卫星导航概述-PPT课件
合集下载
卫星导航概述ppt课件
![卫星导航概述ppt课件](https://img.taocdn.com/s3/m/5ab19c2e770bf78a6429546e.png)
地形辅助导航系统(TANS)
有源和无源无线电导航系统
电子测距系统
伏尔(VOR)
罗兰-C
•罗兰-C 是由美国的海岸警卫队在 50 年代末研制成功的。 •导航方式跟罗兰-A 基本相同,但作用距离可以达到 1000
海里,可以用作远程导航系统。
•目前,北大西洋、北太平洋、地中海、中国沿海、美国本土
北宋 (AD.960-1127)
北宋 (AD.960-1127)
航海过程
在 James Cook(1728-1779)以前,船的安全 行驶依靠原始的导航技术,这些技术能够粗略的给 出船的位置。
在航海的过程中,船员们需要知道两条信息: 他们在地球上的经度和纬度的位置坐标,以及精确 的将坐标值映射到地图上。
惯性导航系统(INS)
惯性导航系统的结构图
捷联惯性导航单元结构图
惯性导航系统(INS)
环行激光陀螺仪
MEMS-INS
CNS-天球导航系统
CNS-天球导航系统
地形辅助导航系统(TANS)
78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44
导航历史
早在公元前3500年前,人类就有历史记载用大船装在货物
进行商业贸易的历史。这标志了人类导航艺术的诞生。 早期的
导航家都是在靠近海岸线用肉眼观察陆地标记或者大地特性来
辨别方向的。他们通常白天行驶,晚上找个平静的港口抛锚。
他们没有航海图,但他们列出了所需的方向,类似于今天的巡
航向导.
.
导航历史
和苏联(现在的俄罗斯)总共建设了 60 多个台站。
•1975 年,罗兰-C 被美国宣布为标准航海导航系统。
北斗卫星导航系统PPT课件
![北斗卫星导航系统PPT课件](https://img.taocdn.com/s3/m/080468a2c1c708a1284a44d2.png)
北斗卫星导航系统
国腾电子
2011-6
1
发展之路
2019/12/31
3
一、世界卫星导航发展中的北斗
(一)竞相发展的全球卫星导航系统 (二)北斗对中国的贡献 (三)北斗对世界的贡献
2019/12/31
4
(一)竞相发展的全球卫星导航系统
美国GPS
俄罗斯GLONASS
中国北斗
欧盟伽利略
1、系统状态:四大系统卫星在轨数量变化情况
2019/12/31
48
3、推动应用价值创新,提升应用效用
充分发挥卫星导航与其他信息产业间互 补、融合、增值的特点,创新应用价值,提 升应用效果,成为我国经济社会增收增效的 “新引擎”。
2019/12/31
49
三、世界卫星导航愿景中的北斗
(一)中国特色的北斗 (二)服务国家的北斗 (三)面向世界的北斗
1254.61 MHz
M-Code BOC(10,5)
1227.6MHz
L2C BPSK(1)
1207.14MHz
E5b-I BPSK(10)
1278.75MHz
E6B: BPSK(5)
E6A: BOCc(10,5)
E5a-Q BPSK(10)
1176.45MHz
B2-A P (OS) BPSK(10)
2019/12/31
18
1、新增导航频率资源,开辟新的发展空间
卫星导航L频段
2000年世界无线电通信大会
1164MHz 1215MHz 1260MHz1300MHz
1559MHz 1610MHz
新增
新增
1164MHz 1215MHz 1260MHz1300MHz
1559MHz 1610MHz
国腾电子
2011-6
1
发展之路
2019/12/31
3
一、世界卫星导航发展中的北斗
(一)竞相发展的全球卫星导航系统 (二)北斗对中国的贡献 (三)北斗对世界的贡献
2019/12/31
4
(一)竞相发展的全球卫星导航系统
美国GPS
俄罗斯GLONASS
中国北斗
欧盟伽利略
1、系统状态:四大系统卫星在轨数量变化情况
2019/12/31
48
3、推动应用价值创新,提升应用效用
充分发挥卫星导航与其他信息产业间互 补、融合、增值的特点,创新应用价值,提 升应用效果,成为我国经济社会增收增效的 “新引擎”。
2019/12/31
49
三、世界卫星导航愿景中的北斗
(一)中国特色的北斗 (二)服务国家的北斗 (三)面向世界的北斗
1254.61 MHz
M-Code BOC(10,5)
1227.6MHz
L2C BPSK(1)
1207.14MHz
E5b-I BPSK(10)
1278.75MHz
E6B: BPSK(5)
E6A: BOCc(10,5)
E5a-Q BPSK(10)
1176.45MHz
B2-A P (OS) BPSK(10)
2019/12/31
18
1、新增导航频率资源,开辟新的发展空间
卫星导航L频段
2000年世界无线电通信大会
1164MHz 1215MHz 1260MHz1300MHz
1559MHz 1610MHz
新增
新增
1164MHz 1215MHz 1260MHz1300MHz
1559MHz 1610MHz
《卫星导航概述》课件
![《卫星导航概述》课件](https://img.taocdn.com/s3/m/49b9a9dddc88d0d233d4b14e852458fb770b38cd.png)
05
卫星导航的未来发展
高精度定位技术
总结词
高精度定位技术是卫星导航领域的重要发展方向,通过提高定位精度,能够更好 地满足各种应用需求。
详细描述
随着技术的不断进步,卫星导航系统的高精度定位技术将得到进一步发展。通过 采用更先进的信号处理技术和算法,可以降低误差和提高定位精度,从而更好地 满足各种应用需求,如智能交通、无人机、农业等领域的精细化管理。
多模融合导航技术
总结词
多模融合导航技术是未来卫星导航发展的重要趋势,通过融合不同导航模式,能够提高导航系统的可靠性和可用 性。
详细描述
随着卫星导航技术的发展,多模融合导航技术成为重要趋势。通过融合卫星导航、惯性导航、地面增强等多种导 航模式,可以相互补充和校验,提高导航系统的可靠性和可用性。这种技术将有助于解决复杂环境下的导航问题, 如城市峡谷、高楼林立等区域。
IRNSS的优点包括自主可控、 提高国家安全和战略地位,以 及促进印度空间技术的发展。
IRNSS的缺点包括建设周期长 、技术难度大,以及与其他全 球卫星导航系统的兼容性问题
。
欧洲伽利略系统
欧洲伽利略系统(Galileo)是由欧盟自主建立的全球 卫星导航系统。
输标02入题
该系统由30颗卫星组成,旨在为全球用户提供高精度、 可靠和安全的定位、导航和授时服务。
ቤተ መጻሕፍቲ ባይዱ
位置计算
根据多颗卫星的信号测量 结果,使用三角测量法计 算接收机的三维位置和时 间。
02
全球卫星导航系统
GPS系统
概述
GPS系统是由美国建设和维护的全球卫星导航系统,提供全球覆盖的高精度定位和时间服 务。
组成
GPS系统由空间段、控制段和用户段三部分组成。空间段包括多颗卫星,控制段包括地面 监控站和数据中心,用户段包括GPS接收机和数据处理软件。
《卫星导航》PPT课件
![《卫星导航》PPT课件](https://img.taocdn.com/s3/m/d913f481011ca300a7c3900e.png)
15
© Northwestern Polytechnical University
王伶 / 2014.07.08
3 GPS系统组成
系统组成-空间部分
作用: 发送用于导航定位的信号 其他特殊用途,如通讯、监测核暴等。
主要设备:原子钟(2台铯钟、2台铷钟)、信号生成与发射装置
16
© Northwestern Polytechnical University
王伶 / 2014.07.08
2 卫星导航定位基本原理
(X1-Ux)2+(Y1-Uy)2+(Z1-Uz)2=( c(T1-Cb))2 (X2-Ux)2+(Y2-Uy)2+(Z2-Uz)2=(c(T2-Cb))2 (X3-Ux)2+(Y3-Uy)2+(Z3-Uz)2=(c(T3-Cb))2 (X4-Ux)2+(Y4-Uy)2+(Z4-Uz)2=(c(T4-Cb))2
2 卫星导航定位基本原理
S1(x1s,y1s,z1s)
S2(xs2,ys2,zs2)
S3(xs3,ys3,zs3)
Sn(xsn,ysn,zsn)
跟踪站1
(x1,y1,z1) 跟踪站2 (x2,y2,z2)
跟踪站n (xn,yn,zn)
跟踪站3 (x3,y3,z3)
未知点 (x,y,z)
8
© Northwestern Polytechnical University
2
© Northwestern Polytechnical University
王伶 / 2014.07.08
2
1 全球卫星导航系统
导航定义
Navigation源于海洋中船舶的航行,起 初人们通过罗盘和天文等手段对航行 在海洋中的船舶进行导向和领航,后 来发展到陆地车辆以及空中飞行器的 领航,Navigation逐渐被译成“导航”
卫星定位导航系统原理及应用串讲课件
![卫星定位导航系统原理及应用串讲课件](https://img.taocdn.com/s3/m/0fcdbbbe18e8b8f67c1cfad6195f312b3169ebf1.png)
C / A码码率 f0 10 1.023MHz; P码码率 f0 10.23MHz; 卫星(导航)电文码率 f0 204600 50Hz
39
GPS卫星信号结构---载波
作用
搭载其它调制信号 测距
L1
19.03c m
测定多普勒频移
L2
类型
24.42c m
目前
L1 – 频率: 154f0 = 1575.43MHz;波长:19.03cm L2 – 频率: 120f0 = 1227.60MHz;波长:24.42cm
4
GPS系统的特点
第三,实时定位
利用GPS导航,可以实时地确定运动目 标的三维位置和速度,由此既可保障运动载 体沿预定航线运行,也可实时监测和修正航 行路线,选择最佳航线。
5
美国政府的GPS政策
美国政府在GPS设计中计划提供两种服务: 一种为精密定位服务(PPS),利用P码进行定位,只提
供给本国及其盟国的军方和得到特许的民间用户使用, 估计其定位精度为10m。 另一种为标准定位服务(SPS),利用C/A码定位,提供给 民间用户使用。由于C/A码作为捕获P码之前的前导码, 是一种粗捕获的明码,因此估计SPS的定位精度约为 400m。
x=F1(B,L) y=F2(B,L) 由于椭球面是一个曲面,我们不可能把它铺展成 一个平面而不产生某种褶皱和破裂,也就是不可 能把整个椭球面或其一部分曲面毫无变形地表示 在一个平面上,因此无论对投影函数F1和F2选得 如何妥当,总是不可避免地产生变形。
21
地图投影的分类
按其变形性质分: 等角投影:投影后,地图上任意两相交短线之间的夹角 保持不变。 等面积投影:投影后,地图上面积大小保持正确的比例 关系。 等距投影:投影后,地图上从某一中心点到其它点的距 离保持不变。 方位投影:投影后,地图上表示的任一点到某一中心点 的方位角保持不变。
39
GPS卫星信号结构---载波
作用
搭载其它调制信号 测距
L1
19.03c m
测定多普勒频移
L2
类型
24.42c m
目前
L1 – 频率: 154f0 = 1575.43MHz;波长:19.03cm L2 – 频率: 120f0 = 1227.60MHz;波长:24.42cm
4
GPS系统的特点
第三,实时定位
利用GPS导航,可以实时地确定运动目 标的三维位置和速度,由此既可保障运动载 体沿预定航线运行,也可实时监测和修正航 行路线,选择最佳航线。
5
美国政府的GPS政策
美国政府在GPS设计中计划提供两种服务: 一种为精密定位服务(PPS),利用P码进行定位,只提
供给本国及其盟国的军方和得到特许的民间用户使用, 估计其定位精度为10m。 另一种为标准定位服务(SPS),利用C/A码定位,提供给 民间用户使用。由于C/A码作为捕获P码之前的前导码, 是一种粗捕获的明码,因此估计SPS的定位精度约为 400m。
x=F1(B,L) y=F2(B,L) 由于椭球面是一个曲面,我们不可能把它铺展成 一个平面而不产生某种褶皱和破裂,也就是不可 能把整个椭球面或其一部分曲面毫无变形地表示 在一个平面上,因此无论对投影函数F1和F2选得 如何妥当,总是不可避免地产生变形。
21
地图投影的分类
按其变形性质分: 等角投影:投影后,地图上任意两相交短线之间的夹角 保持不变。 等面积投影:投影后,地图上面积大小保持正确的比例 关系。 等距投影:投影后,地图上从某一中心点到其它点的距 离保持不变。 方位投影:投影后,地图上表示的任一点到某一中心点 的方位角保持不变。
北斗卫星导航课件
![北斗卫星导航课件](https://img.taocdn.com/s3/m/08d9cc74b80d6c85ec3a87c24028915f814d845f.png)
上海卫星导航定位产业技术创新战略联盟
行业(领 域)应用 市场
大众(个 人)应用 市场
关键及核心市场
国土资源 测绘与建筑工程 石 油物探 水陆空交通运输 灾害 预防 气象、铁路、电信 水利、 电力 城市建设、景区 农林牧 渔 ………………………
最大市场
私家车辆应用 移动终端应用 互联网应用 个人位置服务(LBS)应用 旅游休闲运动应用 游戏娱乐应用
北斗系统各个细分行业市场规模预测 (亿元)
北斗导航行业应用市场现状
1、交通运输:
两客一危(30余万辆) 2014年交通运输部、公安部、安监总局(2年内数百万台)
2、海洋渔业:
要为90%以上渔船配备必要的安全通信、避碰设备,各地政府提供70%~90%的补贴采 购北斗接收机,系统平台运营费用由地方各级政府承担。(入网用户3万余个 伴随手机用 户10万余个)
要求元器件全部国产化,实现自主可控。
“北斗二号”卫星将在2016年转换民用信号,频点和调 制方式现代化的GPS民用信号(L1C)和伽利略L1开放服 务信号。
卫星上播发区域增强信号,从而使在不改变原有北斗 接收机的基础上,使得地面的接收装备实现米级高精度定 位。
北斗全球导航卫星系统---RDSS系统
截至2013年底,我国北斗终端社会持有量已超过130万套。现阶 段我国涉足卫星导航与位置服务产业的企事业单位数量超过 11000家,从业人员数量接近33万人。
——数据来源于:中国卫星导航与位置服务产业发展白皮书(2013年度)
北斗导航行业应用市场现状
预估军用市场容量过百亿。
北斗导航行业应用市场现状
每个载波信号均有正交调制的普通测距码(I 支路)和精密测距码(Q支路)。
卫星以不同地址码区分(CDMA)。
行业(领 域)应用 市场
大众(个 人)应用 市场
关键及核心市场
国土资源 测绘与建筑工程 石 油物探 水陆空交通运输 灾害 预防 气象、铁路、电信 水利、 电力 城市建设、景区 农林牧 渔 ………………………
最大市场
私家车辆应用 移动终端应用 互联网应用 个人位置服务(LBS)应用 旅游休闲运动应用 游戏娱乐应用
北斗系统各个细分行业市场规模预测 (亿元)
北斗导航行业应用市场现状
1、交通运输:
两客一危(30余万辆) 2014年交通运输部、公安部、安监总局(2年内数百万台)
2、海洋渔业:
要为90%以上渔船配备必要的安全通信、避碰设备,各地政府提供70%~90%的补贴采 购北斗接收机,系统平台运营费用由地方各级政府承担。(入网用户3万余个 伴随手机用 户10万余个)
要求元器件全部国产化,实现自主可控。
“北斗二号”卫星将在2016年转换民用信号,频点和调 制方式现代化的GPS民用信号(L1C)和伽利略L1开放服 务信号。
卫星上播发区域增强信号,从而使在不改变原有北斗 接收机的基础上,使得地面的接收装备实现米级高精度定 位。
北斗全球导航卫星系统---RDSS系统
截至2013年底,我国北斗终端社会持有量已超过130万套。现阶 段我国涉足卫星导航与位置服务产业的企事业单位数量超过 11000家,从业人员数量接近33万人。
——数据来源于:中国卫星导航与位置服务产业发展白皮书(2013年度)
北斗导航行业应用市场现状
预估军用市场容量过百亿。
北斗导航行业应用市场现状
每个载波信号均有正交调制的普通测距码(I 支路)和精密测距码(Q支路)。
卫星以不同地址码区分(CDMA)。
北斗卫星导航系统ppt课件
![北斗卫星导航系统ppt课件](https://img.taocdn.com/s3/m/ab6dd8585a8102d276a22f73.png)
B2: 1166.22~1217.37MHz
B3: 1250.618~1286.423MHz
星座
信号 (实际发射)
2012年 5GEO+5IGSO+4MEO
区域服务
2020年 5GEO+3IGSO+27MEO
全球服务
1、信号特征
区域服务信号
信号
B1(I) B1(Q) B2(I) B2(Q)
B3
中心频点 (MHz)
主要内容
北斗卫星导航系统发展蓝图 北斗卫星导航系统发展状况 北斗卫星导航系统发展形势 北斗卫星导航系统发展举措
北斗卫星导航系统发展状况
1
关键技术
2
系统建设
3
应用推广
4
国际合作
1、关键技术
经过艰苦攻关,已初步突破星载原 子钟、高精度伪距测量、精密定轨与时 间同步等一系列卫星导航系统核心关键 技术。
2、系统建设
建成北斗卫星导航试验系统
2000年10月31日 2000年12月21日
140E
80E
2003年5月25日 110.5E
2、系统建设
北斗卫星导航系统进入星座组网阶段
2004年,启动北斗卫星导航系统建设工作。 目前,工程建设已进入星座组网阶段,已成
功发射3颗卫星。
3、应用推广
2003年北斗卫星导航试验系统正式提供服 务以来,在交通、渔业、水文、气象、林业、 通信、电力、救援等诸多领域得到广泛应用, 注册用户已达6万,产生了显著的社会效益和经 济效益。
基于北斗的高原地区气象监测站 基于北斗的珠峰气象监测站
3、应用推广
林业
基于北斗的森林防火系统已成功用于实战,目前 已经配备700多台套。
北斗卫星导航系统ppt课件
![北斗卫星导航系统ppt课件](https://img.taocdn.com/s3/m/ab6dd8585a8102d276a22f73.png)
4、国际合作
兼容互操作是全球卫星导航系统主要供 应商达成的共识,中国致力于推进全球卫星 导航系统兼容互操作进程。
4、国际合作
鉴于各国卫星导航系统发展不平衡, 以及多边合作的差异性、技术合作的复杂 性并存,北斗系统在与世界上其它系统协 调宝贵的频率轨位资源、协调兼容与互操 作、融入国际标准化体系等方面,必将付 出很大努力。
主要内容
北斗卫星导航系统发展蓝图 北斗卫星导航系统发展状况 北斗卫星导航系统发展形势 北斗卫星导航系统发展举措
北斗卫星导航系统发展状况
1
关键技术
2
系统建设
3
应用推广
4
国际合作
1、关键技术
经过艰苦攻关,已初步突破星载原 子钟、高精度伪距测量、精密定轨与时 间同步等一系列卫星导航系统核心关键 技术。
B2: 1166.22~1217.37MHz
B3: 1250.618~1286.423MHz
星座
信号 (实际发射)
2012年 5GEO+5IGSO+4MEO
区域服务
2020年 5GEO+3IGSO+27MEO
全球服务
1、信号特征
区域服务信号
信号
B1(I) B1(Q) B2(I) B2(Q)
B3
中心频点 (MHz)
2、系统建设
建成北斗卫星导航试验系统 北斗卫星导航系统进入星座组网阶段
2、系统建设
建成北斗卫星导航试验系统
2000年分别发射北斗卫星导航试验系统第一颗、第 二颗卫星,2003年发射第三颗卫星,建成区域有源卫星 导航系统,使我国成为世界上第三个拥有自主卫星导航 系统的国家。该系统可为我国及周边地区的中低动态用 户提供快速定位、短报文通信和授时服务。
北斗卫星导航系统介绍ppt课件
![北斗卫星导航系统介绍ppt课件](https://img.taocdn.com/s3/m/e4f1704031126edb6e1a106e.png)
9
2.3 银河号事件 “窝囊” 大国重器却受制于人
外交部国际司司长沙祖康
10
2.4 研发北斗系统
中国空间技术研究院 北斗卫星导航系统 2012年 总产值达到2500亿人民币。
11
2.5 北斗卫星导航系统建设背景
1994年北斗一号系统开始研发 2000年年底 建成北斗一号系统,向中国提供服务。 2012年年底 建成北斗二号系统,向亚太地区提供服务。 2020年前后 建成北斗全球系统,向全球提供服务。 北斗导航卫星全球系统首 席总设计师 ---谢军
15
3.3 星载原子钟
有卫星导航心脏之称的星载原 子钟发挥着提供时间基准的作 用
北斗三号星载原子钟,授时精度高 达10纳秒
16
四、北斗在行业中的应用
17
4.1 行业应用
沙场点兵 地震救援 渔民出海
18
基于北斗的集 装箱智能物流 系统
4.1 行业应用
精准农业
19
4.2 北斗在救灾中的应用
2008年 汶川地震 进入灾区的救援部队, 利用北斗120个字的短报文功能向指挥 部汇报送灾情。
VI. 人员应急搜救客户端(安卓版)
VII.人员应急呼叫客户端(安卓版)
VIII.应急救援指挥调度客户端(安卓版)
IX. 应急救援指挥调度客户端(ios版)
X. 灾情决策服务客户端(安卓版)
62
7.4 应用程序——第一屏
灾害管理
首次使用灾害管理APP都需要进行 终端注册,其注册流程如下:
联网点击灾害管理,自动更新后选择任意 APP进行安装。
通讯录界面
详见使用说明书
• 搜索好友 • 添加好友 • 好友备注 • 删除好友 • 好友基本资
2.3 银河号事件 “窝囊” 大国重器却受制于人
外交部国际司司长沙祖康
10
2.4 研发北斗系统
中国空间技术研究院 北斗卫星导航系统 2012年 总产值达到2500亿人民币。
11
2.5 北斗卫星导航系统建设背景
1994年北斗一号系统开始研发 2000年年底 建成北斗一号系统,向中国提供服务。 2012年年底 建成北斗二号系统,向亚太地区提供服务。 2020年前后 建成北斗全球系统,向全球提供服务。 北斗导航卫星全球系统首 席总设计师 ---谢军
15
3.3 星载原子钟
有卫星导航心脏之称的星载原 子钟发挥着提供时间基准的作 用
北斗三号星载原子钟,授时精度高 达10纳秒
16
四、北斗在行业中的应用
17
4.1 行业应用
沙场点兵 地震救援 渔民出海
18
基于北斗的集 装箱智能物流 系统
4.1 行业应用
精准农业
19
4.2 北斗在救灾中的应用
2008年 汶川地震 进入灾区的救援部队, 利用北斗120个字的短报文功能向指挥 部汇报送灾情。
VI. 人员应急搜救客户端(安卓版)
VII.人员应急呼叫客户端(安卓版)
VIII.应急救援指挥调度客户端(安卓版)
IX. 应急救援指挥调度客户端(ios版)
X. 灾情决策服务客户端(安卓版)
62
7.4 应用程序——第一屏
灾害管理
首次使用灾害管理APP都需要进行 终端注册,其注册流程如下:
联网点击灾害管理,自动更新后选择任意 APP进行安装。
通讯录界面
详见使用说明书
• 搜索好友 • 添加好友 • 好友备注 • 删除好友 • 好友基本资
北斗卫星导航系统介绍 ppt课件
![北斗卫星导航系统介绍 ppt课件](https://img.taocdn.com/s3/m/3a014ce8af1ffc4ffe47acb8.png)
3.3 星载原子钟
有卫星导航心脏之称的星载原 子钟发挥着提供时间基准的作 用
北斗三号星载原子钟,授时精度高 达10纳秒
四、北斗在行业中的应用
4.1 行业应用
沙场点兵 地震救援 渔民出海
基于北斗的集 装箱智能物流 系统
4.1 行业应用
精准农业
4.2 北斗在救灾中的应用
2008年 汶川地震 进入灾区的救援部队, 利用北斗120个字的短报文功能向指挥 部汇报送灾情。
4.3 用户终端监控
4.4 在线终端数据统计
统计近七天内所有终端的上线记录使用系统注册用户进行登录
4.5 全国省级节点网络分布地图
4.6 指挥机卫星信息状态
4.7 省级节点运行状态信息监控
4.8 终端人员管理
查看终端分配人员列 表,可选择不同属性 信息进行模糊查询, 并可执行添加、修改、 删除操作。
4.9 终端与指挥机隶属关系
选择所属单位查 看终端-指挥机 隶属关系列表, 配有导入导出模 板下载辅助功能, 可执行添加、修 改、删除操作。
4.10 终端通信分组
自定义将终端分组,便于向指定范围内成员发送报文信息,并可执行添加、修改、删除、分组操作。
4.11 北斗短报文发送
4.12 北斗短报文查询
5.1 部级主节点建设
5.1 部级主节点建设
5.2 省级分节点建设
省民政厅(局):北斗指挥所设备1套、RDSS服务器1台。 2.4万台设备在线信息交互,不间断工作时间超过100000小时。
5.2 省级分节点建设
5.3 北斗指挥机
• 北斗指挥机G2000系列 北斗指挥型用户机,支持北斗二号RDSS信号和北斗 二号RNSS B1L1信号。北斗指挥机G2000-A: 支持 2000个民用用户。能够向全国北斗信息终端发送北 斗单播、组播和通报信息;每台指挥主机设备的通 播终端数大于2000。
《GPS卫星导航》PPT课件
![《GPS卫星导航》PPT课件](https://img.taocdn.com/s3/m/c3d6532cf7ec4afe04a1df76.png)
d r )
及
X j Xk
2
Y j Yk
2
Z j Zk
2
1
2 dr
(6-8)
应
则基准/动态接收机的钟差之差所引起的距离偏差为:
用
dr cd k d r
(6-9)
如果基准/动态接收机各观测了4颗GPS卫星,则按(6-8)列 出4个方程式,可解出4个未知数(Xk,Yk,Zk,△dr)。
便得到线性方程:
用
X A1B
(6-2)
6.2.1 单点动态定位
G
其中矩阵:
P
X X u Yu Zu T
S 测 量 原
X
1
10
X u0
X2
X u0
Y 1 Zu0
1 0
Y 1 X u0
理
20
20
Z 1 Zu0
10
Z 2 Zu0
20
1
1
及 应
X 3 X u0
30
1 c
[ij I (t)
ijT
(t)]
上述计算可见,当观测站坐标已知时,只需观测1颗卫星,即可确定未知钟差
差数;如果观测站坐标未知,则至少同步观测4颗卫星,以便在确定观测站
G
位置的同时,确定接收机钟差(如前述的实时绝对定位)。
P
单站单机测时的目的在于确定用户时钟相对GPS时的偏差,进一步根据导航
S
及 由此可得载体运行方向的速度为 应
用
vs X 2 Y2 Z 2 1 2
上述测定航速的方法,不需要新的观测量,计算
简单,测速的实质仍是定位。上述计算是在时间段
G P
t内的平均速度,如果计算过程中所取时间间隔过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导航家都是在靠近海岸线用肉眼观察陆地标记或者大地特性来
辨别方向的。他们通常白天行驶,晚上找个平静的港口抛锚。
他们没有航海图,但他们列出了所需的方向,类似于今天的巡
航向导.
.
导航历史
当他们在看不到大陆的时候,他们通过在白 天观察太阳的位置,晚上观察北极星的位置来辨 别南北方向。
导航历史
早期的航海家们总是在靠近海岸 线的附近白天活动,当天气不好或 者晚上的时候不出海活动。在中世 纪,欧洲的航海家们在整个冬季都 不出海活动。这样就自然的限制的 他们的活动范围。大范围的航海活 动必然会带来风险。
地形辅助导航系统(TANS)
有源和无源无线电导航系统
电子测距系统
伏尔(VOR)
罗兰-C
•罗兰-C 是由美国的海岸警卫队在 50 年代末研制成功的。 •导航方式跟罗兰-A 基本相同,但作用距离可以达到 1000
海里,可以用作远程导航系统。
•目前,北大西洋、北太平洋、地中海、中国沿海、美国本土
经度
• 经线位于南北几点 之间的连线。
• 0˚ 经过英国的格林 威治。
• 负的经度为西经, 正的为东经
• 北京市的经度是多
少?
地图
18世纪的“精度”地图能够给我们提供很多信息,告诉我们 当时的导航精度有多高。人民曾经很长一段时间用来测量大地经 度和纬度的值,并且取得了很大成功。
专业工具
• 航海家们早期使用的工具只能粗系统的结构图
捷联惯性导航单元结构图
惯性导航系统(INS)
环行激光陀螺仪
MEMS-INS
CNS-天球导航系统
CNS-天球导航系统
地形辅助导航系统(TANS)
78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44
• 六分仪能够为海上航线提供纬度位置 • 指南针能够为航海提供方向信息 • 但是你却不知道向东或者向西行驶了多少
•一个很好的例子
好船最终报废!
经度
• 1707年,10月22号,由于航位推测法的错误,导 致2000多人死亡的海难。
• 1717年,anne 女皇宣称,如果谁能够将航海的经 度准确度保持到1/2度(相当于在平行于赤道行驶 30英里),将对他悬赏20000英镑。
古代导航工具
直角器(Cross-staff)
标尺(Back-staff)
古代导航工具
四分仪(Quadrant)
夜间记时仪器 (Nocturnal )
星盘(Astrolabe ) 航海员星盘 (Mariner‘s Astrolabe)
指南针-中国古代导航工具
汉朝 (BC.206-AD.220)
南宋 (AD.1127-1279)
纬度和经度
N
纬度
S
经度
E
W
航海过程
• 纬度可以通过观察太阳、月亮和星星的运动来 判断。
• 经度的判断比较困难,必须计算出地球上不同 地点的时差。
纬度和经度
北极 北极 南极
赤道参 考面
经度 子午线
纬度
赤道
南极
纬度
• 0˚ 位于赤道 • 90˚N 在北极点
• 北京市的纬度是 多少?
• 南极的纬度是多 少?
卫星导航原理及应用技术 •秦 红 磊
电话:010-82316491 Email:qhlmmmsina
北京航空航天大学电子信息工程学院204教研室
卫星导航原理及应用技术
第1章: 绪论 第2章: GNSS简介 第3章: GPS 坐标和时间系统 第4章: GPS 卫星轨道 第5章: GPS 信号结构和导航电文 第6章: GPS 接收机 第7章: GPS 导航观测量和误差分析 第8章: GPS 定位原理 第9章: 整周模糊度技术
什么是导航?
导航就是安全有效的从一个地点到达另一个地点.
我们为什么需要导航?
我在哪?
你就在这里.
但是这里是哪里?
你在哪?
• 你能在地图上找到你现在的位置吗? • 你能在黑夜里返回你现在的位置吗?
导航历史
早在公元前3500年前,人类就有历史记载用大船装在货物
进行商业贸易的历史。这标志了人类导航艺术的诞生。 早期的
• 按照惯性测量装置在载体上的安装方式, 可分为:
–平台式惯性导航系统 –捷联式惯性导航系统
平台方式: 保持传感器的姿态
这种方法将IMU相对于周边环境的姿态保持不变。
捷联方式: 固定惯性测量单元(IMU)
这种方法适用于安装小的和高精度的惯性测量单元。这比 平台方法先进的多,适用于重量轻、体积小、功率低和高精度 的场合。底侧必须安装一个带有范围大的角度计的陀螺仪来感 知机身的运动,以及一台高速的计算机来进行坐标转换运算。
早期导航工具的弱点
• 早期的导航工具有着众多的不确定性因素,以至 于绘制的世界地图不够精确
• 指南针依赖于北地磁极点与北地球自传轴点重合 (事实不是这样!)
• 陆地导航依靠地面地标的辅助,然后将这些地名 映射到地图上来对行车进行校准
• 这些技术不适于海上应用
海上导航
• 文艺复兴时期,海上航线遇到的最大困难就是怎 么确定经度问题。
卫星导航原理及应用技术
第10章: 差分GPS技术 第11章: 速度、姿态和时间测量 第12章:干扰和抗干扰技术 第13章:高灵敏度接收机技术 第14章:完好性监测技术 第15章:组合导航技术 第16章:其它应用技术
第1章: 概述
1.1 什么是导航? 1.2 我们为什么需要导航? 1.3 导航历史回顾 1.4 现代导航系统 1.5 导航系统应用
北宋 (AD.960-1127)
北宋 (AD.960-1127)
航海过程
在 James Cook(1728-1779)以前,船的安全 行驶依靠原始的导航技术,这些技术能够粗略的给 出船的位置。
在航海的过程中,船员们需要知道两条信息: 他们在地球上的经度和纬度的位置坐标,以及精确 的将坐标值映射到地图上。
和苏联(现在的俄罗斯)总共建设了 60 多个台站。
•1975 年,罗兰-C 被美国宣布为标准航海导航系统。
六分仪 • 六分仪能够测量位于水平面以上物体的仰角(北极星、
太阳等),经常用于寻找纬度
• 指南针 • 用于指引方向
通过记录通过 的步伐来测量距离 或者速度、经历过 的时间等
航位推测法
• 航位推测法在长距离的航行中会带来很大误差 • 如果从纽约到伦敦,当旅行结束时,在95%的定
位精度下,将会累积175英里的误差