大学物理上册习题
大学物理上册习题
练习一 位移 速度 加速度一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动;(D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s, v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s .(B) 11.75 m/s . (C) 12.5 m/s .(D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1所示,则以下说法正确的是(A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和3.16秒. (B) 1.78秒.(C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为t = 秒.2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点.则 质点的加速度a = (SI);图1.1质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cosω t i+B sinω t j, A, B ,ω为常量.则质点的加速度矢量为a= , 轨迹方程为.三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二圆周运动相对运动一.选择题1. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.2. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.4. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.5. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cosθ ,0 , v02 cos2θ/g.(B) g cosθ ,g sinθ, 0.(C) g sinθ, 0, v02/g.(D) g , g , v02sin2θ/g.二.填空题1. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为.2. 任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;任意时刻a=0的运动是运动;任意时刻a t=0, a n=常量的运动是运动.3. 已知质点的运动方程为r=2t2i+cosπt j (SI), 则其速度v= ;加速度a= ;当t=1秒时,其切向加速度a t= ;法向加速度a n= .三.计算题1. 一轻杆CA以角速度ω绕定点C转动,而A端与重物M用细绳连接后跨过定滑轮B,如图2.1.试求重物M的速度.(已知CB=l为常数,ϕ=ωt,在t时刻∠CBA=α,计算速度时α作为已知数代入).2. 升降机以a=2g的加速度从静止开始上升,机顶有一螺帽在t0=2.0s时因松动而落下,设升降机高为h=2.0m,试求螺帽下落到底板所需时间t及相对地面下落的距离s.练习三牛顿运动定律一.选择题1. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动;(B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动;(D) 物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.2. 如图3.1(A)所示,m A>μm B时,算出m B向右的加速度为a,今去掉m A而代之以拉力T= m A g,如图3.1(B)所示,算出m B的加速度a',则(A) a > a '.(B) a = a '.(C) a < a '.(D) 无法判断.3. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则(A) 斜面保持静止.(B) 斜面向左运动.图3.1(C) 斜面向右运动.(D) 无法判断斜面是否运动. 4. 如图3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为 (A) 3mg . (B) 2mg . (C) 1mg .(D) 8mg / 3. 5. 如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动. (B) 向上作匀速运动. (C) 立即处于静止状态.(D) 在重力作用下向上作减速运动.二.填空题1. 如图3.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos θ - mg = 0 (1) 也有人在沿绳子拉力方向求合力写出T - mg cos θ = 0 (2)显然两式互相矛盾,你认为哪式正确?答 . 理由是 .2. 如图3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m的物体A ,它与盘的静摩擦系数为μ,圆盘绕中心轴OO '转动,当其角速度ω 小于或等于 时,物A 不致于飞出.3. 一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为ω的匀速圆周运动,如图3.7所示.则l 1, l 2两绳上的张力 T 1= ; T 2= . 三.计算题1. 一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环, 如图3.8所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少?图3.3 < < < < 图3.4aa2m 图3.7A环与绳之间的摩擦力多大?2. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1. 以下说法正确的是(A) 大力的冲量一定比小力的冲量大;(B) 小力的冲量有可能比大力的冲量大;(C) 速度大的物体动量一定大;(D) 质量大的物体动量一定大.2. 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体(A) 动量守恒,合外力为零.(B) 动量守恒,合外力不为零.(C) 动量变化为零,合外力不为零, 合外力的冲量为零.(D) 动量变化为零,合外力为零.3. 一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则(A) 此过程动量守恒,重力与地面弹力的合力为零.(B) 此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反.(C) 此过程动量守恒,合外力的冲量为零.(D) 此过程前后动量相等,重力的冲量为零.4. 质量为M的船静止在平静的湖面上,一质量为m的人在船上从船头走到船尾,相对于船的速度为v..如设船的速度为V,则用动量守恒定律列出的方程为(A) MV+mv = 0.(B) MV = m (v+V).(C) MV = mv.(D) MV+m (v+V) = 0.(E) mv +(M+m)V = 0.(F) mv =(M+m)V.5. 长为l的轻绳,一端固定在光滑水平面上,另一端系一质量为m的物体.开始时物体在A点,绳子处于松弛状态,物体以速度v0垂直于OA运动,AO 长为h.当绳子被拉直后物体作半径为l的圆周运动,如图4.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A)0, mv0(h/l-1).A 0(B) 0, 0.(C) mv 0(l -h ), 0.(D) mv 0(l -h , mv 0(h/l -1). 二.填空题1. 力 F = x i +3y 2j (S I) 作用于其运动方程为x = 2t (S I) 的作直线运动的物体上, 则0~1s 内力F 作的功为A = J .2. 完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力, 则甲船的速率v 1与乙船的速率 v 2相比较有:v 1 v 2(填<、=、>), 两船的速度方向 .3. 一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远 m .三.计算题1. 一质点作半径为r ,半锥角为θ的圆锥摆运动,其质量为m ,速度为v 0如图4.2所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I2.2. 一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五 功能原理 碰撞一.选择题1. 以下说法正确的是(A) 功是标量,能也是标量,不涉及方向问题;(B) 某方向的合力为零,功在该方向的投影必为零; (C) 某方向合外力做的功为零,该方向的机械能守恒;(D) 物体的速度大,合外力做的功多,物体所具有的功也多. 2. 以下说法错误的是(A) 势能的增量大,相关的保守力做的正功多;(B) 势能是属于物体系的,其量值与势能零点的选取有关; (C) 功是能量转换的量度;(D) 物体速率的增量大,合外力做的正功多.3. 如图5.1,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下, M 与m 间有摩擦,则(A) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能守恒;(B) M 与m 组成系统的总动量及水平方向动量都守恒, M 、m 与地组成的系统机械能不守恒;m(C) M 与m 组成的系统动量不守恒, 水平方向动量不守恒, M 、m 与地组成的系统机械能守恒;(D) M 与m 组成的系统动量不守恒, 水平方向动量守恒, M 、m 与地组成的系统机械能不守恒.4. 悬挂在天花板上的弹簧下端挂一重物M ,如图5.2所示.开始物体在平衡位置O 以上一点A . (1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2 ,则 (A) A 1 > A 2.(B) A 1 < A 2. (C) A 1 = A 2.(D) 无法确定.5. 一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A) 汽车的加速度是不变的;(B) 汽车的加速度与它的速度成正比; (C) 汽车的加速度随时间减小;(D) 汽车的动能与它通过的路程成正比. 二.填空题 1. 如图5.3所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O '点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系统的弹性势能为 ;如以O '点为弹性势能零点,则P 点处系统的弹性势能为 ;如取O '点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为 .2. 己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为 ;如取无穷远处的引力势能为零,则系统的引力势能为 .3. 如图5.4所示, 一半径R =0.5m 的圆弧轨道, 一质量为m =2kg 的物体从轨道的上端A 点下滑, 到达底部B 点时的速度为v =2 m /s, 则重力做功为,正压力做功为 ,摩擦力做功为 .正压N 能否写成N = mg cos α = mg sin θ (如图示C 点)?答 . 三.计算题1. 某弹簧不遵守胡克定律,若施力F ,则相应伸长为x , 力与伸长x 的关系为F =52.8 x +38.4x 2 (SI)求:(1) 将弹簧从定长 x 1 = 0.50m 拉伸到定长x 2 = 1.00m 时,外力所需做的功.< 图5.2图5.3图5.4 B(2) 将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长x 2 = 1.00m,再将物体由静止释放,求当弹簧回到x 1 = 0.50m 时,物体的速率. (3) 此弹簧的弹力是保守力吗?为什么?2. 如图5.5所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点. 乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O '.整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(θ=60︒)处乙球对轨道的压力.练习六 力矩 转动惯量 转动定律一.选择题1. 以下运动形态不是平动的是 (A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动.2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为μ,求摩擦力矩M μ . 先取微元细杆d r ,其质量d m = λd r = (m /l )d r .它受的摩擦力是d f μ= μ(d m )g =(μmg /l )d r ,再进行以下的计算,(A) M μ=⎰r d f μ=⎰lr r lmgd μ=μmgl/2.(B) M μ=(⎰d f μ)l/2=(⎰lr l mgd μ)l/2=μmgl/2. (C) M μ=(⎰d f μ)l/3=(⎰l r lmg0d μ)l/3=μmgl/3. (D) M μ=(⎰d f μ)l =(⎰l r lmg0d μ)l =μmgl . 4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微图5.5元,如图6.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22-R 12)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰. (B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22 . (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12. (D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) . (G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B .. (B) I A <I B ..(C) 无法确定哪个大. (D) I A =I B .二.填空题1. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量 I 2 = . 如果M = m ,r = R , 则I 1 I 2 .2. 如图6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦, α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1α2(填< = >) . 3. 如图6.3所示,半径分别为RA 和RB 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度a t A : a t B= ;法向加速度a n A :a n B = . 三.计算题1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图6.4,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60︒角时的角加速度和角速度.图6.3 (1) (2) 图6.22. 一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为μ ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.练习七 转动定律(续) 角动量一.选择题1. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大. 3. 质量相同的三个均匀刚体A 、B 、C(如图7.1所示)以相同的角速度ω绕其对称轴旋转, 己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则(A) A 先停转. (B) B 先停转.(C) C 先停转.(D) A 、C 同时停转.4. 几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变.(D) 转速可能不变,也可能改变.5. 一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图7.2所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等.(B) 左边小于右边. (C) 右边小于左边. (D) 无法判断. 二.填空题1. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8π rad/s ,则主动轮在这图7.2图7.1段时间内转过了 圈.2. 在OXY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .3. 一薄圆盘半径为R , 质量为m ,可绕AA '转动,如图7.3所示,则此情况下盘的转动惯量I AA ' = .设该盘从静止开始,在恒力矩M 的作用下转动, t 秒时边缘B 点的切向加速度a t = ,法向加速度a n = . 三.计算题1. 如图7.4所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力? 2. 飞轮为质量m = 60kg , 半径r = 0.25m 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图7.5所示, 闸瓦与飞轮的摩擦系数μ = 0.4, 飞轮的转动惯量可按圆盘计算.(1) 设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转.(2) 欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八 转动中的功和能 对定轴的角动量一.选择题1. 在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能, 以下说法正确的是(A) m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;(B) m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒;(C) 只有m 1、m 2组成系统对过O 点轴的角动量守恒;(D) 只有m 1、m 2和地组成系统的机械能守恒;(E) m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒.2. 银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A) 自转周期变小,动能也变小.(B) 自转周期变小,动能增大.图7.3 图7.4图7.5(C) 自转周期变大,动能增大.(D) 自转周期变大,动能减小.(E) 自转周期不变,动能减小.3. 以下说法正确的是:(A) 力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B) 力矩的功与力的功在量纲上不同, 力矩做功使转动动能增大, 力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C) 转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同;(D) 转动动能和平动动能, 力矩的功与力的功在量纲上完全相同.4. 如图8.1所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成θ角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足(A) ω1一定大于ω2.(B) ω1一定等于ω2. (C) ω1一定小于ω2. (D) 都不一定.5. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒.(B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒.(C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒.(D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒.二.填空题1. 一辆能进行遥控的电动小汽车(质量m =0.5kg)可在一绕光滑竖直轴转动的水平平台上(平台半径为R =1m,质量M =2kg)作半径为r =0.8m 的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v =5m/s 的匀速圆周运动时,平台转动的角速度为ω1 = ;当小车急刹车停下来时,平台的角速度ω2= ;当小车从静止开始在平台上运行一周时,平台转动的角度θ = .2. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为 , 力F 做的功为 .3. 转动着的飞轮转动惯量为J , 在t =0时角速度为ω0, 此后飞轮经历制动过程,阻力矩M μ的大小与角速度ω的平方成正比, 比例系数为k (k 为大于0的常数), 当ω =ω0/3 时, 飞轮的角加速度α= , 从开始制动到ω =ω0/3 所经过的时间t = .三.计算题图8.11. 落体法测飞轮的转动惯量,如图8.2所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m 的重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2. 如图8.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.练习九 力学习题课一.选择题1. 圆盘绕O 轴转动,如图9.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将 (A) 增大.(B) 不变.(C) 减小. (D) 无法判断.2. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为ω0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为(A) 2ω0 .(B) 2ω0 .(C) 4ω0 .(D) ω0/2 .(E) ω0/2.3. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为α1和α2.则以下说法不正确的是(A) α1可能大于α2 ;(B) α1可能小于α2 ;(C) α1可能等α2 ;(D) α1一定大于α2 .4. 一圆锥摆,如图9.2,摆球在水平面内作圆周运动.则 (A) 摆球的动量, 摆球与地球组成系统的机械能都守恒.(B) 摆球的动量, 摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒, 摆球与地球组成系统的机械能守恒.图8.3图9.1(D) 摆球的动量守恒, 摆球与地球组成系统的机械能不守恒.5. 如图9.3,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒.(B) 动量守恒,机械能不守恒. (C) 动量不守恒,机械能守恒. (D) 动量、机械能都守恒.二.填空题 1. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为 1.4×107m/s,则钍核的速度大小为 ,方向为 .2. 如图9.4所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .3. 最大摆角为θ0的摆在摆动进程中,张力最大在θ = 处,最小在θ = 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为θ, -θ0≤θ≤θ0)绳子的张力为 .三.计算题1. 如图9.5,一块宽L =0.60m 、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO '自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg 的子弹垂直击中木板A 点,A 离转轴OO '距离为l =0.36m,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求 (1) 子弹给予木板的冲量;(2) 木板获得的角速度.(已知:木板绕OO '轴的转动惯量J =ML 2 / 3)2. 用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深?设铁锤两次击钉的速度相同.练习十 状态方程 压强公式 自由度一.选择题1. 把一容器用隔板分成相等的两部分,左边装CO 2 ,右边装H 2,两边气体质量相同,温度相同,如果隔板与器壁无摩擦,则隔板应(A) 向右移动.(B) 向左移动.图9.3图9.4。
大学物理习题大学物理上
《大学物理上》模拟复习题一一.选择题1.质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t ,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A) mv/∆t .(B) mv/∆ t -mg . (C) mv/∆ t +mg . (D) 2mv/∆t .2. 一圆锥摆,如图1.2,摆球在水平面内作圆周运动.则(A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.(B) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒,摆球对悬点的角动量、摆球与地球组成系统的机械能守恒.(D) 摆球的动量、摆球对悬点的角动量守恒, 摆球与地球组成系统的机械能不守恒.3. 一物体作简谐振动,振动方程为x =A cos(ωt +π/4 ) 在t=T/4(T 为周期)时刻,物体的加速度为(A) 222ωA -. (B)222ωA .(C) 232ωA -.(D)232ωA .4. 以下说法错误的是(A) 波速与质点振动的速度是一回事,至少它们之间相互有联系;(B) 波速只与介质有关,介质一定,波速一定,不随频率波长而变,介质确定后,波速为常数;(C) 质元的振动速度随时间作周期变化;(D) 虽有关系式v = λν,但不能说频率增大,波速增大. 5. 两根轻弹簧和一质量为m 的物体组成一振动系统,弹簧的倔强系数为k 1和k 2,并联后与物体相接.则此系统的固有频率为ν等于(A) π2//)(21m k k +. (B) π2/)/(2121m k k k k +.(C) π2)/(21k k m +. (D)π2)/()(2121m k k k k +.6. 下面各种情况中可能存在的是(A) 由pV =(M/M mol )RT 知,在等温条件下,逐渐增大压强,当p →∞时,V →0; (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;图1.1(C) 由E =(M/M mol )iRT /2知,当T →0时,E →0;(D) 由绝热方程式V γ-1T =恒量知,当V →0时,T →∞、E →∞.7. AB 两容器分别装有两种不同的理想气体,A 的容积是B 的两倍,A 容器内分子质量是B 容器分子质量的1/2.两容器内气体的压强温度相同,(如用n 、ρ、M 分别表示气体的分子数密度、气体质量密度、气体质量)则(A) n A =2n B , ρA =ρB , M A = 2M B . (B) n A = n B /2 , ρA =ρB /4 , M A = M B /2. (C) n A = n B , ρA =2ρB , M A = 4M B . (D) n A = n B , ρA =ρB /2 , M A = M B .8. 如图1.3所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知 n 1 <n 2 >n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n 2e .(B) 2n 2e -λ/(2 n 2 ). (C) 2n 2e -λ. (D) 2n 2e -λ/2.9. 如图1.4所示,s 1、s 2是两个相干光源,它们到P 点的距离分别为r 1和 r 2,路径s 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径s 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1).(B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1].(C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1).(D) n 2 t 2-n 1 t 1.10. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a = b . (B) a = 2b . (C) a = 3b . (D) b = 2a . 二.填空题1.如图2.1所示,一质点在几个力的作用下,沿半径为R 的圆周运动,其中一个力是恒力F 0,方向始终沿x 轴正向,即F 0= F 0i ,当质点从A 点沿逆时针方向走过3/4圆周到达B 点时,F 0所作的功为W .2. 如图2.2所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .图1.3ss图1.4 图2.2图2.13. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为 ,方向为 .4. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = .5. 如图2.3所示,波长为λ 的平行单色光斜入射到距离为d 的双缝上,入射角为θ ,在图中的屏中央O 处(O s 1=O s 2) ,两束相干光的位相差为 .三.计算题1.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?2. 一弦线,左端系于音叉的一臂的A 点上,右端固定在B 点,并用7.20N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图3.1).这样,在弦线上产生了入射波和反射波,并形成了驻波,弦的线密度η=2.0g/m, 弦线上的质点离开其平衡位置的最大位移为4cm,在t = 0时,O 点处的质点经过其平衡位置向下运动.O 、B 之间的距离为2.1m .如以O 为坐标原点,向右为x 轴正方向,试写出: (1) 入射波和反射波的表达式;(2) 驻波的表达式.3. 一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05m 2, 活塞与缸壁之间不漏气,摩擦忽略不计, 活塞左侧通大气,大气压强p 0=1.0×105pa,倔强系数k =5×104N/m 的一根弹簧的两端分别固定于活塞和一固定板上,如图 3.2,开始时气缸内气体处于压强、体积分别为p 1=p 0=1.0×105pa, V 1=0.015m 3的初态,今缓慢的加热气缸,缸内气体缓慢地膨胀到V 2=0.02m 3.求:在此过程中气体从外界吸收的热量.4. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ .(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,图3.1图3.2 图2.3还是暗条纹?《大学物理上》模拟复习题二一.选择题1. 圆盘绕O 轴转动,如图1.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将(A) 增大. (B) 不变. (C) 减小.(D) 无法判断.2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3. 如图1.2,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量、机械能都守恒.4. 以下说法不正确的是(A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;(B) 从动力学角度看振动是单个质点受到弹性回复力的作用而产生的,波是各质元受到邻近质元的作用而产生的;(C) 从能量角度看,振动是单个质点的总能量不变,只是动能与势能的相互转化;波是能量的传递,各质元的总能量随时间作周期变化,而且动能与势能的变化同步;(D) 从总体上看,振动质点的集合是波动.5. 一辆汽车以25ms -1的速度远离一静止的正在呜笛的机车,机车汽笛的频率为600Hz ,汽车中的乘客听到机车呜笛声音的频率是(已知空气中的声速为330 ms -1)(A) 555Hz . (B) 646 Hz . (C) 558 Hz . (D) 649 Hz .图1.2图1.16. 由热力学第一定律可以判断一微小过程中d Q 、d E 、d A 的正负,下面判断中错误的是(A) 等容升压、等温膨胀 、等压膨胀中d Q >0; (B) 等容升压、等压膨胀中d E >0; (C) 等压膨胀时d Q 、d E 、d A 同为正; (D) 绝热膨胀时d E >0.7. 摩尔数相同的两种理想气体,一种是氦气,一种是氢气,都从相同的初态开始经等压膨胀为原来体积的2倍,则两种气体 (A) 对外做功相同,吸收的热量不同. (B) 对外做功不同,吸收的热量相同.(C) 对外做功和吸收的热量都不同.(D) 对外做功和吸收的热量都相同.8. 如图1.3所示的是两个不同温度的等温过程,则 (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多. (C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多.9. 如图1.4所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n 2 e / (n 1 λ1 ).(B) 4 π n 1 e / (n 2 λ1 ) +π.(C) 4 π n 2 e / (n 1 λ1 ) +π.(D) 4π n 2 e / (n 1 λ1 ).10. 在如图1.5所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移. (B) 向下平移. (C) 不动.(D) 条纹间距变大. 二.填空题1. 如图2.1所示,波源s 1和s 2发出的波在P 点相遇,P 点距波源s 1和s 2的距离分别为3λ和10λ/3,λ为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波源振动方向 (填相同或不同),振动频率 ,(填相同或不同),波源s 2 的位相比s 1 的位相领先 .2. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能的 ; 当这物块在平衡位置时,弹簧的长度比原长长∆ l ,这一振动系统的周期为 .图1.3图1.4图1.5 s 1s 2P 图2.13.以一定初速度斜向上抛出一个物体, 如果忽略空气阻力, 当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度a t 的大小为a t = , 法向加速度a n 的大小为a n = . .4.对于处在平衡态下温度为T 的理想气体, (1/2)kT (k 为玻兹曼常量)的物理意义是 .5. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波. 三.计算题1.一质量为m 的陨石从距地面高h 处由静止开始落向地面,设地球质量为M ,半径为R ,忽略空气阻力,求:(1) 陨石下落过程中,万有引力的功是多少? (2) 陨石落地的速度多大?2. 一定滑轮的半径为R , 转动惯量为I ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图3.1所示,设弹簧的倔强系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力,现将物体m 从平衡位置下拉一微小距离后放手,证明物体作简谐振动,并求出其角频率.3. 一定量的理想气体经历如图3.2所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.己知:T C = 300K, T B = 400K,试求此循环的效率.4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少?图3.1 图3.2《大学物理上》模拟复习题一答案一.选择题1. (A)mv/∆t .2. (A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.3.(C) 232ωA -.4.(D) 虽有关系式v = λν,但不能说频率增大,波速增大.5.(C).6. (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;7. (D) n A = n B , ρA =ρB /2 , M A = M B .8. (D) 2n 2e -λ/2.9. (B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. 10. (A) a = b . 二.填空题1. -F 0R .2. cot θ, mg/sin θ3. 2.4×105m/s 与α粒子运动方向相反4. 1.255. 2πd sin θ /λ.三.计算题 1.(1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2) 小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为 ω2=0.628rad/s2.(1)波速u =(张力/线密度)1/2=(T/η)1/2=60m/s 波长 λ=u/ν=1.2m 因形成驻波,故行波振幅为A =4⨯10-2÷2=2⨯10-2m由旋矢法(如图)可知O 点振动的初位相为π/2,则入射波在原点O 引起的振动为y 0=2⨯10-2cos(100πt+π/2) (SI)所以入射波为y 1=2⨯10-2cos[100π (t -x /60)+π/2 ]=2⨯10-2cos(100πt-10πx /6+π/2) (SI), 反射波为y 2=2⨯10-2cos[100πt -10π(2l -x )/6+π/2+π]=2⨯10-2cos(100πt+10πx/6+π/2) (SI)驻波方程为y=y1+y2=4⨯10-2cos(10πx/6)cos(100πt+π/2) (SI)3. 从V1变到V2,弹簧压缩x=(V2-V1)/S,则p2=p0+kx/S= p0+k(V2-V1)/S2∆E=νC V(T2-T1)=(i/2)(p2V2-p1V1)=(i/2){[p0+k(V2-V1)/S2]V2-p0V1}=(i/2)[p0(V2-V1)+k V2(V2-V1)/S2]A=p0Sx+(1/2)kx2=p0(V2-V1)+(1/2) k [(V2-V1)/S]2,Q=∆E+A=p0(V2-V1)(i+2)/2+k(V2-V1)[(i+1)V2-V1]/(2S2)=7000J4. 因是空气薄膜,有n1>n2<n3,且n2=1,得δ=2e+λ/2,暗纹应δ=2e+λ/2=(2k+1)λ/2,所以2e=kλe=kλ/2因第一条暗纹对应k=0,故第4条暗纹对应k=3,所以e=3λ/2空气劈尖角θ=e/l=3λ/(2l)=4.8⨯10-5rad(2) 因δ/λ'=(2e+λ'/2)/λ'=3λ/λ'+1/2=3故A处为第三级明纹,棱边依然为暗纹.(3) 从棱边到A处有三条明纹,三条暗纹,共三条完整条纹.《大学物理上》模拟复习题二答案一.选择题1. (B) 不变.2. (B) 变速直线运动.3. (C) 动量不守恒,机械能守恒.4. (A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;5. (B) 646 Hz .6. (D) 绝热膨胀时d E >0.7. (A) 对外做功相同,吸收的热量不同. 8. (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. 9. (C) 4 π n 2 e / (n 1 λ1 ) +π. 10..(C) 不动. 二.填空题1.相同 相同,2π/3.2. 3/4 ; 2π(∆l /g )1/2.3. g sin θ, g cos θ .4.温度为T 时每个气体分子每个自由度平均分得的能量.5.波动 横 三.计算题 1. (1) A =()r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/22. 平衡时 mg=kx 0振动时,设某时刻物体相对平衡位置的位移为x ,对物体和定滑轮分别列方程,有 mg-T=ma TR-k (x+x 0)R=I β a=R β x=R θ 于是得mgR -k (x+x 0)R=(mR 2+I )β -kxR=- kR 2θ= (mR 2+I )β = (mR 2+I )d 2θ /d t 2d 2θ /d t 2+[kR 2/(I+mR 2)]θ=0故物体作揩振动,其角频率为ω=[kR 2/(I+mR 2)]1/23.吸热过程AB为等压过程Q1=νC p(T B-T A)放热过程CD为等压过程Q2=νC p(T C-T D)η=1-Q2/Q1=1- (T C-T D)/(T B-T A)=1- (T C/T B)[(1-T D/T C)/(1-T A/T B) 而p Aγ-1T A-γ= p Dγ-1T D-γp Bγ-1T B-γ= p Cγ-1T C-γp A=p B p C=p D所以T A/T B=T D/T C故η=1-T C/T B=25%4. . (1) (a+b) sinθ=k maxλ<(a+b)k max<(a+b)/λ=3.39所以最高级数k max=3(1)(a+b) (sin30°+sinθ')=k'maxλk'max<(a+b) (sin30°+1)/λ=5.09所以k'max=5。
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
大学基础教育《大学物理(上册)》真题练习试题 附解析
大学基础教育《大学物理(上册)》真题练习试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
2、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
4、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
5、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
6、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()7、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
《大学物理习题集》(上)习题解答
)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理学(第五版)上册课后习题选择答案_马文蔚
习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( C )(A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。
下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
大学物理上册第一章 质点运动学 习题及答案
第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
大学物理上试卷(有答案)
一、选择题(每题3分,共10题)1.一质点在平面上作一般曲线运动,其瞬时速度为υ,瞬时速率υ为,某一段时间内的平均速度为υ ,平均速率为υ,它们之间的关系必定有:( D )A υ=υ,υ= υ B υ≠υ, υ=υC υ ≠υ,υ ≠υD υ =υ,υ ≠υ 3.一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量. ( A ) A 动量增量大小为0v m,方向竖直向下. B 动量增量大小为v m ,方向竖直向上. C 动量增量大小为0v m 2 ,方向竖直向下. D 动量增量大小为v m 2 ,方向竖直向上.4.地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为( A )。
A GMR mB R GMmC R GMmD R GMm25.一刚体以每分钟60转绕Z 轴做匀速转动(ω沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r 543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( C )A υ =94.2i +125.6j +157.0k ;B υ =34.4k ;C υ=-25.1i +18.8j ; D υ=-25.1i -18.8j ;6.刚体角动量守恒的充分而必要的条件是:( B )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变 7.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( B )。
A 1sB 32sC 34s D 2s8.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( D )。
大学物理学(上)练习题
第1单元 质点运动学一. 选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作[]。
(A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向; (D) 变加速直线运动,加速度沿x 轴负方向。
2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[]。
(1)a t = d /d v , (2)v =t /r d d , (3)v =t S d /d , (4)t a t =d /d v。
(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的; (C)只有(2)是对的; (D) 只有(3)是对的。
3. 一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=〔其中a 、b 为常量〕,则该质点作[]。
(A) 匀速直线运动;(B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。
4. 一小球沿斜面向上运动,其运动方程为s=5+4t -t 2 (SI),则小球运动到最高点的时刻是[]。
(A) t=4s ;(B) t=2s ; (C)t=8s ;(D)t=5s 。
5. 一质点在xy 平面内运动,其位置矢量为j t i t r ˆ)210(ˆ42-+=〔SI 〕,则该质点的位置矢量与速度矢量恰好垂直的时刻为[]。
(A)s t 2=; 〔B 〕s t 5=; 〔C 〕s t 4=; 〔D 〕s t 3=。
6. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量。
当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是[]。
(A) 0221v v +=kt ;(B) 0221v v +-=kt ; (C)02121v v +=kt ; (D) 02121v v +-=kt 。
《大学物理学》第二版上册习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆有区别吗?0dv dt = 和0d v dt= 各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理习题集(上,含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理学第四版课后习题答案全解(赵近芳)上册
(3) 一质点沿半径为 R 的圆周作匀速率运动,每 t 秒转一圈,在 2t 时间间隔中,其平均 速度大小和平均速率大小分别为 (A)
2R 2R , t t
(B) 0,
(C) 0,0 [答案:B] 1.2 填空题
2R t 2R (D) ,0 t
(1) 一质点,以 m s 1 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位移的大小 是 ;经过的路程是 [答案: 10m; 5πm] 。
故 所以 t 10 s 时
1 x 2t 2 t 3 5 2
v10 4 10
3 10 2 190 m s 1 2 1 x10 2 10 2 10 3 5 705 m 2
1.11 一质点沿半径为1 m 的圆周运动,运动方程为
=2+3 t 3 ,式中 以弧度计, t 以秒
2 2
dx dy v v v dt dt
2 x 2 y 2 2 x 2 y
d2x d2 y a a a dt 2 2 dt
2
而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作
vdv adx (2 6 x 2 )dx 1 2 v 2x 2x3 c 2
由题知, x 0 时, v 0 10 ,∴ c 50 ∴
v 2 x 3 x 25 m s 1
1.10 已知一质点作直线运动, 其加速度为 a =4+3 t m s 2 , 开始运动时,x =5 m,v =0, 求该质点在 t =10s 时的速度和位置. 解:∵ 分离变量,得 积分,得 由题知, t 0 , v 0 0 ,∴ c1 0 故 又因为 分离变量, 积分得
大学物理(上册)期末考试重点例题
第一章 质点运动学习题1-4一质点在xOy 平面上运动,运动方程为=3t +5, y =21t 2+3t -4.(SI ) (式中t 以 s 计,x ,y 以m 计.)(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,并计算这1秒内质点的位移; (3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,并计算t =4 s 时质点的速度; (5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,并计算t =4s 时质点的加速度。
(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)质点位置矢量 21(35)(34)2r xi yj t i t t j =+=+++-m(2)将1=t ,2=t 代入上式即有211[(315)(1314)](80.5)2t s r i j m i j m ==⨯++⨯+⨯-=-221[(325)(2324)](114)2t s r i j m i j ==⨯++⨯+⨯-=+m21(114)(80.5)(3 4.5)t s t s r r r i j m i j m i j m ==∆=-=+--=+(3) ∵20241[(305)(0304)](54)21[(345)(4344)](1716)2t s t s r i j m i j mr i j m i j m===⨯++⨯+⨯-=-=⨯++⨯+⨯-=+∴ 1140(1716)(54)(35)m s 404t s t s r r r i j i j v m s i j t --==-∆+--===⋅=+⋅∆- (4) 21d d 1[(35)(34)][3(3)]m s d d 2r t i t t j i t j t t -==+++-=++⋅v 则 14[3(43)](37)t s v i j m s i j -==++⋅=+ 1s m -⋅ (5)∵ 1104(33),(37)t s t s v i j m s v i j m s --===+⋅=+⋅∴ 2241(37)(33)m s 1m s 44t s t s v v v i j i j a j t --==-∆+-+===⋅=⋅∆(6) 2d d[3(3)]1m s d d v a i t j j t t-==++=⋅这说明该点只有y 方向的加速度,且为恒量。
大学物理上课后习题答案
第1章 质点运动学 P21一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计;⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;5计算t =0s 到t =4s 内质点的平均加速度;6求出质点加速度矢量的表示式,计算t =4s 时质点的加速度请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式;解:1j t t i t r)4321()53(2-+++=m⑵ 1=t s,2=t s 时,j i r5.081-= m ;2114r i j =+m∴ 213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷ 1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ 5 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44ja j t --∆====⋅∆v v v 6 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量; 质点沿x 轴运动,其加速度和位置的关系为226a x=+,a 的单位为m/s 2,x 的单位为m;质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值;解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少解: t tt t 18d d ,9d d 2====ωβθω ⑴ s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 一质点在半径为的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度;解:s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则0.40.40.16R ω==⨯=v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅0.40.20.08a R τα==⨯=2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n与切向夹角arctan()0.06443n a a τϕ==≈︒第2章 质点动力学质点在流体中作直线运动,受与速度成正比的阻力kv k 为常数作用,t =0时质点的速度为0v ,证明:⑴t 时刻的速度为()0=k t me-v v ;⑵ 由0到t 的时间内经过的距离为x =0m k v 1-t m ke )(-;⑶停止运动前经过的距离为0()mkv ;⑷当m t k =时速度减至0v 的e1,式中m 为质点的质量;解:f k =-v ,a f m k m ==-v⑴ 由d d a t =v 得:d d d k a t t m==-vv分离变量得:d d kt m =-v v ,即00d d t k t m-=⎰⎰v v v v , 因此有:0ln ln kt m e -=v v , ∴ 0k m te -=v v ⑵ 由d d x t =v 得:0d d d k m t x t e t -==v v ,两边积分得:000d d k mx t t x e t-=⎰⎰v∴ 0(1)k m tm x e k-=-v ⑶ 质点停止运动时速度为零,00k mt e -=→v v ,即t →∞,故有:000d k mt x et m k ∞-'==⎰v v⑷ t m k =时,其速度为:1000k m m kv e e e -⋅-===v v v ,即速度减至0v 的1e .作用在质量为10 kg 的物体上的力为(102)F t i =+N,式中t 的单位是s,⑴ 求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;⑵ 为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j6-m/s 的物体,回答这两个问题; 解: ⑴ 若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,1111115.6m s 56kg m s p m i I p i --∆=∆=⋅=∆=⋅⋅;v若物体原来具有6-1s m -⋅初速,则000000, (d )d t tp m p m F m t m F t=-=-+⋅=-+⎰⎰v v v 于是:⎰∆==-=∆t p t F p p p 0102d, 同理有:21∆=∆v v ,12I I =这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理;⑵ 同上理,两种情况中的作用时间相同,即:⎰+=+=tt t t t I 0210d )210(亦即:0200102=-+t t , 解得s 10=t ,s 20='t 舍去设N 67j i F -=合;⑴ 当一质点从原点运动到m 1643k j i r++-=时,求F所作的功;⑵ 如果质点到r 处时需,试求平均功率;⑶ 如果质点的质量为1kg,试求动能的变化;解: ⑴ 由题知,合F为恒力,且00r =∴ (76)(3416)212445J A F r i j i j k =⋅∆=-⋅-++=--=-合⑵ w 756.045==∆=t A P ⑶ 由动能定理,J 45-==∆A E k一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如图;求这一系统静止时两弹簧的伸长量之比和弹性势能之比;解: 弹簧B A 、及重物C 受力如题图所示平衡时,有: Mg F F B A == ,又 11x k F A ∆=,22x k F B ∆=所以静止时两弹簧伸长量之比为:1221x x k k ∆∆= 弹性势能之比为:22111222211212p p E k x k E k x k ⋅∆==⋅∆第3章 刚体力学基础一质量为m 的质点位于11,y x 处,速度为x y i j =+v v v , 质点受到一个沿x 负方向的力f 的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩;解: 由题知,质点的位矢为:j y i x r11+=作用在质点上的力为:i f f-=所以,质点对原点的角动量为:01111()()()x y y x L r m x i y j m i j x m y m k =⨯=+⨯+=-v v v v v作用在质点上的力的力矩为:k f y i f j y i x f r M1110)()(=-⨯+=⨯=哈雷彗星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为1r =×1010m 时的速率是1v =×104m/s,它离太阳最远时的速率是2v =×102 m/s,这时它离太阳的距离2r 是多少太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力,即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有:1122r m r m =v v ∴ 10412112228.7510 5.4610 5.2610m 9.0810r r ⨯⨯⨯===⨯⨯v v 物体质量为3kg,t =0时位于m 4i r=,6i j =+v m/s,如一恒力N 5j f =作用在物体上,求3秒后,⑴ 物体动量的变化;⑵ 相对z 轴角动量的变化; 解:⑴ ⎰⎰-⋅⋅===∆301s m kg 15d 5d j t j t f p⑵ 解法一 由53 N a f m j ==得:0034437m x t x x t t ==+=+=+=v222031515663325.52623y t y t at t t j ==+=+=⨯+⨯⨯=v即有:i r41=,j i r 5.2572+=01x x ==v v ;0653311y y at =+=+⨯=v v即有:216i j =+v ,211i j =+v∴ 11143(6)72L r mi i j k =⨯=⨯+=v 222(725.5)3(11)154.5L r m i j i j k =⨯=+⨯+=v∴ 1212s m kg 5.82-⋅⋅=-=∆k L L L解法二 ∵d LM dt =, ∴ 2032031d ()d 15 (4)(6))5d 23 5(4)d 82.5kg m s t tL M t r f tt i t t j j t t k t k -∆=⋅=⨯⎡⎤=+++⨯⨯⎢⎥⎣⎦=+=⋅⋅⎰⎰⎰⎰平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少解:只挂重物1M 时,小球作圆周运动,向心力为g M 1,即:2001ωmr g M = ①挂上2M 后,则有:221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒;即:00r m r m ''=v v ωω''=⇒2020r r ③联立①、②、③得:100M g mr ω=,2112301()M g M M mr M ω+'=, 112130212()M M M r g r m M M ω+'==⋅'+ 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900 rev/min;现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速;已知闸杆的尺寸如题图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算;试求:⑴ 设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转 ⑵ 如果在2s 内飞轮转速减少一半,需加多大的力F解:⑴ 先作闸杆和飞轮的受力分析图如图b;图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力;杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有:121()0F l l N l '+-=, 121)N l l F l '=+(对飞轮,按转动定律有r F RIβ=-,式中负号表示β与角速度ω方向相反; ∵ N F r μ= ,N N '=∴ F l l l N F r 121+='=μμ 又∵ 212I mR =,∴1212()r F R l l F I mRl μβ+=-=-① 以N 100=F 等代入上式,得:2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为:s 06.74060329000=⨯⨯⨯=-=πβωt 这段时间内飞轮的角位移为:2201900291409()53.12rad 2604234t t πφωβπππ⨯=+=⨯-⨯⨯=⨯可知在这段时间里,飞轮转了1.53转; ⑵10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 200215rad s 22ttωωωπβ--==-=-⋅ 用上面式⑴所示的关系,可求出所需的制动力为:112600.250.50151772()20.40(0.500.75)2mRl F N l l βπμ⨯⨯⨯=-==+⨯⨯+⨯计算题图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设m 1=50kg,m 2=200 kg,M =15 kg,r = m解:分别以m 1、m 2滑轮为研究对象,受力图如图b 所示.对m 1、m 2运用牛顿定律,有:a m T g m 222=- ;a m T 11=对滑轮运用转动定律,有:β)21(212Mr r T r T =- 又βr a = 由以上4个方程解得:22122009.87.6 m s 25200152m g a m m M -⨯===⋅++++题a 图 题b 图如题图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下;求:⑴ 初始时刻的角加速度;⑵ 杆转过θ角时的角速度. 解:⑴ 由转动定律有:211()23mg l ml β=, ∴ lg23=β⑵ 由机械能守恒定律有:22)31(21sin 2ωθml l mg = ∴ lg θωsin 3= 如题图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上;现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞;相撞后,使棒从平衡位置处摆动到最大角度=θ30°处;⑴设这碰撞为弹性碰撞,试计算小球初速0v 的值; ⑵相撞时小球受到多大的冲量解:⑴ 设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:0m l I m l ω=+v v ①2220111222m I m ω=+v v②上两式中23I Ml =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得:2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式得:0I mlω=-v v ④ 由②式得:2220I m ω=-v v ⑤所以:22200()I I ml mωω-=-v v求得:026(23)13(1)(1)22312gl l I l Mm M ml m mωω-+=+=+=v ⑵相碰时小球受到的冲量为:0d ()F t m m m =∆=-⎰v v v由①式求得:06(23)1d 36gl I F t m m Ml M l ωω-=-=-=-=-⎰v v 负号说明所受冲量的方向与初速度方向相反;一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动;另一质量为0m 的子弹以速度0v 射入轮缘如题图所示方向; ⑴开始时轮是静止的,在质点打入后的角速度为何值⑵用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比;解:⑴ 射入的过程对O 轴的角动量守恒: ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω⑵ 022*******000sin 1[()][]2()sin 2k k m m m R E m m R m E m m m θθ++==+v v 弹簧、定滑轮和物体的连接如题图所示,弹簧的劲度系数为 N/m ;定滑轮的转动惯量是0.5kg·m 2,半径为0.30m ,问当6.0 kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;解:以重物、滑轮、弹簧、地球为一系统,重物下落的过程中,机械能守恒,以最低点为重力势能零点,弹簧原长为弹性势能零点,则有:222111222mgh m I kh ω=++v 又/R ω=v ,故有:2222221(2)(2 6.09.80.4 2.00.4)0.36.00.30.5 2.0m s mgh kh R mR I --⨯⨯⨯-⨯⨯==+⨯+=⋅v第5章 机械振动质量为kg 10103-⨯的小球与轻弹簧组成的系统,按0.1cos(82x t ππ=+的规律作谐振动,求:⑴ 振动的周期、振幅和初位相及速度与加速度的最大值; ⑵ 最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等⑶ s 52=t 与s 11=t 两个时刻的位相差;解:⑴设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又0.8m A ωπ==v 1s m -⋅ 51.2=1s m -⋅,2.632==A a m ω2s m -⋅⑵ 0.63N m m F ma ==,J 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=,即:)21(212122kA kx ⋅=∴ m 20222±=±=A x ⑶ ππωφ32)15(8)(12=-=-=∆t t一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示;如果0=t 时质点的状态分别是:⑴A x -=0; ⑵ 过平衡位置向正向运动; ⑶过2Ax =处向负向运动; ⑷过2A x -=处向正向运动; 试求出相应的初位相,并写出振动方程;解:因为000cos sin x A A φωφ=⎧⎨=-⎩v将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相;故有:)2cos(1πππφ+==t T A x , )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x , )452cos(454πππφ+==t T A x一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+;求:⑴s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; ⑵由起始位置运动到cm 12=x 处所需的最短时间; ⑶在cm 12=x 处物体的总能量;解:由题已知s 0.4,m 10242=⨯=-T A ,∴ -120.5 rad s ωππ==⋅ 又,0=t 时,00 , 0x A φ=+∴= 故振动方程为:m )5.0cos(10242t x π-⨯=⑴ 将s 5.0=t 代入得:0.17m m )5.0cos(102425.0=⨯=-t x π23231010(2)0.17 4.210N F ma m x ωπ--=-=-=-⨯⨯⨯=-⨯方向指向坐标原点,即沿x 轴负向;⑵ 由题知,0=t 时,00=φ;t t =时,02,0,3t x A φπ=+<=且故v ∴ s 322/3==∆=ππωφt ⑶ 由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:22232241111010()(0.24)7.110J 2222E kA m A πω--===⨯⨯⨯=⨯ 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4;用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后,给予向上的初速度0 5.0cm /s =v ,求振动周期和振动表达式; 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x 设向上为正又 30.225 , 1.26s 810k T m πωω-=====⨯即 222222205.010 ()(1.010)()210m 5v A x ω---⨯∴=+=⨯+=⨯200020 5.0105tan 1 , 1.01054x πφφω--⨯=-===⨯⨯即v ∴ m )455cos(1022π+⨯=-t x题图为两个谐振动的t x -曲线,试分别写出其谐振动方程;解:由题图a,∵0=t 时,0000 , 0 , 32 , 10cm , 2s x A T φπ=>∴===又v即:1s rad 2-⋅==ππωT,故 m )23cos(1.0ππ+=t x a由题图b ∵0=t 时,0005,0,23A x πφ=>∴=v01=t 时,0005,0,23A x πφ=>∴=v又ππωφ253511=+⨯=,∴ πω65=故m t x b )3565cos(1.0ππ+=一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子;现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动;⑴ 此时的振动周期与空盘子作振动时的周期有何不同⑵ 此时的振动振幅多大⑶ 取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程; 解:⑴ 空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大;⑵按⑶所设坐标原点及计时起点,0=t 时,则0x mg k =-;碰撞时,以M m ,为一系统动量守恒,即:02()m gh m M =+v则有:02m gh m M=+v ,于是22220022()()1()()v mg m gh mg kh A x k k m M k m M gω=+=+=+++3gm M khx v )(2tan 000+=-=ωφ 第三象限,所以振动方程为 221cos arctan ()()mg khk kh x t k m M gm MM m g ⎡⎤=++⎢⎥+++⎣⎦有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量41.010kg m s F t -∆=⨯⋅,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程; 解:由动量定理,有:0F t m ⋅∆=-v∴ 4-131.0100.01 m s 1.010F t m --⋅∆⨯===⋅⨯v 按题设计时起点,并设向右为x 轴正向,则知0=t 时,1000 , 0.01m s x -==⋅v >0,∴ 2/30πφ=又1s rad 13.30.18.9-⋅===l g ω ∴ 2230000.01() 3.210m 3.13A x ωω-=+===⨯v v故其角振幅:33.210rad A l θ-==⨯小球的振动方程为:rad )2313.3cos(102.33πθ+⨯=-t有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动π/6的位相差为,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差;解:由题意可做出旋转矢量题图;由图知222211222cos30(0.173)(0.2)20.1730.23/20.01A A A A A =+-︒=+-⨯⨯⨯=,∴ m 1.02=A 设角θ为O AA 1,则:θcos 22122212A A A A A -+=即:2222221212(0.173)(0.1)(0.02)cos 0220.1730.1A A A A A θ+-+-===⨯⨯即2θπ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π; 一质点同时参与两个在同一直线上的简谐振动,振动方程为:⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程;解:∵ πππφ=--=∆)65(6, ∴ m 1.021=-=A A A 合 1122112250.4sin 0.3sinsin sin 366tan 5cos cos 30.4cos 0.3cos 66A A A A ππφφφππφφ⨯-+===++ ∴ 6φπ=其振动方程为:0.1cos(26)m x t π=+作图法略第6章 机械波已知波源在原点的一列平面简谐波,波动方程为y =A cos Cx Bt -,其中A ,B ,C 为正值恒量;求:⑴ 波的振幅、波速、频率、周期与波长;⑵ 写出传播方向上距离波源为l 处一点的振动方程; ⑶ 任一时刻,在波的传播方向上相距为d 的两点的位相差;解:⑴ 已知平面简谐波的波动方程:)cos(Cx Bt A y -= 0≥x 将上式与波动方程的标准形式:)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =,波长C πλ2=,波速B u C λν==, 波动周期12T Bπν==;⑵ 将l x =代入波动方程即可得到该点的振动方程:)cos(Cl Bt A y -=⑶ 因任一时刻t 同一波线上两点之间的位相差为:)(212x x -=∆λπφ将d x x =-12,及2Cπλ=代入上式,即得:Cd =∆φ; 沿绳子传播的平面简谐波的波动方程为y =10x t ππ4-,式中x ,y 以米计,t 以秒计;求:⑴ 绳子上各质点振动时的最大速度和最大加速度;⑵ 求x =0.2m 处质点在t =1s 时的位相,它是原点在哪一时刻的位相这一位相所代表的运动状态在t =时刻到达哪一点 解:⑴ 将题给方程与标准式2cos()y A t x πωλ=-相比,得:振幅05.0=A m ,圆频率10ωπ=,波长5.0=λm ,波速 2.5m s 2u ωλνλπ===;绳上各点的最大振速,最大加速度分别为:ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅⑵2.0=x m 处的振动比原点落后的时间为:08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点0=x ,在92.008.010=-=t s 时的位相,即:2.9=φπ;设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则,825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m一列平面余弦波沿x 轴正向传播,波速为5 m/s,波长为2m,原点处质点的振动曲线如题图所示;⑴ 写出波动方程;⑵作出t =0时的波形图及距离波源0.5m 处质点的振动曲线;解: ⑴ 由题a 图知,1.0=A m,且0=t 时,000 , 0y =>v ,∴230πφ=, 又52.52uνλ===Hz ,则ππυω52== 取])(cos[0φω+-=u x t A y ,则波动方程为:30.1cos[5()]52x y t ππ=-+m⑵ 0=t 时的波形如题b 图5.0=x m 代入波动方程,得该点处的振动方程为:50.530.1cos[5]0.1cos(5)52y t t πππππ⨯=-+=+m如题c 图所示;如题图所示,已知t =0时和t =时的波形曲线分别为图中曲线a 和b,周期T>,波沿x 轴正向传播,试根据图中绘出的条件求: ⑴ 波动方程;⑵P 点的振动方程; 解:⑴ 由题图可知,1.0=A m ,4=λm ,又,0=t 时,000,0y =<v , ∴20πφ=,而-11 2 m s 0.5x u t ∆===⋅∆,20.5Hz 4u νλ===,∴ππυω==2故波动方程为:]2)2(cos[1.0ππ+-=x t y m⑵ 将1=P x m 代入上式,即得P 点振动方程为:t t y ππππcos 1.0)]22cos[(1.0=+-= m一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m/s 1,波长为2m,求: ⑴波动方程;⑵ P 点的振动方程及振动曲线; ⑶ P 点的坐标;⑷ P 点回到平衡位置所需的最短时间;解:由题图可知1.0=A m ,0=t 时,00,02A y =<v ,∴30πφ=,由题知2=λm ,-110m s u =⋅,则5210===λυuHz ,∴ππυω102==⑴ 波动方程为:0.1cos[10()]103x y t ππ=-+m⑵ 由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P P 点的位相应落后于0点,故取负值∴P 点振动方程为)3410cos(1.0ππ-=t y p ⑶ 由πππ34|3)10(100-=+-=t x t 解得:67.135==x m ⑷ 根据⑵的结果可作出旋转矢量图如题图a,则由P点回到平衡位置应经历的位相角πππφ6523=+=∆ ∴所属最短时间为:121106/5==∆=∆ππωφt s 如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =Acos 0ϕω+t ;⑴ 分别就图中给出的两种坐标写出其波动方程;⑵ 写出距P 点距离为b 的Q 点的振动方程;解:⑴ 如题图a,则波动方程为:0cos[()]l xy A t u uωϕ=+-+ 如图b,则波动方程为:0cos[()]x y A t uωϕ=++⑵ 如题图a,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=-+如题图b,则Q 点的振动方程为:0cos[()]Q b A A t uωϕ=++一平面余弦波,沿直径为14cm 的圆柱形管传播,波的强度为×10-3J/m 2·s,频率为300 Hz,波速为300m/s,求波的平均能量密度和最大能量密度.解: ∵u w I =, ∴ 53106300100.18--⨯=⨯==u I w 3m J -⋅, 4max 102.12-⨯==w w 3m J -⋅如题图所示,1S 和2S 为两相干波源,振幅均为1A ,相距4λ,1S 较2S 位相超前2π,求:⑴ 1S 外侧各点的合振幅和强度;⑵ 2S 外侧各点的合振幅和强度 解:1在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为:πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r ,∴ 0,0211===-=A I A A A 2在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差:0)4(2222=-+-=∆r r λλππφ,∴ 2121114,2A A I A A A A ===+=一平面简谐波沿x 轴正向传播,如题图所示;已知振幅为A ,频率为ν,波速为u ;⑴ 若t =0时,原点O 处质元正好由平衡位置向位移正方向运动,写出此波的波动方程;⑵ 若从分界面反射的波的振幅与入射波振幅相等,试写出反射波的波动方程,并求x 轴上 因入射波与反射波干涉而静止的各点的位置;解: ⑴ ∵0=t 时,0,000>=v y ,∴20πφ-=,故波动方程为:cos[2()]2x y A t u ππυ=--m⑵ 入射波传到反射面时的振动位相为即将λ43=x 代入2432πλλπ-⨯-,再考虑到波由波疏入射而在波密界面上反射,存在半波损失,所以反射波在界面处的位相为:πππλλπ-=+-⨯-2432 若仍以O 点为原点,则反射波在O 点处的位相为23542πλππλ--⨯-=,因只考虑π2以内的位相角,∴反射波在O 点的位相为2π-,故反射波的波动方程为:]2)(2cos[ππυ-+=u x t A y 反此时驻波方程为:cos[2()]cos[2()]222 2cos cos(2)2x x y A t A t u u x A t u πππυπυπυππυ=--++-=-故波节位置为:2)12(22πλππυ+==k x u x故 4)12(λ+=k x ,2,1,0±±=k …根据题意,k 只能取1,0,即λλ43,41=x 两列波在一根很长的细绳上传播,它们的波动方程分别为1y =t x ππ4-SI, 2y =t x ππ4+SI;⑴ 试证明绳子将作驻波式振动,并求波节、波腹的位置; ⑵ 波腹处的振幅多大x =1.2m 处振幅多大 解:⑴ 它们的合成波为:0.06cos(4)0.06cos(4)0.12cos cos 4y x t x t x t ππππππ=-++=出现了变量的分离,符合驻波方程特征,故绳子在作驻波振动; 令ππk x =,则k x =,k=0,±1,±2…此即波腹的位置;令2)12(ππ+=k x ,则21)12(+=k x ,,2,1,0±±=k …,此即波节的位置;⑵波腹处振幅最大,即为12.0m ;2.1=x m 处的振幅由下式决定,即:097.0)2.1cos(12.0=⨯=π驻A m第7章 气体动理论基础 P218设有N 个粒子的系统,其速率分布如题图所示;求⑴ 分布函数f υ的表达式; ⑵ a 与υ0之间的关系; ⑶ 速度在υ0到υ0之间的粒子数; ⑷ 粒子的平均速率; 5 υ0到υ0区间内粒子平均速率;解:⑴从图上可得分布函数表达式: 00000()/(0)()(2)()0(2)Nf a Nf a Nf υυυυυυυυυυυυ=≤≤⎧⎪=≤≤⎨⎪=≥⎩, 00000/(0)()/(2)0(2)a N f a N υυυυυυυυυυ≤≤⎧⎪=≤≤⎨⎪≥⎩⑵ f υ满足归一化条件,但这里纵坐标是N f υ而不是f υ,故曲线下的总面积为N.由归一化条件:20d d a NN a N υυυυυυυ+=⎰⎰,可得023Na υ=⑶ 可通过面积计算001(2 1.5)3N a N υυ∆=⨯-=⑷N 个粒子平均速率:220220001()d ()d d d 11311()329a f Nf a Na a N υυυυυυυυυυυυυυυυυυ∞∞===+=+=⎰⎰⎰⎰5 υ0到υ0区间内粒子数:100013(0.5)(0.5)284NN a a a υυυ=+-== υ0到υ0区间内粒子平均速率:000000.50.50.5111d d ()d NN N N f N N N N υυυυυυυυυυυυ===⎰⎰⎰ 0020.510d N a N N υυυυυυ=⎰0033220000.51010017111d ()32424a av a a N N N υυυυυυυυυ==-=⎰ 2007769a N υυυ==试计算理想气体分子热运动速率的大小介于υp -υp /100与υp +υp /100之间的分子数占总分子数的百分比; 解:令P u υυ=,则麦克斯韦速率分布函数可表示为:du e u N dN u 224-=π因为u=1,∆u=由u e u N N u ∆=∆-224π,得 %66.102.0141=⨯⨯⨯=∆-e N N π容器中储有氧气,其压强为P=即1atm 温度为27℃求:⑴ 单位体积中的分子数n ;⑵ 氧分子的质量m ;⑶ 气体密度ρ;⑷ 分子间的平均距离e ;5 平均速率υ;62υ7分子的平均动能ε; 解:⑴ 由气体状态方程nkT p =得:242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n m -3⑵ 氧分子的质量:26230mol 1032.51002.6032.0⨯=⨯==N M m Kg ⑶ 由气体状态方程RT M MpV mol =,得: 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ3m kg -⋅⑷ 分子间的平均距离可近似计算932431042.71045.211-⨯=⨯==ne m5 平均速率:mol 8.313001.601.60446.580.032RT M υ⨯=≈=1s m -⋅ 题图Nf υO2υ0υυ0a6482.87≈=1s m -⋅ 7 氧分子的平均动能:20231004.13001038.12525--⨯=⨯⨯⨯==kT εJ1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少解:理想气体分子的能量:RT iE 2υ= 平动动能 t=3 5.373930031.823=⨯⨯=t E J转动动能 r=2 249330031.822=⨯⨯=r E J内能 i=5 5.623230031.825=⨯⨯=i E J一瓶氧气,一瓶氢气,等压、等温,氧气体积是氢气的2倍,求⑴氧气和氢气分子数密度之比;⑵氧分子和氢分子的平均速率之比; 解:⑴ 因为nkT p =,则:1O H n n =⑵由平均速率公式υ=,得:14O H υυ== 7-25 一真空管的真空度约为×10-3 Pa 即×10-5 mmHg,试 求在27℃时单位体积中的分子数及分子的平均自由程设分子的有效直径d =3×10-10 m; 解:由气体状态方程nkT p =得:317-3231.3810 3.3310m 1.3810300p n kT -⨯===⨯⨯⨯ 由平均自由程公式nd 221πλ=得: 5.71033.3109211720=⨯⨯⨯⨯=-πλ m ⑴ 求氮气在标准状态下的平均碰撞频率;⑵ 若温度不变,气压降到×10-4Pa,平均碰撞频率又为多少设分子有效直径为10-10m解:⑴碰撞频率公式2z d n υ=对于理想气体有nkT p =,即:kTpn =,所以有:2d p z kT υ=而-1455.43 m s υ≈≈=⋅ 氮气在标准状态下的平均碰撞频率805201044.52731038.110013.143.455102⨯=⨯⨯⨯⨯⨯⨯=-πz s -1⑵气压下降后的平均碰撞频率2042310455.43 1.33100.7141.3810273z ---⨯⨯⨯⨯==⨯⨯ s -11mol 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间⑴气体分子方均根速率之比;⑵ 分子平均自由程之比; 解:⑴ 由气体状态方程:2211T p T p = 及 3322V p V p =====⑵ 对于理想气体,nkT p =,即 kTpn =所以有:pd kT 22πλ=,即:12121==T p p T 末初λλ第8章 热力学基础.如题图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统做功126 J;⑴ 若沿adb 时,系统做功42 J,问有多少热量传入系统⑵ 若系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84 J,试问系统是吸热还是放热热量传递是多少 解:由abc 过程可求出b 态和a 态的内能之差:A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热1mol 单原子理想气体从300K 加热到350K,问在下列两过程中吸收了多少热量增加了多少内能对外做了多少功⑴ 容积保持不变; ⑵ 压力保持不变; 解:⑴ 等体过程对外作功0=A∴ V 2121()()2328.31(350300)623.25J iQ E A E C T T R T T νν=∆+=∆=-=-=⨯⨯-=, ⑵ 等压过程,吸热:P 212125()()8.31(350300)1038.75J 22i Q C T T R T T νν+=-=-=⨯⨯-=内能增加:V 21()328.31(350300)623.25J E C T T ν∆=-=⨯⨯-=对外作功:5.4155.62375.1038=-=∆-=E Q A J一个绝热容器中盛有摩尔质量为M mol ,比热容比为γ的理想气体,整个容器以速度υ运动,若容器突然停止运动,求气体温度的升高量设气体分子的机械能全部转变为内能;解:整个气体有序运动的能量为212m υ,转变为气体分子无序运动使得内能增加,温度变化;2V 12m E C T m M υ∆=∆=,22mol mol V 111(1)22T M M C R υυγ∆==- 0.01m 3氮气在温度为300K 时,由压缩到10MPa;试分别求氮气经等温及绝热压缩后的⑴ 体积;⑵ 温度;⑶ 各过程对外所做的功; 解:⑴ 等温压缩过程中,T =300K,且2211V p V p =,解得:3112210.0111010p V V p -==⨯=⨯m 3 , 6321112lnln 0.1100.01ln0.01 4.6710J V pA vRT p V V p ===⨯⨯⨯=-⨯ ⑵ 绝热压缩:R C 25V =,57=γ 由绝热方程 γγ2211V p V p =,得:111/33111421221()()()0.01 1.9310m 10p V p V V p p γγγ-===⨯=⨯由绝热方程 111122T p T p γγγγ----=,得11.40.4122211300(10)579K T p T T p γγγγ--==⨯⇒=Oab c d由热力学第一定律A E Q +∆=及0=Q 得:)(12molT T C M MA V --=, 又RT M MpV mol=,所以 51121135 1.013100.015()(579300)23002 2.3510Jp V A R T T RT ⨯⨯=--=-⨯⨯-=-⨯ 理想气体由初状态P 1,V 2经绝热膨胀至末状态P 2,V 2;试证过程中气体所做的功为:12211--=γV P V P w 式中γ为气体的比热容比;证明: 由绝热方程C V p V p pV ===γγγ2211得γγV V p p 111= 故,22111121221111221121d 11d ()11 ()11V V r V V V C A p V C V V V p V p V p V p V V V γγγγγγγγγ----===----=--=--⎰⎰1 mol 的理想气体的T -V 图如题图所示,ab 为直线,延长线通过原点O ;求ab 过程气体对外做的功; 解:设T kV =,由图可求得直线的斜率k 为:2T k V =,得过程方程002T T V V =由状态方程pV vRT=得:RT p V ==R V 02T V V =002RT V ab 过程气体对外作功:⎰=02d V v V p A 02000d 22V V RT RTV V ==⎰某理想气体的过程方程为Vp 1/2=a ,a 为常数,气体从V 1膨胀到V 2;求其所做的功;解:气体做功:22211122221211d d ()|()V V V V V V a a A p V V a V V V V ===-=-⎰⎰设有一以理想气体为工质的热机循环,如题图所示;试证其循环效率为:η=1212111V V p p ηγ-=--解:等体过程:1V 21()0Q vC T T '=->,吸热,∴ )(1221V 11RV p R V p C Q Q -='= 绝热过程:03='Q 等压压缩过程:2p 21()0Q vC T T '=-<,放热 ∴ 212222P 21P ()()p V p V Q Q vC T T C R R'==--=-,则, 循环效率为:p 21222121V 122212()(/1)111()(/1)C p V p V Q Q C pV p V p p ννηγ--=-=-=--- 一卡诺热机在1000K 和300K 的两热源之间工作,试计算⑴ 热机效率;⑵ 若低温热源不变,要使热机效率提高到80%,则高温热源温度需提高多少⑶ 若高温热源不变,要使热机效率提高到80%,则低温热源温度需降低多少T Oab题图Vp OV绝热题图V 2 V 1 p 1p解:⑴ 卡诺热机效率 213001170%1000T T η=-=-= ⑵ 低温热源2300K T =不变时,即1130080%T η'=-=,解得:11500K T '=,则: 11115001000500K T T T '∆=-=-=即高温热源温度提高500K;⑶ 高温热源11000K T =不变时,即21100080%T η'=-= 解得:2200K T '=,则:222200300-100K T T T '∆=-=-=即低温热源温度降低100K;如题图所示是一理想气体所经历的循环过程,其中AB 和CD 是等压过程,BC 和DA 为绝热过程,已知B 点和C 点的温度分别为T 2和T 3;求此循环效率;这是卡诺循环吗解:⑴热机效率211Q Q η=-AB 等压过程1P 21()0Q C T T ν'=->,吸热,即有: 11P mo ()B A lMQ Q C T T M '==- CD 等压过程2P 21()0Q vC T T '=-<,放热,即有: )(P mol22D C T T C M MQ Q -='-= ∴)/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= AD 绝热过程,其过程方程为:γγγγ----=D D AA T p T p 11 BC 绝热过程,其过程方程为:γγγγ----=C C B BT p T p 111 又 A B C D p p p p ==,,所以得:D C BT TT T = ∴ 231T T -=η⑵ 不是卡诺循环,因为不是工作在两个恒定的热源之间;⑴ 用一卡诺循环的致冷机从7℃的热源中提取1000J 的热量传向27℃的热源,需要多少功从-173℃向27℃呢⑵ 一可逆的卡诺机,作热机使用时,如果工作的两热源的温度差愈大,则对于做功就愈有利;当作致冷机使用时,如果两热源的温度差愈大,对于致冷是否也愈有利为什么解:⑴卡诺循环的致冷机2122T T T A Q e -==静 7℃→27℃时,需作功:12122300280100071.4J 280T T A Q T --==⨯= 173-℃→27℃时,需作功:1222230010010002000J 100T T A Q T --==⨯= ⑵从上面计算可看到,当高温热源温度一定时,低温热源温度越低,温度差愈大,提取同样的热量,则所需作功也越多,对致冷是不利的;p O 题图A B C D第9章 静电场长l =15.0cm 的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷;试求:⑴ 在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;⑵ 在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强; 解:⑴ 如题图所示,在带电直线上取线元d x ,其上电量d q 在P 点产生场强为:20)(d π41d x a xE P -=λε 22200220d d 4π()11 []4π22π(4)l P P l x E E a x a l a l la l λελελε-==-=--+=-⎰⎰用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得:21074.6⨯=P E 1C N -⋅ 方向水平向右⑵ 同理,2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220ddd d π41d ++=x x xE Qy λε22223222222022d d d 4π(d )2π4ll Qy Qy l x lE E x d l d λλεε-===++⎰⎰以9100.5-⨯=λ1cm C -⋅,15=l cm ,5d 2=cm 代入得:21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强; 解:如图在圆上取ϕRd dl =ϕλλd d d R l q ==,它在O 点产生场强大小为:20π4d d R R E εϕλ=,方向沿半径向外,则:ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-= 积分得:R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x 0π2ελ==,方向沿x 轴正向;均匀带电的细线弯成正方形,边长为l ,总电量为q ;⑴求这正方形轴线上离中心为r 处的场强E ;⑵证明:在l r >>处,它相当于点电荷q 产生的场强E ;解:如图示,正方形一条边上电荷4q 在P 点产生物强P E 方向如图,大小为:()12220cos cos 4π4P E r l λθθε-=+∵1222cos 2l r l θ=+ ,12cos cos θθ-=∴ 222204π42P lE r l r l λε=++P E 在垂直于平面上的分量cos P E E β⊥=∴ 22222204π424lr E r l r l r l λε⊥=+++由于对称性,P 点场强沿OP 方向,大小为:22220444π(4)2PO lrE E r l r l λε⊥=⨯=++∵ l q4=λ ∴ 222204π(4)2P qrE r l r l ε=++ , 方向沿OP⑴ 点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;⑵ 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少解: ⑴ 立方体六个面,当q 在立方体中心时,每个面上电通量相等,由高斯定理0d sE S q ε⋅=⎰得:各面电通量06εq e =Φ; ⑵ 电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe ;均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×510-C/m 3求距球心5cm,8cm ,12cm 各点的场强;解:高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E5=r cm 时,0=∑q ,0=E8=r cm 时,334π()3q pr r =-∑内 ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外; 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1CN -⋅ 沿半径向外. 半径为1R 和2R 2R >1R 的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:⑴r <1R ;⑵ 1R <r <2R ;⑶ r >2R 处各点的场强;解:取同轴圆柱形高斯面,侧面积rl S π2=,则:rl E S E Sπ2d =⋅⎰⑴ 1R r <时,0q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =;⑵ 21R r R <<时,λl q =∑,由高斯定理0d ε∑⎰=⋅qS E s 得:rE 0π2ελ= 沿径向向外;⑶ 2R r >时,0=∑q ,由高斯定理0d ε∑⎰=⋅qS E s 得:0E =两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强;解:如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外,n E)(21210σσε+-=2σ面外,n E )(21210σσε+=, n:垂直于两平面由1σ面指为2σ面;半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示;试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的;。
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
(完整版)大学物理上册习题大体答案
第一章1.有一质点沿X 轴作直线运动,t 时刻的坐标为)(25.432SI t t x -=.试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程. 解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=2.一质点沿X 轴运动,其加速度为)(4SI t a =,已知0=t 时,质点位于m X 100=处,初速度00=v ,试求其位置和时间的关系式.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 004,22t v = 22/t dt dx v ==⎰⎰=xtdt t dx 1022 )(103/23SI t x +=.3.由楼窗口以水平初速度0v ρ射出一发子弹,取枪口为坐标原点,沿0v ρ方向为X轴,竖直向下为Y轴,并取发射时s t 0=,试求:(1) 子弹在任意时刻t 的位置坐标及轨迹方程; (2)子弹在t 时刻的速度,切向加速度和法向加速度.3. 解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =,gt v y =.速度大小为:222022t g v v v v y x +=+=. 与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v ρ同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.一物体悬挂在弹簧上作竖直振动,其加速度为ky a -=,式中k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求速度v 与坐标y 的函数关系式.4.解:dydv v dt dy dy dv dt dv a =⋅==,又ky a -= dy vdv ky /=-∴⎰⎰=-vdv kydy C v ky +=-222121已知 0y y =,0v v = 则:20202121ky v C --=)(220202y y k v v -+=.5. 一飞机驾驶员想往正北方向航行,而风以h km /60的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为h km /180,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.5.解:选地面为静止参考系S ,风为运动参考系S ',飞机为运动质点P . 度:h km v s p /180=',已知:相对速方向未知; h km v s s /60=', 牵连速度:方向正西;绝对速度:ps v 大小未知,方向正北.理有:s s s p ps v v v ''+=ρρρ,由速度合成定ps v ρ,s p v 'ρ,s s v 'ρ构成直角三角形,可得: h km v v v s s s p ps /170)()(||22=-=''ρρρ014.19)/(=='-ps s s v v tg θ(北偏东04.19航向). 6.一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为)(622SI x a +=,如果质点在原点处的速度为零,试求其在任意位置处的速度.6. 解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+=7.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为030,当火车以s m /35的速率沿水平直线行驶时,发现雨滴下落方向偏向车尾,偏角为045,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度大小.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v ρ大小未知,方向与竖直方向夹030; 牵连速度:s m v s s /35=',方向水平; 相对速度:s p v 'ρ大小未知,方向偏向车后045 由速度合成定理:s p ps v v '=ρρ30sin30sin 00=+'ps s p v v 0030sin 30cos ps s p v v ='ss ''s m v ps /6.25=.第二章3.一人在平地上拉一个质量为M 的木箱匀速地前进,木箱与地面间的摩擦系数6.0=μ,设此人前进时,肩上绳的支撑点距地面高度为m h 5.1=,问绳长l 为多少时最省力?解:设拉力大小为为F ,方向沿绳。
《大学物理1》习题(汇总)
《大学物理Ⅰ》力学部分习题一、选择题1. 下面4种说法,正确的是( C ).A..物体的加速度越大,速度就越大; B.作直线运动的物体,加速度越来越小,速度也越来越小;C.切向加速度为正时,质点运动加快D.法向加速度越大,质点运动的法向速度变化越快2. 一质点按规律542+-=t t x 沿x 轴运动,(x 和t 的单位分别为m 和s ),前3秒内质点的位移和路程分别为( D )A.3 m, 3 mB.-3 m, -3 mC.-3 m, 3 mD.-3 m, 5 m3. 一质点在xy 平面上运动,其运动方程为53+=t x ,72-+=t t y ,该质点的运动轨迹是( C ) A.直线 B.双曲线 C.抛物线 D.三次曲线4. 作直线运动质点的运动方程为t t x 403-=,从t 1到t 2时间间隔内,质点的平均速度为( A ) A.40)(212122-++t t t t ; B.40321-t ; C.40)(3212--t t ; D.40)(212--t t 5. 一球从5m 高处自由下落至水平桌面上,反跳至3.2m 高处,所经历的总时间为1.90s ,则该球与桌面碰撞期间的平均加速度为( A )A.大小为180 2-⋅sm , 方向竖直向上 B. 大小为180 2-⋅s m , 方向竖直向下 C. 大小为20 2-⋅s m , 方向竖直向上 D.零 6. 一质点沿直线运动,其速度与时间成反比,则其加速度( C )A.与速度成正比B. 与速度成反比C. 与速度的平方成正比D. 与速度的平方成反比7. 用枪射击挂在空中的目标P ,在发射子弹的同时,遥控装置使P 自由下落,若不计空气阻力,要击中目标P ,枪管应瞄准( A )A. A. P 本身B. P 的上方C. P 的下方D. 条件不足不能判断8. 8.一质点沿直线运动,每秒钟内通过的路程都是1m ,则该质点( B )A.作匀速直线运动B.平均速度为11-⋅s mC.任一时刻的加速度都等于零D.任何时间间隔内,位移大小都等于路程9. 下面的说法正确的是( D )A.合力一定大于分力B.物体速率不变,则物体所受合力为零C.速度很大的物体,运动状态不易改变D.物体质量越大,运动状态越不易改变10. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( C )A.小球受到重力、绳子拉力和向心力的作用B.小球受到重力、绳子拉力和离心力的作用C.绳子的拉力可能为零D.小球可能处于受力平行状态11. 将质量分别为1m 和2m 的两个滑块A 和B 置于斜面上,A 和B 与斜面间的摩擦系数分别是1μ和2μ,今将A 和B 粘合在一起构成一个大滑块,并使它们的底面共面地置于该斜面上,则该大滑块与斜面间地摩擦系数为( D )A. A.2/)(21μμ+B.)(2121μμμμ+C.21μμD. )()(212211m m m m ++μμ 12. 将质量为1m 和2m 的两个滑块P 和Q 分别连接于一根水平轻弹簧两端后,置于水平桌面上,桌面与滑块间的摩擦系数均为μ。
7.12 大学物理(上)练习题
11
7-23 如图 已知 r =6cm, d =8cm,q1= 3×10-8C , 如图,已知 q2=-3×10-8C .求:(1)将电荷量为 ×10-8C的点电荷 将电荷量为2 求 将电荷量为 的点电荷 电场力作功多少? 从A点移到B点,电场力作功多少? (2) 将此点电荷从 电场力作功多少 .B .C A C点移到 点,电场力作功多少? . 点移到D点 电场力作功多少? 点移到 电场力作功多少 r r r d/2 d/2 q2 q1 .D 7-36 点电荷 =4.0×10-10C,处在导体球壳的中心 点电荷q ,处在导体球壳的中心, 壳的内外半径分别为R 壳的内外半径分别为 1=2.0cm和R2=3.0cm,求: 和 求 (1)导体球壳的电势; )导体球壳的电势; 处的电势; (2)离球心 =1.0cm处的电势; )离球心r 处的电势 后导体球壳的电势. (3)把点电荷移开球心 )把点电荷移开球心1.0cm后导体球壳的电势 后导体球壳的电势
大学课程《大学物理(上册)》真题练习试卷 附答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…大学课程《大学物理(上册)》真题练习试卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
2、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
3、质量分别为m和2m的两物体(都可视为质点),用一长为l的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O转动,已知O轴离质量为2m的质点的距离为l,质量为m的质点的线速度为v且与杆垂直,则该系统对转轴的角动量(动量矩)大小为________。
4、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________5、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
6、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
大学物理(上)练习题1
4、一质点沿y 轴作直线运动,速度j t v)43(+=,t =0时,00=y ,采用SI 单位制,则质点的运动方程为=y mt t 223+;加速度y a = 4m/s 2。
3、质量为m 的子弹以速率0v 水平射入沙土中。
若子弹所受阻力与速率成正比(比例系数为k ),忽略子弹重力的影响,则:(1)子弹射入沙土后,=)(t v t m kev -0;(2)子弹射入沙土的深度=)(t x kmv e k mv t m k0+--。
4、一质量为m 、半径为R 的均匀圆盘,以圆心为轴的转动惯量为221mR ,如以和圆盘相切的直线为轴,其转动惯量为223mR 。
3、一个人在平稳地行驶的大船上抛篮球,则( D )。
A 、向前抛省力;B 、向后抛省力;C 、向侧抛省力;D 、向哪个方向都一样。
13、关于刚体的转动惯量,以下说法正确的是:( A )。
A 、刚体的形状大小及转轴位置确定后,质量大的转动惯量大;B 、转动惯量等于刚体的质量;C 、转动惯量大的角加速度一定大;D 、以上说法都不对。
14、关于刚体的转动惯量,以下说法中哪个是错误的?( B )。
A 、转动惯量是刚体转动惯性大小的量度;B 、转动惯量是刚体的固有属性,具有不变的量值;C 、对于给定转轴,刚体顺转和反转时转动惯量的数值相同;D 、转动惯量是相对的量,随转轴的选取不同而不同。
15、两个质量均匀分布、重量和厚度都相同的圆盘A 、B ,其密度分别为A ρ和B ρ。
若B A ρρ>,两圆盘的旋转轴都通过盘心并垂直盘面,则有( B )。
A 、B A J J >; B 、B A J J <;C 、B A J J =;D 、不能确定A J 、B J 哪个大。
19、均匀细棒OA ,可绕通过其一端而与棒垂直的水平固定光滑轴转动,如右下图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( C )。
A 、角速度从小到大,角加速度不变;B 、角速度从小到大,角加速度从小到大;C 、角速度从小到大,角加速度从大到小;D 、角速度不变,角加速度为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一位移速度加速度一.选择题1.以下四种运动,加速度保持不变的运动是 (A)单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.2.质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: (A)8m/s,16m/s 2. (B) -8m/s,-16m/s 2. (C) -8m/s,16m/s 2. (D) 8m/s,-16m/s 2.3.物体通过两个连续相等位移的平均速度分别为v 1=10m/s,v 2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A)12m/s .(B) 11.75m/s . (C)12.5m/s . (D)13.75m/s .4.质点沿X 轴作直线运动,其v -t 图象为一曲线,如图1.1所示,则以下说法正确的是(A)0~t 3时间内质点的位移用v -t 曲线与t 轴所围面积绝对值之和表示,路程用v -t 曲线与t 轴所围面积的代数和表示;(B)0~t 3时间内质点的路程用v -t 曲线与t 轴所围面积绝对值之和表示,位移用v -t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.5.质点沿XOY 平面作曲线运动,其运动方程为:x =2t ,y =19-2t 2.则质点位置矢量与速度矢量恰好垂直的时刻为 (A)0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二.填空题1.一小球沿斜面向上运动,其运动方程为s =5+4t -t 2(SI),则小球运动到最高点的时刻为t = 秒.2.一质点沿X 轴运动,v =1+3t 2(SI),若t =0时,质点位于原点.则 质点的加速度a =(SI); 质点的运动方程为x =(SI).3.一质点的运动方程为r=A cos ?t i+B sin ?t j ,A ,B ,?为常量.则质点的加速度矢量为 a =,轨迹方程为. 三.计算题1.湖中有一条小船,岸边有人用绳子通过岸上高于水面h 的滑轮拉船,设人收绳的速率为v 0,求船的速度u 和加速度a .2.一人站在山脚下向山坡上扔石子,石子初速为v 0,与水平夹角为?(斜向上),山坡与水平面成?角.(1)如不计空气阻力,求石子在山坡上的落地点对山脚的距离s ;(2)如果?值与v 0值一定,?取何值时s 最大,并求出最大值s max .图1.1练习二圆周运动相对运动一.选择题1.下面表述正确的是(A)质点作圆周运动,加速度一定与速度垂直;(B)物体作直线运动,法向加速度必为零;(C)轨道最弯处法向加速度最大;(D)某时刻的速率为零,切向加速度必为零.2.由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A)静止于地球上的物体,其向心加速度指向地球中心;(B)荆州所在地的向心加速度比北京所在地的向心加速度大;(C)荆州所在地的向心加速度比北京所在地的向心加速度小;(D)荆州所在地的向心加速度与北京所在地的向心加速度一样大小.3.下列情况不可能存在的是(A)速率增加,加速度大小减少;(B)速率减少,加速度大小增加;(C)速率不变而有加速度;(D)速率增加而无加速度;(E)速率增加而法向加速度大小不变.4.质点沿半径R=1m的圆周运动,某时刻角速度?=1rad/s,角加速度?=1rad/s2,则质点速度和加速度的大小为(A)1m/s,1m/s2.(B)1m/s,2m/s2.(C)1m/s,2m/s2.(D)2m/s,2m/s2.5.一抛射体的初速度为v0,抛射角为?,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A)g cos?,0,v02cos2?/g.(B)g cos?,g sin?,0.(C)g sin?,0,v02/g.(D)g,g,v02sin2?/g.二.填空题1.一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为.2.任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;任意时刻a=0的运动是运动;任意时刻a t=0,a n=常量的运动是运动.3.已知质点的运动方程为r=2t2i+cos?t j(SI),则其速度v=;加速度a=;当t=1秒时,其切向加速度a t=;法向加速三.计算题1.一轻杆CA以角速度?绕定点C转动,而A端与重物M用细绳连接后跨过定滑轮B,如图2.1.试求重物M的速度.(已知CB=l为常数,?=?t,在t时刻∠CBA=?,计算速度时?作为已知数代入).2.升降机以a=2g的加速度从静止开始上升,机顶有一螺帽在t0=2.0s时因松动而落下,设升降机高为h=2.0m,试求螺帽下落到底板所需时间t及相对地面下落的距离s.练习三牛顿运动定律一.选择题1.下面说法正确的是(A)物体在恒力作用下,不可能作曲线运动; (B)物体在变力作用下,不可能作直线运动;(C)物体在垂直于速度方向,且大小不变的力作用下,作匀速圆周运动; (D)物体在不垂直于速度方向力的作用下,不可能作圆周运动;(E)物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动.2.如图3.1(A)所示,m A >?m B 时,算出m B 向右的加速度为a ,今去掉m A 而代之以拉力T =m A g ,如图3.1(B)所示,算出m B 的加速度a ?,则(A)a >a ?. (B)a =a ?. (C)a <a ?. (D)无法判断.3.把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图3.2所示,斜面与地面之间无摩擦,则(A)斜面保持静止. (B)斜面向左运动. (C)斜面向右运动.(D)无法判断斜面是否运动.4.如图3.3所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A)3mg . (B)2mg . (C)1mg . (D)8mg/3.5.如图3.4所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A)向上作加速运动. (B)向上作匀速运动. (C)立即处于静止状态.(D)在重力作用下向上作减速运动. 二.填空题1.如图3.5所示,一根绳子系着一质量为m 的小球,悬挂在天花板上,小球在水平面内作匀速圆周运动,有人在铅直方向求合力写出T cos ??mg =0(1)也有人在沿绳子拉力方向求合力写出T ?mg cos ?=0(2)显然两式互相矛盾,你认为哪式正确?答.理由是.2.如图3.6所示,一水平圆盘,半径为r ,边缘放置一质量为m 的物体A ,它与盘的静摩擦系数为?,圆盘绕中心轴OO ?转动,当其角速度?小于或等于时,物A 不致于飞出.3.一质量为m 1的物体拴在长为l 1的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为m 2的物体用长为l 2的轻绳与m 1相接,二者均在桌面上作角速度为?的匀速圆周运动,如图3.7所示.则l 1,l 2两绳上的张力T 1=; T 2=.图3.1图3.3图3.4m 图3.7A三.计算题1.一条轻绳跨过轴承摩擦可忽略的轻滑轮,在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,如图3.8所示.求环相对于绳以恒定的加速度a 2滑动时,物体和环相对地面的加速度各为多少?环与绳之间的摩擦力多大?2.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k ,忽略子弹的重力,求(1)子弹射入沙土后,速度随时间变化的函数关系式; (2)子弹射入沙土的最大深度.练习四动量与角动量功一.选择题1.以下说法正确的是(A)大力的冲量一定比小力的冲量大; (B)小力的冲量有可能比大力的冲量大; (C)速度大的物体动量一定大; (D)质量大的物体动量一定大.2.作匀速圆周运动的物体运动一周后回到原处,这一周期内物体 (A)动量守恒,合外力为零. (B)动量守恒,合外力不为零.(C)动量变化为零,合外力不为零,合外力的冲量为零. (D)动量变化为零,合外力为零.3.一弹性小球水平抛出,落地后弹性跳起,达到原先的高度时速度的大小与方向与原先的相同,则 (A)此过程动量守恒,重力与地面弹力的合力为零.(B)此过程前后的动量相等,重力的冲量与地面弹力的冲量大小相等,方向相反. (C)此过程动量守恒,合外力的冲量为零. (D)此过程前后动量相等,重力的冲量为零.4.质量为M 的船静止在平静的湖面上,一质量为m 的人在船上从船头走到船尾,相对于船的速度为v ..如设船的速度为V ,则用动量守恒定律列出的方程为(A)MV +mv =0. (B)MV =m (v +V ). (C)MV =mv . (D)MV +m (v +V )=0. (E)mv +(M +m)V =0. (F)mv =(M +m)V .5.长为l 的轻绳,一端固定在光滑水平面上,另一端系一质量为m 的物体.开始时物体在A 点,绳子处于松弛状态,物体以速度v 0垂直于OA 运动,AO 长为h .当绳子被拉直后物体作半径为l 的圆周运动,如图4.1所示.在绳子被拉直的过程中物体的角动量大小的增量和动量大小的增量分别为(A)0,mv 0(h/l -1). (B)0,0. (C)mv 0(l -h ),0. (D)mv 0(l -h ,mv 0(h/l -1). 二.填空题1.力F =x i +3y 2j (SI)作用于其运动方程为x =2t (SI)的作直线运动的物体上,则0~1s 内力F 作的功为A =J .2.完全相同的甲乙二船静止于水面上,一人从甲船跳到乙船,不计水的阻力,则甲船的速率v 1与乙船的速率v 2相比较有:v 1v 2(填?、?、?),两船的速度方向.a 2图3.8 A图4.13.一运动员(m =60kg)作立定跳远在平地上可跳5m,今让其站在一小车(M =140kg)上以与地面完全相同的姿势作立定向地下跳远,忽略小车的高度,则他可跳远m . 三.计算题1.一质点作半径为r ,半锥角为?的圆锥摆运动,其质量为m ,速度为v 0如图4.2所示.若质点从a 到b 绕行半周,求作用于质点上的重力的冲量I 1和张力T 的冲量I 2. 2.一质量均匀分布的柔软细绳铅直地悬挂着,绳的下端刚好触到水平桌面,如果把绳的上端放开,绳将落在桌面上,试求在绳下落的过程中,任意时刻作用于桌面的压力.练习五功能原理碰撞一.选择题1.以下说法正确的是(A)功是标量,能也是标量,不涉及方向问题; (B)某方向的合力为零,功在该方向的投影必为零; (C)某方向合外力做的功为零,该方向的机械能守恒; (D)物体的速度大,合外力做的功多,物体所具有的功也多. 2.以下说法错误的是(A)势能的增量大,相关的保守力做的正功多;(B)势能是属于物体系的,其量值与势能零点的选取有关; (C)功是能量转换的量度;(D)物体速率的增量大,合外力做的正功多.3.如图5.1,1/4圆弧轨道(质量为M )与水平面光滑接触,一物体(质量为m )自轨道顶端滑下,M 与m 间有摩擦,则 (A)M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒;(B)M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒;(C)M 与m 组成的系统动量不守恒,水平方向动量不守恒,M 、m 与地组成的系统机械能守恒;(D)M 与m 组成的系统动量不守恒,水平方向动量守恒,M 、m 与地组成的系统机械能不守恒.4.悬挂在天花板上的弹簧下端挂一重物M ,如图5.2所示.开始物体在平衡位置O 以上一点A .(1)手把住M 缓慢下放至平衡点;(2)手突然放开,物体自己经过平衡点.合力做的功分别为A 1、A 2,则(A)A 1>A 2. (B)A 1<A 2. (C)A 1=A 2. (D)无法确定.5.一辆汽车从静止出发,在平直的公路上加速前进,如果发动机的功率一定,下面说法正确的是:(A)汽车的加速度是不变的; (B)汽车的加速度与它的速度成正比; (C)汽车的加速度随时间减小; (D)汽车的动能与它通过的路程成正比. 二.填空题1.如图5.3所示,原长l 0、弹性系数为k 的弹簧悬挂在天花板上,下端静止于O 点;悬一重物m 后,弹簧伸长x 0而平衡,此时弹簧下端静止于O ?点;当物体m 运动到P 点时,弹簧又伸长x .如取O 点为弹性势能零点,P 点处系m图5.1< 图5.2M图5.4B统的弹性势能为;如以O ?点为弹性势能零点,则P 点处系统的弹性势能为;如取O ?点为重力势能与弹性势能零点,则P 点处地球、重物与弹簧组成的系统的总势能为.2.己知地球半径为R ,质量为M .现有一质量为m 的物体处在离地面高度2R 处,以地球和物体为系统,如取地面的引力势能为零,则系统的引力势能为;如取无穷远处的引力势能为零,则系统的引力势能为.3.如图5.4所示,一半径R =0.5m 的圆弧轨道,一质量为m =2kg 的物体从轨道的上端A 点下滑,到达底部B 点时的速度为v =2m /s,则重力做功为,正压力做功为,摩擦力做功为.正压N 能否写成N =mg cos ?=mg sin ?(如图示C 点)?答. 三.计算题1.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长x 的关系为F =52.8x +38.4x 2(SI)求:(1)将弹簧从定长x 1=0.50m 拉伸到定长x 2=1.00m 时,外力所需做的功.(2)将弹簧放在水平光滑的桌面上,一端固定,另一端系一个质量为 2.17kg 的物体,然后将弹簧拉伸到一定长x 2=1.00m,再将物体由静止释放,求当弹簧回到x 1=0.50m 时,物体的速率.(3)此弹簧的弹力是保守力吗?为什么?2.如图5.5所示,甲乙两小球质量均为m ,甲球系于长为l 的细绳一端,另一端固定在O 点,并把小球甲拉到与O 处于同一水平面的A 点.乙球静止放在O 点正下方距O 点为l 的B 点.弧BDC 为半径R =l /2的圆弧光滑轨道,圆心为O ?.整个装置在同一铅直平面内.当甲球从静止落到B 点与乙球作弹性碰撞,并使乙球沿弧BDC 滑动,求D 点(?=60?)处乙球对轨道的压力.练习六力矩转动惯量转动定律一.选择题1.以下运动形态不是平动的是 (A)火车在平直的斜坡上运动; (B)火车在拐弯时的运动; (C)活塞在气缸内的运动; (D)空中缆车的运动.2.以下说法正确的是(A)合外力为零,合外力矩一定为零; (B)合外力为零,合外力矩一定不为零; (C)合外力为零,合外力矩可以不为零; (D)合外力不为零,合外力矩一定不为零; (E)合外力不为零,合外力矩一定为零.3.一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为?,求摩擦力矩M ?.先取微元细杆d r ,其质量d m =?d r =(m /l )d r .它受的摩擦力是d f ?=?(d m )g =(?mg /l )d r ,再进行以下的计算,(A)M ?=?r d f ?=⎰lr r lmgd μ=?mgl/2.(B)M ?=(?d f ?)l/2=(⎰lr l mgd μ)l/2=?mgl/2. (C)M ?=(?d f ?)l/3=(⎰l r lmg0d μ)l/3=?mgl/3. (D)M ?=(?d f ?)l =(⎰l r lmg0d μ)l =?mgl . 4.质量为m ,内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图6.1所示.宽圆环的质量面密度为d m =?d S =2mr d r /(R 22?=m /S =m /[?(R 22-R 12)],细圆环的面积为d S =2?r d r ,得出微元质量图5.5图6.1-R 12),接着要进行的计算是,(A)I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰. (B)I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=m R R R R R r mr R m 2221222221d 2)d (=mR 22.(C)I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2121222121d 2)d (=mR 12.(D)I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F)I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12). (G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5.有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A)I A >I B .. (B)I A <I B ..(C)无法确定哪个大. (D)I A =I B . 二.填空题1.质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1=;质量为M ,半径为R ,长度为l 的均匀圆柱,绕中心轴的转动惯量I 2=.如果M =m ,r =R ,则I 1I 2.2.如图6.2所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦,?1和?2分别表示图(1)、图(2)中滑轮的角加速度,则?1?2(填???).3.如图6.3所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度?A :?B =;两轮边缘上A 点及B 点的线速度v A :v B =;切向加速度a t A :a t B =;法向加速度a n A :a n B =. 三.计算题1.质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图6.4,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60?2.一质量为m ,半径为R 的均匀圆盘放在粗糙的水平桌面上,的摩擦系数为?,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,力矩.练习七转动定律(续)角动量一.选择题1.以下说法错误的是:(A)角速度大的物体,受的合外力矩不一定大; (B)有角加速度的物体,所受合外力矩不可能为零; (C)有角加速度的物体,所受合外力一定不为零;(D)作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 2.在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A)合力矩增大时,物体角速度一定增大; (B)合力矩减小时,物体角速度一定减小;图6.4(1)(2)(C)合力矩减小时,物体角加速度不一定变小; (D)合力矩增大时,物体角加速度不一定增大. 3.质量相同的三个均匀刚体A 、B 、C(如图7.1所示)以相同的角速度?绕其对称轴旋转,己知R A =R C <R B ,若从某时刻起,它们受到相同的阻力矩,则(A)A 先停转. (B)B 先停转. (C)C 先停转. (D)A 、C 同时停转.4.几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A)必然不会转动. (B)转速必然不变. (C)转速必然改变.(D)转速可能不变,也可能改变.5.一轻绳跨过一具有水平光滑轴,质量为M 的定滑轮,绳的两端分别悬挂有质量为m 1和m 2的物体(m 1<m 2),如图7.2所示,绳和轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A)处处相等. (B)左边小于右边. (C)右边小于左边. (D)无法判断. 二.填空题1.半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8?rad/s ,则主动轮在这段时间内转过了圈.2.在OXY 平面内的三个质点,质量分别为m 1=1kg,m 2=2kg,和m 3=3kg,位置坐标(以米为单位)分别为m 1(-3,-2)、m 2(-2,1)和m 3(1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z =.3.一薄圆盘半径为R ,质量为m ,可绕AA ?转动,如图7.3所示,则此情况下盘的转动惯量I AA ?=.设该盘从静止开始,在恒力矩M 的作用下转动,t 秒时边缘B 点的切向加速度a t =,法向加速度a n =. 三.计算题1.如图7.4所示,有一飞轮,半径为r =20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1=20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm .设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系重物m 2后的张力?2.飞轮为质量m =60kg,半径r =0.25m 的圆盘,绕其水平中心轴转动,转速为900转/分.现利用一制动的闸杆,杆的一端加一竖直方向的制动力F ,使飞轮减速.闸杆的尺寸如图7.5所示,闸瓦与飞轮的摩擦系数?=0.4,飞轮的转动惯量可按圆盘计算.(1)设F =100N,求使飞轮停止转动的时间,并求出飞轮从制动到停止共转了几转. (2)欲使飞轮在2秒钟内转速减为一半,求此情况的制动力.练习八转动中的功和能对定轴的角动量一.选择题1.在光滑水平桌面上有一光滑小孔O ,一条细绳从其中穿过,绳的两端各栓一个质量分别m 1和m 2的小球,使m 1图7.3图7.4图7.5图7.2?图7.1在桌面上绕O 转动,同时m 2在重力作用下向下运动,对于m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能,以下说法正确的是(A)m 1、m 2组成系统的动量及它们和地组成系统的机械能都守恒;(B)m 1、m 2组成系统的动量,它们对过O 点轴的角动量以及它们和地组成系统的机械能都守恒; (C)只有m 1、m 2组成系统对过O 点轴的角动量守恒; (D)只有m 1、m 2和地组成系统的机械能守恒;(E)m 1、m 2组成系统对过O 点轴的角动量以及它们和地组成系统的机械能守恒.2.银河系中有一天体是均匀球体,其半径为R ,绕其对称轴自转的周期为T ,由于引力凝聚的作用,体积不断收缩,则一万年以后应有(A)自转周期变小,动能也变小. (B)自转周期变小,动能增大. (C)自转周期变大,动能增大. (D)自转周期变大,动能减小. (E)自转周期不变,动能减小. 3.以下说法正确的是:(A)力矩的功与力的功在量纲上不同,因力矩的量纲与力的量纲不同;(B)力矩的功与力的功在量纲上不同,力矩做功使转动动能增大,力做功使平动动能增大,所以转动动能和平动动能在量纲上也不同;(C)转动动能和平动动能量纲相同,但力矩的功与力的功在量纲上不同; (D)转动动能和平动动能,力矩的功与力的功在量纲上完全相同. 4.如图8.1所示,一绳子长l ,质量为m 的单摆和一长度为l ,质量为m ,能绕水平轴转动的匀质细棒,现将摆球和细棒同时从与铅直线成?角的位置静止释放.当二者运动到竖直位置时,摆球和细棒的角速度应满足(A)?1一定大于?2. (B)?1一定等于?2. (C)?1一定小于?2. (D)都不一定.5.一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,(A)人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒. (B)人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒. (C)人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒. (D)人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒. 二.填空题1.一辆能进行遥控的电动小汽车(质量m =0.5kg)可在一绕光滑竖直轴转动的水平平台上(平台半径为R =1m,质量M =2kg)作半径为r =0.8m 的圆周运动.开始时,汽车与平台处于静止状态,平台可视为均匀圆盘.当小汽车以相对于平台绕中心轴向前作速率为v =5m/s 的匀速圆周运动时,平台转动的角速度为?1=;当小车急刹车停下来时,平台的角速度?2=;当小车从静止开始在平台上运行一周时,平台转动的角度?=.2.光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为,力F 做的功为.3.转动着的飞轮转动惯量为J ,在t =0时角速度为?0,此后飞轮经历制动过程,阻力矩M ?的大小与角速度?的平方成正比,比例系数为k (k 为大于0的常数),当?=?0/3时,飞轮的角加速度?=,从开始制动到?=?0/3所经过的时间t =. 三.计算题1.落体法测飞轮的转动惯量,如图8.2所示,将飞轮支持,使之能绕水平轴转动,在轮边缘上绕一轻绳,在绳的一端系一质量为m的图8.1图8.3重物,测得重物由静止下落高度H 所用的时间为t ,已知飞轮半径为R ,忽略摩擦阻力,试求飞轮的转动惯量.2.如图8.3所示,质量为M 的均匀细棒,长为L ,可绕过端点O 的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m 的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为?,求小球击中细棒前的速度值.练习九力学习题课一.选择题1.圆盘绕O 轴转动,如图9.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度?将(A)增大. (B)不变. (C)减小. (D)无法判断.2.芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为?0,当她突然收臂使转动惯量减小为I 0/2时,其角速度应为(A)2?0. (B)2?0. (C)4?0. (D)?0/2.(E)?0/2.3.转动惯量相同的两物体m 1、m 2都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为?1和?2.则以下说法不正确的是(A)?1可能大于?2; (B)?1可能小于?2; (C)?1可能等?2; (D)?1一定大于?2.4.一圆锥摆,如图9.2,摆球在水平面内作圆周运动.则 (A)摆球的动量,摆球与地球组成系统的机械能都守恒. (B)摆球的动量,摆球与地球组成系统的机械能都不守恒. (C)摆球的动量不守恒,摆球与地球组成系统的机械能守恒. (D)摆球的动量守恒,摆球与地球组成系统的机械能不守恒.5.如图9.3,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A)动量、机械能都不守恒. (B)动量守恒,机械能不守恒. (C)动量不守恒,机械能守恒. (D)动量、机械能都守恒. 二.填空题1.铀238的核(质量为238原子质量单位),放射一个?粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,?粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为,方向为.2.如图9.4所示,加速度a 至少等于时,物体m 对斜面的正压力为零,此时绳子的张力T =.图9.3图9.4图9.13.最大摆角为?0的摆在摆动进程中,张力最大在?=处,最小在?= 处,最大张力为 ,最小张力为 ,任意时刻(此时摆角为?,??0≤?≤?0)绳子的张力为 . 三.计算题1.如图9.5,一块宽L =0.60m 、质量M =1kg 的均匀薄木板,可绕水平固定光滑轴OO ?自由转动,当木板静止在平衡位置时,有一质量为m =10×10-3kg的子弹垂直击中木板A 点,A 离转轴OO ?距离为l =0.36m,子弹击中木板前速度为500m·s -1,穿出木板后的速度为200m·s -1.求(1)子弹给予木板的冲量; (2)木板获得的角速度.(已知:木板绕OO ?轴的转动惯量J =ML 2/3)2.用铁锤将铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比,在铁锤击第一次时,能将铁钉击入木板1cm,问击第二次时,能击多深?设铁锤两次击钉的速度相同.练习十状态方程压强公式自由度一.选择题1.把一容器用隔板分成相等的两部分,左边装CO 2,右边装H 2,两边气体质量相同,温度相同,如果隔板与器壁无摩擦,则隔板应(A)向右移动. (B)向左移动. (C)不动.(D)无法判断是否移动.2.某种理想气体,体积为V ,压强为p ,绝对温度为T ,每个分子的质量为m ,R 为普通气体常数,N 0为阿伏伽德罗常数,则该气体的分子数密度n 为(A)pN 0/(RT ). (B)pN 0/(RTV ). (C)pmN 0/(RT ). (D)mN 0/(RTV ).3.如图10.1所示,已知每秒有N 个氧气分子(分子质量为m )以速度v 沿着与器壁法线成?角方向撞击面积为S 的气壁,则这群分子作用于器壁的压强是(A)p =Nmv cos ?/S . (B)p =Nmv sin ?/S . (C)p =2Nmv cos ?/S . (D)p =2Nmv sin ?/S .4.关于平衡态,以下说法正确的是(A)描述气体状态的状态参量p 、V 、T 不发生变化的状态称为平衡态;(B)在不受外界影响的条件下,热力学系统各部分的宏观性质不随时间变化的状态称为平衡态;(C)气体内分子处于平衡位置的状态称为平衡态; (D)处于平衡态的热力学系统,分子的热运动停止. 5.理想气体的微观模型是(A)分子大小可以忽略不计的气体分子模型;(B)分子在没有碰撞时,分子间无任何作用力的分子模型;(C)分子在运动过程中遵守牛顿运动定律,碰撞时分子是弹性小球的气体分子模型;(D)分子大小可以忽略不计;没碰撞时,相互间无作用力;碰撞时为弹性小球;运动中遵守牛顿运动定律的气体分子模型.二.填空题1.根据平均值的概念有图10.1。