肽的物理化学性质(如结构、溶解度、结合脂肪的能力等)的重要因素。
按照物理化学的原理,疏水性可被定义为:在相同的条件下,一种溶于水中的溶质的自由能与溶于有机溶剂的相同溶质的自由能相比所超过的数值。
估计氨基酸侧链的相对疏水性的最直接、最简单的方法就是实验测定氨基酸溶于水和溶于一种有机溶剂的自由能变化。
一般用水和乙醇之间自由能变化表示氨基酸侧链的疏水性,将此变化值标作△G′。
(三)氨基酸的光学性质氨基酸中的苯丙氨酸、酪氨酸、色氨酸分子中由于有共轭体系,因此可以吸收近紫外光。
它们的最大吸收波长(λmax)分别为260nm、275nm、278nm;在吸收最大波长光线的时候还会发出荧光。
二、基本化学性质关于氨基酸基本的化学性质,在生物化学中已经进行了介绍。
下面再根据Owen R. Fennema, Food Chemistry, 作简要系统介绍;其主要的线索还是氨基酸分子中所带的官能团。
三、重要的分析鉴定反应(一)与茚三酮的反应(略)(二)与邻苯二甲醛的反应:在2-巯基乙醇的存在下,氨基酸与邻苯二甲醛反应生成高荧光的衍生物,在380nm激发时,在450nm 具有最高荧光发射,用来定量分析氨基酸、肽和蛋白质。
食品加工中多肽的功能及应用研究
食品加工中多肽的功能及应用研究随着人们对健康的关注度提高,食品加工业也面临着更高的要求。
在食品加工中,多肽作为一种重要的营养成分,不仅具有丰富的功能,还被广泛应用于各种食品中。
本文将探讨食品加工中多肽的功能及应用研究。
多肽是由2至20个氨基酸组成的生物活性物质。
它们与蛋白质不同,不仅具有较小的分子量,还具有更高的溶解性和更好的吸收性。
多肽不仅可以提供人体所需的氨基酸,还具有抗氧化、抗菌、抗癌、降低血压、调节免疫系统等多种功能。
这些功能使得多肽成为食品加工中的理想选择。
在食品加工中,多肽可以加入到各种食品中,以增加其营养价值和功能性。
例如,多肽可以添加到乳制品中,以增加其抗氧化性和增强免疫力。
此外,多肽还可以添加到肉类制品中,以增加其保湿性、嫩化性和抗菌性。
在烘焙食品中,多肽还可以被用作酵母活化剂,以提高面团的质量和口感。
总之,多肽在食品加工中的应用极为广泛,可以满足人们对食品的多样化需求。
此外,研究人员还发现,不同来源的多肽具有不同的功能。
例如,海洋生物来源的多肽具有较高的抗氧化和抗菌性能,可以应用于海鲜制品和海藻制品中。
植物来源的多肽则具有良好的免疫调节功能,适用于植物蛋白饮料和谷物制品中。
动物来源的多肽则具有较高的营养价值和生物活性,适用于肉类制品和乳制品中。
因此,在加工过程中选择合适的多肽来源,可以最大限度地发挥多肽的功能。
此外,在食品加工中,多肽的应用还需要考虑其稳定性。
多肽易受外界环境的影响,容易被酶解或失去活性。
为了提高多肽的稳定性,研究人员采用了一系列的技术手段。
例如,通过改变多肽的序列和结构,可以增强其稳定性。
同时,还可以利用膜分离、冷冻干燥等工艺,保护多肽不受外界环境的影响。
这些技术手段为多肽在食品加工中的应用提供了保障。
总的来说,食品加工中多肽的功能及应用研究是一个重要的课题。
多肽不仅具有丰富的功能,还可以广泛应用于各种食品中。
通过选择合适的多肽来源和优化加工技术,可以最大限度地发挥多肽的功能。
蛋白质、多肽、氨基酸概述及分类重点 PPT
❖ 咪唑环形成质子传递体系
亲核试剂:给出电子
(3)Neutral Amino Acids中性氨基酸
❖ 中性氨基酸侧链不提供也不接受质子
❖ (1) Glysine甘氨酸 最简单、没有光学活性的氨基
酸
❖ (abbreviation:Gly)
❖ 显然与这种氨基酸相关的化学反应比较少,在生物学 上的意义主要是作为结构成份,大量的结构蛋白质如: 胶原和丝素中含有大量的甘氨酸。
CO2H H2N C H
R
R的结构
-H -CH3 -CH(CH3)2 -CH2CH(CH3)2 -CH(CH3)CH2CH3
N H
CO2H
-CH2C6H5
CH2
OH
CH2
N H
-CH2OH -CH(OH)CH3 -CH2CO2H -CH2CH2CO2H -CH2CONH2 -CH2CH2CONH2
-CH2SH -CH2CH2SCH3 -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2
❖ 亲水性特别好,但第二个羟基(仲羟基)形成氢键能力弱、
HOOC
NH2
CCHH来自OH CH3❖ (3) Cysteine半胱氨酸 ❖ (abbreviation:Cys)
NH2 HOOC C CH2 SH
H
用 sulfur(硫) 取代丝氨酸的氧,较高pH值下能够给出质子 离 解
硫原子是特别好的亲核试剂
❖ α-,β-,γ-,orδ-氨基酸、
❖ γ-aminobutyric acid γ-氨基丁酸 (GABA):
❖ 神经传递素
❖ 2,5-diiodotyrosine 2, 5-二碘酪氨酸 ❖ 甲状腺激素前体
初中化学知识点归纳氨基酸和蛋白质的性质与应用
初中化学知识点归纳氨基酸和蛋白质的性质与应用氨基酸和蛋白质是化学领域中重要的概念和研究对象。
本文将对初中化学中与氨基酸和蛋白质相关的知识点进行归纳和总结,并探讨其性质与应用。
一、氨基酸的概念与分类氨基酸是构成蛋白质的基本单元,由一种或多种氨基酸残基组成。
根据氨基酸的结构和特性,可以将其分为脂肪族氨基酸和芳香族氨基酸两大类。
脂肪族氨基酸是指在分子结构中含有脂肪族侧链的氨基酸,如甘氨酸、丙氨酸等。
芳香族氨基酸则是指包含芳香族环结构的氨基酸,比如苯丙氨酸、酪氨酸等。
二、氨基酸的性质与应用1. 氨基酸的酸碱性氨基酸是同时具有酸性和碱性的物质,其分子中含有一个或多个氨基(-NH2)和一个羧基(-COOH)。
因此,氨基酸可以通过释放或接受质子而表现出酸性或碱性。
2. 氨基酸的缔合作用氨基酸可以通过缔合反应,将两个或多个氨基酸结合到一起形成肽键。
多个氨基酸通过缔合作用形成的化合物被称为肽,而其中氨基酸数目较多的化合物被称为多肽。
3. 氨基酸的生理功能氨基酸在生物体内具有多种重要的生理功能。
例如,氨基酸是蛋白质的组成单元,参与构建和修复生物体的组织结构;氨基酸还可以作为能量的来源,提供细胞代谢所需的能量。
4. 蛋白质的性质与应用蛋白质是由氨基酸长链缔合而成的生物大分子,在生物体内具有多种重要功能。
根据其复杂的结构和功能,蛋白质可以分为结构蛋白、酶、激素等多种类型。
结构蛋白是生物体内构成组织和细胞的重要组成部分,如肌肉纤维中的肌动蛋白;酶是生物体内催化化学反应的催化剂,如消化道中的胃蛋白酶;激素则是调节生物体生理功能的信号分子,如胰岛素。
除了在生物体内发挥重要作用外,蛋白质还具有广泛的应用价值。
在食品工业中,蛋白质常被用作乳化剂、稳定剂和增稠剂等;在医药领域,蛋白质也被用于制造药物和疫苗。
三、氨基酸和蛋白质的实验室检测方法在实验室中,常用的检测氨基酸和蛋白质的方法包括纸层析法、光谱分析法和生物化学分析法等。
纸层析法是一种简单、快速的方法,可用于检测氨基酸和短肽。
食品中多肽类物质的鉴定与功能研究
食品中多肽类物质的鉴定与功能研究随着人们对健康饮食的要求不断提高,食品中多肽类物质逐渐受到关注。
多肽是由多个氨基酸分子通过肽键结合而成的生物大分子,具有一定的长度和序列。
在食品中,多肽类物质广泛存在于鱼类、肉类、乳制品等各种食材中,对人体健康具有重要的作用。
首先,食品中多肽类物质的鉴定对食品安全至关重要。
食品中的多肽类物质种类繁多,既有利于人体健康的多肽,也有可能对人体造成潜在风险的多肽。
因此,准确鉴定食品中的多肽类物质成分,有助于消费者选择安全、健康的食品。
目前,鉴定多肽类物质主要采用质谱技术和色谱技术。
质谱技术可以通过鉴定多肽分子的质量和碎裂信息,确定其序列和组成。
而色谱技术则可以分离和纯化多肽类物质,为后续功能研究提供基础。
其次,食品中多肽类物质的功能研究具有重要的现实意义。
众所周知,蛋白质是人体正常生理功能的基础,而多肽则是蛋白质分解的产物。
多肽类物质不仅可以提供身体所需的氨基酸,还具有多种生物活性。
研究发现,食品中的多肽类物质能够具有抗氧化、抗菌、降血压、降血糖等多种功能。
比如,在乳制品中存在的乳酪肽可以降低血压和改善血管功能;在豆类食品中存在的大豆肽具有降低血脂和调节血糖的作用。
这些功能研究有助于人们了解食品中多肽类物质的作用机制,为制定更科学的膳食指导方案提供参考。
除了传统的功能研究外,食品中多肽类物质的应用也在不断拓展。
近年来,人们将多肽类物质应用于食品的添加剂和保健品的研发中。
一方面,多肽类物质可以作为增加食品的营养价值和改善口感的添加剂。
比如,在肉制品中添加具有肌肉保水性能的多肽,可以提高产品的质地和口感;在面包、饼干等烘焙食品中添加具有抗氧化功能的多肽,可以延长产品的保质期。
另一方面,多肽类物质也可以作为保健品的主要成分,用于提供特定的保健功能。
比如,在保健品中添加具有镇静和抗焦虑作用的鱼肽,可以缓解心理压力和改善睡眠质量。
然而,食品中多肽类物质的鉴定与功能研究仍存在一些挑战与难题。
氨基酸,多肽,蛋白质的结构特点及其在生命科学领域的应用
学院:专业:班级:学号:姓名:氨基酸多肽蛋白质的结构特点及它们在生命科学的应用多肽是人体蛋白质功能体现的结构单位,是生命活动的必须活性物质,广泛分布于人体各个组织和器官中,并调节各项生理功能。
人体缺乏必要的多肽,就会令免疫系统和其它功能系统发生紊乱,就会出现各种慢性病。
多肽与氨基酸的区别与联系结构:氨基酸是组成多肽和蛋白质的基本单位,两个或则两个以上氨基酸组成一个肽链,因此多肽的分子比氨基酸分子大。
吸收:科学家的研究发现人体吸收蛋白质主要形式是小分子活性多肽片段和游离氨基酸。
相对氨基酸的吸收,以多肽形式具有易吸收、主动吸收、优先吸收、完全吸收、可做为信使等特点。
体内合成蛋白质:多肽在人体内合成蛋白质的利用率比氨基酸高,氨基酸合成蛋白质须要将氨基酸先合成为多肽短链,然后再装配成蛋白质。
数量:人体内氨基酸只有20种,由于多肽肽链长度、结构有多种结构和变化,20种氨基酸能合成无数种多肽。
功能:单一氨基酸的功能需要组合成多肽,才能表达出相应的功能,蛋白质的功能体现也是以活性多肽片段为基本功能单位。
多肽与蛋白质的区别与联系结构:一般将50个以上氨基酸构成的多肽链称为蛋白质,因此,多肽相对蛋白质比较具有分子量小、肽键的数目少、肽链短的特点;蛋白质的分子量大、肽键的数目多、肽链长、具有独特的三维立体结构。
功能:蛋白质的生理功能主要由组成蛋白质的活性多肽片段来完成,蛋白质的功能即其中所含的特异性活性多肽片段的功能体现,因此科学家们称“肽是生命的统帅,生命是肽的反应体系”。
营养:多肽的营养优于蛋白质,因为蛋白质要分解成多肽才能吸收,因此人体蛋白质的吸收率不高。
多肽具有完全吸收、优先吸收和主动吸收等特点。
蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。
每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。
一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链。
氨基酸的分类特点及理化性质
1
2
氨基酸的结构
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine
脂肪族氨基酸
1
2
氨基酸的结构
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine
要求: 能倒背
不用的字母
JUZBOX
L-氨基酸的基本结构
C
H
H2N
COOH
R
α碳原子,不对称碳原子
侧链
二十种氨基酸除Gly外全是L-型。 Pro呢?
残基:在肽链中氨基酸之间脱去一个水分子,脱水后的残余部分叫残基(residue), 因此蛋白质肽链中的氨基酸统统是残基形式。
Chiral carbon
脂肪族氨基酸
亚氨基酸
氨基酸的结构
甘氨酸 Glycine
丙氨酸 Alanine
缬氨酸 Valine
亮氨酸 Leucine
异亮氨酸 Ileucine
脯氨酸 Proline
含硫氨基酸
氨基酸的结构
甘氨酸 Glycine
丙氨酸 Alanine
缬氨酸 Valine
亮氨酸 Leucine
异亮氨酸 Ileucine
脯氨酸 Proline
甲硫氨酸 Methionine
含硫氨基酸
氨基酸的结构
甘氨酸 Glycine
丙氨酸 Alanine
缬氨酸 Valine
亮氨酸 Leucine
异亮氨酸 Ileucine
脯氨酸 Proline
甲硫氨酸 Methionine
半胱氨酸 Cysteine
氨基酸的结构
苯丙氨酸 Phenylalanine
氨基酸和多肽在生活中的应用
氨基酸和多肽在生活中的应用一·食品氨基酸:氨基酸含量比较丰富的食物有鱼类,豆类及豆制品。
氨基酸可以用作食品添加剂来提高食物的营养价值;如红牛饮料中含有赖氨酸添加剂;可用于调味,谷氨酸具有鲜味,其钠盐就是味精。
多肽:在普通的面包制作基础上添加一定数量的功能肽,可提高其营养价值并有防止面包老化(功能肽具有保湿性);可作为乳蛋白的替代品,制成特殊的婴幼儿食品,能有效地减轻或消除儿童对乳蛋白的过敏反应,来促进宝宝的生长发育;还可作为调味剂,如阿巴斯甜,是一种低热量的食用调味剂。
二·保健品氨基酸:如脑白金,瑞年氨基酸等中老年保健品,其中一些氨基酸,如精氨酸、色氨酸、苯丙氨酸等具有缓解压力,避免沮丧及焦虑等状态的作用,有提高精力的作用。
多肽:白蛋白多肽(AP)从卵清蛋白中分离提取的一组低聚肽。
它具有调整人体免疫功能、提高血清蛋白含量、改善微循环,进而增强体质、提高防病能力的作用;大豆多肽是从大豆蛋白中分离出来的活性多肽,它具有降低胆固醇在体内重吸收,减少甘油三酯在体内合成,促进脂肪代谢等功能;由于食用多肽具有易被吸收利用的特点,所以,当体内因消耗过多的营养物质,致使体内出现内环境失调,各系统功能处于低效状态,感到疲劳,服用多肽就能迅速地使体内所缺乏的活性物质和营养得到补充,从而达到消除疲劳的目的。
三·药品氨基酸:精氨酸注射液可用于肝昏迷的急救药,可由明胶水解并精制而成;甘氨酸与重氮化合物作用制成的一系列抗癌药物对胃癌等有显著功效;谷氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。
多肽:多肽吸收快速,所以人们把多肽原料中间体作为药品和食品配方的原因,其目的是要加强药效,增强吸收率,可将平常人所食的营养物质,特别是钙等对人体有益的微量元素,吸附、粘贴、装载在本体上;多肽被人体吸收后,可在人体中起信使作用,它作为神经递质传递信息,指挥神经,发挥自身作用,维护人体神经的团队精神和整体效应。
食品化学第三章蛋白质
蛋白质的主要结构层次
第一节 氨基酸
氨基酸——构成蛋白质的基本单元
氨基酸—含有氨基和羧基的一类有机化合物的 通称。
H
R
C COOH
NH2
氨基酸----蛋白质的构件分子
蛋白质的水解—形成氨基酸
酸水解:6N HCl,煮沸回流20小时左右,或加压于120°C水解12小时. 优点:水解彻底,水解的最终产物是L-氨基酸,没有旋光异构体生成. 缺点:色氨酸全部破坏,丝,苏,酪氨酸部分破坏.有腐黑质生成 碱水解:6M NaOH或4M Ba(OH)2煮沸6小时. 优点: 色氨酸不被破坏,水解液清亮透明. 缺点: 水解产生的氨基酸发生旋光异构作用 酶水解:蛋白质可以由蛋白酶水解,不同的蛋白酶专一性不同。 优点:条件温和,氨基酸不破坏,无旋光异构体产生. 缺点: 各蛋白酶有不同的专一性,用单一的酶作用水解不彻底.
蛋白质的重要性
(1)蛋白质是生命细胞的主要成分
蛋白质占干重 人体 45% 细菌 50%~80% 真菌 14%~52% 酵母菌 14%~50% 白地菌50%
人体中(中年人) 水55% 蛋白质19% 脂肪19% 糖类<1% 无机盐7%
(2)蛋白质在生命活动中具有重要作用
➢ 酶的催化作用 ➢ 调节作用(多肽类激素) ➢ 运输功能 ➢ 运动功能 ➢ 免疫保护作用(干扰素) ➢ 接受、传递信息的受体
蛋白质水解得到 通常为L型
COOH
COOH
H
C
NH2
NH2
C
H
R
R
氨基酸存在对映异构体
氨基酸的酸-碱性质
氨基酸是两性电解质:
羧基能电离成COO-和H+;
氨基能接受质子,形成铵盐。 在pH=7时水中,以偶极离子或两性离子形式存在
氨基酸、肽和蛋白质ppt课件
温度
蔗糖
水分含量
pH
2、低温处理下的变化
食品的低温贮藏可延缓或阻止微生物的生 长并抑制酶的活性及化学变化。 冷却(冷藏) 冷冻(冻藏)
➢ 冰结晶,蛋白质变性 水化作用降低;
➢ 快速冷冻法。
蛋白质与氧化剂之间的相互作用
食品常用氧化剂 H2O2 过氧苯甲酰 次氯酸钠
影响因素
有机溶剂
导致蛋白质溶解度下降或沉淀
降低水介质的介电常数 提高静电作用力 静电斥力导致分子结构的展开 促进氢键的形成和反电荷间的静电吸引
4、蛋白质的胶凝作用(Gelation)
沉淀作用:是指由于蛋白质的溶解性完全或部分
丧失而引起的聚集反应。
絮凝:是指蛋白质未发生变性时的无规则聚集反
离子强度
影响蛋白质结合水的环境因素
蛋白质浓度 ➢ 5-10%,浓度,水合作用
➢ 15-20%,Pr沉淀
pH
➢ pH= pI 水合作用最低 ➢ 高于或低于pI,水合作用增强
(净电荷和推斥力增加) ➢ pH 9-10时水合能力较大
温度
温度,蛋白质结合水的能力 (变性蛋白质结合水的能力一般比天然
蛋白质高约10%)
起泡性质的评价
蛋白质的起泡力 测定泡沫稳定性
影响泡沫形成和稳定性的因素:
蛋白质的分子性质
有良好起泡力的蛋白质不具有稳定泡沫的能力, 而能产生稳定泡沫的蛋白质往往不具有良好的
起泡力。
影响泡沫形成和稳定性的因素:
蛋白质的浓度
2%一8%,随着浓度增加起泡性增加。 超过10%,气泡变小,泡沫变硬。
用、乳化和起泡性等,都取决于水-蛋白质的相 互作用。
10-食品化学-氨基酸、肽和蛋白质-2部分
二级结 多肽链折叠方式, 构 如α-螺旋、β-折叠和 β-转角等
氢键力
三级结 分子进一步折叠和 偶极作用,疏水作用,
构
盘曲
二硫键,静电力,氢键
力等
四级结 不同亚基之间的聚 疏水作用,范德华力,
构 2020/6/24
合
静电力,氢键力等
蛋白质的变性
• 蛋白质变性是指在用各种物理和化学因素处理时,其构象会 发生不同程度的改变。
2020/6/24蛋白质的性• 一、物理因素– 热:当一个蛋白质溶液被逐渐加热并超过临界温 度时,它产生了从天然状态至变性状态的剧烈转 变。主要涉及到非共价键相互作用的去稳定作用 。
– 液压:大多数蛋白质在1100-1200MPa压力范围 经受压力破坏细胞结构诱导变性。压力诱导变性 主要是因蛋白质是柔性的和可压缩的。
– 球蛋白:不溶于纯水,易溶于稀盐水,加热即沉 淀或凝固。存在于所有动植物细胞和体液中。最
2020/6/24
蛋白质的结构
• 蛋白质的结构包括4个水平,即一级、二级、三级和四级结 构。
• 由共价键结合在一起的氨基酸残基的排列顺序被称为蛋白 质的一级结构。
• 蛋白质的二级结构式多肽链某些片断的氨基酸残基周期性 的空间排列,它不包括与其他链段之间的相互关系和侧链 构象,被称为蛋白质的二级结构。
1. 高温处理下的变化
• 适当加热:热变性(有利) • 过度加热:发生不利于营养、品质和安全
的化学变化
– 热解反应和有害物质形成 – 氨基酸的消旋化 – 加热导致异肽键形成 – 加热导致羰氨反应 – 氨基酸的分解
2020/6/24
1. 高温处理下的变化
• 适当加热 • 适度热处理时(60-90℃)蛋白质产生变性
(完整ppt)氨基酸、多肽及蛋白质类药物
氨基酸药物 二、氨基酸药物生产
水解法 发酵法
以糖为碳源,以氨或尿素为氮源,通过微生物的 发酵繁殖,直接生产氨基酸,或利用菌体的酶系, 加入前体物质合成特定氨基酸的方法。
菌种的培养、接种发酵、产品的提取及分离纯化
氨基酸药物 二、氨基酸药物生产
水解法 发酵法 化学合成法
化学合成法是利用有机合成和化学工程相结合的 技术生产氨基酸的方法。
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
用药于理肝作脏用疾:病体的外氨实基验酸表明:谷氨酰胺对胃、肠 粘膜损伤具有保护和修复作用,其原因为谷氨
用酰于胺消对化胃道、疾肠病粘氨膜基上酸皮成分已糖胺及葡萄糖胺 的生化合成有促进作用。
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
用于肝脏疾病的氨基酸 用于消化道疾病氨基酸
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
碳酸钙甘氨酸胶囊 用成于份肝:脏本疾品病为的复氨方基制酸剂,每粒含碳酸钙210毫 用克于,消甘化氨道酸疾9病0毫氨克基。酸
适应症:用于缓解胃酸过多引起的胃痛、胃灼 热感(烧心)、反酸。
用于肝脏疾病的氨基酸
氨基酸药物 三、典型氨基酸药物
蛋单氨一酸氨片基酸药物
用适于应肝症脏:疾用病于的脂氨肪基肝酸,以及酒精和磺胺等药物 引起的肝损害。 用法用量:口服,一次1~3g,一日3次,饭 后服。
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
药理毒理:氨基酸类药,是体内胆碱生物合成 用的于甲肝基脏供疾体病,的能氨放基出酸活性甲基,促进磷酯酰胆
基本知识 二、氨基酸基本知识
蛋白质基本结构单位 氨 基 酸
基本知识 二、氨基酸基本知识
必需氨基酸
甲硫氨酸、缬氨酸、赖 氨酸、异亮氨酸、苯丙 氨酸、亮氨酸、色氨酸、 苏氨酸
氨基酸、多肽及蛋白质类药物
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
用于肝脏疾病的氨基酸 用于消化道疾病氨基酸 用于脑病的氨基酸
氨基酸药物 三、典型氨基酸药物
单一氨基酸药物
用左于旋肝多脏巴疾片病的氨基酸 用成于份消:化左道旋疾多病巴氨基酸 功能主治:用于帕金森病及帕金森综合征。 用于脑病的氨基酸
基本知识 一、蛋白质基本知识
动物
植物
微生物
生命 物质基础
人体
基本知识 一、蛋白质基本知识
蛋白质 功能
生物催化 结构功能 运动收缩 运输功能 代谢调节 保护防御
其他功能
基本知识
定氮法
一、蛋白质基本知识
多数蛋白质含氮量相对 固定,约为16%,这是 蛋白质的一个重要特点。 因为氮元素容易通过凯 氏定氮法进行测定,故 蛋白质的含量可以由氮 的含量乘以6.25 (100/16)计算得到。
基本知识 三、多肽基本知识
多肽是α-氨基酸以肽键连
多 肽
接在一起而形成的化合物, 它也是蛋白质水解的中间产 物。
肽与蛋白质
02
氨基酸类药物
氨基酸药物 一、氨基酸药物分类
治疗消化道疾病 治疗肝病 治疗脑及神经系统疾病 用于肿瘤治疗 其他氨基酸药物
氨基酸药物 二、氨基酸药物生产
水解法
以毛发、血粉及废蚕丝等为原料,通过酸、碱或 蛋白水解酶水解成氨基酸混合物,经分离纯化获 得各种药用氨基酸的方法称为水解法。 分离、精制和结晶 胱氨酸、亮氨酸、酪氨酸等
氨基酸药物 二、氨基酸药物生产
水解法 发酵法 化学合成法 酶合成法
酶合成法是以化学合成法配 制基质,利用酶促反应(即 酶的水解、裂解、合成作用) 直接制备各种氨基酸。 特别是固定化酶和固定细胞 等技术的迅速发展,解决了 酶合成法中较为突出的缺点, 从而促进了在生产实际中的 应用。
食品中的肽类物质与功能研究
食品中的肽类物质与功能研究随着人们对健康的关注日益增加,食品中的肽类物质与其所扮演的功能在近年来得到了广泛的研究和关注。
肽类是由两个或更多氨基酸残基连接而成的短链多肽,它们存在于各种食物中,包括肉类、豆类、乳制品等。
一、食品中的肽类物质的来源肽类物质广泛存在于食物中,其中最常见的来源是动物性食品。
例如,肉类中含有各种肽类物质,如肌动蛋白多肽、肌球蛋白多肽等。
此外,奶制品中也富含肽类物质,如乳铁蛋白、酪氨酸等。
另外,豆类食物中含有丰富的大豆肽和小豆肽等。
二、食品中的肽类物质的功能肽类物质不仅是食物的组成成分,还拥有丰富的功能。
首先,肽类物质可以作为食物的味道调节剂。
某些肽类物质能够增强食物的香气,提升食物的美味。
其次,肽类物质还具有抗菌作用。
例如,乳铁蛋白中的酪链肽能够与细菌细胞膜相互作用,破坏细菌的生长环境,从而起到抗菌的作用。
此外,一些肽类物质还具有抗氧化和抗炎作用,有助于预防和缓解一些慢性疾病。
三、肽类物质的研究进展近年来,对食品中肽类物质的研究取得了一系列进展。
科学家们发现,肽类物质可以通过不同的消化酶和酶反应来产生,这也是其功能多样性的原因之一。
此外,研究还发现,不同来源的肽类物质具有不同的功能。
例如,动物性食品中的肽类物质主要表现出抗菌和抗氧化等功能,而植物性食品中的肽类物质则更多地表现出抗炎和免疫调节等功能。
在肽类物质的研究中,还出现了一些新的技术和方法。
例如,质谱分析技术可以帮助科学家们快速准确地确定食物中的特定肽类物质。
此外,透过基因工程技术,研究人员还尝试着利用特定酶反应或重组蛋白的方法,从食物中提取出更多肽类物质,并进一步研究其功能。
这些新技术和方法的出现,为肽类物质的研究和应用提供了新的途径。
四、肽类物质在食品工业中的应用肽类物质的研究不仅在科学领域有所突破,还在食品工业中得到了广泛的应用。
基于对肽类物质的深入研究,食品加工商们开始将其应用于产品研发中,以提升产品的功能性和营养价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品中的氨基酸、多肽及蛋白类物质主要内容1概述2蛋白质的理化性质3蛋白质的食品加工学特性4食品中常见的蛋白质1概述1.1氨基酸基本的理化性质一、基本物理学性质包括基本组成和结构、溶解性、酸碱性质、立体化学、熔点、沸点、光学行为、旋光性、疏水性等。
(一)溶解性质根据氨基酸侧链与水相互作用的程度可将氨基酸分作几类。
含有脂肪族和芳香族侧链的氨基酸,如Ala、Ile、Leu、Met、Pro、Val及Phe、Tyr,由于侧链的疏水性,这些氨基酸在水中的溶解度均较小;侧链带有电荷或极性集团的氨基酸,如Arg、Asp、Glu、His、Lys和Ser、Thr、Asn在水中均有比较大的溶解度;但根据电荷及极性分析也有一些例外,如脯氨酸属于带疏水基团的氨基酸,但在水中却有异常高的溶解度。
(二)氨基酸的疏水性氨基酸的疏水性,是影响氨基酸溶解行为的重要因素,也是影响蛋白质和肽的物理化学性质(如结构、溶解度、结合脂肪的能力等)的重要因素。
按照物理化学的原理,疏水性可被定义为:在相同的条件下,一种溶于水中的溶质的自由能与溶于有机溶剂的相同溶质的自由能相比所超过的数值。
估计氨基酸侧链的相对疏水性的最直接、最简单的方法就是实验测定氨基酸溶于水和溶于一种有机溶剂的自由能变化。
一般用水和乙醇之间自由能变化表示氨基酸侧链的疏水性,将此变化值标作△G′。
(三)氨基酸的光学性质氨基酸中的苯丙氨酸、酪氨酸、色氨酸分子中由于有共轭体系,因此可以吸收近紫外光。
它们的最大吸收波长(λmax)分别为260nm、275nm、278nm;在吸收最大波长光线的时候还会发出荧光。
二、基本化学性质关于氨基酸基本的化学性质,在生物化学中已经进行了介绍。
下面再根据Owen R. Fennema, Food Chemistry, 作简要系统介绍;其主要的线索还是氨基酸分子中所带的官能团。
三、重要的分析鉴定反应(一)与茚三酮的反应(略)(二)与邻苯二甲醛的反应:在2-巯基乙醇的存在下,氨基酸与邻苯二甲醛反应生成高荧光的衍生物,在380nm激发时,在450nm 具有最高荧光发射,用来定量分析氨基酸、肽和蛋白质。
(三)与荧光胺的反应含有伯胺基的氨基酸、肽或蛋白质与荧光胺反应生成高荧光的衍生物,在390nm时,在475nm具有最高的荧光发射。
此法可被用于氨基酸、肽或蛋白的定量分析。
1.2肽类物质1.2.1活性肽的种类及功能生物活性肽也称作功能肽,是近年来非常活跃的研究领域,其应用涉及到生物学、医药学、化学等多种学科,在食品科学研究及功能食品开发中也显示出美好的前景。
功能肽按照获得途径的差异可以分作两种类型,一类是由生物体特别是动物体内获得的天然功能肽;另一类是利用动植物蛋白,通过水解或酶解,再经过活性筛选而获得的外源性功能肽。
一、天然活性肽目前,由自然界已经获得了种类多样、功能各异的生物活性肽,下页列举了一些这方面的例证。
昆虫抗菌肽:迄今为止,已有150多种昆虫抗菌肽被分离鉴定,许多抗菌肽的cDNA已被克隆测序并进行了初步的基因定位和表达调控机制研究。
昆虫抗菌肽已成为当前研究的热点,某些抗菌肽正在通过基因工程技术开始工业化生产并用于农业、工业和食品卫生等多个领域。
昆虫抗菌肽是一类碱性多肽,具有分子量小、水溶性好、热稳定性强、无免疫原性,不易被水解等特性;同时还具有强而广谱的抗菌、抗癌、抗病毒的能力,对高等动物机体的正常细胞无损伤。
根据氨基酸组成和结构特征,可把昆虫抗菌肽分为4类:形成两性分子α-螺旋的抗菌肽类;有分子内二硫桥的抗菌肽类;富含甘氨酸的抗菌肽类和富含脯氨酸的抗菌肽类。
关于抗菌肽的作用机理,现在人们比较一致的看法是,不同的抗菌肽在其杀菌方式上可能存在一些差异。
有的通过在细菌膜上形成孔道,造成细胞内物质泄漏进而导致化学势丧失而达到杀菌的效果;有的能够干扰一定类型的外膜蛋白基因的转录,使相应蛋白的合成量减少,从而导致细胞膜的通透性增加,使细菌生长受到抑制。
有些还可能抑制细菌细胞壁的形成,使细菌不能维持正常的细胞形态而生长受阻,等等。
感染性疾病曾一度是人类生存所面临的最大威胁。
随着抗生素的发明和广泛使用,感染性疾病得到了一定程度的控制,但仍然是人类死亡的一个重要原因。
据WHO报告,2000年全球死亡人数5570万,其中1440万由感染性疾病引起,占总死亡人数的15.9%。
过去的几十年里,耐药性微生物的不断产生和生物耐药性问题的日益恶化,开发新的抗感染药物已成为治疗感染疾病的必由之路。
昆虫抗菌肽因其独特的抗菌、杀菌效果和良好的应用前景近来成为抗感染新药开发的热点。
目前国外在抗菌肽临床应用方面进展较快,在流行性脑脊髓炎、人幽门螺旋杆菌感染及抗真菌感染等方面的应用已经进入临床试验阶段。
二、外源性活性肽以天然蛋白作为原料通过水解或酶解的方法,获得大量的肽类,从中筛选活性肽,目前已成为扩大功能肽研究范围、发现新型多肽的有效途径。
当然化学合成也为功能肽的获得提供了有效的途径,但化学合成往往需要一定的活性结构做模型。
目前已有实际应用的外源性功能肽的制备方法有化学水解法、酶水解法、合成法等。
化学水解法是以天然蛋白质为原料,在酸或碱的催化下进行水解而获得多肽。
一般用6~10mol/L盐酸或4mol/L硫酸在100~120℃条件下水解12~24h;也可用6mol/LNaOH或2mol/L的Ba(OH)2水解6h左右;然后经活性炭脱色,再通过701型树脂除去酸和盐便可获得混合多肽。
此法工艺虽然简单但难以控制水解程度,容易将肽链继续水解为氨基酸,并且水解过程中氨基酸的结构容易受到影响而发生构型甚至构造上的变化,影响肽的结构和功能。
此种影响在碱性条件下表现的尤为突出。
利用酶解的方法由天然蛋白制备功能肽是目前常采用的方法。
此方法的一般工艺流程为:原料蛋白→预处理→酶解→灭酶→脱苦味脱色→分离→干燥→成品。
酶种类和水解条件的选择是制备功能肽的关键。
目前可以使用的酶种类较多,如胰蛋白酶、胃蛋白酶、碱性蛋白酶等动物蛋白酶及菠萝蛋白酶、木瓜蛋白酶等植物蛋白酶,而比较便宜易得的还有不同种类的微生物蛋白酶。
到底选择何种,可根据酶的水解特性、原料蛋白的来源及欲得到的功能多肽类型来综合考虑决定。
三、活性肽在食品中的应用营养学研究证明,功能肽类在人体内的消化吸收明显优于蛋白质和单个氨基酸,对人体内蛋白质的合成无任何不良影响,而且具有促进钙吸收、降血压、提高免疫力等生理功能。
此外,功能肽具有良好的水合性,使其溶解度增加,黏度降低、胶凝程度减小,发泡性丧失,具有优良的加工性能。
目前在食品中已经应用或出现了应用苗头的功能肽主要有以下种类。
1.2.2肽的理化性质一、肽的物理性质A、肽的两性:与氨基酸相似,肽类物质也具有两性和等电点。
例如Gly-Asp pI3.63;Gly-Gly-Gly pI5.58;利用多肽的等电点,可以进行肽类物质的分离。
B、黏度与溶解度天然蛋白的水溶液当其浓度超过13%时就会形成凝胶,不利于蛋白溶液的制备;而多肽即使在50%的高浓度下和在较宽的pH范围内仍能保持溶解状态,同时还具有较强的吸湿性和保湿性,这使无法实现的高蛋白饮料和高蛋白果冻的生产成为可能。
C、渗透压和对产品质构的调节作用当一种液体的渗透压比体液高时,易使人体周边组织细胞中的水分向胃肠移动而出现腹泻。
多肽溶液的渗透压比氨基酸溶液要低,因此可以克服因氨基酸溶液渗透压高而导致的问题。
多肽具有抑制蛋白质形成凝胶的性能,可利用此性质来调整食品的质构。
如水产、肉、禽蛋白在加热时因形成凝胶而变硬,适量加入大豆多肽,就会起到软化的作用。
二、化学性质肽类物质基本的化学性质和氨基酸基本的化学性质相同,都是由其特征性官能团决定的。
但肽和蛋白可以发生双缩脲反应而氨基酸则不能。
2蛋白质与食品相关的理化性质2.1与食品相关的物理性质2.1.1蛋白质的变性作用一、蛋白质变性的概念及监测方法A、定义:把蛋白质二级及其以上的高级结构在一定条件(加热、酸、碱、有机溶剂、重金属离子等)下遭到破坏而一级结构并未发生变化的过程叫蛋白质的变性。
B、蛋白质变性所产生的影响:①溶解度降低,原因是二级结构发生变化,疏水基团暴露于分子表面;②与水的结合能力降低;③生物活性(功能)丧失;④容易被水解;⑤黏度变大;⑥难以结晶。
C、根据一系列物理性质、光学性质、生物功能等的改变来监测蛋白质的变性。
如超离心沉降特性、黏度、溶解度、电泳特性、旋光色散、圆二色性、X射线衍射、紫外差示光谱、红外光谱、热力学性质、免疫性质等。
/web/Info_Show.asp?ArticleID=239二、蛋白质变性的热力学和动力学与其它化学反应的活化能相比,蛋白质变性的Ea是比较大的,例如胰蛋白酶、卵清蛋白酶和过氧化物酶热变性的活化能分别为167、552、773 kJ/mol。
由于变性涉及的键能小,而且相差不大,只要在低的温度或小的变性剂浓度就可以发生变性。
上边以两状态转变模型对蛋白变性的热力学、动力学特点进行了讨论。
但实际情况远非这么简单,详细考虑,蛋白质从天然状态向变性状态的转变是一个非常复杂的过程,中间存在着非常多的中间状态。
三、影响蛋白变性的因素(一)物理因素A.加热加热变性的基本过程:当蛋白质溶液被逐渐的加热并超过临界温度时,溶液中的蛋白质将发生从天然状态向变性状态的剧烈转变。
此转变温度被称作熔化温度(Tm)或变性温度(Td),此时蛋白质的天然状态和变性状态的浓度之比为1。
蛋白热变性的一般规律:大多数蛋白质在45~50℃时开始变性,但也有些蛋白的Td可以达到相当高的温度,如大豆球蛋白93℃、燕麦球蛋白108℃等。
当加热温度在临界温度以上时,每提高10℃,变性速度提高600倍。
加热使蛋白变性的本质:提高温度对天然蛋白质最重要的影响是促使它们的高级结构发生变化,这些变化在什么温度出现和变化到怎样的程度是由蛋白质的热稳定性决定的。
一个特定蛋白质的热稳定性又由许多因素所决定,这些因素包括氨基酸的组成、蛋白质-蛋白质接触、金属离子及其它辅基的结合、分子内的相互作用、蛋白浓度、水分活度、pH、离子强度和离子种类等等。
变性作用使疏水基团暴露并使伸展的蛋白质分子发生聚集,伴随出现蛋白质溶解度降低和吸水能力增强。
B.冷冻蛋白质可以发生冻结变性。
其原因一方面是由于蛋白质周围的水与其结合状态发生变化,这种变化破坏了一些维持蛋白原构象的力,同时由于水保护层的破坏,蛋白质的一些基团就可以发生直接的接触和相互作用,导致蛋白质发生聚集或原来的亚基发生重排。
另一方面,由于大量水形成冰后,剩余的水中无机盐浓度大大提高,这种局部的高浓度盐也会使蛋白质发生变性。
C.流体静压压力也可使蛋白变性,但一般在25℃下要求100~1200MPa 的比较高的压力。
压力诱导蛋白质变性的原因主要是蛋白质的柔性和可压缩性。