7传热学-第七章

合集下载

《传热学》第七章 凝结与沸腾换热

《传热学》第七章  凝结与沸腾换热

适用范围:
水平管:
适用范围:
(由于管径不会很大, 一般不会到达紊流)
进行修正后,得到:
垂直壁层流膜状凝结换热平均表面传热系数:
垂直壁与水平管凝结换热强度的比较—— 由于垂直壁定型尺寸远大于水平管,因而水平管凝结换热性能 更好,在实际管外凝结式冷凝器设计中多采用水平管。
垂直壁层流膜状凝结换热另一准则方程:
层流膜状凝结换热 速度变化规律:
蒸气静止,且对液膜无黏滞应力作用
层流膜状凝结换热 温度变化规律:
ts为蒸气饱和温度
可采用对流换热微分方程组对垂直壁层流膜状凝结换热加以研究
1.X方向液膜动量方程: 将: 代入,得:
v为蒸汽密度
假定液膜流动缓慢,则惯性力项可忽略,动量方程可简化为:
一般情况下:
从而:
已知壁温:
二、管内沸腾换热
特征:由于流体温度随流向逐渐 升高,沸腾状态随流向不断改变
液相单相流 h较低
垂 直 管 内 沸 腾
Байду номын сангаас
泡状流
h升高
块状流
h高
环状流
h高
气相单相流
h急剧降低
水平管内沸腾
液 相 单 相 流
泡 状 流
块 状 流
波 浪 流
环 状 流
气 相 单 相 流
汽水分层,管上半部局部换热较差
第七章重点: 1.膜状凝结换热特征和计算方法
2.沸腾换热的四个阶段 3.热管的工作原理
谢谢观看
三、水平管束管外凝结换热
上一层管子的凝液流到下一层管 子上,使下一层管面的膜层增厚
下层管上的h比上层管的h低
计算方法:用nd代替d代入水平单管管外凝结换热计算式

(完整版)《传热学》第7章_相变对流传热

(完整版)《传热学》第7章_相变对流传热
1. 产生原因不同(液体与壁面浸润程度) 2. 换热强度不同 3. 珠状凝结不持久,工程中主要采用膜状凝结作为设计依据。
5
第7章 相变对流传热
7.2 膜状凝结分析解及计算关联式
7.2.1 努塞尔的蒸气层流膜状凝结分析解(温度、传热系数及动量分布)
1. 对实际问题的简化假设
努塞尔的分析是对纯净的饱和蒸气在均匀壁温的竖直表面上的层流
x
1/
4
整个竖壁上的温差ts-tw为常数,因此,整个
竖壁的平均表面传热系数为:
hV
1 l
l 0
hx dx
34hxl
0.943lgl rts 3ltl2w
1/ 4
液膜层流时竖壁膜状凝结的努塞尔理论解,
如果有倾角φ的话,直接改为gsin φ即可。
8
第7章 相变对流传热
7.2.2 竖直管与水平管的比较及实验验证
第7章 相变对流传热
7.1 凝结传热的模式 7.2 膜状凝结分析解及计算关联式 7.3 膜状凝结的影响因素及其传热
强化 7.4 沸腾传热的模式 7.5 大容器沸腾传热的实验关联式 7.6 沸腾传热的影响因素及强化 7.7 热管简介
1
第7章 相变对流传热
引入:
对流传热
强制对流传热 自然对流传热 无相变
膜状凝结的热阻通常比珠状凝结大一个数量级以上,
膜状凝结的表面传热系数的数量级为“成千上万”,而
珠状凝结的表面传热系数可以高达几十万!
g
tw ts
tw ts
4
第7章 相变对流传热
珠状凝结的关键问题是在常规金属表面上难 以产生与维持!! 7.1.3 膜状凝结是工程设计的依据 常用蒸气在洁净的条件下都能得到膜状凝结。 实现起来较容易且计算简单,因此,采用膜状 凝结的计算式作为设计的依据。 强化传热的主要途径是减薄液膜的厚度!!! 珠状和膜状凝结的异同:

传热学第七章

传热学第七章
λ 1T = 2190 µm⋅K λ 2T = 4380 µm⋅K
由黑体辐射函数表可查得
Fb(0−λ1 ) = 9.94% 可见光所占的比例为
Fb(0−λ2 ) = 54.59%
Fb(λ1−λ2 ) = Fb(0−λ2 ) − Fb(0−λ2 ) = 44.65%
华北电力大学
刘彦丰
传热学 Heat Transfer
被物体吸收、反射和透射的部分所占总投射辐
射的份额分别称为吸收比α、反射比ρ 和透射比τ 。
α = Gα G
华北电力大学
ρ = Gρ G
τ = Gτ G
α +ρ+τ =1
刘彦丰
传热学 Heat Transfer 3、镜反射和漫反射
视物体表面状况(平整程度)和投入辐射的波 长,表面的反射又分为镜反射和漫反射。
dA cosθ
华北电力大学
n θ
dA
p
可见辐射 面积
刘彦丰
传热学 Heat Transfer
(3) 定向辐射强度
是指单位时间内在空间指定方向的单位立体角内
离开表面单位看见辐射面积的全波段辐射能量。
用符号 L(θ )表示。
L(θ ) = dΦ(θ ) W/(m2 ⋅sr)
dA cos θdΩ
n
dΦ(θ )
如果仅考虑某特定
θ
p
波长的辐射,那么相应
可见辐射
的量被称为定向光谱辐
面积
射强度 L(λ,θ ) 。
dA
华北电力大学
刘彦丰
传热学 Heat Transfer
(4) 定向辐射力
是指单位时间、单位辐射面积向空间指定方向
所在的单位立体角内发射的全波段辐射能量。用

传热学第7章汇总

传热学第7章汇总

0
积分两次,并将边界条件代入,得到液膜内温度分布: t tw
ts tw
y
3.液膜微元段热平衡:
MH ——凝液带入热量
M dM dx H ——凝液带出热量
dx
H dM ——蒸气带入热量
t y
w
dx——墙壁导热出热量
H ——凝液焓(饱和液体)
H ——蒸气焓(饱和气体)
M ——凝液质流量
蒸气含不凝气体
影 响
膜层表面蒸气分压降低,ts降低,ts -tw降低
因 素
低Rec→凝液积聚,液膜增厚→h减小
表面粗糙度
高Rec→凸出点对凝液产生扰动→h增大
蒸气含油→壁上形成油垢→ h减小
h减小
过热蒸气→蒸气与凝液焓差增大→ h增大(计算时潜热修正为实际焓差)
增强凝结换热的措施:
1.改变表面几何特征: 采用各种带有尖峰的表面, 使在其上冷凝的液膜拉薄, 或者使已凝结的液体尽快 从换热表面上排泄掉
0.943
lts
tw
定性温度:ts tw 2
定型尺寸:x(l)
注意点:以上两式并非最后的正确结果,计算中不得直接使用!
水平圆管层流膜状凝结换热平均表面传热系数:
2 g3r
14
h
0.725
d
ts
tw
定性温度:ts tw 2
定型尺寸:d
将平均表面传热系数表达式写为准则方程:
垂直壁:
Co
1.47
v为蒸汽密度
假定液膜流动缓慢,则惯性力项可忽略,动量方程可简化为:
d 2u dy 2
v
g
0
一般情况下: v 从而: v
积分两次,得到液膜内速度分布:

传热学第七章

传热学第七章
: 频率 : 波长
C : 电磁波传播速度
在真空中,C 3 108 m / s 在大气中,略低于此值
第七章 辐射传热
第一节 基本概念 一、热辐射的本质
3、波长范围(如图7-1所示)
图7-1 电磁波谱
第七章 辐射传热
第一节 基本概念 一、热辐射的本质
3、波长范围(如图7-1所示)
(1)热辐射产生的电磁波称为热射线。从理论上讲,其波长 包括整个电磁波谱,即波长从零到无穷大。 (2)实用中,通常把波长在0.1~100μm范围内的电磁波称为 热射线。它包括部分紫外线、全部可见光和部分红外线: ①部分紫外线(0.1~0.38μm) 热射线(0.1~100μm) ②全部可见光(0.38~0.76μm) ③部分红外线(0.76~100μm)
第七章 辐射传热
第一节 基本概念 五、黑体、白体和透明体
1、理想模型 (1)把吸收比α=1的物体称为绝对黑体,简称黑体。 (2)把反射比ρ=1的物体称为绝对白体,简称白体。
(3)把透射比σ=1的物体称为绝对透明体,简称透明体
※ 黑体、白体、透明体都是理想模型,
是理论研究的基础,自然界中并不存在。
第七章 辐射传热
第七章 辐射传热
第二节 黑体辐射的基本定律 二、普朗克定律
⑤当黑体的T>800K时,其辐射能中才明显地具有波长为 0.38~0.76μm的可见光射线。
※随着温度的升高,可见光射线增加。
※当温度达到5800K时,Ebλ的峰值才位于可见光范围。 ※太阳可近似认为是表面温度为5800K的黑体,根据计算,
图7-3 物体表面的反射 a)镜面反射;b)漫反射
第七章 辐射传热
第一节 基本概念 四、漫射表面
1、当物体表面较光滑,其粗糙不平的尺度小于热射线的波长时, 物体表面对投射辐射呈镜面反射,入射角等于反射角,该表 面称为镜面,如图7-3a)所示。 2、当物体表面粗糙不平的尺度大于热射线的波长时,物体表面 对投射辐射呈漫反射,其吸收比大于镜面,该表面称为漫反 射表面,如图7-3b)所示。 ※一般工程材料的表面均可近似作为漫反射表面。 3、若漫反射表面同时能向周围半球空间均匀发射辐射能,则称 该表面为漫射表面。

传热学-第七章热辐射基本定律及物体的辐射特性

传热学-第七章热辐射基本定律及物体的辐射特性

定律 表示式 说明
韦恩位移定律 λmax = b / T 黑体辐射波长与温度的关系
理想黑体的辐射特性
理想黑体具有尽可能高的吸收率和发射率,同时它是完美的热辐射体,能够根据其温度和波长分布发射出连续 的辐射能量。
实际物体的辐射特性
实际物体的辐射特性受到其表面性质的影响。反射率与吸收率、发射率与辐射率以及雷诺茨定律帮助我们了解 和描述实际物体的辐射情况。
反射率与吸收率
实际物体吸收和反射辐射能量 的能力
发射率与辐射率
实际物体辐射能量的发出能力
雷诺茨定律
物体在达到热平衡后,各表面 温度和总发射能力一致
热辐射的应用和实例
热辐射广泛应用于热工技术、太阳能技术、计算机热管理等领域。例如,太阳能电池利用光照下的热辐射转换 为电能。
太阳能电池
利用光照下的热辐射转换为电能
传热学-第七章热辐射基 本定律及物体的辐射特性
了解热辐射的基本概念和定义,掌握热辐射的三大基本定律:斯特藩-玻尔兹 曼定律,基尔霍夫定律和韦恩位移定律。
斯特藩-玻尔兹曼定律
斯特藩-玻尔兹曼定律揭示了黑体辐射功率与温度的关系,P = εσT4,其中P为辐射功率,ε为辐射率,σ为斯特 藩-玻尔兹曼常数。
定律 表示式 说明
斯特藩-玻尔兹曼定律 P = εσT4 黑体辐射功率与温度的关系
基尔霍夫定律
基尔霍夫定律阐明了一个物体表面的吸收率和发射率相等,α = ε。
1 基尔霍夫定律
物体表面的吸收率和发射率相等
韦恩位移定律
韦恩位移定律描述了黑体辐射波长与黑体温度之间的关系,λmax = b / T,其中λmax是峰值辐射波长,b是韦恩 位移常数。
总结和要点
• 热辐射包括斯特藩-玻尔兹曼定律、基尔霍夫定律和韦恩位移定律 • 理

第七章凝结及沸腾换热_传热学

第七章凝结及沸腾换热_传热学

23
3 大空间饱和沸腾曲线:
表征了大容器饱和沸腾的全部过程,共包括4个换热规律不 同的阶段:自然对流、泡态沸腾、过渡沸腾和稳定膜态沸腾, 如图所示:
qmax
qmin
24
4.几点说明: (1)上述热流密度的峰值qmax 有重大意义,称为临界 热流密度,亦称烧毁点。一般用核态沸腾转折点DNB作 为监视接近qmax的警戒。这一点对热流密度可控和温度 可控的两种情况都非常重要。 (2)对稳定膜态沸腾,因为热量必须穿过的是热阻较 大的汽膜,所以换热系数比凝结小得多。
25
三. 大空间泡态沸腾表面传热系数计算
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍 然适用,即
q h(tw ts ) ht
但对于沸腾换热的h却又许多不同的计算公式 影响泡态沸腾的因素主要是过热度和汽化核心数,而汽 化核心数受表面材料、表面状况、压力等因素的支配,所 以沸腾换热的情况液比较复杂,导致了个计算公式分歧较 大。目前存在两种计算是,一种是针对某一种液体,另一 种是广泛适用于各种液体的。
与膜状凝结换热不同,液体中的不凝结气体会使沸腾换热 得到某种程度的强化 2 过冷度
只影响过冷沸腾,不影响饱和沸腾,因自然对流换热时,
h (tw, 因t f 此)n ,过冷会强化换热。
30
3.液位高度
当传热表面上的液位足够高时, 沸腾换热表面传热系数与液位 高度无关。但当液位降低到一 定值时,表面传热系数会明显 地随液 位的降低而升高(临界 液位)。
2t y 2
5
考虑(3)液膜的惯性力忽略
l (u
u x
v
u y
)
0
考虑(7)忽略蒸汽密度
dp 0 dx
考虑(5) 膜内温度线性分布, 即热量转移只有导热

传热学-第七章

传热学-第七章

(2)罗森诺公式——广泛适用的强制对流换热公式
既然沸腾换热也属于对流换热,那么,st = f ( Re, Pr )也 应该适用。罗森诺正是在这种思路下,通过大量实验得 出了如下实验关联式:
S 1 tC wlR0 .3 e3 Plsr
式中,St Nu r RePr Cplt
r — 汽化潜热; Cpl — 饱和液体的比定压热容
共包括4个换热规律不同的阶段:自然对流、核态沸腾、过渡沸 腾和稳定膜态沸腾,如图所示:
qmax
qmin
几点说明:
(1)上述热流密度的峰值qmax 有重大意义,称为临界热流 密度,亦称烧毁点。一般用核态沸腾转折点DNB作为 监视接近qmax的警戒。这一点对热流密度可控和温度 可控的两种情况都非常重要。
实验表明,通常情况下,沸腾时汽泡只发生在加热面的某些点
点,而不是整个加热面上,这些产生气泡的点被称为汽化核心
,增加气化核心是强化沸腾换热的主要途径。较普遍的看法认
为,加热壁面上的凹穴和裂缝易残留气体,是最好的汽化核心
(三个原因)。
(2) 汽泡的存在条件
汽泡半径R必须满足下列条件才能存活(克拉贝龙方程)
第七章 相变对流传热
Boiling and Condensation
第六章我们分析了无相变的对流换热,包括强制对 流换热和自然对流换热
下面我们即将遇到的是有相变的对流换热,也称之为 相变换热,目前涉及的是凝结换热和沸腾换热两种。
相变换热的特点:由于有潜热释放和相变过程的复 杂性,比单相对流换热更复杂,因此,目前,工程 上也只能助于经验公式和实验关联式。
1 凝结过程
tw ts
g
膜状凝结
沿整个壁面形成一层薄膜,并且在重力 的作用下流动,凝结放出的汽化潜热必 须通过液膜,因此,液膜厚度直接影响 了热量传递。

传热学-第七章

传热学-第七章
忽略蒸汽密度;(8)液膜表面平整无波动
边界层微分方程组:
u v 0 x y u u dp 2u v ) l g l 2 l (u x y dx y 2 t t t u v al 2 y y x
xc xc h hl ht 1 l l
式中:hl 为层流段的传热系数; ht 为湍流段的传热系数;xc 为层流转变为湍流时转折点的高度; l 为竖壁的总高度
利用上面思想,整理的实验关联式:
1 3
Nu 58 P r s
1 2
Ga Re
3 Pr w 4 9200 Re 253 Pr s 1 4
式中: Nu=hl/ ; Ga=gl3/2 。除 Prw 用壁温 tw 计算外,其余
物理量的定性温度均为ts。
例 1 :饱和水蒸汽在高度 L=1.5m 的竖管外表面上做层流膜状凝
结。水蒸汽压力为 p=2.5×105Pa ,管子表面温度为 123℃ 。试 计算离开管顶为 0.1m 、 0.2m 、 0.4m 、 0.6m 及 1.0m 处液膜厚度 和局部表面传热系数。 解:根据饱和水蒸汽层流膜状凝结的分析解可知 液膜厚度
对于倾斜壁,则用 gsin 代替以上各式中的 g 即可。另 外,除了对波动的修正外,其他假设也有人做了相关的研究, 如:当Pr≈1,并且
r Ja 1 c p (t s t w )
时,惯性力项和液膜过冷度的影响均可忽略。
(4) 水平圆管 努塞尔的理论分析可推广到水平圆管及球表面上的层流 膜状凝结
第七章
流换热和自然对流换热
相变对流传热
第五、六章我们分析了无相变的对流换热,包括强制对

传热学第七章

传热学第七章

7. 单相流体对流换热及其实验关联式7.1 知识结构1. 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。

2. 常用实验关联式:管内强制对流(紊流、层流及过渡流)(非圆形管道的当量直径计算); 外掠(平板、单管、管束)强制对流; 自然对流(大空间、有限空间)。

7.2 重点内容剖析由于对流换热问题的复杂性,大多数工程问题不能依靠分析解,而是依靠相似理论指导下的实验解。

在应用实验关联式(准则方程)时要注意以下几个方面:(1) 实验范围(已定准则范围)内的相似现象一般不能外推; (2) 注意关联式所规定的定性温度、特征尺度、特征流速; (3) 正确选用各种修正系数(物性,入口,弯管……)7.2.1 强制对流换热及其实验关联式 一、管槽内强制对流换热特征 1.流动状态Re :0 2300 10000层流 过渡流 湍流 2.速度分布温度对流速分布的影响是通过粘性作用的。

液体粘性随温度升高而降低,气体粘性随温度升高而增加。

相同切应力作用下,粘度越大,速度在壁面法线方向的变化率越小。

3.典型边界条件恒热流:边界处热流密度恒定不变,如电加热器。

恒壁温:边界处温度恒定不变,如冷凝器。

湍流时(除液态金属外)两种边界条件对传热系数的影响可忽略不计,但对层流和低Pr 介质,两种边界条件下传热系数的差别不容忽视。

4.原则性准则方程()Pr Re,f Nu = (7-1)5.入口效应:入口段:从入口至流动边界层在管道中心汇合处。

层流入口段长径比(比湍流大):Pr Re 05.0≈d l 湍流入口段长径比:60<d l 充分发展段:流动边界汇合处下游。

入口效应:由于入口段边界层较薄,平均表面传热系数比充分发展段大,入口段有强化传热的作用。

(短管强化传热)6.努塞尔特准则的物性修正系数: (温度场不均匀→物性场不均匀)nw f nwf nwf T T ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛Pr Pr ,,ηη下标:f ——流体温度下参数w ——壁面温度下参数二、管内湍流换热实验关联式nf ff Nu Pr Re 023.08.0= (7-2)加热液体时:n=0.4 冷却液体时:n=0.3定性温度:流体平均温度(管道进出口平均温度)特性尺度:管道内径(由关联式分析可知:h~d -0.2 →小管强化传热) 适用范围:Ref=104~1.2⨯105,Prf=0.7~120,l/d>60, 对于短管或弯管:乘以相应修正系数对于非圆形管道:用当量直径代替管道直径气体:不超过50 ℃ 传热温差 水:不超过30 ℃ 油:不超过10 ℃温差超出范围时,参考文献[1]P165有推荐公式和使用条件 注:① 非圆形管道(当量直径):UAde d 4== (7-3) A ——流动截面积 U ——湿周长② 入口效应修正系数(l/d<60)7.01⎪⎭⎫⎝⎛+=l d c l (7-4)③ 弯管修正(二次环流强化传热)(弯管强化传热)对于气体Rdc r 77.11+= (7-5) R 为弯道半径(曲率半径)对于液体33.101⎪⎭⎫⎝⎛+=R d c r (7-6)三、管内层流换热实验关联式(层流充分发展段) 对于恒热流边界条件:36.4=Nu 对于恒壁温边界条件:66.3=Nu(对于非圆形管道参见参考文献[1]P168~169表5-3、4) 管内层流换热实验关联式的应用要注意以下几点: (1) 对于同一截面形状的通道,恒热流Nu>恒壁温Nu(2) 等截面直通道内的层流充分发展段Nu 与Re 无关(自模化)(3) 对于层流,当量直径只是一几何参数,不能用它来统一不同截面通道的换热和阻力计算表达式。

传热学课件-第七章 相变对流传热精品文档71页

传热学课件-第七章 相变对流传热精品文档71页

对于Pr数接近于1或大于1的流体,只要
r
1
c p (ts tw )
惯性力项及液膜过冷度的影响均可略而不计。
实验表明,液膜由层流转变为湍流的临界雷诺数为 1600。
三、湍流膜状凝结传热
凝结液体流动也分层流和湍流,并且其判断依据 仍然时Re,
Re deul
式中:
ul 为 x = l 处液膜层的平均流速;
ρ=958.4kg/m3,μ=2.825 ×104则kg有/(:m.sh),λ=1.01.638WlrL/g((tms3l .Kl2t)w)1/4
1 .1 3 9 .8 2 .8 22 2 1 5 5 0 4 1 7 0 3 0 .3 9 (1 8 .4 2 0 5 9 0 0 .6 )8 3 8 1 /4
hhl
xc l
ht
1xlc
式中:hl为层流段的传热系数;ht为湍流段的传热系数; xc为层流转变为湍流时转折点的高度
l为竖壁的总高度
实验关联式:
N uG a1/3
R e
1/4
58P rs1/2 P P r rw s (R e3/4253)9200
式中:Nuhl/;Gagl3 /2 。除 P r w 用壁温 t w
u
t x
v
t y
0
只有u 和 t 两个未知量,不需要补充连续性方程 可以求解。于是,上面得方程组化简为:
l
g
l
2u y 2
0
a
l
2t y 2
0
边界条件:
y0时,u0, t tw
y时,du 0,
dy
t ts
3.主要求解过程及结果
求解上面方程可得:
(1)

传热学 第7章-热辐射的基本定律

传热学 第7章-热辐射的基本定律

第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。

太阳对大地的照射是最常见的辐射现象。

高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。

特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。

本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。

第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。

比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。

人们根据电磁波不同效应把电磁波分成若干波段。

波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。

可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。

因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。

一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。

当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。

传热学-第七章换热器

传热学-第七章换热器

1
qmc min qmc max
exp(
NTU)1
qmc min qmc max
第七章 换热器
当冷热流体之一发生相变时,即 qmc max 趋于无穷大
时,于是上面效能公式可简化为
1 exp NTU
当两种流体的热容相等时, 公式可以简化为
顺流:
逆流:
1 exp 2NTU
第七章 换热器
a、增加流速 增加流速可改变流态,提高紊流强度。
b、流道中加插入物增强扰动
在管内或管外加进插入物,如金属丝、 金属螺旋环、盘片、麻花铁、翼形物,以及 将传热面做成波纹状等措施都可增强扰动、 破坏流动边界层,增强传热。
第七章 换热器
c、采用旋转流动装臵 在流道进口装涡流发生器,使流体在一
(3)由冷、热流体的4个进、出口温度确定平均温
差,计算时要注意保持修正系数 具有合适
的数值。
(4)由传热方程求出所需要的换热面积 A,并核算
换热面两侧有流体的流动阻力。 (5)如流动阻力过大,改变方案重新设计。
第七章 换热器
对于校核计算具体计算步骤:
(1)先假设一个流体的出口温度,按热平衡式计 算另一个出口温度
第七章 换热器
7.1 换热器简介 用来使热量从热流体传递到冷流体,
以满足规定的工艺要求的装置统称换热器。
分为间壁式、混合式及蓄热式(或称回热 式)三大类。
第七章 换热器
1、间壁式换热器的主要型式 (1)套管式换热器
图7-1 套管式换热器
适用于传热量不大或流体流量不大的情形。
第七章 换热器
(2)壳管式换热器 这是间壁式换热器的一种主要形式,又
(t1
t2
)

大学传热学第七章

大学传热学第七章
• 各类食品中的主要成分是水,因而远红外加热是 一种比较理想的加热手段。
物体对热射线的反应
• 当热辐射的能量投射到物体表面上时,和可见光 一样,物体也会对热辐射发生吸收、反射和穿透 现象。
• 插入图:物体对热辐射的吸收、反射和穿透 • 根据能量守恒定律有
Q Qa Q Q
Qa Q Q 1 QQQ
热辐射的机理
• 由于物体内部微观粒子在不停的进行着热运动,当其运动 状态发生改变时会激发出电磁波,从而产生热量的传递。
• 只要物体的温度高于“绝对零度”,物体内部的分子就在 不停地进行热运动,就会不断地产生电磁波,向外发出热 辐射。
• 同时,物体也不断地吸收周围物体投射到它上面的热辐射, 并把吸收的辐射能重新转变成热能。
第二节 黑体辐射的基本定律
• 本节着重介绍黑体辐射的三个基本定律,它们分别是: (1)表征黑体总辐射能力的斯蒂芬——玻耳兹曼定律; (2)表征黑体在某一波长时辐射能力大小的普朗克定律;
(3)表征黑体在某一方向上辐射能力大小的兰贝克定律。
两个基本概念
• 辐射力——单位时间内物体的单位表面积向半球
空间所有方向发射出去的全部波长的辐射能的总
• 演示:黑体模型
黑体在辐射换热中的作用
• 黑体在热辐射分析中有其特殊的重要性。 • 下节的讨论将表明:在相同温度的物体中,黑体
的辐射能力最大。 • 在研究黑体辐射的基础上,我们处理其他物体辐
射的思路是:把其他物体的辐射和黑体辐射相比 较,从中找出其与黑体辐射的偏离,然后确定必 要的修正系数,本章下面的讨论将按照这一思路 来进行。
第七章 热辐射基本 定律及物体的 辐射特性
• 热辐射是三种基本热量传递方式之一。
• 热辐射是通过电磁波来传递能量的。

传热学七(PDF)

传热学七(PDF)
穿透现象。根据能量守恒有
Q = Qα + Qρ + Qτ Qα + Qρ + Qτ = 1 Q QQ
α + ρ + τ = 1
α-吸收率,-ρ 反射率,-τ穿透率(透射率)
在一般情况下,对于固体和液体(强吸收性介质)而言τ很小 可以忽略不计, ρ+α=1
原因:因分子间排列非常紧密,当热辐射能投射到固体表 表面时,马上被相邻的分子所吸收
[例]:教材P244例7-1 解:……由此例可见,黑体或实际物体当T升高时λm减小, 可见光及可见光中短波增加。
3.斯蒂芬-玻尔兹曼(Stefan-Boltzmann)定律
∫ = Eb

= 0 Ebλ d λ
σbT 4
σ b = 5.67 ×10−8 斯蒂芬-波尔兹曼常数,W (m2 ⋅ K4 )
∆Eb
=λ2 λ1
Ebλ

定义:
F = b(λ1 −λ2 )
∆= Eb Eb
∫ λ2 λ1
Ebλ d λ
=

∫0 Ebλ d λ
∫ 1
σT 4
λ E d λ2
λ1

(∫ ∫ ) =1 σT 4
λ λ λ2
0
Ebλ d

λ1 0
Ebλ
d
= F − F b(0−λ2 )
b(0−λ1 )
Fb(0-λ)为能量份额,意即波长从0至λ的黑体辐射占同温度下黑 体辐射力的百分数。而且:
L(θ ) = dφ (θ ) dA cosθ d Ω
n θ dΩ
dAcosθ dA
3). Lambert定律 表述为:黑体的定向辐射强度与方向无关。 即:

传热学-7 凝结和沸腾传热

传热学-7 凝结和沸腾传热

7-2 沸腾传热
2 汽泡的存在条件
汽泡半径R必须满足下列条件才能存活(克拉贝
龙方程)
R
Rmin
2 Ts rv (tw
ts
)
可见, (tw – ts ) , Rmin 同一加热面上,汽化核 心的凹穴数量增加 汽化核心数增加 换热增强
7-2 沸腾传热
二 大容器沸腾 1 饱和沸腾曲线 大容器沸腾:指加热壁面沉浸在具有自由表面的液 体中所发生的沸腾。 特点:产生的气泡能自由浮升,穿过液体自由面进 入容器空间。 大容器饱和沸腾曲线:表征了大容器饱和沸腾的全 部过程,共包括4个换热规律不同的阶段:自然对 流、核态沸腾、过渡沸腾和稳定膜态沸腾。
7-2 沸腾传热
饱和沸腾:液体主体温度达到饱和温度,壁面温度 高于饱和温度所发生的沸腾。 特点:随着壁面过热度的增高,出现 4 个换热规律 全然不同的区域。
过冷沸腾:液体主体温度低于相应压力下饱和温度, 壁面温度大于该饱和温度所发生的沸腾换热。
7-2 沸腾传热
产生沸腾的条件: 理论分析与实验证明,产生沸腾的条件: 1)液体必须过热; 2)要有汽化核心。 一 汽泡动力学简介 1 汽泡的成长过程 实验表明,通常情况下,沸腾时汽泡只发生在加 热面的某些点,而不是整个加热面上,这些产生气 泡的点被称为汽化核心,较普遍的看法认为,壁面 上的凹穴和裂缝易残留气体,是最好的汽化核心。
7-1 凝结传热
3. 过热蒸气 要考虑过热蒸气与饱和液的焓差。
4. 液膜过冷度及温度分布的非线性 如果考虑过冷度及温度分布的实际情况,要用
下式代替计算公式中的 r,
r r 0.68cp( ts tw )
5. 管子排数 管束的几何布置、流体物性都会影响凝结换热。
6. 凝结表面的几何形状
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24
2 膜状凝结的强化原则和技术
2.1 基本原则 强化凝结换热的原则是尽 量减薄粘滞在换热表面上 的液膜的厚度。 2.2 强化技术 (1)可用各种带有尖峰 的表面使在其上冷凝的液 膜拉薄减薄凝结液膜的厚 度、促进凝结液的排泄; (2)改变凝结的形式, 创造珠状凝结条件等。
2016/1/15 25
2016/1/15
相变:物质从一种集态转变为另一种集态。 固-液(熔化、凝固)
液-汽(气化、液化、凝结、沸腾/蒸发)
固-气(升华、凝聚) 固-固
2016/1/15 2
潜热:当物体吸热(或放热)仅使物质分子的热位能增加(或减少), 即仅使物质状态发生改变,而其温度不变,那么它所吸收(或放出) 的热能称为潜热。
液相水汽化成气相蒸汽的潜热阶段 ∆tQ4=2257kJ/kg
ቤተ መጻሕፍቲ ባይዱ
1. 沸腾的定义及分类
1.1 沸腾的定义
a 沸腾:工质内部形成大量气泡并由液态转换到汽态的 一种剧烈的汽化过程
b 蒸发:发生在液体表面上的汽化过程(压差作用下形成) c 沸腾传热:指工质通过气泡运动带走热量,并使其冷 却的一种传热方式
3
F E
水蒸气
tk 100 t2 t0 0
t1
D
B
C
液相水温度变化时显热焓量变化 ∆Q3=C水(t2-t0)kJ/kg, C水= 4.187kJ/kg· ℃ 从0到100℃,共吸收显热量为418kJ/kg
A
固相冰融化成液相水的潜热阶段 ∆Q2=335kJ/kg
0
固相冰温度变化时显热焓量变化 335 Q 热焓量( kJ/kg) · Q1 Q2∆ Q1 2257 QC Q1 =C冰( =2.09kJ/kg ℃ 3 t0-t 5 冰 4 )kJ/kg, 不同状态下水的显热与相变潜热比较
t(y)
x
Thermal boundary layers
u(y)
Velocity boundary layers
u v x y 0 u u dp 2u l (u x v y ) dx l g l 2 y t t 2t u x v y al 2 y
ts tw tm 2
15
2016/1/15
在其它条件相同时,横管与竖管的平均对流传热系数之比:
1 hHg l 0.77 hVg d 4
如果取l/d=50,则横管的平均表面传热系数是竖管的2倍 课堂讨论:试解释为什么冷凝器(凝汽器)通常都采用横 管的布置方式?
2016/1/15
上式的误差将低于3%。 Ja 称为雅各布(Jacob)数, 表示凝结液的显热与潜热之比。
对努塞尔理论解的修正:
(1)如果蒸气过热,要考虑过热蒸气与饱和液 的焓差。 (2)如果竖壁与垂直方向的夹角为 ,式中的 重力加速度g改为gcos 。 Ф
2016/1/15 14
2 水平圆管及球的表面传热系数
g
膜,因此,液膜厚度直接影响了热量传
递。
珠状凝结
当凝结液体不能很好的润湿壁面时,则在壁面 上形成许多小液珠,此时壁面的部分表面与蒸 汽直接接触,因此,换热速率远大于膜状凝结 (可能大几倍,甚至一个数量级)
tw ts
g
6
2016/1/15
虽然珠状凝结换热远大于膜状凝结,但可惜的是,珠状凝 结很难保持,因此,大多数工程中遇到的凝结换热大多属 于膜状凝结,因此,教材中只简单介绍了膜状凝结 接触 角
努塞尔的理论分析可推广到水平圆管及球表面上的层流 膜状凝结
gr hH 0.729 d( t t ) s w l
2 l 3 l
1/ 4
gr hS 0.826 d( t t ) s w l
2 l 3 l
1/ 4
式中:下标“ H ”表示水平管,“ S ”表示球; 特征长 度d 为水平管或球的直径。 定性温度与前面的公式相同
r r 0.68c p ( ts tw )
r
2016/1/15
22
1.6 管内冷凝 此时换热与蒸气的流速关系很大。 蒸气流速低时,凝结液主要在管子底部,蒸气则位于 管子上半部。 流速较高时,形成环状流动,凝结液均匀分布在管子 四周,中心为蒸气核。
2016/1/15
23
2016/1/15
2016/1/15
20
§7-3 膜状凝结的影响因素及其传热强化
1 膜状凝结的影响因素
工程实际中所发生的膜状凝结过程往往比较复杂,受各种因素的 影响。 1.1 不凝结气体 不凝结气体增加了传递过程的阻力,同时使饱和温度下 降,减小了凝结的驱动力 t。 研究表明水蒸气质量含量占 1 %的空气能使表面传热系数降低 60%
16
3
3.1
湍流膜状凝结
边界层内的流态
无波动层流
凝结液体流动也分层流和湍流,并且 其判断依据仍然是Re,叫膜层Re数
Re 20
有波动层流
ul d e Re
ul d e
式中: ul 为 x = l 处液膜层的平均流速; de 为该截面处液膜层的当量直径。
Re c 1600
湍流
修正后:
gr hV 1.13 l l( t s t w )
2 l 3 l
1/ 4
2016/1/15
12
水蒸气在竖壁上的膜状凝结分析解与实验结果
2016/1/15
13
适用条件:研究证明,如果满足
Ja
c pl (ts tw ) r
0.1, 1 Pr 100
26
几个简答题:
1)什么是膜状凝结?什么是珠状凝结?哪种凝结形 式的换热性能好?为什么? 2)试解释为什么冷凝器通常采用横管布置方案? 3)试说明蒸汽凝结传热中有不凝结气体存在时,对 凝结传热的影响?
21
2016/1/15 27
§7-4 沸腾传热的模式
• 蒸汽锅炉 沸腾传热例子
• 做饭 • 许多其它的工业过程
第七章 相变对流传热
Boiling and Condensation
能源工程系 黄金
2016/1/15 1
第五章我们分析了无相变的对流换热,包括强制对 流换热和自然对流换热
下面我们即将遇到的是有相变的对流传热,也称之为 相变传热,目前涉及的是凝结传热和沸腾传热两种。
相变传热的特点:由于有潜热释放和相变过程的复 杂性,比单相对流传热更复杂,因此,目前,工程 上也只能助于经验公式和实验关联式。
3
2016/1/15
§7-1 凝结传热的模式
1 珠状凝结与膜状凝结
1.1 凝结换热实例 •电站的凝汽器 •制冷空调装置中的冷凝器 •寒冷冬天窗户上的冰花 1.2 凝结传热的关键点
• • • • •
凝结可能以不同的形式发生,膜状凝结和珠状凝结 冷凝物相当于增加了热量进一步传递的热阻 层流和湍流膜状凝结换热的实验关联式 影响膜状凝结换热的因素 会分析竖壁和横管的换热过程,及Nusselt膜状凝结理论
4
2016/1/15
1.3 凝结换热中的重要参数
• • • • 蒸汽的饱和温度与壁面温度之差(ts - tw) 汽化潜热 r 特征尺度 其他标准的热物理性质,如动力粘度、导热系 数、比热容等
2016/1/15
5
1.4
凝结过程
tw ts
膜状凝结
凝结液体能很好地润湿壁面,沿整个壁
面形成一层薄膜,并且在重力的作用下 流动,凝结放出的汽化潜热必须通过液
在努塞尔分析解中被忽略
1.2 蒸气流速 流速较高时,蒸气流对液膜表面产生明显的粘滞应力。 如果蒸气流动与液膜向下的流动同向时,使液膜拉薄, h增大;反之使 h 减小。
2016/1/15 21
1.3 过热蒸气 要考虑过热蒸气与饱和液的焓差。
1.4 液膜过冷度及温度分布的非线性
如果考虑过冷度及温度分布的实际情况,要用下式代替 计算公式中的 , 1.5 管子排数 管束的几何布置、流体物性都会影响凝结换热。 前面推导的横管凝结换热的公式只适用于单根横管。对于管束, 其特征长度取为nd,但过于保守。 具体关联式本书没有介绍,可参澄考文献: 张卓澄.大型电站凝汽器[M]. 机械工业出版社,1993,北京.
2016/1/15
17
如图
由热平衡
所以
de 4 Ac / P 4b / b 4 4 ul 4qml Re h( ts tw )l rqml
4hl( ts t w ) Re r
4hd (t s t w ) r
对水平管,用π d代替上式中的l即可。
xc h hl ht l
xc 1 l
式中:hl 为层流段的传热系数; ht 为湍流段的传热系数; xc 为层流转变为湍流时转折点的高度 l 为竖壁的总高度 本教材没有介绍
2016/1/15 19
利用上面思想,整理的整个壁面的实验关联式:
Nu Ga
1/ 3
Re 58 Pr
Re
并且横管一般都处于层流状态
2016/1/15 18
3.2 湍流膜状凝结传热 液膜从层流转变为湍流的临界雷诺数可定为1600。横管因 直径较小,实践上均在层流范围。 对湍流液膜,除了靠近壁面的层流底层仍依靠导热来传递 热量外,层流底层之外以湍流传递为主,换热大为增强 对竖壁的湍流凝结传热,其沿整个壁面的平均表面传热 系数计算式为:
1 / 2 s
Prw Pr s
1/ 4
(Re 3 / 4 253 ) 9200
3 2 Ga gl / Nu hl / ; 式中: 。除 Prw用壁温
tw
计算外,其余物理量的定性温度均为
相关文档
最新文档