2019年全国中考数学真题分类汇编(新定义型)
2019年全国各地中考数学试题分类汇编(第一期) 专题3 整式与因式分解(含解析)
整式与因式分解一.选择题1. (2019•南京•2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.2. (2019•江苏泰州•3分)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1 B.1 C.2 D.3【分析】将代数式4a2﹣6ab+3b变形后,整体代入可得结论.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.3 (2019•湖南长沙•3分)下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【解答】解:A.3a与2b不是同类项,故不能合并,故选项A不合题意;B.(a3)2=a6,故选项B符合题意;C.a6÷a3=a3,故选项C不符合题意;D.(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.【点评】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.4. (2019•湖南怀化•4分)单项式﹣5ab的系数是()A.5 B.﹣5 C.2 D.﹣2【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,可得答案【解答】解:单项式﹣5ab的系数是﹣5,故选:B.【点评】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.5. (2019•湖南邵阳•3分)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m3【分析】利用幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则即可求解;【解答】解:(﹣2ab2)3=﹣8a3b6,A错误;3ab+2b不能合并同类项,B错误;(﹣x2)(﹣2x)3=8x5,C错误;故选:D.【点评】本题考查整式的运算;熟练掌握幂的乘方与积的乘方,单项式乘以多项式法则,合并同类项法则是解题的关键.6. (2019•湖南湘西州•4分)下列运算中,正确的是()A.2a+3a=5a B.a6÷a3=a2C.(a﹣b)2=a2﹣b2 D.+=【分析】直接利用合并同类项法则以及完全平方公式、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A.2a+3a=5a,故此选项正确;B.a6÷a3=a3,故此选项错误;C.(a﹣b)2=a2﹣2ab+b2 ,故此选项错误;D.+,故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7. (2019•湖南岳阳•3分)下列运算结果正确的是()A.3x﹣2x=1 B.x3÷x2=xC.x3•x2=x6D.x2+y2=(x+y)2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、完全平方公式分别分析得出答案.【解答】解:A.3x﹣2x=x,故此选项错误;B.x3÷x2=x,正确;C.x3•x2=x5,故此选项错误;D.x2+2xy+y2=(x+y)2,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.8.(2019安徽)(4分)计算a3•(﹣a)的结果是()A.a2 B.﹣a2C.a4D.﹣a4【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a3•(﹣a)=﹣a3•a=﹣a4.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.9. (2019安徽)(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【分析】根据a﹣2b+c=0,a+2b+c<0,可以得到b与A.c的关系,从而可以判断b的正负和b2﹣ac的正负情况,本题得以解决.【解答】∵a﹣2b+c=0,a+2b+c<0,∴a+c=2b,b=,∴a+2b+c=(a+c)+2b=4b<0,∴b<0,∴b2﹣ac==﹣ac==≥0,即b<0,b2﹣ac≥0,故选:D.【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b和b2﹣ac的正负情况.10.(2019甘肃省天水市)(4分)下列运算正确的是()A. 错误!未找到引用源。
完整word版2019年全国中考数学真题180套分类汇编正多边形与圆含解析
正多边形与圆一、选择题,则的正六边形内有两个三角形(数据如图)3分)如图,边长为a1. (2018?河北,第15=()题6. D C. 5 A. 3B. 4正多边形和圆考点:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.分析:解:如图,解答:,∵三角形的斜边长为a,,a∴两条直角边长为aSa==aa?空白∵AB=a,2,∴,∴OC=a×∴Sa,正六边形2a?a==6222,﹣∴S=SSa ﹣a=a=空白阴影正六边形,∴==5 .故选C本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.点评:o900 】题3分)若一个多边形的内角和是,则这个多边形的边数为【 (2、2018衡阳,第48576C ..A . B . D.【考点】多边形内角和定理【解析】利用公式(n - 2)×180°(n 大于等于3),求出n 【答案】C【点评】本题是多边形内角和定理的应用,是基础题,可以直接应用,直接带入求值,是本题的方法.3.(2018?莱芜,第10题3分)如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE ∥AC ,若S :S=1:△CDE △BDE4,则S :S ) (=△ACD △BDE .24 : 1:20 D . 118 A . 1:16 B . 1:C ..相似三角形的判定与性质.考点:分析:,设△BDE的面积为a,表示出△CDE的面积为4a,根据等高的三角形的面积的比等于底边的比求出然后表示根据相似三角形面积的比等于相似比的平方求出△ABC然后求出△DBE和△ABC相似,的面积,出△ACD的面积,再求出比值即可.解:∵S:S=1:4,解答:△CDE△BDE的面积为a,则△CDE的面积为4a,∴设△BDE 和△CDE的点D到BC的距离相等,∵△BDE=∴,∴=,∵DE∥AC,∴△DBE∽△ABC,,=1:25∴S:S△ABC△DBE﹣4a=20a,a∴S=25a﹣△ACD:20.∴S:S=a:20a=1△ACD△BDE C.故选本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的点评:的面积表示出△ABC的面积是解题的关键.比等于相似比的平方用△BDE二、填空题,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5分)如图,(1. 2018?海南,第17题4AD是△ABC的高,5,则⊙O的直径.AE= AD=4. 相似三角形的判定与性质;圆周角定理.考点:计算即AE的比例式,分析:首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于可.解:由圆周角定理可知,∠E=∠C,解答:∵∠ABE=∠ADC=90°,∠B=∠C,∴△ABE∽△ACD.,∴AB:AD=AE:ACAC=5,AD=4,∵AB=4,:5,∴4:4=AE∴AE=5,5.故答案为:本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出△ADC∽△ABE.点评:中每一个点都是等可能的,用3分)一般地,如果在一次实验中,结果落在区域D题?湖北黄石2.(2018,第15.如图,现在等边△ABCA中”这个事件,那么事件发生的概率P=M表示“实验结果落在AD中的某个小区域A.π内切圆中的概率是内射入一个点,则该点落在△ABC.第1题图考点:三角形的内切圆与内心;等边三角形的性质;几何概率.分析:利用等边三角形以及其内切圆的性质以及锐角三角函数关系得出DO,DC的长,进而得出△ABC的高,再利用圆以及三角形面积公式求出即可.解答:解:连接CO,DO,由题意可得:OD⊥BC,∠OCD=30°,设BC=2x,,故=tan30°,CD=x 则,∴DO=DCtan30°=2=π()=∴S,O圆的高为:2x?sin60°= △ABCx,×2x×,∴S=x=△ABC2 x=.∴则该点落在△ABC 内切圆中的概率是:故答案为:π.点评:此题主要考查了几何概率以及三角形内切圆的性质以及等边三角形的性质等知识,得出等边三角形与内切圆的关系是解题关键.3.三、解答题1. (2019年广西南宁,第25题10分)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;,∠CEF=15°,求的长.,若EC=4 三点作圆,如图、)连接3AF,过AE、F2(.圆的综合题.考点:,BE=FH求证ABE≌△EHF)利用1(分析:(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四边形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,,利用公式求出的长.EF CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出(3)作.(1)BE=FH 解答:解:证明:∵∠AEF=90°,∠ABC=90°,∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,∴∠HEF=∠BAE,中,在△ABE和△EHF,)∴△ABE≌△EHF(AAS ∴BE=FH.,AB=EH,2()由(1)得BE=FH ∵BC=AB,∴BE=CH,∴CH=FH,∴∠HCF=45°, ABCD是正方形,∵四边形∴∠ACB=45°,∴∠ACF=180°﹣∠HCF﹣∠ACB=90°..)由(2FH)知∠HCF=45°,∴CF=(3 ∠CFE=∠HCF﹣∠CEF=45°﹣15°=30°.CF=FH作CP⊥EF于P,则.CP=C如图2,过点∵∠CEP=∠FEH,∠CPE=∠FHE=90°,∴△CPE∽△FHE.,即,∴∴EF=4.∵△AEF为等腰直角三角形,∴AF=8.取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,的弧长为:=2π.∴点评:本题主要考查圆的综合题,解题的关键是直角三角形中三角函数的灵活运用.。
全国专卷2019年中考数学真题分类解析汇编 03整式与因式分解
整式与因式分解一、选择题1. (2014•安徽省,第2题4分)x2•x3=()A. x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2. (2014•安徽省,第4题4分)下列四个多项式中,能因式分解的是()A. a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.3. (2014•安徽省,第7题4分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.4. (2014•福建泉州,第2题3分)下列运算正确的是()5. (2014•福建泉州,第6题3分)分解因式x2y﹣y3结果正确的是()6. (2014•广东,第3题3分)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.7. (2014•广东,第4题3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8. (2014•珠海,第3题3分)下列计算中,正确的是()9. (2014四川资阳,第3题3分)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.10.(2014•新疆,第3题5分)下列各式计算正确的是()11.(2014年云南省,第2题3分)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.12.(2014•温州,第5题4分)计算:m6•m3的结果()13.(2014•舟山,第6题3分)下列运算正确的是()]14.(2014•毕节地区,第3题3分)下列运算正确的是()+=15.(2014•毕节地区,第4题3分)下列因式分解正确的是()A. 2x2﹣2=2(x+1)(x﹣1)B. x2+2x﹣1=(x﹣1)2 C.x2+1=(x+1)2D. x2﹣x+2=x(x﹣1)+2216.(2014•毕节地区,第13题3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是(),17.(2014•武汉,第5题3分)下列代数运算正确的是()18.(2014•襄阳,第2题3分)下列计算正确的是()19.(2014•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,=1+)1+,))2).20.(2014•邵阳,第2题3分)下列计算正确的是()21.(2014•邵阳,第7题3分)地球的表面积约为511000000km2,用科学记数法表示正确的是()22.(2014•四川自贡,第2题4分)(x4)2等于()23.(2014•四川自贡,第11题4分)分解因式:x2y﹣y= y(x+1)(x﹣1).24.(2014·台湾,第2题3分)若A 为一数,且A =25×76×114,则下列选项中所表示的数,何者是A 的因子?( )A .24×5B .77×113C .24×74×114D .26×76×116分析:直接将原式提取因式进而得出A 的因子. 解:∵A =25×76×114=24×74×114(2×72), ∴24×74×114,是原式的因子. 故选:C .点评:此题主要考查了幂的乘方运算法则以及同底数幂的乘方,正确分解原式是解题关键. 25.(2014·台湾,第15题3分)计算多项式10x 3+7x 2+15x ﹣5除以5x 2后,得余式为何?( )A .15x -55x2B .2x 2+15x ﹣5C .3x ﹣1D .15x ﹣5分析:利用多项式除以单项式法则计算,即可确定出余式. 解:(10x 3+7x 2+15x ﹣5)÷(5x 2)=(2x +75)…(15x ﹣5).故选D .点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.26.(2014·台湾,第17题3分)(3x +2)(﹣x 6+3x 5)+(3x +2)(﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5)与下列哪一个式子相同?( )A .(3x 6﹣4x 5)(2x +1)B .(3x 6﹣4x 5)(2x +3)C .﹣(3x 6﹣4x 5)(2x +1)D .﹣(3x 6﹣4x 5)(2x +3)分析:首先把前两项提取公因式(3x +2),再进一步提取公因式﹣(3x 6﹣4x 5)即可. 解:原式=(3x +2)(﹣x 6+3x 5﹣2x 6+x 5)+(x +1)(3x 6﹣4x 5) =(3x +2)(﹣3x 6+4x 5)+(x +1)(3x 6﹣4x 5) =﹣(3x 6﹣4x 5)(3x +2﹣x ﹣1) =﹣(3x 6﹣4x 5)(2x +1). 故选:C .点评:此题主要考查了因式分解,关键是正确找出公因式,进行分解.27.(2014·云南昆明,第4题3分)下列运算正确的是( ) A . 532)(a a = B . 222)(b a b a -=- C . 3553=- D . 3273-=-28.(2014•浙江湖州,第2题3分)计算2x (3x 2+1),正确的结果是( ) A .5x 3+2xB . 6x 3+1C . 6x 3+2xD . 6x 2+2x分析:原式利用单项式乘以多项式法则计算即可得到结果. 解:原式=6x 3+2x ,故选C]点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.29.(2014·浙江金华,第7题4分)把代数式22x 18-分解因式,结果正确的是【 】 A .()22x 9- B .()22x 3- C .()()2x 3x 3+- D .()()2x 9x 9+- 【答案】C . 【解析】30. (2014•湘潭,第2题,3分)下列计算正确的是()2+=231. (2014•益阳,第2题,4分)下列式子化简后的结果为x6的是()32. (2014年江苏南京,第2题,2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6考点:幂的乘方分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.33. (2014•泰州,第2题,3分)下列运算正确的是()34.(2014•扬州,第2题,3分)若□×3xy=3x2y,则□内应填的单项式是()35.(2014•呼和浩特,第5题3分)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.36.(2014•滨州,第2题3分)一个代数式的值不能等于零,那么它是()37.(2014•济宁,第2题3分)化简﹣5ab+4ab的结果是()38.(2014年山东泰安,第2题3分)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.二.填空题1. (2014•广东,第11题4分)计算2x3÷x= 2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.2. (2014•珠海,第7题4分)填空:x2﹣4x+3=(x﹣ 2 )2﹣1.3. (2014•广西贺州,第13题3分)分解因式:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.4. (2014•广西玉林市、防城港市,第3题3分)计算(2a2)3的结果是()5.(2014•广西玉林市、防城港市,第4题3分)下面的多项式在实数范围内能因式分解的是()6.(2014年天津市,第13题3分)计算x5÷x2的结果等于.考点:同底数幂的除法.分析:同底数幂相除底数不变,指数相减,解答:解:x5÷x2=x3故答案为:x3.点评:此题考查了同底数幂的除法,解题要注意细心明确指数相减.7.(2014•温州,第11题5分)分解因式:a2+3a= .8.(2014年广东汕尾,第12题5分)已知a+b=4,a﹣b=3,则a2﹣b2= .分析:根据a2﹣b2=(a+b)(a﹣b),然后代入求解.解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.点评:本题重点考查了用平方差公式.平方差公式为(a+b)(a﹣b)=a2﹣b2.本题是一道较简单的题目.9.(2014•武汉,第12题3分)分解因式:a3﹣a= a(a+1)(a﹣1).10.(2014•邵阳,第12题3分)将多项式m2n﹣2mn+n因式分解的结果是n(m﹣1)2.11.(2014•孝感,第15题3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .12.(2014•浙江湖州,第17题分)计算:(3+a)(3﹣a)+a2.分析:原式第一项利用平方差公式计算,合并即可得到结果.解:原式=9﹣a2+a2=9.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.13.(2014•浙江宁波,第16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).()()14.(2014•浙江宁波,第19题6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.15. (2014•湘潭,第10题,3分)分解因式:ax﹣a= a(x﹣1).16. (2014•益阳,第9题,4分)若x2﹣9=(x﹣3)(x+a),则a= 3 .17. (2014•株洲,第9题,3分)计算:2m2•m8= 2m10.18. (2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9= (x﹣3)(4x+3).19.(2014•株洲,第14题,3分)分解因式:x2+3x(x﹣3)﹣9= (x﹣3)(4x+3).20.(2014•呼和浩特,第14题3分)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y (3x﹣y)2.21.(2014•滨州,第14题4分)写出一个运算结果是a6的算式a2•a4.22.(2014•菏泽,第11题3分)分解因式:2x3﹣4x2+2x= 2x(x﹣1)2=__________ .23.(2014•济宁,第11题3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.可知道剩余电线的长度.故总长度是(+1三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.2. (2014•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.时,原式=2×(3.(2014•温州,第17题10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)﹣;4.(2014•舟山,第17题6分)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)+4﹣4×=225. (2014·浙江金华,第18题6分)先化简,再求值:()()()2x 5x 1x 2+-+-,其中x 2=-. 【答案】7. 【解析】。
中考数学:新定义创新型综合压轴问题真题+模拟(原卷版北京专用)
中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。
在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。
解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。
(完整)2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案),推荐文档
2019 年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019 年ft东省滨州市)用配方法解一元二次方程x2﹣4x+1=0 时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2.(2019 年四川省达州市)某公司今年4 月的营业额为2500 万元,按计划第二季度的总营业额要达到9100 万元,设该公司5、6 两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100 B.2500(1+x%)2=9100 C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6 两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.1 1 3.(2019 年广西贵港市)若α,β是关于x 的一元二次方程x2-2x+m=0 的两实根,且α+β=- 23,则m 等于()A. - 2B. - 3C. 2D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β 是关于x 的一元二次方程x2-2x+m=0 的两实根,∴α+β=2,αβ=m,∵+ = = =- ,∴m=-3;故选:B.4.(2019 年江苏省泰州市)方程2x2+6x-1=0 的两根为x1、x2,则x1+x2等于()A.-6 B.6 C.-3 D. 3【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程2x2+6x-1=0 的两个实根分别为x1,x2,由两根之和可得;6∴x1+x2=﹣2 =3,故答案为:C.5. (2019 年河南省)一元二次方程(x+1)(x﹣1)=2x+3 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】一元二次方程根的判别式【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.6.(2019 年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016 年人均年收入20000 元,到2018 年人均年收入达到39200 元.则该地区居民年人均收入平均增长率为.(用百分数表示)【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为x,20000(1+x)2=39200,解得,x1=0.4,x2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%,故答案为:40%.7.(2019 年甘肃省)若一元二次方程x2﹣2kx+k2=0 的一根为x=﹣1,则k 的值为()A.﹣1 B.0 C.1 或﹣1 D.2 或0【考点】一元二次方程的解【解答】解:把x=﹣1 代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.8.(2019 年湖北省鄂州市)关于x 的一元二次方程x2﹣4x+m=0 的两实数根分别为x1、x2,且x1+3x2=5,则m 的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0 得:()2﹣4×+m=0,解得:m=,故选:A.9.(2019 年湖北省荆州市)若一次函数y=kx+b 的图象不经过第二象限,则关于x 的方程x2+kx+b=0 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b 的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10.(2019 年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x 个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11.(2019 年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b 是关于x的一元二次方程x2﹣12x+m+2=0 的两根,则m 的值是()A.34 B.30 C.30 或34 D.30 或36【考点】一元二次方程根与系数的关系【解答】解:当a=4 时,b<8,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴4+b=12,∴b=8 不符合;当b=4 时,a<8,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴4+a=12,∴a=8 不符合;当a=b 时,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12.(2019 年内蒙古赤峰市)某品牌手机三月份销售400 万部,四月份、五月份销售量连2 1 1 2 1 1 2 1 2 1续增长,五月份销售量达到 900 万部,求月平均增长率.设月平均增长率为 x ,根据题意列方程为()A .400(1+x 2)=900B .400(1+2x )=900C .900(1﹣x )2=400 【考点】一元二次方程的应用【解答】解:设月平均增长率为x , D .400(1+x )2=900根据题意得:400(1+x )2=900. 故选:D .13. (2019 年内蒙古呼和浩特市)若 x 1,x 2 是一元二次方程 x 2+x ﹣3=0 的两个实数根,则x 22﹣41x 2+17 的值为( ) A .﹣2B .6C .﹣4D .4【考点】一元二次方程的根与系数的关系【解答】解:∵x 1,x 2 是一元二次方程 x 2+x ﹣3=0 的两个实数根,∴x 1+x 2=﹣1,x 1•x 2=﹣3,1 x 2+x 1=3,∴x 2﹣4x 2+17=x 2+x 2﹣5x 2+17=(x +x )2﹣2x x ﹣5x 2+17=(﹣1)2﹣2×(﹣3)﹣51x 2+17=24﹣25x 2=24﹣5(1﹣1﹣x )2==24﹣5(3+1)=4, 故选:D .x 2+x +1)14.(2019 年内蒙古通辽市)一个菱形的边长是方程 x 2﹣8x +15=0 的一个根,其中一条对角线长为 8,则该菱形的面积为( ) A .48 B .24 C .24 或 40 D .48 或 80 【考点】一元二次方程的应用 【解答】解:(x ﹣5)(x ﹣3) =0,所以 x 1=5,x 2=3,∵菱形一条对角线长为 8, ∴菱形的边长为 5,∴菱形的另一条对角线为 2 =6,∴菱形的面积=×6×8=24.故选:B.15.(2019 年新疆)若关于x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,则k 的取值范围是()A.k≤ B.k>C.k<且k≠1D.k≤ 且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019 年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x 个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019 年上海市)如果关于x 的方程x2﹣x+m=0 没有实数根,那么实数m 的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,1 1>>∴m 4.故填空答案:m 4.2.(2019 年ft东省济宁市)已知x=1 是方程x2+bx﹣2=0 的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1 是方程x2+bx﹣2=0 的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3.(2019 年ft东省青岛市)若关于x 的一元二次方程2x2﹣x+m=0 有两个相等的实数根,则m 的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4.(2019 年ft东省枣庄市)已知关于x 的方程ax2+2x﹣3=0 有两个不相等的实数根,则a的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x 的方程ax2+2x﹣3=0 有两个不相等的实数根得△=b2﹣4ac=4+4×3a>0,解得a>则a>且a≠0故答案为a>且a≠05.(2019 年四川省资阳市)a 是方程2x2=x+4 的一个根,则代数式4a2﹣2a 的值是.【考点】一元二次方程的解【解答】解:∵a 是方程2x2=x+4 的一个根,∴2a2﹣a=4,∴4a2﹣2a=2(2a2﹣a)=2×4=8.故答案为:8.6.(2019 年江苏省泰州市)若关于x 的方程x2+2x+m=0 有两个不相等的实数根,则m 的取值范围是.【考点】一元二次方程根的判别式【解答】∵关于x 的方程x2+2x+m=0 有两个不相等的实数根,∴△=4﹣4m>0解得:m<1,∴m 的取值范围是m<1.故答案为:m<1.7.(2019 年江苏省扬州市)一元二次方程x(x - 2)=x - 2 的根为.【考点】一元二次方程的解法【解答】解:x(x - 2)=x - 2(x -1)(x - 2)= 0 x1=1,x2=28.(2019 年湖北省十堰市)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.【考点】一元二次方程的解法【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0 或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3 或4.9.(2019 年甘肃省武威市)关于x 的一元二次方程x2+ x+1=0 有两个相等的实数根,则m 的取值为.【考点】一元二次方程根的判别式【解答】解:由题意,△=b2﹣4ac=()2﹣4=0 得m=4故答案为410.(2019 年辽宁省本溪市)如果关于x 的一元二次方程x2﹣4x+k=0 有实数根,那么k 的取值范围是.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=16﹣4k≥0,解得:k≤4.故答案为:k≤4.11.(2019 年西藏)一元二次方程x2﹣x﹣1=0 的根是.【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5,x=,所以x1=,x2=.故答案为x1=,x2=.三、解答题1.(2019 年安徽省)解方程()-1 2 =4【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2 或x-1=-2∴x1 = 3,x2 = ‒ 12.(2019 年北京市)关于x 的方程x2 - 2x + 2m -1 = 0 有实数根,且m 为正整数,求m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵ x2 - 2x + 2m -1 = 0 有实数根,∴△≥0,即(-2)2 - 4(2m -1) ≥ 0 ,∴ m ≤ 1∵m 为正整数,∴ m = 1,故此时二次方程为x2 - 2x +1 = 0, 即(x -1)2 = 0∴ x1=x2= 1 ,∴ m = 1,此时方程的根为x1=x2= 13.(2019 年乐ft市)已知关于x 的一元二次方程x2 - (k + 4)x + 4k = 0 .+ = ,∴ = , 即 = ,(1) 求证:无论k 为任何实数,此方程总有两个实数根;(2) 若方程的两个实数根为 x 1 、 x 2 ,满足 1 + 1x 1 x 2= 3,求k 的值; 4(3) 若 Rt △ ABC 的斜边为 5,另外两条边的长恰好是方程的两个根 x 1 、 x 2 ,求 Rt ∆ABC 的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆【解答】(1)证明:∆ = (k + 4)2 -16k = k 2 - 8k + 16 = (k - 4)2 ≥ 0 , ∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得: x 1 + x 2 = k + 4 , x 1 ⋅ x 2 = 4k ,1 1 3 x 1 + x23 k +4 3x 1 x 2 4 x 1 ⋅ x 2 44k 4 解得: k = 2 ;(3)解方程得: x 1 = 4 , x 2 = k ,根据题意得: 42 + k 2 = 52 ,即 k = 3 , 设直角三角形 ABC 的内切圆半径为 r ,如图, 4 由切线长定理可得: (3 - r ) + (4 - r ) = 5 ,∴直角三角形 ABC 的内切圆半径 r =3 +4 -5 = 1;24.(2019 年重庆市)某文明小区 50 平方米和 80 平方米两种户型的住宅,50 平方米住宅套数是 80 平方米住宅套数的 2 倍.物管公司月底按每平方米 2 元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1) 该小区每月可收取物管费 90000 元,问该小区共有多少套 80 平方米的住宅?(2) 为建设“资源节约型社会”,该小区物管公司 5 月初推出活动一:“垃圾分类送礼物”,50 平方米和 80 平方米的住户分别有 40%和 20%参加了此次括动.为提离大家的积扱性,6 月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6 月份参加活动的 50 平方米的总户数在 5 月份参加活动的同户型户数的基础上将增 加 2a %,每户物管费将会减少 a %;6 月份参加活动的 80 平方米的总户数在 5 月份rr 5 r参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6 月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a 的值.【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x 套80 平方米住宅,则50 平方米住宅有2x 套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250 套80 平方米的住宅.(2)参与活动一:50 平方米住宅每户所交物管费为100 元,有500×40%=200 户参与活动一,80 平方米住宅每户所交物管费为160 元,有250×20%=50 户参与活动一;参与活动二:50 平方米住宅每户所交物管费为100(1﹣ %)元,有200(1+2a%)户参与活动二;80 平方米住宅每户所交物管费为160(1﹣ %)元,有50(1+6a%)户参与活动二.由题意得100(1﹣ %)•200(1+2a%)+160(1﹣ %)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a 的值为50.5.(2019 年ft东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128 人次,进馆人次逐月增加,到第三个月末累计进馆608 人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500 人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:⎩⎩128+128(1+x )+128(1+x )2=608 化简得:4x 2+12x -7=0 ∴(2x -1)(2x +7)=0, ∴x =0.5=50%或 x =-3.5(舍)答:进馆人次的月平均增长率为 50%. (2)∵进馆人次的月平均增长率为 50%,27∴第四个月的进馆人次为:128(1+50%)3=128× 8 =432<500 答:校图书馆能接纳第四个月的进馆人次.6. (2019 年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市。
2019年全国中考数学真题精选分类汇编:压轴题+含答案解析
2019年全国中考数学真题精选分类汇编:压轴题含答案解析1.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E 分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.3.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.4.(2019•深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.5.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)6.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.7.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.9.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).10.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.11.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.12.(2019•长沙)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.13.(2019•苏州)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.14.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE ⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.15.(2019•枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.16.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)17.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.18.(2019•黄冈)如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式;(2)点P在(1)中的抛物线上,当M为BC的中点时,若△P AM≌△PBM,求点P的坐标;(3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值;(4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.19.(2019•朝阳)如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当EF=BF时,求sin∠EBA的值.(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.20.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P 落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.21.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC 于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?22.(2019•鞍山)在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD =2S△APQ时,求点P的坐标.(3)如图2,G是线段OC上一个动点,连接DG,过点G作GM⊥DG交AC于点M,过点M作射线MN,使∠NMG=60°,交射线GD于点N;过点G作GH⊥MN,垂足为点H,连接BH.请直接写出线段BH的最小值.2019年全国中考数学真题精选分类汇编:压轴题含答案解析参考答案与试题解析一.解答题(共22小题)1.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E 分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE 上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心在线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.如图5,设圆心P在BC上,则P(t,0)PD=PE==,PC=3t,CE=AC==由三角形中内弧定义知,∠PEC<90°,∴PE2+CE2≥PC2即+≥(3t)2,∵t>0∴0<t≤;综上所述,t的取值范围为:0<t≤.【点评】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.2.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.【分析】(1)由题意:∠E=90°﹣∠ADE,证明∠ADE=90°﹣∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,=,由BD:DE=2:3,可得cos∠ABC===.(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.3.(2019•广州)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.4.(2019•深圳)已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.【点评】本题是一道难度较大,综合性很强的有关圆的代数几何综合题,主要考查了圆的性质,切线的性质和判定定理,直角三角形性质,相似三角形性质和判定,动点问题,二次函数最值问题等,构造相似三角形和应用求二次函数最值方法是解题关键.5.(2019•武汉)在△ABC中,∠ABC=90°,=n,M是BC上一点,连接AM.(1)如图1,若n=1,N是AB延长线上一点,CN与AM垂直,求证:BM=BN.(2)过点B作BP⊥AM,P为垂足,连接CP并延长交AB于点Q.①如图2,若n=1,求证:=.②如图3,若M是BC的中点,直接写出tan∠BPQ的值.(用含n的式子表示)【分析】(1)如图1中,延长AM交CN于点H.想办法证明△ABM≌△CBN(ASA)即可.(2)①如图2中,作CH∥AB交BP的延长线于H.利用全等三角形的性质证明CH=BM,再利用平行线分线段成比例定理解决问题即可.②如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.想办法求出CN,PN(用m,n表示),即可解决问题.【解答】(1)证明:如图1中,延长AM交CN于点H.∵AM⊥CN,∴∠AHC=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∠BCN+∠CMH=90°,∵∠AMB=∠CMH,∴∠BAM=∠BCN,∵BA=BC,∠ABM=∠CBN=90°,∴△ABM≌△CBN(ASA),∴BM=BN.(2)①证明:如图2中,作CH∥AB交BP的延长线于H.∵BP⊥AM,∴∠BPM=∠ABM=90°,∵∠BAM+∠AMB=90°,∠CBH+∠BMP=90°,∴∠BAM=∠CBH,∵CH∥AB,∴∠HCB+∠ABC=180°,∵∠ABC=90°,∴∠ABM=∠BCH=90°,∵AB=BC,∴△ABM≌△BCH(ASA),∴BM=CH,∵CH∥BQ,∴==.②解:如图3中,作CH∥AB交BP的延长线于H,作CN⊥BH于N.不妨设BC=2m,则AB=2mn.则BM=CM=m,CH=,BH=,AM=m,∵•AM•BP=•AB•BM,∴PB=,∵•BH•CN=•CH•BC,∴CN=,∵CN⊥BH,PM⊥BH,∴MP∥CN,∵CM=BM,∴PN=BP=,∵∠BPQ=∠CPN,∴tan∠BPQ=tan∠CPN===.方法二:易证:===,∵PN=PB,tan∠BPQ====.【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.6.(2019•武汉)已知抛物线C1:y=(x﹣1)2﹣4和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C1与x轴正半轴交于点A,直线y=﹣x+b经过点A,交抛物线C1于另一点B.请你在线段AB上取点P,过点P作直线PQ∥y轴交抛物线C1于点Q,连接AQ.①若AP=AQ,求点P的横坐标;②若P A=PQ,直接写出点P的横坐标.(3)如图2,△MNE的顶点M、N在抛物线C2上,点M在点N右边,两条直线ME、NE与抛物线C2均有唯一公共点,ME、NE均与y轴不平行.若△MNE的面积为2,设M、N两点的横坐标分别为m、n,求m与n的数量关系.【分析】(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)①易求点A(3,0),b=4,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),则可求直线AD'的解析式为y=x﹣4,联立方程,可得P点横坐标为;②同理可得P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则可知△=k2﹣4km+4m2=(k﹣2m)2=0,求得k=2m,得出直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,则可求E(,mn),再由面积[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,可得(m﹣n)3=8,即可求解;【解答】解:(1)y=(x﹣1)2﹣4向左平移1个单位长度,再向上平移4个单位长度即可得到y=x2;(2)如图1,①设抛物线C1与y轴交于C点,直线AB与y轴交于D点,∵C1:y=(x﹣1)2﹣4,∴A(3,0),C(0,﹣3),∵直线y=﹣x+b经过点A,∴b=4,∴D(0,4),∵AP=AQ,PQ∥y轴,∴P、Q两点关于x轴对称,设D(0,4)关于x轴的对称点为D',则D'(0,﹣4),∴直线AD'的解析式为y=x﹣4,由,得x1=3,x2=,∴x Q=,∴x P=x Q=,∴P点横坐标为;②P点横坐标为﹣;(3)设经过M与E的直线解析式为y=k(x﹣m)+m2,∴,则有x2﹣kx+km﹣m2=0,△=k2﹣4km+4m2=(k﹣2m)2=0,∴k=2m,∴直线ME的解析式为y=2mx﹣m2,同理:直线NE的解析式为y=2nx﹣n2,∴E(,mn),∴[(n2﹣mn)+(m2﹣mn)]×(m﹣n)﹣(n2﹣mn)×(﹣n)﹣(m2﹣mn)×(m﹣)=2,∴(m﹣n)3﹣=4,∴(m﹣n)3=8,∴m﹣n=2;【点评】本题考查二次函数的图象及性质;是二次函数的综合题,熟练掌握直线与二次函数的交点求法,借助三角形面积列出等量关系是解决m与n的关系的关键.7.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【分析】(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,即可求解;②BC长度为定值,△ABC面积的最大值,要求BC边上的高最大,即可求解;(2)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,而∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,即可求解.【解答】解:(1)①连接OB、OC,则∠BOD=∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.【点评】本题为圆的综合运用题,涉及到解直角三角形、三角形内角和公式,其中(2),∠AOD=∠COD+∠AOC是本题容易忽视的地方,本题难度适中.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.【分析】(Ⅰ)将点A(﹣1,0)代入y=x2﹣bx+c,求出c关于b的代数式,再将b代入即可求出c 的值,可进一步写出抛物线解析式及顶点坐标;(Ⅱ)将点D(b,y D)代入抛物线y=x2﹣bx﹣b﹣1,求出点D纵坐标为﹣b﹣1,由b>0判断出点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,过点D作DE⊥x轴,可证△ADE为等腰直角三角形,利用锐角三角函数可求出b的值;(Ⅲ)将点Q(b+,y Q)代入抛物线y=x2﹣bx﹣b﹣1,求出Q纵坐标为﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,点N(0,1),过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,设点M(m,0),则可用含b的代数式表示m,因为AM+2QM=,所以[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,解方程即可.【解答】解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM=,∴[(﹣)﹣(﹣1)]+2[(b+)﹣(﹣)]=,∴b=4.【点评】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题关键是能够根据给定参数判断点的位置,从而构造特殊三角形来求解.9.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5时,求t的取值范围(直接写出结果即可).【分析】(Ⅰ)由已知得出AD=OA﹣OD=4,由矩形的性质得出∠AED=∠ABO=30°,在Rt△AED 中,AE=2AD=8,由勾股定理得出ED=4,即可得出答案;(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,得出∠E′FM=∠ABO=30°,在Rt△MFE′中,MF=2ME′=2t,FE′===t,求出S△MFE′=ME′•FE′=×t×t=,S矩形C′O′D′E′=O′D′•E′D′=2×4=8,即可得出答案;②当S=时,O'A=OA﹣OO'=6﹣t,由直角三角形的性质得出O'F=O'A=(6﹣t),得出方程,解方程即可;当S=5时,O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,由直角三角形的性质得出O'G=(6﹣t),D'F=(4﹣t),由梯形面积公式得出S=[(6﹣t)+(4﹣t)]×2=5,解方程即可.【解答】解:(Ⅰ)∵点A(6,0),∴OA=6,∵OD=2,∴AD=OA﹣OD=6﹣2=4,∵四边形CODE是矩形,∴DE∥OC,∴∠AED=∠ABO=30°,在Rt△AED中,AE=2AD=8,ED===4,∵OD=2,∴点E的坐标为(2,4);(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,∴∠E′FM=∠ABO=30°,∴在Rt△MFE′中,MF=2ME′=2t,FE′===t,∴S△MFE′=ME′•FE′=×t×t=,∵S矩形C′O′D′E′=O′D′•E′D′=2×4=8,∴S=S矩形C′O′D′E′﹣S△MFE′=8﹣,∴S=﹣t2+8,其中t的取值范围是:0<t<2;②当S=时,如图③所示:O'A=OA﹣OO'=6﹣t,∵∠AO'F=90°,∠AFO'=∠ABO=30°,∴O'F=O'A=(6﹣t)∴S=(6﹣t)×(6﹣t)=,解得:t=6﹣,或t=6+(舍去),∴t=6﹣;当S=5时,如图④所示:O'A=6﹣t,D'A=6﹣t﹣2=4﹣t,∴O'G=(6﹣t),D'F=(4﹣t),∴S=[(6﹣t)+(4﹣t)]×2=5,解得:t=,∴当≤S≤5时,t的取值范围为≤t≤6﹣.【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键.10.(2019•成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.【分析】(1)根据待定系数法,把点A(﹣2,5),B(﹣1,0),C(3,0)的坐标代入y=ax2+bx+c 得到方程组求解即可;(2)设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB =4,求出C′H的长,可得∠C′BH=60°,求出DH的长,则D坐标可求;(3)由题意可知△C′CB为等边三角形,分两种情况讨论:①当点P在x轴的上方时,点Q在x 轴上方,连接BQ,C′P.证出△BCQ≌△C′CP,可得BP垂直平分CC′,则D点在直线BP上,可求出直线BP的解析式,②当点P在x轴的下方时,点Q在x轴下方.同理可求出另一直线解析式.【解答】解:(1)由题意得:解得,∴抛物线的函数表达式为y=x2﹣2x﹣3.(2)∵抛物线与x轴交于B(﹣1,0),C(3,0),∴BC=4,抛物线的对称轴为直线x=1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH=2,由翻折得C′B=CB=4,在Rt△BHC′中,由勾股定理,得C′H===2,∴点C′的坐标为(1,2),tan,∴∠C′BH=60°,由翻折得∠DBH=∠C′BH=30°,在Rt△BHD中,DH=BH•tan∠DBH=2•tan30°=,∴点D的坐标为(1,).(3)解:取(2)中的点C′,D,连接CC′,∵BC′=BC,∠C′BC=60°,∴△C′CB为等边三角形.分类讨论如下:①当点P在x轴的上方时,点Q在x轴上方,连接BQ,C′P.∵△PCQ,△C′CB为等边三角形,∴CQ=CP,BC=C′C,∠PCQ=∠C′CB=60°,∴∠BCQ=∠C′CP,∴△BCQ≌△C′CP(SAS),∴BQ=C′P.∵点Q在抛物线的对称轴上,∴BQ=CQ,∴C′P=CQ=CP,又∵BC′=BC,∴BP垂直平分CC′,由翻折可知BD垂直平分CC′,∴点D在直线BP上,设直线BP的函数表达式为y=kx+b,则,解得,∴直线BP的函数表达式为y=.②当点P在x轴的下方时,点Q在x轴下方.。
全国专卷2019年中考数学真题分类解析汇编 38规律探索
规律探索一、选择题1.(5分)(2014•毕节地区,第18题5分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.个数是故答案为:2.(2014•武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()3. (2014•株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()二.填空题1. (2014•湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16 ,第672 行最后一个数是2014.2. (2014•扬州,第18题,3分)设a1,a2,…,a2014是从1,0,﹣1这三个数中取值的一列数,若a1+a2+…+a2014=69,(a1+1)2+(a2+1)2+…+(a2014+1)2=4001,则a1,a2,…,a2014中为0的个数是165 .,得到方程组二.填空题1. (2014•珠海,第10题4分)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8 .OA,OA=2,=2.(2014年四川资阳,第16题3分)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).考点:规律型:点的坐标;等边三角形的性质.分析:根据O(0,0)A(2,0)为顶点作△OAP1,再以P1和P1A的中B为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.解答:解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).点评:本题考查了点的坐标,根据规律解题是解题关键.3.(2014年云南省,第14题3分)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)= .(用含n的代数式表示,n是正整数,且n≥2)考点:规律型:数字的变化类.分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解答:解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.4.(2014•邵阳,第18题3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动 28 次后该点到原点的距离不小于41.≥5.(2014•孝感,第18题3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是(63,32).6.(2014•滨州,第18题4分)计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得= 102014.先计算得到=100=10=1000=10,=1000=10=100=10=1000=10=1000=107.(2014•德州,第17题4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027 ,4027 ).(((8.(2014•菏泽,第14题3分)下面是一个某种规律排列的数阵:根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是(用含n的代数式表示)个数是故答案为:9.(2014年山东泰安,第24题4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.三.解答题1. (2014•安徽省,第16题8分)观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的变化类;完全平方公式.分析:由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档
2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2019年全国中考数学真题分类汇编13:规律探索
2019年全国中考数学真题分类汇编13:规律探索(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年全国中考数学真题分类汇编13:规律探索(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年全国中考数学真题分类汇编13:规律探索(word版可编辑修改)的全部内容。
规律探索一、选择题1。
(2019年山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是( )A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)【考点】坐标、平移、规律探索【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.2。
(2019年山东省济宁市)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是( )A.﹣7.5B.7。
5C.5。
5D.﹣5。
5【考点】规律探索【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7。
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)
中考精品:2019年中考数学真题分类汇编全套(解析版试卷版)中高考真题,永远是中高考备考的蓝本,中高考分类汇编,让真题渗透进每一个考点和三年学习的每一个课题每一个单元,化整为零,对中高考的把握会更加醇熟!!2019年中高考真题分类汇编系列,让真题回归课本,让同步学就能积累备考经验,是中高考备考更有效的方式。
本套资源含:最新2019年中考数学全国各省市中考真题,按中考考点分类汇编,教师版带详解分析,学生版可直接打印测试,让同学们无忧练,自信学不懂看解析,化整为零的全盘把握中考。
全套资料带教师解析版和学生试卷版双版本设计,是教师、培训机构教学参考,学生中考冲刺练习的极佳资料!初一初二同步学适用,初三中考复习适用,全学段中考备考都适用!2019年中考数学真题分类汇编目录及截图:2019年中考真题数学试题分项汇编:专题01 数与式(第01期)(原卷版).docx专题01 数与式(第01期)(解析版).docx专题01 数与式(第02期)(解析版).docx专题01 数与式(第02期)(原卷版).docx专题02 方程及其应用(第01期)(解析版).docx专题02 方程及其应用(第01期)(原卷版).docx专题02 方程及其应用(第02期)(解析版).docx专题02 方程及其应用(第02期)(原卷版).docx专题03 不等式(组)及其应用(第01期)(解析版).docx专题03 不等式(组)及其应用(第01期)(原卷版).docx专题03 不等式(组)及其应用(第02期)(解析版).docx专题03 不等式(组)及其应用(第02期)(原卷版).docx专题04 平面直角坐标系与函数(第01期)(解析版).docx 专题04 平面直角坐标系与函数(第01期)(原卷版).docx 专题04 平面直角坐标系与函数(第02期)(解析版).docx 专题04 平面直角坐标系与函数(第02期)(原卷版).docx 专题05 一次函数(第01期)(解析版).docx专题05 一次函数(第01期)(原卷版).docx专题05 一次函数(第02期)(解析版).docx专题05 一次函数(第02期)(原卷版).docx专题06 反比例函数(第01期)(解析版).docx专题06 反比例函数(第01期)(原卷版).docx专题06 反比例函数(第02期)(解析版).docx专题06 反比例函数(第02期)(原卷版).docx专题07 二次函数(第01期)(解析版).docx专题07 二次函数(第01期)(原卷版).docx专题07 二次函数(第02期)(解析版).docx专题07 二次函数(第02期)(原卷版).docx专题08 几何图形初步(第01期)(解析版).docx专题08 几何图形初步(第01期)(原卷版).docx专题08 几何图形初步(解析版).docx专题08 几何图形初步(原卷版).docx专题09 三角形(解析版).docx专题09 三角形(原卷版).docx专题09 三角形(第01期)(解析版).docx专题09 三角形(第01期)(原卷版).docx专题10 四边形(第01期)(解析版).docx专题10 四边形(第01期)(原卷版).docx专题10 四边形(解析版).docx专题10 四边形(原卷版).docx专题11 圆(第01期)(解析版).docx专题11 圆(第01期)(原卷版).docx专题11 圆(第02期)(解析版).docx专题11 圆(第02期)(原卷版).docx专题12 图形的变换(第01期)(解析版).docx专题12 图形的变换(第01期)(原卷版).docx专题13 图形的相似(第01期)(解析版).docx专题13 图形的相似(第01期)(原卷版).docx专题14 锐角三角函数(第01期)(解析版).docx专题14 锐角三角函数(第01期)(原卷版).docx专题15 尺规作图、投影与视图(第01期)(解析版).docx专题15 尺规作图、投影与视图(第01期)(原卷版).docx专题16 统计与概率(第01期)(解析版).docx专题16 统计与概率(第01期)(原卷版).docx专题17 规律探索题(第01期)(解析版).docx专题17 规律探索题(第01期)(原卷版).docx专题18 新定义与阅读理解题(第01期)(解析版).docx专题18 新定义与阅读理解题(第01期)(原卷版).docx专题19 几何探究型问题(第01期)(解析版).docx专题19 几何探究型问题(第01期)(原卷版).docx专题20 二次函数综合题(第01期)(解析版).docx专题20 二次函数综合题(第01期)(原卷版).docx 2019年中考数学母题探源:专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(原卷版).docx专题01 实数(第一篇)(解析版).docx专题01 实数(第一篇)(原卷版).docx专题01 一元二次方程根的判别式、根与系数的关系(第二篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)(解析版).docx专题01 中考中与“化简求值型”相关的探索性问题(第三篇)专题02 代数式与因式分解(第一篇)(解析版).docx专题02 代数式与因式分解(第一篇)(原卷版).docx专题02 方案设计问题(第二篇)(解析版).docx专题02 方案设计问题(第二篇)(原卷版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(解析版).docx专题02 中考中与“多结论判断型”相关的探索性问题(第三篇)(原卷版).docx专题03 分式与二次根式(第一篇)(解析版).docx专题03 分式与二次根式(第一篇)(原卷版).docx专题03 解直角三角形的应用(第二篇)(解析版).docx专题03 解直角三角形的应用(第二篇)(原卷版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(解析版).docx专题03 中考中与“探索规律型”相关的探索性问题(第三篇)(原卷版).docx专题04 方程与方程组(第一篇)(解析版).docx专题04 方程与方程组(第一篇)(原卷版).docx专题04 切线的判定与性质(第二篇)(解析版).docx专题04 切线的判定与性质(第二篇)(原卷版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(解析版).docx专题04 中考中与“图形关系猜想证明型”相关的探索性问题(第三篇)(原卷版).docx专题05 不等式与不等式组(第一篇)(解析版).docx专题05 不等式与不等式组(第一篇)(原卷版).docx专题05 圆综合题(第二篇)(解析版).docx专题05 圆综合题(第二篇)(原卷版).docx专题05 中考中与“操作探究型”相关的探索性问题(第三篇)专题05 中考中与“操作探究型”相关的探索性问题(第三篇)(原卷版).docx专题06 翻折变换(第二篇)(解析版).docx专题06 翻折变换(第二篇)(原卷版).docx专题06 一次函数(第一篇)(解析版).docx专题06 一次函数(第一篇)(原卷版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(解析版).docx专题06 中考中与“动态型”相关的探索性问题(第三篇)(原卷版).docx专题07 反比例函数综合题(第二篇)(解析版).docx专题07 反比例函数综合题(第二篇)(原卷版).docx专题07 反比例函数(第一篇)(解析版).docx专题07 反比例函数(第一篇)(原卷版).docx专题08 二次函数综合题(第二篇)(解析版).docx专题08 二次函数综合题(第二篇)(原卷版).docx专题10 四边形(第一篇)(解析版).docx专题10 四边形(第一篇)(原卷版).docx专题11 圆(第一篇)(解析版).docx专题11 圆(第一篇)(原卷版).docx专题12 图形的变换与相似(第一篇)(解析版).docx专题12 图形的变换与相似(第一篇)(原卷版).docx专题13 锐角三角函数、视图与投影(第一篇)(解析版).docx专题13 锐角三角函数、视图与投影(第一篇)(原卷版).docx专题14 统计与概率(第一篇)(解析版).docx专题14 统计与概率(第一篇)(原卷版).docx资源截图:中考真题分类汇编系列,教师解析版+学生试卷版双版本设计,高清word可编辑修改打印,教师同学必备精品!。
2019年北京中考数学习题精选:新定义型问题(含答案)
一、选择题1、(2018北京昌平区初一第一学期期末)用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2 + a .如:1☆3=1×32+1=10.则(-2)☆3的值为 A .10 B .-15C . -16 D .-20 答案:D 二、填空题3、(2018北京西城区七年级第一学期期末附加题)1.用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-=. 答案:24,-64.(2018北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 答案605、(2018北京交大附中初一第一学期期末)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、解答题图2图1DE CBAF MCBA6、(2018北京平谷区初一第一学期期末)阅读材料:规定一种新的运算:a c =bad bc d-.例如:1214-23=-2.34××=(1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值. 答案(1)5624=20-12=8 (2)(2)由5212242=-+-x x 得5224221=++-)()(x x ...............................................................4 解得,x =1 (5)7、(2018北京海淀区七年级第一学期期末)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)=;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x =;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值. 答案.解:(1)﹣5……………………..2分(2)1 ……………………..4分(3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数 ∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k ∴(2k ﹢3)x =5∴523x k =+∵k 是整数 ∴2k +3=±1或±5∴k =1,﹣1,﹣2,﹣4……………………..7分8、(2018北京朝阳区七年级第一学期期末)对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=.(1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n=(用含m ,n 的式子表示).答案解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +.9.(2018北京石景山区初三毕业考试)对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围. 解:(1)25π;………………… 2分(2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥.10.(2018北京延庆区初三统一练习)平面直角坐标系xOy中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B互为反等点.已知:点C (3,4)(1)下列各点中,与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标px 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围. 解:(1)F ……1分(2)-3≤p x ≤3 且p x ≠0……4分(3)4< r≤5……7分11. (2018北京市朝阳区综合练习(一))对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N ,且MN 5=,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围. 解:(1)①线段AB 的伴随点是:23,P P . ………………………………………………2分 ②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值. ………………………………………………………5分 ∴b 的取值范围是3≤b ≤5. ………………………………………6分(2)t 的取值范围是-12.2t ≤≤……………………………………8分 12.(2018北京丰台区一模)对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标; (3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.解:(1)点和线段(2)点A 和⊙G 半径为1的圆上运动. 因为点K 在直线y =- x +1上,A BC 图1图2设点K 的坐标为(x ,- x +1), 则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0).………5分(3)(说明:点与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分13.(2018北京海淀区第二学期练习)在平面直角坐标系xOy 中,对于点P 和C e ,给出如下定义:若C e 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C e 上,则称P 为C e 的反射点.下图为C e 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A e 的半径为2, ①在点(0,0)O ,(1,2)M ,(0,3)N -中,A e 的反射点是____________;②点P 在直线y x =-上,若P 为A e 的反射点,求点P 的横坐标的取值范围;(2)C e 的圆心在x 轴上,半径为2,y 轴上存在点P 是C e 的反射点,直接写出圆心C 的横坐标x 的取值范围. 解(1)①A e 的反射点是M ,N .………………1分 ②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图. 可求得点D 的横坐标为32-. 同理可求得点E ,F ,G 的横坐标分别为2-,2,32. 点P 是A e 的反射点,则A e 上存在一点T ,使点P 关于直线OT 的对称点'P 在A e 上,则'OP OP =. ∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A e 上存在点Q ,使得OP OQ =,故线段PQ 的N yxPOC T P’垂直平分线经过原点,且与A e 相交.因此点P 是A e 的反射点. ∴点P 的横坐标x的取值范围是22≤x --22≤x .………………4分 (2)圆心C 的横坐标x 的取值范围是44≤≤x -.………………7分14、.(2018北京西城区九年级统一测试)对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的”,直接写出b的取值范围.解:(11分②是.……………………………………………………………………………2分x(2)①如图9,当r =1时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM ⊥CM . ∵(1,0)Q -,(1,0)C ,r =1, ∴2CQ =,1CM =.∴MQ =此时2MQk CQ==.……………………………………………………3分②如图10,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN <QM ,点N ,M 在x 轴下方时同理). 作CD ⊥QM 于点D ,则MD=ND .∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=. ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===.∴当k DQ = 此时1CD ==. 假设⊙C 经过点Q ,此时r= 2. ∵点Q 在⊙C 外,∴r 的取值范围是1≤r <2.……………………………………………5分(3)b <7分15. (2018北京怀柔区一模)P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围; (2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.解:(1)①P 1(,0)、P 2(0,2)…………………………………………………………………2分 ②如图,在y=x+b 上,若存在⊙O 的“特征点”点P ,点O到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=2. 可得b 1=2.同理可得b 2=-2.∴b 的取值范围是:≤b ≤. …………………………………………………6分 (2)x>或.…………………………………………………………………………8分16. (2018北京平谷区中考统一练习)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;⋅2222222-2233-<x(3)⊙O的半径为2,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.解:(1)60; ······························································································· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. .......................................................... 3 ∴直线CD 的表达式为1y x =+或3y x =-+. .. (5)(3)15m ≤≤或51m -≤≤-. (7)17.(2018北京顺义区初三练习)如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”. 图1Q 2Q 12L 1P64225510D CBAO例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、12''r O M O N r =2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'. 2y x =、(1)在平面直角坐标系xOy 中,直线y kx =与抛物线212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.解:(1)是.过点A ,B 作x 轴的垂线,垂足分别为D ,C .∴AD ∥BC . ∴122===OA OD k OB OC k . ∴两抛物线曲似,曲似比是12.………… 3分(2)假设存在k 值,使⊙O 与直线BC 相切.则OA=OC=2k ,又∵OD=k ,AD=k 2,并且OD 2+AD 2= OA 2,图2C 2C 1NMO'∴k 2+(k 2)2=(2k )2. ∴3k =±.(舍负) 由对称性可取3k =-.综上,3k =±.………………………… 6分(3)m 的取值范围是m >1,k 与m 之间的关系式为k 2=m 2-1 .………8分18、(2018年北京昌平区第一学期期末质量抽测)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4. (1)①点A (2,5-)的最大距离为;②若点B (a ,2)的最大距离为5,则a 的值为;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;上存在..点M ,使点M 的最大距离为5,(3)若⊙O 直接写出⊙O 的半径r 的取值范围.xy –1–2–3–4–512345–112345O解:(1)①5………………………1分②5±………………………3分 (2)∵点C 的最大距离为5,∴当5x <时,5y =±,或者当5y <时,5x =±.………………4分 分别把5x =±,5y =±代入得: 当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).………………………5分(3)5r ≤≤…………………………………7分19、(2018北京朝阳区第一学期期末检测)在平面直角坐标系xOy 中,点A (0, 6),点B 在x 轴的正半轴上. 若点P ,Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P ,Q 的“X 矩形”.下图为点P ,Q 的“X 矩形”的示意图.(1)若点B (4,0),点C 的横坐标为2,则点B ,C 的“X 矩形”的面积为. (2)点M ,N 的“X 矩形”是正方形,①当此正方形面积为4,且点M 到y 轴的距离为3时,写出点B 的坐标,点N 的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.备用图答案:(1)6;…………………………………………………………………………1分(2)①B(6,0)………………………………………………………………………2分N(1,5)或N(5,1)…………………………………………………………4分xy5=;……………………………………………………………………………5分②23230-<<r或229>r. …………………………………………………8分20、(2018北京东城第一学期期末)对于平面直角坐标系xOy中的点M和图形G,若在图形G上存在一点N,使M,N两点间的距离等于1,则称M为图形G的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P2,1),P3(72,0),P4(5,0)中,⊙O的和睦点是________;(2)若点P(4,3)为⊙O的和睦点,求⊙O 的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A 的横坐标A x 的取值范围.答案:解:(1)P 2,P 3; ………………2分 (2)由勾股定理可知,OP =5,以点O 为圆心,分别作半径为4和6的圆,分别交射线OP 于点Q ,R ,可知PQ =PR =1,此时P 是⊙O 的和睦点;若⊙O 半径r 满足0<r <4时,点OP -r >1,此时,P 不是⊙O 的和睦点; 若⊙O 半径r 满r >6时,r -OP >1,此时,P 也不是⊙O 的和睦点;若⊙O 半径r 满足4<r <6时,设⊙O 与射线OP 交于点T 即PT <1时,可在⊙O 上找一点S ,使PS =1,此时P 是⊙O 的和睦点;综上所述,46r ≤≤. ………………4分(3)53A x --≤11A x ≤≤. ………………8分21、(2018北京丰台区第一学期期末)28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”.(1)当⊙O 的半径为1时,①在点P 1(12),P 2(0,-2),P 3,0)中,⊙O 的“离心点”是;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围; (2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.解:(1)①2P ,3P ;……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分22、(2018年北京海淀区第一学期期末)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.解:(1)(2,0)(答案不唯一). ………………1分(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,且使得1tan 2OAM ∠=,并在AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B . 作MH ⊥x 轴于H ,连接MC , ∴∠MHA =90°,即∠OAM +∠AMH =90°. ∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°. ∴∠OAM =∠HMC .∴1tan tan 2HMC OAM ∠=∠=. ∴12MH HC HA MH ==. 设MH y =,则2AH y =,12CH y =, ∴522AC AH CH y =+==,解得45y =,即点M 的纵坐标为45.又由2AN AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:4855t ≤≤. ……………3分 由对称性,在线段M N ''上,点B 的纵坐标t 满足:8455t -≤≤-.……………4分 ∴点B 的纵坐标t 的取值范围是8455t -≤≤-或4855t ≤≤. (3)431b -≤≤-或143b ≤≤- ………………7分23、(2018北京怀柔区第一学期期末)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的; (2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标;(3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围.解:(1)A 、M . ……………………………………………………………………………………2分 (2)过点P 作PG ⊥x 轴于点G …………………………………………………………………3分 设P (x ,2x )∵OG 2+PG 2=OP 2………………………………………………………………………………4分 ∴x 2+4x 2=1 ∴5x 2=1∴x 2=∴x = ∴P (,)或P (,)……………………………………………………5分(3)r =或…………………………………………………………7分24、(2018P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”,射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ).5155±5555255-552-5564117≤<r在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B、(20)C 属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°; (3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒时的摇摆区域内,求a 的取值范围.解:(1)点B ,点C (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF∠=︒,3PF =在Rt △PFK 中,tan tan 30KFKPF PF∠=∠︒=在 可求得KF ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中,sin sin 60QKF KW∠=∠︒=,可求得KW =x∴22OW OF KF KW =-+=-=-当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2同理可求得OW∴2a ≤25、(2018北京密云区初三(上)期末)已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O e 的半径为1时,①点11(,0)2P,2P ,3(0,3)P中,O e 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是O e 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图备用图答案:(1)12P P 、 ………2分x(2)如图,以O 为圆心,2为半径的圆与直线y=1交于12,P P 两点.线段12P P 上的动点P (含端点)都是以O 为圆心,1为半径的圆的关联点.故此x ≤≤…………………………………………………………6分(3)由已知,若P 为图形G 的关联点,图形G 必与以P 为圆心1为半径的圆有交点.Q 正方形ABCD 边界上的点都是某圆的关联点∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O 为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,1为半径的圆.综上所述,13r ≤≤.………………………..8分26、(2018北京平谷区第一学期期末)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)以O 为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”; (2)点M ,N 是一对“互换点”,点M 的坐标为(m ,n ),且(m >n ),⊙P 经过点M ,N .①点M 的坐标为(4,0),求圆心P 所在直线的表达式; ②⊙P 的半径为5,求m -n 的取值范围.解:(1)答案不唯一,如:(4,3),(3,4); (2)(2)①连结MN ,∵OM =ON =4,∴Rt △OMN 是等腰直角三角形. 过O 作OA ⊥MN 于点A ,∴点M ,N 关于直线OA 对称. ......................................................... 3 由圆的对称性可知,圆心P 在直线OA 上. ................................. 4 ∴圆心P 所在直线的表达式为y=x . ................................................ 5 ②当MN 为⊙P 直径时,由等腰直角三角形性质,可知m -n= ..... 6 当点M ,N 重合时,即点M ,N 横纵坐标相等,所以m -n =0; ................. 7 ∴m -n 的取值范围是0<m -n≤ (8)27、(2018北京石景山区第一学期期末)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.解:(1)120º; ……………………………………………………………2分 (2)∵C ,D 的“相关等腰三角形”为等边三角形,底角为60°,底边与x 轴平行,∴直线CD 与x 轴成60°角,与y 轴成30°角,通过解直角三角形可得D 的坐标为)343(,或)343(,-,进一步得直线CD的表达式为33+=x y 或33+-=x y . …………………………………………5分(3)31N x -≤≤-或13N x ≤≤. ……………………8分28、(2018北京通州区第一学期期末)点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0. 当⊙O 的半径为2时: (1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________; (2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标; (3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.答案:29、(2018北京西城区第一学期期末)在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点. (1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________;②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE与⊙C 相切,求半径r 的取值范围.答案:30、(2018北京昌平区二模)在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0),点B (1,1),点C (1-,2-),则A 、B 、C 三点的“横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3.因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5),S (3,2-),T (4-,3-)中,与点A 、B 为正方点的是;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.(备用图)解:(1)点R ………………………1分 (2)−2或3………………………3分(3)①画出如图所示的图像………………………5分y xxyyx②52m ≥或2m ≤-………………………7分31、(2018北京朝阳区二模)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.答案:(1)①P 2,P 3 ……………………………………………………………………2分②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°. 所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-).………………………………………………………6分综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-). (2)334-≤n ≤334.……………………………………………………………8分32、(2018北京东城区二模)研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C (t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________. (1)12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF = ∴.AF d CF ≤≤ ∵=4=29AF CF ,∴29.d 4≤≤ ---------------------------------------------------------------------------------- 5分 ②33 1.t --2≤≤2 ------------------------------------------------------------------------8分33、(2018北京房山区二模)已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (-12,32 ),M (0,-1)中,⊙O 的“关联点”为; (2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为 5 ,求n 的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线443y x =-+与 x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.解:(1)①F ,M .………………………………………………………………………2′(注:每正确1个得1分) (2)如图1,过点Q 作QH ⊥x 轴于H . ∵PH =1,QH =n ,PQ =5 ∴由勾股定理得,PH 2+QH 2=PQ 2 即()22215n +=解得,2n =或-2. ………………………………………………………4′(3)由443y x =-+,知A (3,0),B (0,4) y T B∴可得AB =5I. 如图2(1),当⊙D 与线段AB 相切于点T 时,连接DT .则DT ⊥AB ,∠DTB =90°∵OA DTsin OBA AB BD∠== ∴可得DT =DH 1=65∴165m =…………………………………………………5′II. 如图2(2), 当⊙D 过点A 时,连接AD .由勾股定理得DA =OD 2+OA 2=DH 2=13 ……………………6′ 综合I ,II 可得:65m ≤-或65m ≤8′34、(2018北京丰台区二模)在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=.已知点A (1,0)、点B (-1,4). (1)则_______=AO D ,_______=BOD ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.答案. (1)1AO D =,5BO D =;………………2分(2)如图:解法1:由点A 和点B 坐标可得,直线AB 的解析式为y =-2x +2.设点C 的坐标为(x ,-2x +2),则222x x +-+=,则点C 的坐标为(0,2)或42(,)33-. 解法2:由点A 和点B 坐标可得,直线AB 的解析式为y =-2x +2.点C 与点O 之间的“直距CO D ”为2的运动轨迹为以点O 为中心、对角线分别位于坐标轴上、对角线长度为4的正方形.设点C 的坐标为(x ,-2x +2),则利用直线解析式可求得,点C 的坐标为(0,2) 或42(,)33-. ………………5分(3)EO D 的取值范围为45EO D -≤+7分35、(2018北京海淀区二模)对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数;(2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围. (3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.答案28.解:(1)函数21y x =-的限减系数是2;(2)若1m >,则10m ->,(1m -,11m -)和(m ,1m)是函数图象上两点,11101(1)m m m m -=-<--,与函数的限减系数4k =不符,∴1m ≤.若102m <<,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, ∵(1)0t t -->,且2211111(1)()()24244t t t m --=--+≤--+<,∴1141t t ->-,与函数的限减系数4k =不符. ∴12m ≥. 若112m ≤≤,(1t -,11t -)和(t ,1t )是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, ∵(1)0t t -->,且2111(1)()244t t t --=--+≤,∴11141(1)t t t t -=≥---,当12t =时,等号成立,故函数的限减系数4k =. ∴m 的取值范围是112m ≤≤. (3)11-n ≤≤.36.(2018北京市东城区初二期末)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数”0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =(用含x 的式子表示).解:(1) 1.2c =L L 分2224,(4)()(4)()44444(m 2)05a m b mc m m m m m m c m m c (2)分分=-=-∴=-⨯-+-+-=-+-=-+-=--∴≤⋅⋅⋅⋅⋅⋅Q L Q26b x =+L L (3)分37.(2018北京市平谷区初二期末)对于实数a ,我们规定:用符号[]a 表示不大于a 的最大整数,称[]a 为a 的根整数,例如:[]39=,[]310=.(1)仿照以上方法计算:[]=4_______;[]=26________.(2)若[]1=x ,写出满足题意的x 的整数值______________.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[][]13310=→=,这时候结果为1.(3)对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是________. 解:(1)2, 5 (2)1,2,3 (3) 3 (4)25538.(2018北京市顺义区八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是 (填写序号即可);(2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值;(3)在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b --=- 小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b --=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,。
全国专卷2019年中考数学真题分类解析汇编 23直角三角形与勾股定理
直角三角形与勾股定理一、选择题1. (2014•湘潭,第7题,3分)以下四个命题正确的是()2. (2014•湘潭,14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA 切⊙O于A点,则PA= 4 .(第2题图)=3. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),、底边上的高是,可知是顶角4. (2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N 在边OB上,PM=PN,若MN=2,则OM=()(第4题图)=,=5.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第5题图)﹣2 ∠AC,=.﹣22=﹣===6. (2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C. 4 D. 5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC 中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7. (2014•广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.8.(2014•滨州,第7题3分)下列四组线段中,可以构成直角三角形的是(),(9.(2014年山东泰安,第8题3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.10.(2014年山东泰安,第12题3分)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.点评:本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.二.填空题1. (2014•福建泉州,第14题4分)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为 5 cm.=AB×10=52. (2014•广东,第14题4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 3 .考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3.(2014•新疆,第14题5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.==5===,即=,解得故答案为:.4.(2014•邵阳,第17题3分)如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC 于点E.∠A=30°,AB=8,则DE的长度是 2 .AD5.(2014·云南昆明,第10题3分)如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD= Acm.三.解答题1. (2014•湘潭,第19题)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)=4002. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为.3. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第3题图),根据≠且≠,再分两种情况讨论:=(= x,x x)x﹣+=4×=2=2=2=,,≠且≠)•PB(﹣x=xx x,x xx x)也成立,(﹣+x﹣+=x4. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.=,在=;====,===.6. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第6题图)=,××的面积为==...==.,,..=的长度为7. (2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB 上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第7题图)BD×6=3,==2,=2=68.(2014•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b 为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第8题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.xxb b((b﹣(FG﹣(b﹣﹣有两个交点x,)9. (2014•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(第9题图)(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.DC AB AP===.===.PQ=PQ QB P==4==2.10.(2014•安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O 的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF 中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.11. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.= =5=,即==﹣;=,即BD××2=重叠(阴影)部分的面积为12.(2014•温州,第22题8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC=b2+a B.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.++ab c+ab b ab+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2019·娄底)已知点P ()00,x y 到直线y kx b =+的距离可表示为d =例如:点(0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位, ∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行()()21++++n n n 的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为343332++在列竖式计算时各位都不产生进位现象; 23不是“纯数”,因为252423++在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由. 解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
例如:A (-1,8),B (4,一2),当点T (x .y )满是x =143-+=1,y =8(2)3+-=2时.则点T (1,2)是点A ,B 的融合点。
(1)已知点A (-1,5),B (7,7).C (2,4)。
请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0).点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.解:(1)∵173-+=2,573+=4, ∴点C (2,4)是点A .B 的融合点。
..…3分 (2)①由融合点定义知x =33t+,得t =3x -3....4分又∵y =0(23)3t ++,得t =332y -...….5分 ∴3x -3=332y -,化简得y =2x -1.……6分 ②要使△DTH 为直角三角形,可分三种情况讨论:(Ⅰ)当∠THD =90°时,如图1所示,设T (m ,2m -1),则点E 为(m ,2m +3).由点T 是点D ,E 的融合点,可得m =33m +或2m -1=(23)03m ++ 解得m =32,∴点E 1(32,6).…7分 (Ⅱ)当∠TDH =90°时,如图2所示,则点T 为(3,5).由点T 是点D ,E 的融合点,可得点E 2(6,15)。
.……8分(Ⅲ)当∠HTD=90°时,该情况不存在。
……9分(注:此类情况不写不扣分)综上所述,符合题意的点为E1(32,6),E2(6,15). ……10分4.(2019·宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F 在格点上;(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,求邻余线AB的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余.∴四边形ABEF是邻余四边形;(2)如图所示,四边形ABEF即为所求.(答案不唯一)(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M为EF的中点,∴DM=ME.∴∠MDE=∠MED.∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.5.(2019·金华)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=-(x -2)2+m+2的顶点.(1)当m=0时,求该抛物线下放(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.解:(1)当m =0时,二次函数的表达式为y =-x 2+2,画出函数图象(图1), ∵当x =0时,y =2;当x =1时,y =1; ∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m =3时,二次函数的表达式为y =-(x -3)2+5,画出函数图象(图2), ∵当x =1时,y =1;当x =4时,y =4;∴抛物线上存在好点,坐标分别是(1,1)和(4,4). (3)∵抛物线顶点P 的坐标为(m ,m +2), ∴点P 在直线y =x +2上.由于点P 在正方形内,则0<m <2. 如图3,点E (2,1),F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外). 当抛物线经过点E (2,1)时,-( 2-m )2+m +2=1, 解得m 1m 2当抛物线经过点F (2,2)时,-( 2-m )2+m +2=2, 解得m 1=1,m 2=4(舍去).<m <1时,点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点. 6.(2019·达州)箭头四角形 模型规律如图1,延长CO 交AB 于点D ,则∠BOC=∠1+∠B=∠A+∠C+∠B. 因为凹四边形ABOC 形似箭头,其四角具有“∠BOC=∠A+∠C+∠B ”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=________图1图3.②如图3,∠ABE 、∠ACE 的2等分线(即角平分线)BF 、CF 交于点F ,已知∠BEC=120°∠BAC=50°,则∠BFC=__________.③如图4,BO 1、CO 2分别为∠ABO 、∠ACO 的2019等分线(i=1,2,3,…,2017,2018),它们的交点从上到下依次为O 1,O 2,O 3,…,O 2018. 已知∠BOC=m °,∠BAC=n °,则∠BO 1000C=______度(1)拓展应用:如图5,在四边形ABCD 中,BC=CD ,∠BCD=2∠BAD. O 是四边形ABCD 内的一点,且OA=OB=OD. 求证:四边形OBCD 是菱形.解:(1)①∵∠A+∠B+∠C=α∠,∠D+∠E+∠F=α∠ ∴∠A+∠B+∠C+∠D+∠E+∠F=2α∠②∵∠BEC=∠A+∠ABC+∠ACB ∠BFC=∠A+21∠ABC+21∠ACB ∠BEC=120°∠BAC=50° ∴21∠BEC=21∠A+21∠ABC+21∠ACB ∴60°=25°+21∠ABC+21∠ACB ∴21∠ABC+21∠ACB=35° ∴∠BFC=∠A+21∠ABC+21∠ACB =50°+35° =85°∴∠BFC =85° ③n m 2019101920191000+ (2)7.(2019·枣庄)对于实数a 、b ,定义关于的一种运算:a ⊗b =2a+b.例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x =-1,求x+y 的值. 解:(1)根据题意得:4⊗(-3)=2×4+(-3)=5.(2)∵x ⊗(-y)=2,(2y)⊗x =-1,∴2x+(-y)=2,2×2y+x =-1,解这个二元一次方程组,得,x =79,y =49-,∴x+y =13.8.(2019·济宁) 阅读下面材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1) <f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1) >f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2,f (x 1) -f (x 2)=1266x x -=()21211212666.x x x x x x x x --= ∵0<x 1<x 2,∴x 2-x 1>0,x 1x 2>0.∴()21126x x x x ->0,即f (x 1) — f (x 2)>0.∴f (x 1) >f (x 2),∴函数f (x )=6x(x >0)是减函数.根据以上材料,解答下面的问题:已知函数()21f x x x=+(x <0),()()()()()()22117110,22412f f -=+-=-=+-=--- (1)计算:f (-3)=________,f (-4)=________; (2)猜想:函数()21f x x x=+(x <0)是________函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 解:(1)()()()()()()2212616333,4491634f f -=+-=--=+-=--- (2)增;(3)证明:设x 1<x 2<0,f (x 1) -f (x 2)=22211212122222221212121111x x x x x x x x x x x x x x ⎛⎫⎛⎫-+-+=-+-=+- ⎪ ⎪⎝⎭⎝⎭ ()()()()()2121212121222212121x x x x x x x x x x x x x x +--+-=--=.∵x 1<x 2<0,∴x 2—x 1>0,x 12x 22>0,x 2+x 1-1<0, ∴()()212122121x x x x x x -+-<0,即f (x 1)-f (x 2)<0.∴f (x 1) <f (x 2),∴函数()21f x x x =+是增函数.。