理论力学第8章
合集下载
理论力学第8章
运动分类 绝对运动:动点相对于静坐标系的运动。 相对运动:动点相对于动坐标系的运动。 牵连运动:动坐标系相对于静坐标系的运动。 速度分类 动点相对于静坐标系的速度、加速度称为绝对 速度、绝对加速度。记作va,aa 。 动点相对于动坐标系的速度和加速度称为相对 速度、相对加速度。记作vr,ar 。
动点的绝对速度:
' ' M 1M 2 M1M1' M1' M 2 t t t v a ve v r
动点的加速度:
v a ve v r dv a d v e d v r aa dt dt dt
刚体平移时,刚体上各点的速度相同,都等于动坐标 原点的速度#39; y' j' z' k' ) : x' i' x' ω i' ω x' i' ω vrx i' y' j' y' ω j' ω y' j' ω vry j' z' k' z' ω k' ω z' k' ω vrz k' 2( x' i' y' j' z' k' ) 2[ω vrx i' ω vry j' ω vrz k' ] 2ω (vrx i' ω vry j' ω vrz k' ) 2ω v r
2
例8-3 凸轮半径R, 偏心距e,以角速度
ω绕O转动。直杆
《理论力学(Ⅰ)》PPT 第8章
⑵ 已知作用质点上的力,求质点的运动;
综合问题:既求质点的运动,又求作用质点 上的力; 正向假定法: 凡符号未知的量,皆设为正号;其真实符号 由方程来确定; 符号已知的量,按坐标定正负。 运动量,尽量按照运动方向定正负。
例8-1 半径为r、偏心距为
e的偏心轮绕O轴以匀角速 度ω转动,推动杆AB沿铅 直滑道运动,杆的顶部有 一质量为m的物块D。运 A 动开始时,OC位于铅直 线OBA上,求:⑴任意瞬 时,物块对杆的压力;⑵
1. 质点系的质量中心
z
z1
矢量 rC
mi ri mi
两边投影,得到坐标
rC C ri mi y1
O
ri
x x1
y
xC
mi xi mi
,yC
mi yi mi
,zC
mi zi mi
ri rC ri
多物体 rC
M i riC Mi
2. 刚体的转动惯量
z
⑴ 定义 J z miri2
Cz z
⑷ 平行轴定理 Jz JCz md 2
Cd
⑸ 组合单刚体转动惯量之和。
若有空心的部分,视为负值即可。
P
令 c2 P
μ
有
dv dt
g c2
(c2
v2 )
积分
v cdv
0 c2 v2
tg dt
0c
c
v
2g t
ec
cv
整理
2g t
gt
gt
v
c
ec
2g
t
ec
1
c
e
c g
t
1 ec
ec
gt
ec
c
th
综合问题:既求质点的运动,又求作用质点 上的力; 正向假定法: 凡符号未知的量,皆设为正号;其真实符号 由方程来确定; 符号已知的量,按坐标定正负。 运动量,尽量按照运动方向定正负。
例8-1 半径为r、偏心距为
e的偏心轮绕O轴以匀角速 度ω转动,推动杆AB沿铅 直滑道运动,杆的顶部有 一质量为m的物块D。运 A 动开始时,OC位于铅直 线OBA上,求:⑴任意瞬 时,物块对杆的压力;⑵
1. 质点系的质量中心
z
z1
矢量 rC
mi ri mi
两边投影,得到坐标
rC C ri mi y1
O
ri
x x1
y
xC
mi xi mi
,yC
mi yi mi
,zC
mi zi mi
ri rC ri
多物体 rC
M i riC Mi
2. 刚体的转动惯量
z
⑴ 定义 J z miri2
Cz z
⑷ 平行轴定理 Jz JCz md 2
Cd
⑸ 组合单刚体转动惯量之和。
若有空心的部分,视为负值即可。
P
令 c2 P
μ
有
dv dt
g c2
(c2
v2 )
积分
v cdv
0 c2 v2
tg dt
0c
c
v
2g t
ec
cv
整理
2g t
gt
gt
v
c
ec
2g
t
ec
1
c
e
c g
t
1 ec
ec
gt
ec
c
th
理论力学第八章
解:
1.杆GE作平面运动,瞬心为 C1 。 OG 800mm 500mmsin15 929.4mm
EC1 OC1 OE 3369mm OG GC1 3591mm 0 sin 15
GE
vG GE GC1 1.066 m s
BG
vG GC
vE OE 0.2968 rad s EC1 EC1
§ 8-1
刚体平面运动的概述和运动分解
1.平面运动
刚体平面运动:行星齿轮
刚体平面运动:车轮运动情况
共同特点: 在运动中,刚体上的任意一点与某一固定平面始 终保持相等的距离
平面运动
平面运动的简化
刚体的平面运动可以简化为平面图形S在其自身平面内的运动.
刚体平面运动的简化
2.运动方程
xO f1 t yO f 2 t f3 t
基点: A
2.
vB vA vBA vA ?
大小 ? 方向
vB vA cot
vBA vA sin
vBA vA l l sin
AB
例8-2 已知:如图所示平面机构中,AB=BD= DE= l=300mm。 在图示位置时,BD∥AE,杆AB的角速度为ω=5rad/s。 求:此瞬时杆DE的角速度和杆BD中点C的速度。
同一平面图形上任意两点的速度在这两点连线上 的投影相等。 适用条件:刚体作任意运动,不仅用于作平面运动
例8-5 如图所示的平面机构中,曲柄OA长100mm,以角速 度ω=2rad/s转动。连杆AB带动摇杆CD,并拖动轮E 沿水平面纯滚动。已知:CD=3CB,图示位置时A, B,E三点恰在一水平线上,且CD⊥ED。 求:此瞬时点E的速度。
理论力学第八章
D
vO B
作无滑动的滚动,已知
O
轮心O以匀速vO前进。
求轮缘上A,B,C和D
C
各点的速度。
25
例题
刚体的平面运动
例题2
解: 基点法
A
因为轮心O点速度已知,故选O为基点。
D
vO B
Oω
vCO vC=0 vO C
应用速度合成定理,轮缘上C点的速度可
表示为
vC vO vCO
其中 vCO 的方向已知,其大小vCO =R ω 。
vB vA vBA
即平面图形上任一点的速度等于基点的速度与该点随图形绕 基点转动的速度的矢量和.这种求解速度的方法称为基点法, 也称为合成法.它是求解平面图形内一点速度的基本方法.
通常把平面图形中速度为已知的点选为基点 二.速度投影法
由于A, B点是任意的,因此 vB vA vBA 表示了图形上任 意两点速度间的关系.由于恒有 vBAAB ,因此将上式在AB
CD
3vB
0.693
m/
s
38
例题
刚体的平面运动
例题5
轮E沿水平面滚动,轮心E的速度水平
由速度投影定理,D,E 两点的速度关系为
vE cos 30 vD
vD
由
D
vD 0.693 m / s
E
30
vE
B vB A vA 60 C O ω
求得
vE 0.8 m / s
39
例
BC=l
40
解: (1)求AB的角速度
式中vB方向沿BO向下,vAB方向垂直杆
vB
AB,且 vBA=ωAB·AB, 但 ωAB未知 , 而
ωAB
vAB vA=u。由速度合成矢量图可得
理论力学 第8章 动力学基础
8.4 例 题 分 析
v
dv
t
dt
0 g bv 0
v g 1ebt b
x
g
dx
t
1ebtdt
0
b0
xbgtb11ebt
这就是该物体下沉的运动规律。
t ebt0
v g 1ebt b
g mg
v极限 b m
此速度极值称为物体在液体中自由下沉的极限速度
应用:选矿、选种等。
不同质量不同的极限速度。
8.1 主要内容
8.1.6 质点动力学的两类基本问题 应用质点运动微分方程,可解决质点动力学的两类基本问题。
(1)质点动力学的第一类基本问题。已知质点的运动,求解 此质点所受的力。
(2)质点动力学的第二类基本问题。已知作用在质点上的力, 求解此质点的运动。
求解第一类问题,一般只需进行微分运算;而求解第二类问题,一般要 进行积分运算,属于微分方程的积分问题,应由运动的初始条件确定积分常数。
Theoretical Mechanics
当前你正在浏览到的事第十一页PPTT,共四十六页。
返回首页
第8章 动力学基础
8.1 主要内容
若将刚体对于O点的转动惯量(亦称为极转动惯量)表示为
I O m iR i 2 m ix i 2 y i 2 z i 2
或
I O m R R 2 d m m Rx 2 y 2 z 2 d m
8.1.3 单位制
国际单位制(SI)。长度、质量、时间为基本量,对应的基本单位是米
(m)、千克(kg)、秒(s),力是导出量,力的导出单位是牛顿(N)。
1N=1kg·1m/s2 =1kg·m/s2
工程单位制(EU)。长度、力、时间为基本量,对应的基本单位是米
理论力学第8章
速度瞬心法 利用速度瞬心求解平面图形上点的速度的方法
例8-5 已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。 求:用瞬心法求B端的速度以及尺AB的角速度。
解: AB作平面运动,
速度瞬心为点C。
图形的角速度:
AB
vA AC
vA
l sin
B点的速度:
vD
C
vB AB BC vA cot
AB轴投影
1 2 ,1 2
§ 8-5 运动学综合应用举例
1.运动学综合应用 一个运动机构或运动系统是由多种运动的点和刚
体组成,各构件之间通过铰链、套筒、销钉、滑块 等连接点传递运动。由已知运动的构件,通过对某 些连接点和刚体的运动分析,确定机构中所有构件 的运动,称为机构运动分析。
分析机构运动时,先应分析各构件作什么运动, 计算各连接点速度和加速度,再计算待求未知量。
aBnA 大小 aBnA 2 AB 方向由B指向 A
平面图形内任一点的加速度等于基点的加速 度与该点随图形绕基点转动的切向加速度和法 向加速度的矢量和。
例8-7
已知:如图所示,在外啮合行星齿轮机构中,系杆以匀角速
度ω1绕O1转动。大齿轮固定,行星轮半径为r,在大轮上只滚 不滑。设A和B是行星轮缘 上的两点,点A在O1O的延长线上, 而点B在垂直于O1O的半径上。
aC aCnO R 2
[例] 已知O1A=O2B, 图示瞬时 O1A//O2B。试问
(a),(b)两种情况下1 和 2 ,1 和 2 是否相等?
解:(a) AB作平动,
1 2 ,1 2
(b) AB作平面运动, 图示 瞬时作瞬时平动, 此时
加速度
aBt
aBn
a
例8-5 已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。 求:用瞬心法求B端的速度以及尺AB的角速度。
解: AB作平面运动,
速度瞬心为点C。
图形的角速度:
AB
vA AC
vA
l sin
B点的速度:
vD
C
vB AB BC vA cot
AB轴投影
1 2 ,1 2
§ 8-5 运动学综合应用举例
1.运动学综合应用 一个运动机构或运动系统是由多种运动的点和刚
体组成,各构件之间通过铰链、套筒、销钉、滑块 等连接点传递运动。由已知运动的构件,通过对某 些连接点和刚体的运动分析,确定机构中所有构件 的运动,称为机构运动分析。
分析机构运动时,先应分析各构件作什么运动, 计算各连接点速度和加速度,再计算待求未知量。
aBnA 大小 aBnA 2 AB 方向由B指向 A
平面图形内任一点的加速度等于基点的加速 度与该点随图形绕基点转动的切向加速度和法 向加速度的矢量和。
例8-7
已知:如图所示,在外啮合行星齿轮机构中,系杆以匀角速
度ω1绕O1转动。大齿轮固定,行星轮半径为r,在大轮上只滚 不滑。设A和B是行星轮缘 上的两点,点A在O1O的延长线上, 而点B在垂直于O1O的半径上。
aC aCnO R 2
[例] 已知O1A=O2B, 图示瞬时 O1A//O2B。试问
(a),(b)两种情况下1 和 2 ,1 和 2 是否相等?
解:(a) AB作平动,
1 2 ,1 2
(b) AB作平面运动, 图示 瞬时作瞬时平动, 此时
加速度
aBt
aBn
a
理论力学第八章点的合成运动和例题讲解
MM ' 为绝对位移 M1M ' 为相对位移
MM' = MM1 + M1M'
MM' = MM1 + M1M' 将上式两边同除以△t, 取△t →0时的极限,得
lim M M lim M M 1 lim M 1 M t 0 t t 0 t t 0 t
va vevr
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度 的矢量和,这就是点的速度合成定理。 说明:① 点的速度合成定理适用于牵连运动(动系的运动)为
O1B的角速度1。
解:取OA杆上A点为动点,摆杆O1B 为动系,基座为静系。
绝对速度va = r ,方向 OA
相对速度vr = ? 方向//O1B 牵连速度ve = ? 方向O1B
由速度合成定理 va vevr作出速度平行四边形 如图所示。
ve vasin r
r r2 l2
r 2 r2 l2
则
1. 绝对运动:动点相对于静系的运动。 2. 相对运动:动点相对于动系的运动。 点的运动 3. 牵连运动:动系相对于静系的运动。 刚体的运动 在任意瞬时,动坐标系中与动点相重合的点叫牵连点。
绝对运动中动点的速度与加速度称绝对速度 v a 与绝对加速度 a a 相对运动中动点的速度和加速度称相对速度 v r 与相对加速度 a r
§8-2 点的速度合成定理
点的速度合成定理将建立动点的绝对速度、相对速度和牵连 速度之间的关系。
设有一动点M按一定规律沿着固连于动系O’x’y’z’ 的曲线AB 运动, 而曲线AB同时又随同动系O’x’y’z’ 相对静系Oxyz运动。
当t t+△t 时 AB A' B' , M M' 也可看成M M1 M´
MM' = MM1 + M1M'
MM' = MM1 + M1M' 将上式两边同除以△t, 取△t →0时的极限,得
lim M M lim M M 1 lim M 1 M t 0 t t 0 t t 0 t
va vevr
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度 的矢量和,这就是点的速度合成定理。 说明:① 点的速度合成定理适用于牵连运动(动系的运动)为
O1B的角速度1。
解:取OA杆上A点为动点,摆杆O1B 为动系,基座为静系。
绝对速度va = r ,方向 OA
相对速度vr = ? 方向//O1B 牵连速度ve = ? 方向O1B
由速度合成定理 va vevr作出速度平行四边形 如图所示。
ve vasin r
r r2 l2
r 2 r2 l2
则
1. 绝对运动:动点相对于静系的运动。 2. 相对运动:动点相对于动系的运动。 点的运动 3. 牵连运动:动系相对于静系的运动。 刚体的运动 在任意瞬时,动坐标系中与动点相重合的点叫牵连点。
绝对运动中动点的速度与加速度称绝对速度 v a 与绝对加速度 a a 相对运动中动点的速度和加速度称相对速度 v r 与相对加速度 a r
§8-2 点的速度合成定理
点的速度合成定理将建立动点的绝对速度、相对速度和牵连 速度之间的关系。
设有一动点M按一定规律沿着固连于动系O’x’y’z’ 的曲线AB 运动, 而曲线AB同时又随同动系O’x’y’z’ 相对静系Oxyz运动。
当t t+△t 时 AB A' B' , M M' 也可看成M M1 M´
理论力学8章分析解析
2018/10/20
理论力学第8章
22
补充例题。圆轮纯滚动的运动特点。 1. 圆轮在水平面上作纯滚动。轮心A作水平直 线运动。 无滑动条件:轮心A的 水平位移OC等于轮缘 滚动过的弧长,即 OC=MC。设OC长度为x, MC的圆心角为φ,则
x r
2018/10/20 理论力学第8章 23
OA sin AB sin r sin sin l
2018/10/20 理论力学第8章 13
2018/10/20
理论力学第8章
14
用基点法建立A和B的 速度关系。
v B v A v BA vB v A sin vBA sin 0 v A cos vBA cos r cos vBA AB l cos cos sin( ) vB r sin r sin r cos cos cos r , cos
2018/10/20
理论力学第8章
34
轮A的速度和加速度分析:
vA v A r A, A 10rad / s R vC 2 R A 4m / s aA aA r A , A 10rad / s 2 R t n aC a A aCA aCA
v B v A v BA vB cos30 v A cos30 vB sin 30 v A sin 30 vBA v B v A r vBA 0,
2018/10/20
BA 0
理论力学第8章
19
对于轮B: C为瞬心。
vC v B vCB 0 vB vCB vCB vB r vCB B r
理论力学第八章
解: 1、动点:滑块 A 动系:摇杆 O1B 2、运动分析:
绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。
3、
√√√
ve va sin r sin
1
ve O1 A
r 2
l2 r2
例8-4 如图所示半径为R、偏心距为e的凸轮, 以角速度ω绕O轴转动,杆AB能在滑槽中上下平移, 杆的端点A始终与凸轮接触,且OAB成一直线。
在动参考系上与动点相重合的那一点(牵连点)的 速度和加速度称为动点的牵连速度(用ve表示)和牵连 加速度(用ae表示) 。
如果没有牵连运动,则动点的相对运动就是它的绝 对运动;
如果没有相对运动,则动点随同动参考系所作的运 动就是它的绝对运动;
动点的绝对运动既取决于动点的相对运动,也决定 于动参考系的运动即牵连运动,它是两种运动的合 成。
练习:已知 , ,小球的相对速度u,OM=l。 求:牵连速度和牵连加速度
y x'
y'
M
O
φ
x
实例一:车刀的运动分析
动点:车刀刀尖 动系:工件 绝对运动:直线运动 牵连运动:定轴转动 相对运动:曲线运动(螺旋运动)
实例二:回转仪的运动分析
动点:M点 动系:框架
相对运动:圆周运动 牵连运动:定轴转动 绝对运动:空间曲线运动
§8-1 相对运动·牵连运动·绝对运动
习惯上把固定在地球上的坐标系称为定参考系, 以oxy坐标系表示;固定在其它相对于地球运动的参考 体上的坐标系称为动参考系,以o'x'y'坐标系表示。
用点的合成运动理论分析点的运动时,必须选定两 个参考系,区分三种运动: (1) 动点相对于定参考系的运动,称为绝对运动; (2) 动点相对于动参考系的运动,称为相对运动; (3) 动参考系相对于定参考系的运动,称为牵连运动。
绝对运动-绕O点的圆周运动;相对运动-沿 O1B的直线运动;牵连运动-绕O1轴定轴转动。
3、
√√√
ve va sin r sin
1
ve O1 A
r 2
l2 r2
例8-4 如图所示半径为R、偏心距为e的凸轮, 以角速度ω绕O轴转动,杆AB能在滑槽中上下平移, 杆的端点A始终与凸轮接触,且OAB成一直线。
在动参考系上与动点相重合的那一点(牵连点)的 速度和加速度称为动点的牵连速度(用ve表示)和牵连 加速度(用ae表示) 。
如果没有牵连运动,则动点的相对运动就是它的绝 对运动;
如果没有相对运动,则动点随同动参考系所作的运 动就是它的绝对运动;
动点的绝对运动既取决于动点的相对运动,也决定 于动参考系的运动即牵连运动,它是两种运动的合 成。
练习:已知 , ,小球的相对速度u,OM=l。 求:牵连速度和牵连加速度
y x'
y'
M
O
φ
x
实例一:车刀的运动分析
动点:车刀刀尖 动系:工件 绝对运动:直线运动 牵连运动:定轴转动 相对运动:曲线运动(螺旋运动)
实例二:回转仪的运动分析
动点:M点 动系:框架
相对运动:圆周运动 牵连运动:定轴转动 绝对运动:空间曲线运动
§8-1 相对运动·牵连运动·绝对运动
习惯上把固定在地球上的坐标系称为定参考系, 以oxy坐标系表示;固定在其它相对于地球运动的参考 体上的坐标系称为动参考系,以o'x'y'坐标系表示。
用点的合成运动理论分析点的运动时,必须选定两 个参考系,区分三种运动: (1) 动点相对于定参考系的运动,称为绝对运动; (2) 动点相对于动参考系的运动,称为相对运动; (3) 动参考系相对于定参考系的运动,称为牵连运动。
理论力学8
摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。
理论力学第八章平面运动
基点:C
r vM
r vMC
r
uuuur CM
• 速度瞬心的确定方法
已知 vA ,的vB方向, 且 v不A 平行于 v。B
vrA // vrB ,且不垂直于AB
vrB
vvrrBBvArAvr0AvrABvrMAB
0
瞬时平移(瞬心在无穷远处)
纯滚动(只滚不滑)约束
找出下列平面运动刚体的速度瞬心。 A
第八章 刚体平面运动
1、刚体平面运动的定义及运动方程 2、刚体平面运动分解为随基点平动和绕基点转动 3、平面运动图形上点的速度分析 4、平面运动图形上点的加速度分析
1、刚体平面运动的定义
若刚体在运动过程中,刚体上的任意一点与 某一固定平面始终保持相等的距离,这种运 动称为平面运动。
刚体平面运动特点
刚体上所有各点均在平行于某固 定平面的平面内运动。
刚体的平面运动,可以简化为平面 图形在其自身平面内的运动来研究。
平面图形 S 的位置可用其上任一 线段如AB 来确定,线段AB的位 置又可用A 点的坐标 xA 、yA 和 线段AB与 x 轴的夹角 φ 来确定。 点 A 称为基点。
刚体平面运动方程
当平面图形 S 运动时,坐标 xA 、
yA 和夹角 φ 一般都是随时间 t 而 变化的,分别为时间 t 的单值连
续函数,即
xA f1 (t)
y A f 2 (t)
f3 (t)
这就是平面图形S 的运动方程,也就是刚体平面运动的运动方程。
2、刚体平面运动分解为随基点平动和绕基点转动
xO f1 t
1.5rad
/
s
BC
vB BC
2.25rad
/s
vA
2)瞬心法
r vM
r vMC
r
uuuur CM
• 速度瞬心的确定方法
已知 vA ,的vB方向, 且 v不A 平行于 v。B
vrA // vrB ,且不垂直于AB
vrB
vvrrBBvArAvr0AvrABvrMAB
0
瞬时平移(瞬心在无穷远处)
纯滚动(只滚不滑)约束
找出下列平面运动刚体的速度瞬心。 A
第八章 刚体平面运动
1、刚体平面运动的定义及运动方程 2、刚体平面运动分解为随基点平动和绕基点转动 3、平面运动图形上点的速度分析 4、平面运动图形上点的加速度分析
1、刚体平面运动的定义
若刚体在运动过程中,刚体上的任意一点与 某一固定平面始终保持相等的距离,这种运 动称为平面运动。
刚体平面运动特点
刚体上所有各点均在平行于某固 定平面的平面内运动。
刚体的平面运动,可以简化为平面 图形在其自身平面内的运动来研究。
平面图形 S 的位置可用其上任一 线段如AB 来确定,线段AB的位 置又可用A 点的坐标 xA 、yA 和 线段AB与 x 轴的夹角 φ 来确定。 点 A 称为基点。
刚体平面运动方程
当平面图形 S 运动时,坐标 xA 、
yA 和夹角 φ 一般都是随时间 t 而 变化的,分别为时间 t 的单值连
续函数,即
xA f1 (t)
y A f 2 (t)
f3 (t)
这就是平面图形S 的运动方程,也就是刚体平面运动的运动方程。
2、刚体平面运动分解为随基点平动和绕基点转动
xO f1 t
1.5rad
/
s
BC
vB BC
2.25rad
/s
vA
2)瞬心法
哈工大理论力学课件第八章
力学中的质点
1 定义与特征
了解质点在力学中的定义 和主要特征。
2 动力学定律
研究质点运动时需要遵守 的基本动力学规律。
3 质点运动的描述
学习如何描述和解释质点 的运动状态。
刚体运动学
1 刚体的定义
2 刚体的运动描述
了解什么是刚体,并学习 如何识别和描述刚体运动。
探索如何描述和分析刚体 在空间中的运动。
3 刚体的转动定理
了解刚体转动时适用的物 理原理和定理。
动力学
1 牛顿定律
学习牛顿三定律,它们是动力学中最重要的基本定律。
2 动力学方程
掌握如何建立和分析物体运动的动力学方程。
3 动力学分析
应用动力学原理对不同情况下的物体进行分析和计算。
应用举例
1 研究领域与实际应用 2 案例分析
了解理论力学在各个科学 领域和实际生活中的应用。
哈工大理论力学课件第八 章
欢迎来到哈工大理论力学课件第八章!本章将介绍力学中的质点、刚体运动 学、动力学以及它们在实际应 Nhomakorabea中的重要性。
理论力学课件第八章简介
1 课程背景
了解为什么理论力学在物理学中扮演着至关重要的角色。
2 学习目标
了解本章中将要学习和掌握的知识和技能。
3 知识概述
探索理论力学课件第八章的大纲和核心概念。
通过实际案例分析,展示 理论力学在解决问题和定 量预测方面的重要性。
3 概念扩展
探索理论力学在不同概念 和理论发展中的应用。
课程总结
1 主要学习内容回顾
对本章学习内容进行简要回顾和总结。
2 总结与
总结理论力学课件第八章的核心概念和重要 观点。
理论力学第八章
?
几个有意义的实际问题
偏心转子 为什么要 固定,如 果不固定 会怎样
几个有意义的实际问题
偏心转子 电动机工作 时为什么会 左右运动;
这种运动有 什么规律; 会不会上 下跳动; 利弊得失。
?
几个有意义的实际问题
偏心转子 没有跳起 时,质心 运动情况
几个有意义的实际问题
偏心转子 有跳起时, 质心运动 情况
工程实际中的动力学问题
v1
F
v2
棒球在被球棒 击打后,其速度 的大小和方向发 生了变化。如果 已知这种变化即 可确定球与棒的 相互作用力。
工程实际中的动力学问题
载人飞船的交会与对接
v2 v1
B A
工程实际中的动力学问题
航空航天器 的姿态控制
工程实际中的动力学问题
高速列车的振动问题
ቤተ መጻሕፍቲ ባይዱ
工程实际中的动力学问题
1. 直角坐标系投影式
z
ma F
O x
M
r z y
a
y
x
v
F
d r m 2 dt
2
F
直角坐标形式
d2x m 2 Fx ma x m x dt d2y m 2 Fy ma y m y dt d 2z m 2 Fz ma z m z dt
牛顿及其在力学发展中的贡献
牛顿出生于林肯郡伍尔索朴城的一个中等农户家中。 在他出生之前父亲即去世,他不到三岁时母亲改嫁了, 他不得不靠他的外祖母养大。
1661年牛顿进入了剑桥大学的三一学院,1665年获文 学学士学位。在大学期间他全面掌握了当时的数学和光 学。1665-1666的两年期间,剑桥流行黑热病,学校暂 时停办,他回到老家。这段时间中他发现了二项式定律, 开始了光学中的颜色实验,即白光由7种色光构成的实 验,而且由于一次躺在树下看到苹果落地开始思索地心 引力问题。在30岁时,牛顿被选为皇家学会的会员,这 是当时英国最高科学荣誉。
理论力学--动力学习题+答案
理论力学电子教程
第八章 质点的运动微分方程
例11-3 图示的均质杆OA的质量为30kg,杆在铅垂位置时弹簧处 于自然状态。设弹簧常数k =3kN/m,为使杆能由铅直位置OA转 到水平位置OA',在铅直位置时的角速度至少应为多大? 解:研究OA杆 (1)OA杆所受外力的功: 1 2 2 W12 P 1.2 k (1 2 ) 2 1 30 9.8 1.2 3000 [0 2 (2.4 1.2 2 ) 2 ] 388.4(J) 2 (2) OA杆的动能:T1 1 1 30 2.4 2 0 2 28.8 0 2 2 3 T2 0 (3)对OA杆应用动能定理:
(1)质点的运动方程和运动微分方程的物理意义相同.( × )
运动方程是位移与时间关系方程;运动微分方程是位移微分与力关系方程。
(2)已知质点的运动方程可唯一确定作用于质点上的力。(√) (3)已知作用于质点上的力可唯一确定质点的运动方程。(×)
已知作用于质点上的力确定质点的运动方程时还需考虑运动的初始条件。
A B
代入(3)、(4)并结合(2)式得:
2g A B 5r
4 aC g 5
理论力学电子教程
第八章 质点的运动微分方程
(2)选圆柱A为研究对象
1P 2 r A M Tr (1) 2g
选圆柱B为研究对象
P 1P 2 r B T ' r (2) aC T ' P 2g g
T1 0
(3)求O处约束反力 作圆盘的受力分析和运动分析,有
4g 4g n aC r 2 r 3r 3 2 aC r g 3
mg
C
由质心运动定理,得 4 n ma C FOx FOx mg 3
理论力学第7版第八章刚体的平面运动
根据 va ve vr 做速度平行四边形
ve va cos r1 sin( ),
2
ve O2 A
sin( )sin cos
1
vr va sin r1 cos( )
ac
2 2 v r
si
n
(2 cos
2
)
1
2
r
方向:与 v e相23同。
aa ae ar aC
——点的加速度合成定理 a a an
[例2] 曲柄滑杆机构
已知: OA=l, =45o 时,,;
求:小车的速度与加速度.
解:动点:OA杆上 A点;
动系:固结在滑杆上;
绝对运动:圆周运动, 相对运动:直线运动,
牵连运动:平动;
va ve vr
大小 l ? ?
方向 √ √ √
ve va cos l cos45
2 l()
2
小车的速度: v ve
为牵连点。若二者不重合,动
系应扩大到参考体之外。此时
桥式吊车
,牵连点就不是动参考体上的
点,而是动系上的点。
动点: 物块A
相对运动: 直线
动系: 固结于小车 牵连运动: 平动
牵连点:A’
绝对运动: 曲线
8
绝对速度 :va ——绝对运动中,动点的速度 相对速度 :vr ——相对运动中,动点的速度
牵连速度 :ve ——牵连运动中,牵连点的速度
4
动点:AB杆上A点 动系:固结于凸轮O'上
定系:固结在地面上 绝对运动: 沿AB的直线运动 相对运动: 曲线(圆弧) 牵连运动: 直线平动
5
分析动点、动系改变,对运动分析的影响:
动点:A(在AB杆上) 动系:偏心轮 静系:地面
ve va cos r1 sin( ),
2
ve O2 A
sin( )sin cos
1
vr va sin r1 cos( )
ac
2 2 v r
si
n
(2 cos
2
)
1
2
r
方向:与 v e相23同。
aa ae ar aC
——点的加速度合成定理 a a an
[例2] 曲柄滑杆机构
已知: OA=l, =45o 时,,;
求:小车的速度与加速度.
解:动点:OA杆上 A点;
动系:固结在滑杆上;
绝对运动:圆周运动, 相对运动:直线运动,
牵连运动:平动;
va ve vr
大小 l ? ?
方向 √ √ √
ve va cos l cos45
2 l()
2
小车的速度: v ve
为牵连点。若二者不重合,动
系应扩大到参考体之外。此时
桥式吊车
,牵连点就不是动参考体上的
点,而是动系上的点。
动点: 物块A
相对运动: 直线
动系: 固结于小车 牵连运动: 平动
牵连点:A’
绝对运动: 曲线
8
绝对速度 :va ——绝对运动中,动点的速度 相对速度 :vr ——相对运动中,动点的速度
牵连速度 :ve ——牵连运动中,牵连点的速度
4
动点:AB杆上A点 动系:固结于凸轮O'上
定系:固结在地面上 绝对运动: 沿AB的直线运动 相对运动: 曲线(圆弧) 牵连运动: 直线平动
5
分析动点、动系改变,对运动分析的影响:
动点:A(在AB杆上) 动系:偏心轮 静系:地面
哈工大理论力学 第八章课件
各点的速度方向分别为各点 与A1点连线的垂线方向,转向与 相同,由此可见车轮顶点的速 度最快,最下面点的速度为零。
vA1 0
vA3
A2
A4
vA4
O
vO
vA2
A1
vA2 vA4 2r 2v
vA3 2r 2v
理论力学
中南大学土木建筑学院
22
[例2] 已知:曲柄连杆机构OA=AB=l, 取柄OA以匀 转动。求:当 =45º 时, 滑块B的速度及AB杆的角速度。
理论力学
)
23
中南大学土木建筑学院
速度投影法 研究AB, v A ,l 方向OA, v B方向沿BO直线 根据速度投影定理 vB AB v A AB v A v B cos v B v A /cos
l /cos45 2l () 不能求出 AB 速度瞬心法 研究AB,已知 v A , vB 的方向,因此 可确定出P点为速度瞬心
。
轮A作纯滚动,轮O不动。
求 vM 1 , vM 2 。 解:OA定轴转动; 轮A作平面运动, 瞬心P点
v A ( R r ) o r Rr o r
(
)
v M 1 PM 1 2r v M 2 PM 2 2r
Rr 2 ( R r )o , r o
理论力学
中南大学土木建筑学院
2
例如: 曲柄连杆机构中连杆AB的运动, A点作圆周运动,B点作直线运动,因此, AB 杆的运动既不是平移也不是定轴转动, 而是平面运动。
理论力学
中南大学土木建筑学院
3
理论力学
中南大学土木建筑学院
4
二、平面运动的简化 刚体的平面运动 到固定平面 Ⅰ的距离不变
vA1 0
vA3
A2
A4
vA4
O
vO
vA2
A1
vA2 vA4 2r 2v
vA3 2r 2v
理论力学
中南大学土木建筑学院
22
[例2] 已知:曲柄连杆机构OA=AB=l, 取柄OA以匀 转动。求:当 =45º 时, 滑块B的速度及AB杆的角速度。
理论力学
)
23
中南大学土木建筑学院
速度投影法 研究AB, v A ,l 方向OA, v B方向沿BO直线 根据速度投影定理 vB AB v A AB v A v B cos v B v A /cos
l /cos45 2l () 不能求出 AB 速度瞬心法 研究AB,已知 v A , vB 的方向,因此 可确定出P点为速度瞬心
。
轮A作纯滚动,轮O不动。
求 vM 1 , vM 2 。 解:OA定轴转动; 轮A作平面运动, 瞬心P点
v A ( R r ) o r Rr o r
(
)
v M 1 PM 1 2r v M 2 PM 2 2r
Rr 2 ( R r )o , r o
理论力学
中南大学土木建筑学院
2
例如: 曲柄连杆机构中连杆AB的运动, A点作圆周运动,B点作直线运动,因此, AB 杆的运动既不是平移也不是定轴转动, 而是平面运动。
理论力学
中南大学土木建筑学院
3
理论力学
中南大学土木建筑学院
4
二、平面运动的简化 刚体的平面运动 到固定平面 Ⅰ的距离不变
第八章--理论力学解析
系统动量的大小为:
p
p
2 x
p
2 y
l
4(m1 m2 )2 sin 2 t m12 cos2 t
§8-2 动量定理
1.质点的动量定理
d(mv) F dt
或 d(mv) Fdt
--质点动量定理的微分形式
即质点动量的增量等于作用于质点上的力的元冲量.
在 t1~ t 2 内, 速度由 v1 ~ v2, 有
FT2 m2 (g r2)
例9-3:已知:两小球质量皆为 m,初始角速度 。0
求:剪断绳后, 角时的 .
解: 0 时,
Lz1 2ma0a 2ma20
0 时,
Lz2 2m(a l sin )2
Lz1 Lz2
(a
a 2 0 l sin )2
§9-3 刚体绕定轴的转动微分方程
主动力: F1, F2,
, Fn
约束力: FN1 , FN2
d dt
(
J
z)
M
z
(Fi
)
M
z
( FNi
)
Mz (Fi )
即:
Jz
d
dt
M z (Fi )
或 Jz Mz (F)
转动 微分
或
Jz
d2
dt 2
Mz(F)
方程
§9-3 刚体绕定轴的转动微分方程
主动力: F1, F2,
, Fn
O
(F
)
投影式:
质点对某定点的动量矩对时间的
d dt
M
x
(mv )
M
x
(F
)
d dt
M
y
(mv )
M
y
p
p
2 x
p
2 y
l
4(m1 m2 )2 sin 2 t m12 cos2 t
§8-2 动量定理
1.质点的动量定理
d(mv) F dt
或 d(mv) Fdt
--质点动量定理的微分形式
即质点动量的增量等于作用于质点上的力的元冲量.
在 t1~ t 2 内, 速度由 v1 ~ v2, 有
FT2 m2 (g r2)
例9-3:已知:两小球质量皆为 m,初始角速度 。0
求:剪断绳后, 角时的 .
解: 0 时,
Lz1 2ma0a 2ma20
0 时,
Lz2 2m(a l sin )2
Lz1 Lz2
(a
a 2 0 l sin )2
§9-3 刚体绕定轴的转动微分方程
主动力: F1, F2,
, Fn
约束力: FN1 , FN2
d dt
(
J
z)
M
z
(Fi
)
M
z
( FNi
)
Mz (Fi )
即:
Jz
d
dt
M z (Fi )
或 Jz Mz (F)
转动 微分
或
Jz
d2
dt 2
Mz(F)
方程
§9-3 刚体绕定轴的转动微分方程
主动力: F1, F2,
, Fn
O
(F
)
投影式:
质点对某定点的动量矩对时间的
d dt
M
x
(mv )
M
x
(F
)
d dt
M
y
(mv )
M
y
理论力学第8章-1
[题8-5] 杆OA长l,由推杆推动而绕 O转动,推杆推动的速度
为v,求杆端A的速度的大小(表示为x的函数)。 解:取推杆与杆OA的接触点为动点。
v v v a e r
A M
做出速度平行四边形 x´
y´
ve va
a vr
O x
v
v v e asin v a x2 a2 ve 2av 2 OM x a vA OA 2lav 2 x a
动点:A1(在O'A1 摆杆上) 动系:圆盘 定系:机架 绝对运动:曲线(圆弧) 相对运动:曲线 牵连运动:定轴转动
影片:810
动 点: A(在AB杆上) [注] 应说明动点在哪个 动 系:偏心轮 定 系:地面 物体上。 绝对运动:直线 相对运动:圆周(曲线) (A点始终在偏心轮的圆弧上 运动) 牵连运动:定轴转动
牵连运动:
平动
影片:804
绝对速度 :v a
相对速度 : v r
牵连速度 :v e 影片:805
绝对加速度: a a
影片:806
相对加速度: a r
影片:807
牵连加速度: a e
影片:808
影片:809
动点:A(在圆盘上) 动系:O'A摆杆 定系:机架 绝对运动:曲线(圆周) 相对运动:直线 牵连运动:定轴转动
运动的相对性:物体对于不同的参考体具有不同的运动。
§8-1 相对运动·牵连运动·绝对运动
运动的相对性:物体对于不同的参考体具有不同的运动。
相对于某一参考体的运动可以由相对于其他参考体的几个
运动组合而成,称这种运动为合成运动。
y' x'
y
M
y' x' x
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚子A沿水平面作纯滚动,通 过连杆AB带动滑块B沿铅垂轴向 上滑动。设连杆长l = 0.8m,轮 心速度 v0 3 m/s 。求当A B与铅 垂线成 30 时,滑块B的速度 及连杆的角速度。 解:1.基点法 取A为基点,B点的速度
vB vA vBA
2. 速度投影法
(vA) vB AB AB
2.平面图形内各点的速度分布 基点:瞬心C vA vC vAC vAC vB vC vBC vBC vD vC vDC vDC 平面图形内任意点的速度 等于该点随图形绕瞬时速度 中心转动的速度。
vA ω AC
O
I
A
解:
1.轮Ⅰ作平面运动,瞬心为 C。
轮Ⅰ的角速度和角加速度为:
vO 1l r r 2.选基点为O
2
d2 0 dt
B
C O1 II
O
A
I
(1)点A:
点A的加速度的方向沿OA,指向中心O,它的大小为:
(2)点B:
点B的加速度大小为:
aB a a
2 O
2 n BO 2
例如:车轮的运动
=
随基点A的平移
+
绕基点A’的转动
§ 8-2 求平面图形内各点速度的基点法
基点法 动点:M 绝对运动 相对运动 牵连运动 动系:Oxy (平移坐标系) :待求 :绕 O 点的圆周运动 :平移
vM ve vr vO OM
任意A,B两点
v
B
v
§ 8-1 刚体平面运动的概述和运动分解
定义
在运动中,刚体上的任意一点与某一固定平 面始终保持相等的距离,这种运动称为平面 运动。
行星齿轮的运动
曲柄连杆机构中连杆的运动
平面运动的简化
刚体的平面运动可简化为平面图形在其自身 平面内的运动,不需考虑刚体的形状和尺寸
运动方程 要确定平面图形在每一瞬时的位置,显然只 需三个独立参数(它在平面内运动自由度为3):
例8-5
已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。 求:用瞬心法求B端的速度以及尺AB的角速度。
解: AB作平面运动, 速度瞬心为点C。 图形的角速度:
AB
vA vA AC l sin
B点的速度:
vD
D
C
vB AB BC vA cot
解得 a A l 2
t a AD 0 AB
t a AD 0 AD
例8-9 已知:车轮沿直线滚动。已知车轮半径为R,中心 O的速度为 vO ,加速度为 aO ,车轮与地面接触无相 对滑动。 求:车轮上速度瞬心的加速度。
解: 1. 车轮作平面运动,瞬心为 C。
vO 2. R d 1 dvO aO
[例] 行星齿轮机构
已知: R, r , 0 轮A作纯滚动,求 vM 1 , vM 2
解:OA定轴转动; 轮A作平面运动, 瞬心P点
§ 8-4 用基点法求平面图形内各点的加速度
基点:A, 牵连运动为平移
t n a B ae a r a r t n a B a A a BA a BA
图形内任一点D的速度:
vD ωAB DC
例8-6 已知:矿石轧碎机的活动夹板长600mm ,由曲柄 OE借连杆组带动,使它绕A轴摆动,如图所示。曲 柄OE长100 mm,角速度为10rad/s。连杆组由杆BG, GD和GE组成,杆BG和GD各长500mm。 求:当机构在图示位置时,夹板AB的角速度。
CD l
2.选D为基点 aD l 2 t n a A aD a AD a AD
大小 ? l 2 方向 ? l 2
分别沿 轴和 轴投影
n aA cos aD cos π 2 aAD
t n 0 aD sin a AD cos a AD sin
解: 1. AB作平面运动
(vA) vB AB AB
vB cos 30 OA OA vB 0.2309 m s cos 30
2.CD作定轴转动,转动轴:C
vB vD CD 3vB 0.6928 m s CB
3.DE作平面运动
(vD) vE DE DE vE cos 30 vD vD vE 0.8 m s cos 30
t a BA
n aBA
t 大小 a BA AB
方向垂直于 AB ,指向同
n 2 AB 大小 aBA
方向由 B指向 A
平面图形内任一点的加速度等于基点的加 速度与该点随图形绕基点转动的切向加速度和 法向加速度的矢量和。
例8-7 已知:如图所示,在外啮合行星齿轮机构中,系杆以匀角速 度ω1绕O1转动。大齿轮固定,行星轮半径为r,在大轮上只 滚不滑。设A和B是行星轮缘 上的两点,点A在O1O的延长线 上,而点B在垂直于O1O的半径上。 求:点A和B的加速度。 B C O1 II
dt R dt R
3.选O为基点
t n aC aO aCO aCO
大小 ? 方向 ?
由于 和
aO R
R 2
大小相等,方向相反
n aC aCO R 2
[例] 已知O1A=O2B, 图示瞬时 O1A//O2B。试问 1 和 2 是否相等? (a),(b)两种情况下1 和 2 ,
vB vA cot
vA vBA sin vBA vA AB l l sin
例8-2 已知:如图所示平面机构中,AB=BD= DE= l=300mm。在图示位置时,BD∥AE,杆AB的角 速度为ω=5rad/s。 求:此瞬时杆DE的角速度和杆BD中点C的速度。
解: 1.BD 作平面运动
本章将分析刚体平面运动的分解、平面运动刚体的 角速度、角加速度,以及刚体上各点的速度和加速度。
目标要求 (1)了解刚体平面运动的特点、平面运动的简化、 平面运动的分解; (2)熟练应用速度基点法、速度瞬心法、速度投 影法分析平面运动刚体上各点的速度; (3)熟练应用加速度基点合成法分析平面运动刚 体上各点的加速度; (4)综合应用点的合成运动方法和刚体平面运动 方法分析常见平面机构的运动。 重点与难点 重点:基点法、瞬心法、投影法的应用 难点:刚体平面运动的简化与分解。
B A BA
(4)利用几何关Байду номын сангаас,求解平行四边形中的未知量
速度投影定理
同一平面图形上任意两点的速度在这两点 连线上的投影相等
vB vA vBA
沿AB连线方向上投影,得到:
vB AB vA AB
例8-4
如图所示的平面机构中,曲柄OA长100mm,以角速 度ω=2rad/s转动。连杆AB带动摇杆CD,并拖动轮E 沿水平面纯滚动。已知:CD=3CB,图示位置时A, B,E三点恰在一水平线上,且CD⊥ED。 求:此瞬时点E的速度。
速度瞬心C在速度矢量端点连线的交点上
C
v A vB AB
v A vB AB
(4) vA vB
速度瞬心C在无限远处 此时图形角速度为零,各点速度相等。这种情 况称为瞬时平移 注意:各点的加速度不相等,瞬时平移与与平动不同
注意: 1.速度瞬心在平面图形上的位置不是固定的,而 是随时间不断变化的。在任一瞬时是唯一存在的。 2.速度瞬心处的速度为零,加速度不一定为零。 不同于定轴转动。 3.刚体作瞬时平移时,虽然各点的速度相同,但 各点的加速度不一定相同。不同于刚体平动。 速度瞬心法 利用速度瞬心求解平面图形上点的速度的方法
§ 8-3 求平面图形内各点的瞬心法
1.定理
基点:A
v
B
v
A
v
BA
vM v A vMA
vM v A AM
可以找到一点C,此时 vCA vA 即: AC vA ω vC 0 一般情况下,在每一瞬时,平面图形上都唯一地 存在一个速度为零的点,称为瞬时速度中心,简 称速度瞬心。
解:
1. AB作平面运动
基点:A
(1) 60
vB v A cos 30 2 3r 3
(2 ) 0 vB 0
(3) 90
vB v A r ,
vBA 0
解题步骤: (1)分析题中各物体的运动 平移、转动、平面运动 (2)研究作平面运动的物体上哪一点的速度大小 和方向是已知的,哪一点的速度的某一要素是已 知的 (3)选定基点,而另一点可应用公式作速度平行 四边形 v v v
2.杆BG作平面运动,瞬心为C vG BG GC BC vB BG BC vG GC vG cos 60
ω AB vB AB vG cos 60 0 .888 rad s AB
由此可看出: 1.机构的运动都是通过各部件的连接点来传递的; 2. 在每一瞬时,机构中作平面运动的各刚体有各自的 速度瞬心和角速度
l
2 1
l 1 r
与半径OB间的夹角为: aO r arctan n arctan aBO l
例8-8 已知:如图所示,在椭圆规机构中,曲柄OD以
匀角速度ω绕O 轴转动。OD=AD=BD=l。
求:当 60时,尺AB的角加速度和点A的加速 度。
解: 1. AB作平面运动,瞬心为 C。 vD l AB
速度瞬心的确定方法 (1) 已知一平面图形在固定面 上作无滑动的滚动(纯滚动)
w
图形与固定面的接触点 C就是图形的速度瞬心
(2) 已知 v A , vB 的方向,且 v A不平行于 vB 。
速度瞬心C的位置必在每一点速度的垂线上