交流传动与直流传动优劣的比较
电力机车和电动车组传动方式的分类及特点
![电力机车和电动车组传动方式的分类及特点](https://img.taocdn.com/s3/m/ad3b165869eae009581bec52.png)
电力机车和电动车组传动方式的分类及特点电力机车和电动车组的传动方式按照供电电源的性质及所采用的牵引电动机的不同,理论上可以分为直-直流传动、交-直流传动、交-直-交流传动、交-交流传动和直-交流传动等。
1.直-直流传动方式直-直流传动方式就是使用直流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图1。
受电器从接触网或者第三轨上获取电能,通过直流电压调节装置对直流电压进行调节,从而达到调节直流(脉流)牵引电动机转速和转矩的目的。
图 1 直-直流传动方式示意图调压装置可以是:(1)电阻器:特点是简单、可靠。
维修方便,对使用和维护工人技术要求低。
但是电阻调速是有级的,调速过程中电阻器有能耗,能量损失大,调速性能差,在大功率场合长期调速运行,不仅损失的能量很大,还可能引起地铁隧道或周围环境温度升高。
(2)斩波器:用大功率电力电子器件构成,特点是效率高,调速性能好。
直-直流传动方式的主要特点是调速简单方便,但是直流供电电压低限制了其应用场合,并且直流牵引电动机体积大、维护工作量大、经济性能指标差。
早期的工矿电机车、城市有轨电车、无轨电车和地铁动车大多采用直-直流传动方式。
此外直流电流的回流会对线路周围的金属结构产生电蚀。
2. 交-直流传动方式交-直流传动方式就是使用交流电源供电、直流牵引电动机驱动的传动方式,结构示意图如图2。
受电器从接触网获取交流电能,通过整流调压装置对输出直流电压进行调节,从而达到调节直流牵引电动机转速和转矩的目的。
图2 交-直流传动方式示意图交-直流传动方式是我国电力机车长期使用的一种电力机车传动方式,国产韶山(SS)系列和进口的6K、8K电力机车等均采用这一传动方式,这些机车的主要差别在于调压整流方式和控制方式的不同。
这种传动方式的主要特点是接触网采用单相交流供电,可以大大提高电网的供电能力,减少牵引变电所的数量。
从技术上看,其缺点主要是因为采用直流牵引电动机所引起的。
3. 交-直-交流传动交-直-交流传动方式就是使用交流电源供电,中间经过降压整流变成直流,然后再将直流逆变成为频率和电压幅值可调的交流电,驱动交流牵引电动机的传动方式。
交流传动取代直流传动是现代工业发展的趋势
![交流传动取代直流传动是现代工业发展的趋势](https://img.taocdn.com/s3/m/9f1556680b1c59eef8c7b441.png)
交流传动取代直流传动是现代工业发展的趋势[摘要]随着现代工业发展的步伐不断的前行和电力电子器件的更新换代,人们更加趋向于对效率的追求。
交流传动比较直流传动的优越性明显,同时在使用的范围上也是有着得天独厚的优势,比之直流传动有着结构坚固、成本低、使用工作环境多、重量轻等诸多优点,因此在现代工业应用中交流传动相比直流传动在使用上势必会取而代之。
[关键词]交流传动现代工业直流传动取而代之中图分类号:f426.31 文献标识码:a 文章编号:1009-914x (2013)17-527-011引言随着科技的不断发展,交流传动与控制技术已经成为了发展最快的技术之一,同时也代表着电气传动技术新时代的来临。
交流传动的广泛使用也代表着改善工艺流程和增加提高产品质量新技术全面应用的标的。
随着大功率的晶闸管特别是大功率可关断晶闸管(gto)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),也就人们俗称的交流传动,其出现以后又十分自然的取代了交-直传动成为了工业应用当中的主要动力提供源头。
截止到今天为止,交流传动在工业生产当中的使用已经占据了动力输出的70%以上,只有老式的工业作业企业始终没有更换。
从而我们也总结出了交流传动与直流传动相比而言有着得天独厚的优势,也是印证了现代工业发展的趋势,因此深入了解交流传动的走向,在现实来看具有十分积极的意义。
2交直流传动发展现状分析直流传动和交流传动均是在19世纪先后真正的和世人见面诞生,自成功面世以来直流传动一直以来凭借着优越的可控性能收人们所广泛的关注是使用,而在工业上一般都会用直流电机来进行生产,使用交流电机则是因为约占电气传动总80%的不变速传动需求。
上述的分工一直是其后100多年以来人们所公认的分工格局。
一直到了20世纪70年代,由于采用电力电子变换器的高效交流变频传动开发成功,结构简单、成本低廉、工作可靠、维护方便、效率高、转动惯量小的交流笼型电机进入了可调速领域,一直被认为是天经地义的交直流传动按调速分工的格局终于被打破了。
电力传动技术的类型及应用
![电力传动技术的类型及应用](https://img.taocdn.com/s3/m/33d6299577eeaeaad1f34693daef5ef7ba0d1223.png)
电力传动技术的类型及应用
电力传动技术主要可以分为三类:电磁滑动式、直流电动机式和交流电动机式。
1. 电磁滑动式:这种技术是在异步电动机中安装一电磁滑差离合器,通过改变其励磁电流来调速。
这种技术属于一种较为落后的调速方式,其特点在于结构简单、成本低、操作维护方便。
然而,它的滑动最大,效率低,发热严重,不适合长期负载运转,因此一般只用于小功率传动。
2. 直流电动机式:这种技术通过改变磁通或改变电枢电压实现调速。
其特点是调速范围大,精度也较高。
然而,这种技术的设备复杂,成本高,维护困难,一般用于中等功率范围(几十至几百千瓦),现已逐步被交流电动机式替代。
3. 交流电动机式:这种技术通过变极、调压和变频进行调速。
实际应用最多者为变频调速,即采用一变幅器获得变幅电源,然后驱动电动机变速。
其特点是调速性能好、范围大、效率较高,可自动控制,体积小,适用功率范围宽。
机械特性在降速段位恒转矩,低速时效率低且运转不够平稳,价格较高,维修需专业人员。
此外,还有一些特殊电机,与常见的交直流电机结构不同。
采用直流电机进行转矩、转速的调节和控制的传动称为直流传动;采用交流电机进行转矩、
转速的调节和控制的传动称为交流传动;采用特殊电机的传动,称之为特殊电机的电力传动。
以上内容仅供参考,建议查阅电力传动技术相关书籍或咨询专业人士了解更多有关电力传动技术的类型及应用的信息。
缠绕包装机使用交直流电机的区别
![缠绕包装机使用交直流电机的区别](https://img.taocdn.com/s3/m/c87ce9493b3567ec102d8a4e.png)
缠绕包装机使用交直流电机的区别
我们知道,缠绕膜机的电机,分为两种,一种是交流电机,一种是直流电机,起初的缠绕机使用的都是直流电机来进行调速,后来技术改造,为提高工作效率,转为交流电机来进行调速,平时薄膜缠绕机使用细节需注意,但本质区别一定要了解。
下面麦格小编就为您介绍直流电机与交流电机之间的异同。
直流电机,它的相应速度更快,起动转矩比较大,还可以提供的定的转矩,有一定的好处。
而这是直流电机的优点,也是它的缺点的产生。
因为它要产生额定负载转矩的特点,就需要电枢磁场与转子磁场须恒维持90°,这就需要借助碳刷及整流子。
而使用碳刷及整流子出现火花是非常正常的,电机转动,产生的碳粉就会落入设备中,导致设备各组件的损坏,而由于此原因,使用场地也有严格的限制。
缠绕机的直流调速控制简单,调速性能好,长期以来在调速传动中一直占统治地位。
交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。
交流电动机分为异步电动机和同步电动机两类。
异步电动机按照定子相数的不同分为单相异步电动机、两相异步电动机和三相异步电动机。
三相异步电动机结构简单,运行可靠,成本低廉等。
自动缠绕机的交流调速控制随着电力电子技术的发展性能已达到直流传动的水平,维修费用及能耗大大降低,可靠性提高,所以出现了以交流传动代替直流传动的强烈趋势。
城市轨道交通交流传动逆变器系统国产化方案
![城市轨道交通交流传动逆变器系统国产化方案](https://img.taocdn.com/s3/m/433b51e30740be1e640e9a1e.png)
逆变器的工作原理:1. 直流电可以通过震荡电路变为交流电2. 得到的交流电再通过线圈升压(这时得到的是方形波的交流电)3. 对得到的交流电进行整流得到正弦波AC-DC 就比较简单了我们知道二极管有单向导电性可以用二极管的这一特性连成一个电桥让一端始终是流入的另一端始终是流出的这就得到了电压正弦变化的直流电如果需要平滑的直流电还需要进行整流简单的方法就是连接一个电容1 交流传动系统与直流传动系统的比较随着电力电子器件、控制理论和计算技术的发展,交流传动已经逐步在取代直流传动,并显示了其在性能价格比和运行性能上的优势。
自1970 年BBC 公司开发的第一台交流传动内燃机车DE2500 问世以来,到目前已有数千台交流传动机车和电动车组投入运营。
交流传动机车的粘着系数比直流传动机车高约10 %,且交流传动机车的电机型式一般采用结构简单、可靠性好、寿命长,几乎免维护的鼠笼式异步电机。
交流传动机车较直流传动有相当大的优越性,目前,欧洲和日本等工业化国家铁路工业部门,已基本停止了直流传动电力机车的生产[2 ]。
与斩波器一直流电机斩波调压电气传动系统相比,调压调频(VVVF)逆变器一交流电机的系统主电路变得十分简单。
少了电阻发热的危害。
现在,以斩波器为核心的直流传动电动车组也逐步让位于以VVVF 为核心的交流传动电动车组,如日本的东京、韩国的汉城、德国的汉堡和法兰克福、美国的波特兰[3 ] 等。
2 我国城市轨道交通传动系统的现状和发展趋势国内城市轨道交通(除香港外)发展比较缓慢,除了地铁以外,几乎没有城区和近郊的地面轨道交通。
而地铁交通,目前也只有北京、天津、上海和广州等城市开通运营。
2.1 供电制式以北京和天津为代表的北方地区采用DC 750 V供电电压制式,允许电压波动范围为DC 500 V〜DC 900 V,第三轨受流;以上海和广州为代表的南方地区采用DC 1 500 V供电电压制式,允许电压波动范围为DC 1 000 V〜DC 1 800 V,架空接触网受电弓受流。
交直流调速系统比较
![交直流调速系统比较](https://img.taocdn.com/s3/m/3bbd7cfe80eb6294dd886cd9.png)
一、直流调速方案:1、直流电机及控制系统的优缺点:◇调速性能好、调速范围广,易于平滑调节◇起动、制动转矩大,易于快速起动、停车◇过载能力强、能承受较频繁的冲击负荷◇线路简单、控制方便、◇电控系统总体造价(包括直流电机及其配套的直流调速装置)相对较低,设计、制造、调试周期短◇国内外控制方案成熟、工程应用广泛虽然直流传动有以上诸多优点,但仍有不足之处,主要表现在:◆由于采用相控整流技术,在晶闸管换向时会产生谐波,污染电网,须对谐波进行治理◆在低速启动时,因为晶闸管导通角α,导致功率因数较低,无功分量较大,须对功率因数进行补偿◆与同容量、转速的交流电机相比,直流电机的造价高、体积大、重量重、转动惯量大◆日常维护量大,须定期检查、更换炭刷,整流子表面保养◆由于换向的限制,在结构发展上欲制造大容量、高电压及高转速的直流电机工艺上比较困难。
现阶段直流电机单机容量最大只能达到11000kw左右,电压也只能做到1200V左右,这样一些大容量的不得不做成双电机、三电机甚至四电机结构,直接影响了直流电机的广泛应用,发展交流变频势在必行3、直流调速方案所需的配套设备:1)谐波治理:由于直流调速控制原理采用的是相控整流技术,避免不了对电网产生谐波污染,高次谐波不仅对电网质量造成影响。
最直接的表现可能使变压器、电缆、电动机发热、破坏绝缘,更有甚者可能会影响电气设备的使用寿命,造成不安全隐患。
2)功率因数补偿设备:因直流电机在低速启动时,要求的晶闸管导通角α较大,导致功率因数较低(cosα),无功分量较大,须对功率因数进行补偿,否则当地供电部门将进行罚款!2)变压器:为了解决直流电机在咬钢时的负荷冲击、及其自身控制方面的要求,相对应的变压器容量要求是电动机容量的1.5-1.6倍进行选定(较交流变频方案大20-30%左右),造成此部分投资的增加。
另外直流电机的日常维护量较大,需定期对电机清扫、更换碳刷,运行、维护和人工成本较高。
直流电机和交流电机的区别与优缺点详解
![直流电机和交流电机的区别与优缺点详解](https://img.taocdn.com/s3/m/a97a60804128915f804d2b160b4e767f5acf80d2.png)
直流电机和交流电机的区别与优缺点详解直流电机和交流电机是最常用的电动机类型,它们在结构、工作原理和应用方面有许多区别。
下面将详细解释这两种电机的区别和各自的优缺点。
直流电机是利用电流通过在磁场中旋转的导线来产生力矩的电动机。
它们通常由永磁体提供磁场,通过通电的线圈在磁场中旋转。
直流电机可以通过改变电流的方向来改变转子的旋转方向。
这种电机通常带有刷子与旋转部分(转子)之间的接触,以传递电流。
直流电机的优点包括:启动和停止时扭矩大,转速范围宽,控制性好。
然而,直流电机的缺点是容易磨损刷子,需要周期性维护。
另外,由于刷子的存在,直流电机噪音较大。
交流电机是利用交流电动力学原理工作的电动机。
它们有多种类型,包括异步电机、同步电机和感应电机等。
交流电机的转子由固定磁极和旋转磁极组成,不需要通过刷子来传递电流。
交流电机的优点是结构简单,可靠性高。
与直流电机相比,交流电机无刷子磨损问题,因此也无需常规维护。
此外,交流电机运行平稳,产生较低的噪音。
然而,交流电机转速范围更窄,控制性较差。
总的来说,直流电机和交流电机在设计和应用上有许多区别。
直流电机适用于需要广泛速度调节和大扭矩的应用,如电动车辆、机床和风力发电。
交流电机则适用于许多家用电器、风扇和空调等应用,以及许多工业应用中的恒速工作。
需要注意的是,随着技术的发展和创新,传统的直流电机和交流电机之间的差异正在逐渐减小。
现代无刷直流电机(BLDC)结合了直流电机和交流电机的优点,具有高效率、低噪音和可调速等特点。
此外,变频器技术使得交流电机的转速范围和控制性能得到提高。
综上所述,直流电机和交流电机在结构和工作原理上有区别,各有优缺点。
选择哪种电机取决于具体应用需求,包括所需的转速范围、控制性能和维护要求。
随着技术的进步,直流电机和交流电机之间的差异逐渐减小,新的电机类型也在不断涌现。
交流传动控制系统
![交流传动控制系统](https://img.taocdn.com/s3/m/35b612390975f46527d3e1fc.png)
7.4 电磁转差离合器调速系统
32
7.4.1调速系统的组成及原理
1、调速系统的组成
由三部分组成:如图7-22所示 1)笼型异步电动机 2)电磁转差离合器 3)可控硅整流电源
7.4 电磁转差离合器调速系统
33
7.4.1调速系统的组成及原理
2、转差离合器的结构原理
1)转差离合器的结构组成
(1)主动部分,由铁磁材料制成的圆筒, 称为电枢。由笼型转子异步电动机带动,以 恒速n1旋转。
7.3交流异步电机的变频调速系统
20
7.3.2 变频器的结构类型及原理
1、变频器的基本类型
间接变频——将工频交流整流器直流逆变器可控频率的交流,又称为交-直-交变频。
直接变频——将工频交流一次变换为可控频率交流,没有中间直流环节,即所谓的交-交变 频。
7.3交流异步电机的变频调速系统
21
7.3.2 变频器的结构类型及原理 2、变频器的基本结构 交-直-交变频器
2、变频器的基本结构 交-直-交变频器 1)按中间直流电路分类 采用电抗器作为无功功率缓冲环节,称为电流型变频器;
特点:直流侧电流恒定,极性可变,能实现回馈制动。
7.3交流异步电机的变频调速系统
24
7.3.2 变频器的结构类型及原理 2、变频器的基本结构 交-直-交变频器 2)按电压频率控制方式分类 (1)用可控整流器调压、逆变器调频的交—直—交变频器
7.3交流异步电机的变频调速系统
25
7.3.2 变频器的结构类型及原理 2、变频器的基本结构 交-直-交变频器 2)按电压频率控制方式分类 (2)用斩波器调压的交—直—交变频器
7.3交流异步电机的变频调速系统
26
7.3.2 变频器的结构类型及原理 2、变频器的基本结构 交-直-交变频器 2)按电压频率控制方式分类 (3)用PWM逆变器同时调压调频的交—直—交变频器
机床电气控制技术第一章-(2)
![机床电气控制技术第一章-(2)](https://img.taocdn.com/s3/m/6e14585903020740be1e650e52ea551810a6c9df.png)
动分: 延时断开的动分触点
记忆方法:
f
f
假想:作用力从弧顶指向弧心,其最终效果是使触头闭合还是 使触头断开,再在其前面加上“延时”二字。而动分还是动合, 由触头的画法(张开还是闭合)决定。
小结
▲电气传动自动化;▲仪表自动化 速度调节(调速)
1.电气传动(拖动) ★的基本要求
1、 掌握电气自动控制的基本原理; 2、 能读懂一般机床电气控制电路图; 3、 掌握晶闸管直流电气传动的基本原理; 4、 懂得PLC的工作原理,具有一定的实际使用能力。
常用低压电器
一.开关电器和熔断器
1. 三级开关(三级断路器):通-断两态
*三级(高压)隔离开关 *三级(高压)负荷开关
▲继电器、接触器控制:有触点控制。 ▲顺序控制器:继电器和半导体元件综合应用的控制装置 ▲可编程序控制器(PLC:Programmable Logic Controller:可编程序
逻辑控制器): ▲ 数控机床:高效率、高精度、高柔性。是当前机床自动化
的理想形式 ▲ CAD,CAM CAQ(计算机辅助质量检测)CIMS (计算机集成
动作: 线圈通电,吸合: (常开)触头闭合(动合),断开的电路被接通; (常闭)触头断开(动断),接通的电路被分断。 线圈电压:50Hz, 220V; 50Hz, 380V.
三.按钮、行程开关
主令电器:发出指令去控制接触器或其它电器电磁机构的线圈 使电路通、断
1.按钮 特点:自动复位
动合 动分 先断后合
优点: 缺点: ★ 交流传动(调速)
优点: 缺点: 主要技术:交流变频调速技术(变频器); 矢量控制技术。
SCR 晶闸管(可控硅); GTR 功率晶体管; SPWM正弦脉冲宽度调制; DSP 数字信号处理器 IGBT 绝缘门极晶体管(绝缘栅双极性晶体管) IPM 智能化功率模块
地铁的动力原理
![地铁的动力原理](https://img.taocdn.com/s3/m/498f5496370cba1aa8114431b90d6c85ed3a8813.png)
地铁的动力原理地铁的动力原理是通过电动机驱动列车前进。
地铁列车主要有两种传动方式:直流传动和交流传动。
下面将详细介绍这两种传动方式的工作原理。
直流传动方式是最常见的地铁传动方式之一。
直流传动的主要组成部分包括电动机、牵引电缆、电压变换装置和控制系统。
电动机是地铁列车的动力源,它将电能转化为机械能,使列车得以前进。
牵引电缆将供电装置提供的直流电能传输给电动机。
电压变换装置负责将供电装置提供的高压直流电压变换为适合电动机工作的低压直流电压。
控制系统通过控制电动机的工作状态,实现列车的加速、减速和停车。
直流传动方式的工作过程如下:首先,供电装置提供直流电能,通过牵引电缆传输到电动机。
电动机通过电磁感应原理,将电能转化为机械能驱动车轮转动。
电动机的转动通过传动装置传递给车轮,从而推动列车前进。
控制系统根据列车运行的需要,调节电动机的工作状态,控制列车的速度和停车。
交流传动方式也是地铁常用的一种传动方式。
交流传动的主要组成部分包括交流电机、变压器和控制系统。
交流电机是地铁列车的动力源,它将电能转化为机械能,推动列车前进。
变压器用于将供电装置提供的交流电压变换为适合电动机工作的交流电压。
控制系统通过调节电动机的工作状态,控制列车的速度和停车。
交流传动方式的工作过程如下:首先,供电装置提供交流电能,经过变压器变压换流后,传输到电动机。
电动机利用电磁感应原理,将电能转化为机械能,从而推动列车前进。
控制系统根据列车运行的需要,调节电动机的工作状态,控制列车的速度和停车。
除了直流传动和交流传动方式之外,地铁列车还可以采用其他类型的动力装置,如线性感应驱动、永磁同步驱动等。
这些动力装置的工作原理各不相同,但本质上都是将电能转化为机械能,推动列车前进。
总之,地铁的动力原理是通过电动机将电能转化为机械能,推动列车前进。
直流传动和交流传动是最常见的地铁传动方式,分别通过直流电和交流电驱动电动机工作。
了解地铁的动力原理,有助于我们更好地理解地铁的运行原理,并对其维护和修理提供技术支持。
交流传动技术
![交流传动技术](https://img.taocdn.com/s3/m/250e762a482fb4daa58d4b5b.png)
432
固定闭塞 连续速度控制 可实行自动 控制(ATC)
1832
固定闭塞 提前式分级阶梯 设备控制优先,人控为 辅
媒介:无绝缘模拟轨道电 媒介:无绝缘模拟轨道 媒介:数字电道交叉环 媒介:有绝缘模拟轨道 路; 电路; 线; 电路; 方向:地对车单方向; 方向:地-车间双方向; 方向:地对车单方向; 安全信号传 方向:地对车单方向; 输 载 频 : 1700 、 2000 、 载 频 : 1700 、 2000 、 载频:(36±0.4)kHz、载频:750、850、900、 2300、2600Hz; 2300、2600Hz; (56±0.2)kHz; 1000Hz; 信息量:18个 信息量:27bit 信息量:83.4bit 信息量:10个
点式列车自动控制系统
它也叫点式ATP,采用点式传递信息、车载计算机处理 信息的方式达到列车超速防护。我国京津客运专线(前期) 采用该系统 分有线和无线两种方式,几乎所有高速铁路均采用这种 模式
连续式列车自动控制系统 按信号传输 方式分类
这种系统是在连续式列车自动控制系统中增加点式应答 器作为线路数据的输入、进路信息和临时限速信息的输入, 点连式列车自动控制系统 这种方式有效利用了轨道线路和点式设备。日本ATC和我 国第六次提速所采用的CTCS-2级ATP采用这种模式
关门控制:
入门关闭的时间是7~8秒(不包括脚蹬)。
入门的关闭指令下达时会听到声音信号。声音信 号在门开始移动前1秒开始。
入门可在以下地点关闭:司机室。 无论在什么情况下,打开的门将发出牵引阻塞信 号。
超出正常时间2秒时,发出关门时间错误的信号。
机车车组装备有用于一人操作的规定。该程序包括以下内容: 1.出发时,司机走到驾驶室窗前一侧,开窗,检查并确认站台和门 前无障碍,可以关闭。 2.司机按“关门”按键。该按键安装在司机写字台的一侧。 3.门关闭蜂鸣器发出的警报声(间歇性信号)针对所有门。 4.“关门”按键按下1秒钟后,门开始关闭,同时,“门闩”信号 被取消。被关闭的门将被联锁。 5.门信号蜂鸣器在“关门”按键按下之后5秒钟停止。 6.当所有门被关闭和锁定之后,“关门”按键(的照明)熄灭。此 时,适用司机写字台上的按键和司机写字台旁边的按键。 7.大约在确认信号显示所有的门均已联锁之后2秒钟,列车可以发 车。
交流传动电力机车的性能分析
![交流传动电力机车的性能分析](https://img.taocdn.com/s3/m/455f661e5a8102d276a22f63.png)
摘要交流传动电力机车是指各种变流器供电的交流异步或同步电动机作为传动电机的电力机车或电动车组。
电力牵引交流传动系统主要由受电弓﹑主断路器﹑牵引变压器﹑牵引变流器、三相交流牵引电动机﹑齿轮箱等组成。
根据变流器是否带中间回路,分为交直交变流器或交交变流器两类。
根据中间回路的选择原件的不同,又分为电压型系统﹑电流型系统两种基本结构。
交流传动系统主要由牵引变压器﹑牵引电机﹑牵引变流器组成。
交流传动电力机车具有如下优点:1)良好的牵引性能;2)电网功率因数高,谐波干扰小;3)牵引系统功率大、体积小、重量轻;4)动态性能和黏着利用好;5)显著的节能效果,良好的可靠性、维修性;6)减少磨耗,降低运营成本,解决了对信号和通信设备的干扰。
交流传动技术经过近30年的发展与直流电力机车相比有如上些优良特点,在国内外轨道交通运载装备中得到了广泛的应用。
交流调速系统目前的发展水平可以概括为:1)已从中小容量等级发展到大容量,特大容量等级,并解决了交流调速系统的性能指标问题,填补了直流调速系统在特大容量调速的空白。
2)可以使交流调速系统具有高的可靠性和长期连续运行能力,从而满足有些场合长期不停机检的要求和对可靠性的要求。
3)可以使交流调速系统实现高性能,高精度的转速控制。
除了控制部分可以得到和直流调速控制同样良好的性能外,异步电动机本身固有的优点又使整个控制系统得到更好的动态性能。
采用数字锁相控制的异步电动机变频调速系统,调速精度可高达0.002%。
4)交流调速系统以从直流调速的补充手段发展到与直流调速系统相竞争、相媲美、相抗衡,并逐渐取代的地位。
关键词:交流传动基础;调速;启动;制动;平稳性论文类型:应用与研究abstractAc drive locomotive refers to all converter power supply of asynchronous and synchronous motor communication as the drive motor electric locomotive or emus. Electric traction ac drive system mainly by the bow by electricity, Lord circuit breaker, traction transformer, traction converters, three-phase ac traction motor, gear box etc. According to whether converter with middle circuit, divided into/ZhiJiao converter or hand over two kinds of converter. According to the choice of the original middle loop is different, and divided into the voltage type system, current model system two basic structure. Ac drive system mainly by the traction transformer, traction motor, power converters composition. Ac drive locomotive has the following advantages:1) good traction performance;2) grid power factor is high, the harmonic interference is small;3) traction system power is great, small volume, light weight,4) dynamic performance and gelling use good;5) significant energy saving effect, good reliability, maintainability;6) reduce wear, lower operating costs, solve the signal and communications equipment of interference.Ac drive technology after nearly 30 years of development and dc electric locomotive is compared on some good features, in domestic and international rail transit transport equipment in a wide range of applications.Exchange speed regulation system of the current development level can be summarized as:1) already from small and medium-sized capacity development level to the large capacity, big volume level, and solve the performance index of ac speed adjustment system, to fill the gaps in dc speed control system super capacity in the blank of speed.2) can make the communication speed regulation system has high reliability and long-term continuous operation ability, so as to meet some situations long-term computer retrieval requirements and to keep the reliability of the requirements.3) can make the communication speed regulation system to realize high performance, high accuracy of speed control. In addition to the control part can get and dcspeed control also good performance outside, asynchronous motor itself inherent advantages and make the whole control system has better dynamic performance. The digital phase lock control variable frequency speed regulation system of induction motor speed precision can be as high as 0.002%.4) exchange speed regulation system from the dc speed control to supplement to and development means dc speed control system in competition, comparable to, to compete, and gradually replace status摘要······················································错误!未定义书签。
浅谈高速动车组电力牵引传动控制系统
![浅谈高速动车组电力牵引传动控制系统](https://img.taocdn.com/s3/m/d4346e3f876fb84ae45c3b3567ec102de2bddf3b.png)
浅谈高速动车组电力牵引传动控制系统摘要:高速动车组的发展为我国铁路事业做出了巨大贡献。
人们的出行方式从最初的汽车到飞机,再到现在的高速动车组,也是铁路行业多年努力的结果。
随着经济、高效、安全型高速动车组越来越受到人们的青睐,人们也对高速动车提出了更高的需求,因此有必要对动车牵引系统加以优化,以更好地推进高速动车牵引体系的发展,并维护着我国高速动车交通运输业的平稳发展。
动车组传动系统,是指动车组的动力传动装置。
牵引电机所产生的驱动力经由轴承和变速箱直接传导给轮胎,最后形成牵引作用。
主要阐述了我国高速动车组牵引系统的基本构造,并对各元件的分布情况和工作原理进行了详细描述。
关键词:高速动车组;牵引系统;结构分布;工作原理引言:随着国内高速运输的全面发展,电力机车以其功率大、运量大、牵引力大、速度快等特点在我国得到广泛应用。
特别是近年来,高速动车组列车的速度等级不断提高,载重能力也在不断增加,对列车运行质量提出了更高的要求。
作为动车组列车的十大关键技术之一,牵引传动控制系统的可靠性一直是研究的重点和难点。
结合当前先进的控制理论和方法,深入研究动车组牵引传动控制系统,有效提高牵引系统的可靠性,是保证动车组列车安全稳定运行的一个重大突破点。
通过对动车组列车牵引传动控制系统现状的讨论,分析了列车牵引系统的可靠性。
一、我国高速动车组牵引传动控制系统的发展现状1.牵引动力配置方式以动力集中方式为主我国高速动车组主要是CRH3型动车组,有两种方式:牵引电源配置有集中电源和分散电源。
电力集中的第一种形式是常见的、常规的电力牵引,这种牵引已经使用多年,在上都地区无论是结构上还是技术上都比较成熟,应用广泛。
第二种是权力分散的方式,这种方式现阶段技术还不成熟,使用的范围较小,技术还不太成熟,所具有的缺点是技术不稳定,资金投入不足等缺点。
2.我国高速动车组以直流传动制式为主我国的高速铁路动车组大多采用CRH3系列动车组动车组,牵引传动系统一般分为两种形式:直流传动系统、交流传动系统。
有关电机的分类、选型、区别
![有关电机的分类、选型、区别](https://img.taocdn.com/s3/m/4489b7853c1ec5da51e27052.png)
电机,在设备领域是无处不在,这是一个不孤单的设备,靠谱的泵需要靠谱的电机,电机的好坏直接影响着设备能否正常运行。
电机类型、软启动方式,选型步骤,损坏原因方式处理方法,优劣电机区别.....这一个个问题都是电机幸福指数的重要反映。
下面就让我们一同看看。
一、各类电机的区别01、直流、交流电机区别直流电机结构示意图交流电机结构示意图顾名思义,直流电机使用直流电做为电源,而交流电机是使用交流电做为电源。
从结构上说,直流电机的原理相对简单,但结构复杂,不便于维护。
而交流电机原理复杂但结构相对简单,而且比直流电机便于维护。
在价格方面,功率相同的直流电机高于交流电机。
包括控制速度的调速装置,也是直流高于交流的价格,当然结构和维护也有很大的差异。
而在性能方面,因直流电机的速度稳定,转速控制精准,是交流电机无法达到的,所以在转速的严格要求下不得不采用直流电机替代交流电机。
交流电机调速相对复杂,但却由于化工厂使用交流电源而应用广泛。
02、同步、异步两类电机区别转子的旋转速度与定子一样,那就叫同步电动机。
如若不一致,则叫异步电动机。
03、普通、变频两类电机区别首先明确一点,普通电机并不能当变频电机来使用。
普通电机是按恒频恒压来设计的,不可能完全适应变频器调速的要求,因此不能当做变频电机使用。
变频器对电机的影响主要在电动机的效率和温升。
变频器在运行中能产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行,里面的高次谐波会引起电动机定子铜耗、转子铜耗、铁耗及附加损耗增加。
其中最为显著的是转子铜耗,这些损耗会使电动机额外发热,效率降低,输出功率减小,普通电动机温升一般要增加10%-20%。
变频器载波频率从几千赫到十几千赫,使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严重的考验。
普通电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
交流传动的优越性及发展概况
![交流传动的优越性及发展概况](https://img.taocdn.com/s3/m/9c3fd2f8770bf78a6529541b.png)
一.交流传动的优越性交流传动技术是一门综合技术,但其本质的特点是牵引电动机采用了交流异步电动机,其一系列的优点都是由此而表现出来的。
交流传动机车所以成为现代机车发展的方向,正是由异步电动机的特点和优点所决定的。
和传统的串激直流电动机驱动系统相比,交流异步电动机驱动系统的优越之处表现在机械、绝缘、耐热、耐潮、粘着、维修、效率、重量尺寸等诸多方面。
1.构造简单,转速高,可靠性高,维修简便三相异步电动机结构中无换向器、无电刷装置;所以相同功率的电机,异步电动机的重量轻,体积小,可使机车转向架簧下部分重量相应减少,在机车通过曲线时,轮轨之间侧向压力也就相应减少,这对高速行车尤为重要;同时,由于电动机体积减少,便能选择更为合适的悬挂方式,从而简化了转向架结构;除轴承外无磨擦部件,密封性好,防潮、防尘、防雪性能好;全部电气部件均是绝缘的,且所用绝缘材料均为H级或F级,绝缘性能好,耐热性能好。
因此故障率低,可靠性高。
控制装置是模块结构,故障率也很低,驱动系统的全部运行过程和控制过程均由无触点电子元件完成,所以不存在传统系统中经常发生的触点磨损、粘连、接触不良、机械卡滞等问题。
据美国伯灵顿北方铁路介绍,该公司直流电动机的大修期一般在4万公里至48万公里之间,而交流牵引电动机的大修期可高达120~160万公里。
另外,交流传动机车有完备的微机监视系统和故障诊断系统,可随时监视系统的技术状态,进行故障诊断。
由此可知交流传动系统的可靠性是很高的,维修量很小,且检修简便,维修费用大大降低。
加拿大CP4744型交流传动机车的应用实践表明:不仅延长了计划修间隔,而且减少了计划外修理次数,每台机车每年可减少计划外修6次。
2,功率大,牵引力大,机车可以发挥较高的输出功率异步牵引电动机不存在换向的问题,所以高速行车时电的效率也就较高;同时,牵引电动机因无换向器,空间利用好,使机车功率得以进一步提高,再生制动时亦能输出较大的电功率。
矿井提升机传动系统方案的选择
![矿井提升机传动系统方案的选择](https://img.taocdn.com/s3/m/21ad5d8676a20029bd642d85.png)
矿井提升机传动系统方案的选择作者:程嬛杨豪来源:《中国科技博览》2015年第14期[摘要]矿井提升机传动系统分为转子切电阻、直流、交-交、交-直-交变频调速等四种方案,本文分析了每个传动方案的优缺点,划分适用的功率范围,根据提升能力的强弱选择合适的传动系统方案。
在提升设备配置相同的条件下,结合提升设备吨煤电耗公式和工程实践,确定选择交-交还是交-直-交变频调速方案,以便正确的选择交流调速方案。
[关键词]提升机;传动系统;变频调速中图分类号:TD 文献标识码:A 文章编号:1009-914X(2015)14-0234-02引言矿井提升机也称矿井卷扬机,是煤炭、有色金属矿山等生产过程中的大型关键设备,也是井上和井下的唯一输送纽带。
提升机主要用于升降人员和矿石、物料、煤炭等,其性能和安全可靠性直接影响着煤炭、矿石的生产及作业人员的生命安全,在矿山开采中具有极其重要的地位。
矿井提升机属周期性运行的设备,且其负载为位能型负载,对电控系统要求比较高。
纵观电气传动系统的发展历程,它经历了从恒速到调速,从低性能到高性能,从模拟直流系统到全数字直流系统,从全数字直流系统到变频调速系统等发展过程。
随着技术的发展,大容量的交流变频调速系统已经得到广泛的应用,技术成熟,安全可靠。
目前,我国新建大型矿井提升机传动大部分配置交流传动,因为同等容量的直流电机造价比交流电机昂贵,体积大。
矿井提升机运行性能的差异性主要表现在传动方案的不同,因此,传动方案的选择成为矿井提升机安全生产、经济运行的关键。
1 矿井提升机传动方案1.1 绕线转子异步电动机转子回路串电阻调速传动方案60年代以前,部分小容量提升机传动系统都用绕线转子异步电动机转子回路串电阻调速系统,是通过接触器切换电阻来实现调速,是有级调速、调速范围不大、调速性能差、能耗大、运行效率低、运行状态的切换死区大,这是由于以前国内直流调速不成熟,晶闸管技术也不成熟,所以选这种方案较多。
矿用卡车电传动系统漫谈
![矿用卡车电传动系统漫谈](https://img.taocdn.com/s3/m/b312d453ad02de80d4d8405e.png)
矿用自卸车是目前大型露天矿山的主要运输工具,承担着矿山开采中主要的运输任务,而电传动几乎是当前大型矿用卡车的“标准配置”,它相比机械传动有不少优势,所以应用越来越多,下面就和大家一起学习些矿用卡车电传动控制系统方面的知识:先对在内容中可能出现的名词简单了解一下:交流电:AC,英文Alternating Current,交流电也称“交变电流”,简称“交流”。
一般指大小和方向随时间作周期性变化的电压或电流。
它的最基本的形式是正弦电流。
交流电随时间变化可以以多种多样的形式表现出来。
不同表现形式的交流电其应用范围和产生的效果也是不同的。
直流电:DC,英文Direct Current,是指方向和时间不作周期性变化的电流,但电流大小可能不固定,而产生波形。
又称恒定电流。
整流:将交流电变换为直流电称为AC/DC变换,这种变换的功率流向是由电源传向负载,称之为整流。
整流电路是利用二极管的单向导电性将正负变化的交流电压变为单向脉动电压的电路。
常用的整流电路有:(1)半波整流;(2)全波整流;(3)桥式整流。
变频:就是改变供电频率,变频技术的核心是变频器,它通过对供电频率的转换来实现电动机运转速度率的自动调节。
逆变器:是把直流电能转变成交流电的装置。
GTO:可关断晶闸管GTO(Gate Turn-Off Thyristor)亦称门控晶闸管。
其主要特点为,当门极加负向触发信号时晶闸管能自行关断。
IGBT:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。
应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
(电磁式电涡流)缓行器:是车辆的一种辅助制动装置,它将车辆制动时的动能通过电磁感应转变为逆向电涡流并以热能方式消耗掉,实现减速作用。
特点是无机械磨损,制动平稳,没有冲击和噪声等。
机车交流传动与直流传动的分析比较
![机车交流传动与直流传动的分析比较](https://img.taocdn.com/s3/m/d30e5a41e518964bcf847cfd.png)
班级机车车辆0932班学生姓名指导教师设计(论文)题目机车交流传动与直流传动的分析比较主要研究内容(1)从机车的传动形式了解交流传动的发展优势;(2)以HXD3型机车为例,深入分析交流传动的特点及电路结构,与SS4改机车做出对比分析。
(3)从传动主电路及相关保护、辅助电路等不同角度,探讨新技术在交流传动机车上的应用。
主要技术指标或研究目标(1)比较分析交流电机与直流电机的区别及优缺点。
(2)针对机车变流器存在的区别,深入分析交流传动的优势及发展前景。
(3)围绕主电路的传动形式,对交流传动与直流传动进行深入分析并比较优缺点。
(4)初步掌握交流传动机车上新技术、新装备的使用。
基本要求深入了解交流传动的使用为铁路机车带来的优势,初步掌握交流传动机车新技术的应用,进一步熟悉交流传动机车的基本原理及组成结构。
主要参考资料及文献电力机车控制华平主编机车新技术张中央,刘敏军 HXD3型电力机车张曙光目录1 电力传动形式的发展 (1)2 交流传动与直流传动的比较 (1)2.1 机车工作原理的比较 (1)2.1.1 直流传动电力机车工作原理 (1)2.1.2 交流传动电力机车工作原理 (3)2.2 交流传动与交直流传动机车主电路的比较 (4)2.2.1 HXD3型机车和SS4改机车主电路特点比较 (5)2.2.2 HXD3型机车和SS4改机车变流装置比较 (7)2.2.3 HXD3型机车和SS4改机车牵引电机比较 (8)3 新技术在交流传动机车上的应用 (10)4 总结 (11)致谢 (15)参考文献 (16)1 电力传动形式的发展从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。
1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。
1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。
交流传动与直流传动的比较
![交流传动与直流传动的比较](https://img.taocdn.com/s3/m/cc578ecba58da0116c17498c.png)
《电力牵引交流传动及其控制系统》报告——交流传动与直流传动优劣的比较1.电力传动的发展从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。
1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。
1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。
这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。
1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。
1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。
大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。
1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。
随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。
与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。
2.交流传动与直流传动的比较2.1 机车工作原理的比较2.1.1 直流传动电力机车工作原理直流传动电力机车包括直直型电力机车和交直型整流器电力机车。
直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速和控制的机车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流传动与直流传动优劣的比较一、交流传动背景介绍1、发展历程电力传动诞生于19世纪,20世纪初被广泛应用于工业、农业、交通运输和日常生活中。
执行机构由直流电动机驱动,则称为直流电气传动系统,执行机构由交流电动机驱动,则称为交流电气传动系统。
20世纪30年代,人们已经认识到变频调速是交流电动机一种最理想的调速方法;60年代,随着电力电子技术的发展和变频调速装置的研制成功,交流调速技术成为电动机调速的发展方向;70年代中期,在世界范围内出现能源危机,节约能源成为人们关注的问题;许多过去不调速的传动装置,如风机、水泵等,也都采用了调速传动;90年代以来,随着大功率电力电子器件和微电子技术的飞速发展,以及现代控制理论和控制技术的应用,交流传动调速技术取得了突破性的进展,逐步具备了调速范围宽、稳速精度高、动态响应快以及可作四象限运行等优良的技术性能。
目前,交流传动已经作为一种完全被肯定的系统,大举进入电气传动调速控制的各个领域。
2、交流传动电力机车发展综述随着科技的进步,电力机车的发展方向逐渐成为以安全性、实用性、可靠性、灵活性、舒适性越高越好;费用越低越好的发展目标。
但是,不可避免的,存在着地域规范、供电制式、空间、体积、重量、技术水平、工艺水平等限制。
随着电力电子技术、微电子技术、新材料、新工艺等的出现与发展,行业从业者们满足运输的需求,充分利用新技术,利用新材料,采用新工艺从而实现新一代电力机车的发展。
3、交流传动电力机车的组成辅助变频器主变频器及电机驱动模动力制动模通讯模块空气系统模块电子设备图1-1 机车内部构造4、我国交流传动机车的发展现状我国交流传动技术的研究始于70年代初,可以说起步不晚,但国际上80年代初交流传动机车就已经进入商用化,技术日趋成熟。
铁道部主管领导曾指出,我国发展交流传动不要跟在别人后面先KK,后GTO,再IGBT一步一步地走老路绕弯子,应跨过GTO阶段,直接发展IGBT技术,缩短我国与国际上当今先进技术的差距。
到90年代我国由株洲电力机车研究所和铁道部科学研究院共同研制的,功率达1000kW的电力牵引交流传动系统获得成功。
在此基础上,由株洲电力机车厂、株洲电力机车研究所于1996年共同研制的4轴4000kW,我国第一台交流传动电力机车(原形车)诞生。
以AC4000命名的交流传动机车的研制,标志着我国电力机车进入交流传动时代。
1999年9月我国首台交流传动内燃机车“捷力型”调车内燃机车研制成功;2000年6月由大连机车车辆厂和西门子公司合作研制生产的DF4DJ型交流传动内燃机车落成,该机车为客货运两用,它的研制成功标志着我国大功率内燃机车跨入了将全面实现交流化的新时代。
机车设计轴重为23±3%,计算整备重量为138±3%t,机车的最大速度为145km/h,持续速度为19.9km/h,持续牵引力为444kN,轮周功率为2460kW,轮周制动功率为2850kW。
二、直流传动介绍1、直流传动概述直流传动系统主要分为两种:直-直传动系统和交-直传动系统。
直-直传动系统工作原理:直流斩波实现直流电压调节。
该系统主要在地铁机车、工矿机车等传动系统中采用。
交-直传动系统工作原理:整流器实现AC-DC变换并调节电压。
该系统主要在干线电力机车及内燃机车中采用。
图2-1 直-直传动系统图2-2 交-直传动系统速度调节方法:由Φ-=e C IR U n 可得,有三种方法,调节电枢电压,调节电枢电流和调节励磁电流。
2、直流调速的理论分析调速系统的调速技术指标主要分为:静态指标和动态指标。
2.1静差度S静差度S 表示出生产机械运行时转速稳定的程度。
根据000e e n n n S n n -∆==,当负载变化时,生产机械转速的变化要能维持在一定范围之内,即要求静差度S 小于一定数值图2-3 调速曲线电动机的机械特性愈硬,则静差度愈小,转速的相对稳定性就愈高;在一个调速系统中,如果在最低转速运行时能满足静差度的要求,则在其他转速时必能满足要求2.2调速范围D在额定负载下,允许的最高转速和在保证生产机械对转速变化率要求的前提下所能达到的最低转速之比称为调速范围 。
2.3动态技术指标从一种稳定速度变化到另一种稳定速度运转所经过的一段过渡过程,称为动态过程。
3、负载特性与调速方式图2-4 负载类型负载为恒转矩型的生产机械应尽可能选用恒转矩性质的调速方式,且电动机的额定转矩T应等于或略大于负载转矩TL;负载为恒功率型的生产机械应尽可能选用恒功率性质的调速方式,且电动机的额定功率PN应等于或略大于生产机械的静负载功率PL。
4、直流传动机车控制系统图2-5 闭环控制系统图2-6交直电力机车主电路三、交流传动介绍1、交流传动概述交流传动系统主要分为三种:直-交传动系统、交-交传动系统和交-直-交传动系统。
直-交传动系统工作原理:逆变器实现DC-AC变换并调节电压。
该系统主要在干线电力机车及内燃机车中采用。
交-交传动系统工作原理:变流器将频率电压恒定的三相交流电变换成频率电压可调的三相交流电。
该系统主要应用在低频交流传动系统中如轧钢等。
交-直-交传动系统工作原理:将频率电压恒定的三相交流电变换成直流电,再将直流电变换成频率电压可调的三相交流电。
该系统广泛用于交通、工业、能源等领域。
图3-1 直-交传动系统图3-2 交-交传动系统图3-3 交-直-交传动系统交流传动系统调速方法主要有三种:变极调速:有级的;变转差调速:不能改变电动机的同步速度,调速范围有限,损耗大,效率低;变频调速:效率高,调速范围广,调节精度高,目前应用最广泛,最有市场前景。
在进行电机调速时,常须考虑的一个重要因素是:希望保持电机中每极磁通量为额定值不变。
如果磁通太弱,没有充分利用电机的铁心,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。
因此,在调频调速时,需要同时改变加在电机上的电压(VF+VV)。
异步电机的变压变频调速系统一般简称为变频调速系统。
由于在调速时转差功率不随转速而变化,调速范围宽,无论是高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美,因此现在应用面很广。
2、交流传动的技术特点人们很早地认识到交流传动的优越性。
交流传动技术是一门综合技术,但其本质的特点是牵引电动机采用了交流异步电动机,其一系列的优点都是由此而表现出来的。
交流传动机车所以成为现代机车发展的方向,正是由异步电动机的特点和优点所决定的。
和传统的串激直流电动机驱动系统相比,交流异步电动机驱动系统的优越之处表现在机械、绝缘、耐热、耐潮、粘着、维修、效率、重量尺寸等诸多方面。
2.1构造简单异步电动机是所有电机中结构最简单的电动机,除轴承外,没有其他机械接触部分。
串激直流电动机则不然,结构复杂。
定子、转子都有绝缘要求很高的绕组,有换向器装置和电刷机构,磨擦部分多,接线复杂,机械转速受换向条件和机械强度的限制,只能达到2500r/min左右。
而交流异步电动机转速可达4000r/min以上,试验转速甚至可达6000r/min,这是直流电机所忘尘莫急的。
2.2粘着性能好异步电动机有很硬的机械特性,所以当某电机发生空转时,随着转速的升高,转矩很快降低,具有很强的恢复粘着的能力。
空转发生时,转速上升值不大,即使是同步转速,与原工作点的转速差不会超出5%以上。
串激电动机则不然,转矩变化一点,转速就有很大的变化。
异步电动机的工作点可以很方便地进行平滑调节,以实现最大可能的粘着利用,不会出现粘着中断情况。
根据检测有关粘着控制的信号,准确、迅速地改变逆变器输出的电压和频率,寻求最佳工作点,使驱动系统既不能发生空转,又能充分发挥最大的牵引力。
可实现各轴单独控制。
当某台电机发生空转时,可调节该台电机,这样能充分利用机车的粘着性能。
在交—直传动系统中,某轴空转时,需要使所有各轴电机卸载,这样就大大降低了机车的牵引能力。
2.3功率大,牵引力大这个概念是指在其它条件大致相同的前提下,在机车结构所提供的空间条件下,可以装更大功率的异步电动机。
如加拿大改造的CP4744号机车,在给定的设计空间条件下,直流电动机的功率大约被限制在600~700kW/轴。
装用BBC6FRA40B异步牵引电动机,其功率可达1492kW/轴以上。
正因如此,才可使机车的牵引功率大大提高。
牵引功率大导致牵引力大,而又由于粘着性能好,大的牵引力能充分发挥其牵引能力。
我们可以比较一下ND5型交直流传动机车和SD60MAC交流传动机车的牵引力情况:ND5机车的柴油机的标定功率为2940kW,起动牵引力为533.6kN,持续速度为22.2km/h时的持续牵引力为359.8kN;SD60MAC机车的柴油机的标定功率为2835kW,起动牵引力为781kN,持续速度为20.5km/h时的持续牵引力为521kN。
后者与前者相比,不论起动牵引力和持续牵引力都高出45%。
目前,从国外统计资料来看,不同类型电机其单位重量功率可达到的比值为:直流电动机为0.33kW/kg,同步电动机为0.5kW/kg,异步电动机为0.68kW/kg。
随着科技的发展,异步电动机的单位重量功率将越来越高。
如日本新干线300系列原型试验车,所采用的交流异步牵引电动机其功率达到300kW,而其重量不足400kg,单位重量功率可达0.75kW/kg。
这一经济技术指标,对世界各国正在大力发展的重载和高速机车尤为有利。
2.4可靠性高,维修简便交流异步电动机无换向器、无电刷装置;除轴承外无磨擦部件,密封性好,防潮、防尘、防雪性能好;全部电气部件均是绝缘的,且所用绝缘材料均为H 级或F级,绝缘性能好,耐热性能好。
因此故障率低,可靠性高。
控制装置是模块结构,故障率也很低,驱动系统的全部运行过程和控制过程均由无触点电子元件完成,所以不存在传统系统中经常发生的触点磨损、粘连、接触不良、机械卡滞等问题。
CP4744型机车的运用实践表明:只发生过极少的故障,而这些故障无一件与逆变器或牵引电动机一类的主要硬件有关。
MaK公司制造的交流牵引电动机连续工作7年没有发生过一件烧损事故。
据美国伯灵顿北方铁路介绍,该公司直流电动机的大修期一般在4万公里至48万公里之间,而交流牵引电动机的大修期可高达120~160万公里。
另外交流传动机车有完备的微机监视系统和故障诊断系统,可随时监视系统的技术状态,进行故障诊断。
综上所述,可知交流传动系统的可靠性是很高的,维修量很小,且检修简便,维修费用大大降低。
加拿大CP4744型交流传动机车的应用实践表明:不仅延长了计划修间隔,而且减少了计划外修理次数,每台机车每年可减少计划外修6次。
2.5效率高,利用率高、使用灵活性强交流传动系统的总效率约为0.90,而交直流传动系统的总效率约为0.86。