数值分析上机实验6
数值分析2024上机实验报告
![数值分析2024上机实验报告](https://img.taocdn.com/s3/m/94370e8509a1284ac850ad02de80d4d8d05a0172.png)
数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析第一次上机练习实验报告
![数值分析第一次上机练习实验报告](https://img.taocdn.com/s3/m/fc8d9072b80d6c85ec3a87c24028915f804d84b1.png)
数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。
二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。
数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。
2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。
方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。
我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。
3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。
在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。
我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。
4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。
在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。
我们还学习了数值微分的数值方法,如差商法和牛顿插值法。
5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。
我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。
三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。
我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。
实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。
根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。
此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。
四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/b884733a178884868762caaedd3383c4bb4cb4b0.png)
数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。
1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。
本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。
2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。
对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。
在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。
3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。
(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。
(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。
(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。
(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。
4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。
优质文档精选——数值分析上机实验报告
![优质文档精选——数值分析上机实验报告](https://img.taocdn.com/s3/m/a926f516e45c3b3567ec8ba0.png)
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/9851f8212af90242a895e56e.png)
数值分析上机实验理学院11级统计01班41108030125鲁庆实验报告一一.实验名称误差与误差估计二.实验目的掌握数值运算的误差估计方法三.数学原理 1.绝对误差(*)e x设某一量的准确值为x ,近似值为x*,则x*与x 之差叫做近似值x*的绝对误差(简称误差),记为*(*)*e e x x x ==- 2.绝对误差限适当小的正数,使|(*)||*|*e x x x ε=-≤则称*ε为近似值 x * 的绝对误差限。
(有时用*x x ε*=±表示近似值x *的精度或准确值的所在范围。
3.相对误差(*)r e x绝对误差与准确值之比*(*)*(*),0r r e x x xe e x x x x-===≠称为x *的相对 误差。
4.相对误差限(*)r x ε若指定一个适当小的正数 (*)r x ε,使|(*)||(*)|(*)||r r e x e x x x ε=≤则称(*)r x ε为近似值 x *的相对误差限。
5.有效数字若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。
6.绝对误差的运算:)()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε (f(x))()(x)f x εε'≈四.实验内容1. 计算I n=e 1-⎰10nxe x 2dx (n=0,1,...)并估计误差。
解: >> I0 = exp(-1)*quad('(x.^0).*exp(x.^2)',0,1,10^(-10));>> vpa(I0,10) ans =.5380795069>> I1= exp(-1)*quad('(x.^1).*exp(x.^2)',0,1,10^(-10)); >> vpa(I1,10) ans =.3160602794>> I2 = exp(-1)*quad('(x.^2).*exp(x.^2)',0,1,10^(-10)); >> vpa(I2,10) ans =.2309602465>> I3 = exp(-1)*quad('(x.^3).*exp(x.^2)',0,1,10^(-10)); >> vpa(I3,10) ans =.1839397206>> I4 = exp(-1)*quad('(x.^4).*exp(x.^2)',0,1,10^(-10)); >> vpa(I4,10) ans =.1535596302>> I5 = exp(-1)*quad('(x.^5).*exp(x.^2)',0,1,10^(-10)); >> vpa(I5,10) ans =.1321205588>> I6 = exp(-1)*quad('(x.^6).*exp(x.^2)',0,1,10^(-10)); >> vpa(I6,10) ans =.1161009245>> I7 = exp(-1)*quad('(x.^7).*exp(x.^2)',0,1,10^(-10)); >> vpa(I7,10) ans =.1036383235>> I8 = exp(-1)*quad('(x.^8).*exp(x.^2)',0,1,10^(-10)); >> vpa(I8,10) ans =.9364676413e-1>> I9 = exp(-1)*quad('(x.^9).*exp(x.^2)',0,1,10^(-10)); >> vpa(I9,10) ans =.8544670595e-1 2.计算x255的值。
数值分析上机实验报告(插值)
![数值分析上机实验报告(插值)](https://img.taocdn.com/s3/m/514948836037ee06eff9aef8941ea76e58fa4ada.png)
数值分析第一次上机练习实验报告——Lagrange 插值与三次样条插值一、 问题的描述设()2119f x x =+, []1,1x ∈-,取15iix =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x ,()S x .二、 方法描述——Lagrange 插值与三次样条插值我们取15i ix =-+,0,1,2,...,10i =,通过在i x 点的函数值()2119i i f x x =+来对原函数进行插值,我们记插值函数为()g x ,要求它满足如下条件:()()21,0,1,2,...,1019i i i g x f x i x ===+ (1)我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数()2119f x x=+进行插值,看两种方法的插值结果,并进行结果的比较。
10次的Lagrange 插值多项式为:()()10100i i i L x y l x ==∑ (2)其中:()21,0,1,2,...,1019i i iy f x i x ===+ 以及()()()()()()()()()011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----==----我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。
理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多项式()n L x 的次数n 越高逼近()f x 的精度就越好。
但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近会出现严重的()n L x 偏离()f x 的现象,即所谓的Runge 现象。
数值分析上机实践报告
![数值分析上机实践报告](https://img.taocdn.com/s3/m/772e81af9a89680203d8ce2f0066f5335b816751.png)
数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。
在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。
二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。
根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。
2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。
根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。
3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。
通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。
本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。
具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。
2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。
3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。
三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。
下面是实验结果的汇总及分析。
1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程的数值解。
通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。
2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程组的数值解。
与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。
数值分析上机实践报告
![数值分析上机实践报告](https://img.taocdn.com/s3/m/cea4dfe4f424ccbff121dd36a32d7375a417c6ae.png)
数值分析上机实践报告一、实验目的本实验的目的是通过编写数值分析程序,掌握解决数学问题的数值计算方法,并通过实际应用来检验其有效性和准确性。
具体包括以下几个方面的内容:1.掌握二分法和牛顿迭代法的基本原理和实现方法;2.熟悉利用矩阵的LU分解和追赶法解线性方程组的过程;3.通过具体的实例应用,比较不同方法的计算效果和精度。
二、实验内容本实验分为三个部分,每个部分包括一个具体的数学问题和相应的数值计算方法。
1.问题一:求方程f(x)=x^3-5x^2+10x-80=0的近似解。
在问题一中,我们通过二分法和牛顿迭代法来求解方程的近似解,并比较两种方法的精度和收敛速度。
2.问题二:用LU分解解线性方程组。
问题二中,我们通过矩阵的LU分解方法解线性方程组Ax=b,然后和直接用追赶法解线性方程组进行对比,验证LU分解的有效性和准确性。
三、实验结果及分析1.问题一的结果分析:通过二分法和牛顿迭代法求解方程f(x)=x^3-5x^2+10x-80=0的近似解,得到的结果如下:从结果来看,两种方法得到的近似解均与真实解x≈5非常接近。
但是,通过比较可以发现,牛顿迭代法的计算速度比二分法更快,迭代的次数更少。
因此,在需要高精度近似解的情况下,牛顿迭代法是一个更好的选择。
2.问题二的结果分析:通过LU分解和追赶法解线性方程组Ax=b,得到的结果如下:-用LU分解解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0;-用追赶法解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0。
从结果来看,两种方法得到的结果完全一致,而且与真实解非常接近。
这表明LU分解方法和追赶法均可以有效地解决线性方程组问题。
但是,在实际应用中,当方程组规模较大时,LU分解方法的计算复杂度较高,因此追赶法更加适用。
四、实验总结通过本实验,我掌握了二分法和牛顿迭代法以及LU分解和追赶法的基本原理和实现方法。
通过具体的数学问题实例应用,我比较了不同方法的计算效果和精度,得出以下结论:1.在求解函数的近似解时,牛顿迭代法相对于二分法具有更快的收敛速度和更高的计算精度;2.在解决线性方程组问题时,LU分解方法在计算准确性方面与追赶法相当,但在处理较大规模的问题时,计算复杂度较高,追赶法更适合。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/f373efc36429647d27284b73f242336c1eb93090.png)
数值分析上机实验报告导言:本次上机实验主要是针对数值分析课程中的一些基本算法进行实验验证。
实验内容包括迭代法、插值法、数值积分和常微分方程的数值解等。
在实验过程中,我们将会使用MATLAB进行算法的实现,并对结果进行分析。
一、迭代法迭代法是解决函数零点、方程解等问题的常用方法。
我们将选择几个常见的函数进行迭代求根的实验。
(1)二分法二分法是一种简单而有效的迭代求根法。
通过函数在区间两个端点处的函数值异号来确定函数在区间内存在零点,并通过不断缩小区间来逼近零点。
(2)牛顿法牛顿法利用函数的一阶导数和二阶导数的信息来逼近零点。
通过不断迭代更新逼近值,可以较快地求得零点。
实验结果表明,对于简单的函数,这两种迭代法都具有很好的收敛性和稳定性。
但对于一些复杂的函数,可能会出现迭代失效或者收敛速度很慢的情况。
二、插值法插值法是在给定一些离散数据点的情况下,通过构造一个插值函数来逼近未知函数的值。
本实验我们将使用拉格朗日插值和牛顿插值两种方法进行实验。
(1)拉格朗日插值拉格朗日插值通过构造一个多项式函数来逼近未知函数的值。
该多项式经过离散数据点,并且是唯一的。
该方法简单易懂,但插值点越多,多项式次数越高,插值函数的精度也就越高。
(2)牛顿插值牛顿插值利用差商的概念,通过构造一个插值多项式来逼近未知函数的值。
与拉格朗日插值相比,牛顿插值的计算过程更加高效。
但同样要求插值点的选择要合理,否则可能出现插值函数不收敛的情况。
实验结果表明,这两种插值方法都能够很好地逼近未知函数的值。
插值点的选择对插值结果有很大的影响,过多或者过少的插值点都可能导致插值结果偏离真实函数的值。
三、数值积分数值积分是一种将定积分问题转化为数值求和的方法。
本实验我们将使用复合梯形求积法和复合辛普森求积法进行实验。
(1)复合梯形求积法复合梯形求积法将定积分区间等分为若干小区间,然后使用梯形公式对每个小区间进行近似求积,最后将结果相加得到整个定积分的近似值。
数值分析上机实验6
![数值分析上机实验6](https://img.taocdn.com/s3/m/a4fe7918524de518974b7d1b.png)
数值分析上机实验6根据表中数据,预测公元2000年时的世界人口。
问题分析与数学模型设人口总数为N(t),根据人口理论的马尔萨斯模型,采用指数函数N(t) = e a + b t=+,令对数据进行拟合。
为了计算方便,将上式两边同取对数,得ln N a bty = ln N或N = e y变换后的拟合函数为y(t) = a + b t根据表中数据及等式 k k( 1,2,……,9)可列出关于两个未知数、b的9个方程的超定方程组(方程数多于未知数个数的方程组)a + t j b = y j(j= 1,2, (9)可用最小二乘法求解。
算法与数学模型求解算法如下:第一步:输入人口数据,并计算所有人口数据的对数值;第二步:建立超定方程组的系数矩阵,并计算对应的正规方程组的系数矩阵和右端向量;第三步:求解超定方程组并输出结果:a,b;第四步:利用数据结果构造指数函数计算2000年人口近似值N(2000),结束。
MATLAB程序t=1960:1968;t0=2000;N=[29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83];y=log(N);A=[ ones(9,1), t' ];d=A\ y' ;a=d(1),b=d(2)N0=exp(a+b*t0)x=1960:2001;yy=exp(a+b*x);plot(x,yy,t,N,'o',2000,N0,'o')计算结果为a =-3,b =6N (2000)所以取五位有效数,可得人口数据的指数拟合函数t e t N 0186.00383.33)(+-=经计算得2000年人口预测值为: (亿)。
例2.温度数据的三角函数拟合问题 洛杉矶郊区在11月8日的温度记录如下在不长的时期内,气温的变化常以24小时为周期,考虑用Fourier 级数的部分和(有限项)做拟合函数。
(完整版)哈工大-数值分析上机实验报告
![(完整版)哈工大-数值分析上机实验报告](https://img.taocdn.com/s3/m/31169c33c281e53a5802ff73.png)
(完整版)哈工大-数值分析上机实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
前言:掌握二分法与Newton法的基本原理和应用。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; endx=c%给出解Newton法及改进的Newton法源程序:clear%%%% 输入函数f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);%%%改进常数或重根数 miu=2;%%%初始值x0x0=input('input initial value x0>>'); k=0;%迭代次数max=100;%最大迭代次数R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解while (abs(R)>1e-8)x1=x0-miu*eval(subs(f,'x0','x'))/eval(subs(df,'x0', 'x')); R=x1-x0; x0=x1; k=k+1;if (eval(subs(f,'x0','x'))max;%如果迭代次数大于给定值,认为迭代不收敛,重新输入初值ss=input('maybe result is error,choose a new x0,y/n>>','s');if strcmp(ss,'y')x0=input('input initial value x0>>');k=0; else break end end endk;%给出迭代次数 x=x0;%给出解结果分析和讨论:1. 用二分法计算方程在[1,2]内的根。
数值分析上机实习报告
![数值分析上机实习报告](https://img.taocdn.com/s3/m/dcb881486ad97f192279168884868762cbaebb54.png)
数值分析上机实习报告随着现代科学技术的迅猛发展,计算机科学的应用日益广泛,数值分析作为计算机科学中重要的分支之一,其在工程、物理、生物学等领域的应用也越来越受到重视。
本学期,我们在数值分析课程的学习中,进行了多次上机实习,通过实习,我们对数值分析的基本方法和算法有了更深入的理解和掌握。
在实习过程中,我们使用了MATLAB软件作为主要的工具,MATLAB是一种功能强大的数学软件,它提供了丰富的数值计算函数和图形显示功能,使我们能够更加方便地进行数值计算和分析。
第一次实习是线性插值和函数逼近。
我们学习了利用已知数据点构造插值函数的方法,并通过MATLAB软件实现了线性插值和拉格朗日插值。
通过实习,我们了解了插值的基本原理,掌握了插值的计算方法,并能够利用MATLAB软件进行插值计算。
第二次实习是解线性方程组。
我们学习了高斯消元法、列主元高斯消元法和克莱姆法则等解线性方程组的方法,并通过MATLAB软件实现了这些算法。
在实习过程中,我们通过实际例子了解了这些算法的应用,掌握了它们的计算步骤,并能够利用MATLAB软件准确地求解线性方程组。
第三次实习是求解非线性方程和方程组。
我们学习了二分法、牛顿法、弦截法和迭代法等求解非线性方程的方法,以及雅可比法和高斯-赛德尔法等求解非线性方程组的方法。
通过实习,我们了解了非线性方程和方程组的求解方法,掌握了它们的计算步骤,并能够利用MATLAB软件求解实际问题。
通过这次上机实习,我们不仅深入学习了数值分析的基本方法和算法,而且锻炼了利用MATLAB软件进行数值计算和分析的能力。
同时,我们也认识到了数值分析在实际问题中的应用价值,增强了解决实际问题的能力。
总之,这次上机实习使我们受益匪浅,对我们学习数值分析课程起到了很好的辅助作用。
昆明理工大学数值分析上机报告
![昆明理工大学数值分析上机报告](https://img.taocdn.com/s3/m/6ad8c41a192e45361166f53d.png)
昆明理工大学数值分析上机报告数值分析实验报告《数值分析》实验报告数值分析实验报告06工科硕士《数值分析》上机实验报告专业:材料学姓名:牛延龙学号: 2006202066 任课教师:作业完成实验室:实验内容:1.题目/要求:函数插值方法一、问题提出对于给定的一元函数 y?f?x? 的n+1个节点值 yj? fxj??j??0,1,?,n?试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式数据如下:求五次Lagrange多项式L5,和分段三次插值多项式,计算?? 的值用三点插值或二点插值,其结果如何; 4、对此插值问题用Newton插值多项式其结果如何2.作业环境(包括选用的程序语言、运行环境)本题中的插值多项式程序采用的编程语言为c++,因此运行环境可以在装有Microsoft VC++的windows XP 或2000的系统下运行程序3.数学描述在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的虽然其函数关系y=f(x)在某个区间[a,b]上是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间[a,b]上一些离散点上的函数值、导数值等,因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数插值法就是寻求近似函数的方法之一?在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用设函数y=f(x)在区间[a,b]上有定义个互异点,y0,y1,...yn且已知函数在区间[a,b]上n+1x0,x1,...xn 上的函数值,若存在一个简单函数?y=p(x ),使其经过y=f(x)上x0,y0),(x1,y1),…,?(xn,yn),即?的这n+1个已知点(p(xi)= yi,? i=0,1,…,nx0,x1,...xn称为插节点,x,y 点(00),(x1,y1),…,那么,函数p(x)称为插值函数,点(nn)?称为插值点,包含插值节点的区间[a,b]称为插值区间,求p (x)的方法称为插值法,f(x)称为被插函数若p(x)是次数不超过n的多项式,用Pn(x)表示,即?2np(x)?a?ax?ax?...?axn012n?x,y则称n为n次插值多项式,相应的插值法称为多项式插值;若P(x)为分段多项式,称为分段插值,多项式插值和分段插值称为代数插值p(x)4.数值计算公式1.Lagrange插值公式:?n?x?xiLn?xk?0?i?0xk?xi?i?k2.分段三次插值公式nyk ??{z=(y[1]*(t-x[0])-y[0]*(t-x[0]-h))/h Return(z)};若n>=3,则进行全区间插值 For (i=0;i=3,则进行全区间插值For (i=0; i=3,则判断t值如果t=x[0]+(n-3)*h, 则取最后三个结点{k=n-3;m=n-1;}进行三点二次抛物插值;否则取离t最近的中间三个结点进行插值{ i=(int)((t-x[0]/h)+1;If (fabs(t-x[0]-i*h)>=fabs(t-x[0]-(i-1)*h)){ k-i-2;m=I;}Else { k=i-1;m=m+1;} }三点二次插值程序数值分析实验报告06工科硕士《数值分析》上机实验报告专业:材料学姓名:学号: 2006202080 任课教师:作业完成实验室:曲线拟合的最小二乘法中,寻找自变量x与因变量y之间的函数关系y?F?x?由于观测数据往往不准确,因此不要求y?F?x?经过所有点?xi,yi?,而只要求在给定点xi上误差而只要求所在所有给定点xi上的误差?i?F(xi)?yi ?i?0,1,2,?,m?按某种标准最小若记0,?1,?2,?,?m?,就是要求向量?的范数?最小如果用最大范数,计算上困难较大,通常采用欧式范数2T 作为误差度量的标准F?x?的函数类型往往与实验的物理背景以及数据的实际分布有关,它一般含有某些待定参数如果F?x?是所有待定参数的线性函数,那么相应的问题称为线性最小二乘问题,否则称为非线性最小二乘问题最小二乘法还是实验数据参数估计的重要工具这是因为这种方法比其他方法更容易理解,即使在其他方法失效的情况下,用最小二乘法还能提供解答,而且从统计学的观点分析,用该方法求得各项估计具有最优统计特征,因此这一方法也是系统识别的重要基础线性最小二乘问题可以借助多元微分学知识通过求解法方程组得到解答用最小二乘法求拟合曲线时,首先要确定S?x?的形式这不单纯是数学问题,还与所1,?11,?21,?3a1?1,y1,??,??,?a??,y??21??22??23222?? ??,??,??,a,y??313233333所以求得5a1?2.?6?61a0210?7,,a3??10?9,??t10?5t??10?7t2??10?9t3,误差为?i?yiti??i?0,1,?11?max?i??下图可见实际测出值与拟合值的差别,下表可见拟合出的每一点的误差以及均方误差t 0 5 10 15 20 25 30 35 40 45 50 55y 0 拟合值 0 误差 0 - - - - -误差平方0 均方误差三、结构程序设计在本题使用Visual Studioc# .NET编译程序//在窗体的Load事件里调用InitialDeal和Deal函数来处理数据private void ResultReport_Load(object sender, e) { (); (); }//初始化各个变量 private void InitialDeal() { int i =0; while( > 0) { t[i++] = ((0,(“,”))) * tUnit;tString = (0,(“,”) + 1); } num = i; i = 0;while( > 0) { y[i++] = ((0,(“,”))) * yUnit;yString = (0,(“,”) + 1); } i = 0; while(i x(i)y(i)dy(i)ddy(i) -+00- - - +00 -+00 -+01 +00+00 +01t(i) z(i) dz(i) ddz(i) -+00 - -+00 - - - - +00 - -+00 -+00 -+01-+00 +01 +00 +00 +01Program Exited Successfully!8.讨论凡是用插值方法解决的问题,只要遇到高次插值都可以用三次样条插值来降低次数,达到增强精确度加强实用性的目的在插值中,拉格朗日给出了插值曲线的函数表达式但是,当插值结点增多时,得到的插值曲线是高次的这不仅增大了计算量,还影响结果的精确度所以这种高次插值曲线不适合于实际应用通常用分段的低次插值方法也能降低插值曲线的次数,使问题简化但是分段插值的缺点是,各个分段衔接的连接点处不能保证曲线的光滑性三次样条插值正是用来改变这种状况的一种改进的分段低次插值法,它。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/9a75b49764ce0508763231126edb6f1aff00717d.png)
数值分析上机实验报告实验报告插值法与数值积分实验(数值计算方法,3学时)一实验目的1.掌握不等距节点下的牛顿插值公式以及拉格朗日插值公式。
2.掌握复化的梯形公式、辛扑生公式、牛顿-柯特斯公式计算积分。
3. 会用龙贝格公式和高斯公式计算积分。
二实验内容用拉格朗日插值公式计算01.54.1==y x 以及所对应的近似值。
用牛顿插值公式求)102(y 的近似值。
三实验步骤(算法)与结果1拉格朗日插值法:(C 语言版)#include "Stdio.h" #include "Conio.h"int main(void) {float X[20],Y[20],x; int n;void input(float *,float *,float *,int *); float F(float *,float *,float,int); input(X,Y,&x,&n);printf("F(%f)=%f",x,F(X,Y,x,n));getch(); return 0; }void input(float *X,float *Y,float *x,int *n) {int i;printf("Please input the number of the data:");scanf("%d",n);printf("\nPlease input the locate of each num:\n");for(i=0;i<*n;i++){scanf("%f,%f",X+i,Y+i);}printf("\nPlease input the chazhi:"); scanf("%f",x);}float F(float *X,float *Y,float x,int n){int i,j;float Lx,Fx=0;for(i=0;i<n;i++)< p="">{Lx=1;for(j=0;j<n;j++)< p="">{if(j!=i) Lx=Lx*((x-*(X+j))/(*(X+i)-*(X+j))); } Fx=Fx+Lx*(*(Y+i));}return Fx;}得出结果如图:所以Y(1.4)=3.7295252#include#define N 10double X[N], Y[N], A[N][N];int n;double Newton(double x);double f(double x);void main() {printf("请输入已知x与对应y=f(x)的个数: n = "); scanf("%d", &n);getchar();if(n>N||n<=0) {printf("由于该维数过于犀利, 导致程序退出!"); return;}printf("\n请输入X[%d]: ", n);for (int i=0; i<="" p="">scanf("%lf", &X[i]);getchar();printf("\n请输入Y[%d]: ", n);for (i=0; i<="" p="">scanf("%lf", &Y[i]);getchar();double x;printf("\n请输入所求结点坐标x = ");scanf("%lf", &x);getchar();printf("\nf(%.4lf)≈%lf\n\n", x, Newton(x));}double Newton(double x) {int i, j;// 求均差for (i =0; i<="" p="">A[i][0] = Y[i];for (i=1; i<="" p="">for (j =1; j<=i; j++)A[i][j] = (A[i][j-1] - A[i-1][j-1]) / (X[i] - X[i-j]); // 求结点double result = A[0][0];for (i=1; i<="">double tmp = 1.0;for (int j=0; j<="" p="">tmp *= (x - X[j]);result += tmp * A[i][i];}return result;}四实验收获与教师评语</n;j++)<></n;i++)<>。
《数值分析》上机实验报告
![《数值分析》上机实验报告](https://img.taocdn.com/s3/m/09a731e20242a8956bece4a3.png)
数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。
1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。
当前后两个的差<=ε时,就认为求出了近似的根。
本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。
1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/b91d5751854769eae009581b6bd97f192379bf7d.png)
一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。
同时,提高编程能力,加深对数值分析理论知识的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。
其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。
重复此过程,直至满足精度要求。
2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。
其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。
3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。
其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。
4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。
其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。
四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。
《数值分析》上机实验报告
![《数值分析》上机实验报告](https://img.taocdn.com/s3/m/12eac89a58fafab068dc02ed.png)
数值分析上机实验报告x k x k - f(X k) f (X k)《数值分析》上机实验报告1. 用Newt on法求方程X7-X4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001 )。
1.1理论依据:设函数在有限区间[a,b]上二阶导数存在,且满足条件1. f(x)f(b) 02. f(x)在区间[a, b]上不变号3f(x) = 0;4」f (c)〔f .(x) |,其中c是a,b中使mir(| f .(a), f .(b) |)达到的一个b -a则对任意初始近似值x0• [a,b],由Newton迭代过程込f(x k )X“ M(Xk) = Xk — T^,k = 0,1,2,3…f'(X k)所生的迭代序列 % [平方收敛于方程f(x)=0在区间[a,b]上的惟一解: 令7 4f(x)=x -28x 14, f (0.1) 0, f(1.9) ::0f (x) =7x6-112x3=7x3(x3-16) ::: 0f (x) =42x5-336x2=42x2(x3-8) :: 0f (1.9) f (1.9) 0故以1.9为起点x0 =1.9如此一次一次的迭代,逼近X的真实根。
当前后两个的差<=出寸,就认为求出了近似的根。
本程序用Newton法求代数方程(最高次数不大于10)在(a,b )区间的根//限制循环次数1.2 C 语言程序原代码:#i nclude<stdio.h> #in clude<math.h> mai n() {double x2,f,f1; double x1=1.9; // 取初值为 1.9do {x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x 仁 x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); printf("计算结果:x=%f\n",x1);}1.3运行结果:* D:\VC + +\EXERCIS E\Debu g\l1.4 MATLAB上机程序fun cti on y=Newt on( f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2; breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))v=epsd=1; breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey=奇异’endfun cti on y=df(x)y=7*x A6-28*4*x A3;Endfunction y=f(x) y=x A7-28*x A4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newto n('f,'df,x0,eps,M);>> vpa(x,7)1.5问题讨论:1•使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。
数值分析上机实验报告
![数值分析上机实验报告](https://img.taocdn.com/s3/m/d3cf8afdf021dd36a32d7375a417866fb94ac07c.png)
数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。
通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。
本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。
二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。
三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。
通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。
2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。
通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。
3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。
通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。
四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。
根据二分法的原理,编写程序实现二分法求解方程的根。
(2)使用牛顿迭代法求解非线性方程的根。
根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。
2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。
根据拉格朗日插值法的原理,编写程序实现数据的插值。
(2)使用最小二乘法进行数据的逼近。
根据最小二乘法的原理,编写程序实现数据的逼近。
3. 数值积分(1)使用梯形法进行定积分的数值计算。
根据梯形法的原理,编写程序实现定积分的数值计算。
(2)使用辛普森法进行定积分的数值计算。
根据辛普森法的原理,编写程序实现定积分的数值计算。
五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。
结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。
数值分析第五版上机实验答案实验一~实验六
![数值分析第五版上机实验答案实验一~实验六](https://img.taocdn.com/s3/m/c76d48037cd184254b353582.png)
实验一Lagrange插值算法实验目的:掌握拉格朗日(Lagrange)插值算法的基本原理,理解插值基函数的性质,掌握基本的误差概念。
学习用计算机语言编写程序实现算法。
[参考程序]#include "stdio.h"//定义插值节点及所求点数据,根据题目不同而修改double x[]={0.32,0.34,0.36};double y[]={0.314567,0.333487,0.352274};double xx=0.3367;// Lagrange插值算法函数,利用循环计算具有对称性的基函数和最终结果double Lagrange(double xxx,int n){int i;double result=0,temp;for(i=0;i<=n;i++){temp=1;for(int j=0;j<= n;j++){if(j!=i){temp=temp*(xxx-x[j])/(x[i]-x[j]);}}result=result+temp*y[i];}return result;}void main(){int n;printf("Please input n:");scanf("%d",&n);printf("Sin(%f) = %f \n",xx,Lagrange(xx,n));}实验二Newton均差插值算法实验目的:掌握Newton均差插值算法的基本原理,理解均差的概念,掌握均差表的计算方法。
学习用计算机语言编写程序实现算法。
[参考程序]#include "stdio.h"#define N 10double f[N][N];//定义插值节点及所求点数据,根据题目不同而修改double x[]={0.4,0.55,0.65,0.80,0.90,1.05};double y[]={0.41075,0.57815,0.69675,0.88811,1.02652,1.25382};double fx(int i,int j);double S(int start,int end,double xx);main(){int loopi,loopj,n;double result,xx;scanf("%d",&n);scanf("%lf",&xx);for(loopi=0;loopi<=n;loopi++){//零阶均差作为均差表二维数组的第0列f[loopi][0]=y[loopi];}//循环计算均差表中的所有数据for(loopi=1;loopi<=n;loopi++){for(loopj=1;loopj<=loopi;loopj++){f[loopi][loopj]=fx(loopi,loopj);}}result=S(0,n,xx);printf("Result is: %f",result);return 1;}//求均差的函数double fx(int i,int j){if(j==0){return f[i][j];}else{//这种表示方法需要注意两个x的下标return (fx(i,j-1)-fx(i-1,j-1))/(x[i]-x[i-j]);}}//用秦九韶算法计算插值多项式结果double S(int start,int end,double xx){if(start==end){return f[end][end];}else{return (S(start+1,end,xx)*(xx-x[start])+f[start][start]);}}实验三Newton差分插值算法实验目的:掌握Newton差分插值算法的基本原理,理解差分的概念,掌握差分表的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机实验6例1.世界人口数据拟合问题:据统计,六十年代世界人口数据如下(单位:亿)根据表中数据,预测公元2000年时的世界人口。
问题分析与数学模型设人口总数为N(t),根据人口理论的马尔萨斯模型,采用指数函数N(t) = e a + b t=+,令对数据进行拟合。
为了计算方便,将上式两边同取对数,得ln N a bty = ln N或N = e y变换后的拟合函数为y(t) = a + b t根据表中数据及等式 k k( 1,2,……,9)可列出关于两个未知数、b的9个方程的超定方程组(方程数多于未知数个数的方程组)a + t j b = y j(j= 1,2, (9)可用最小二乘法求解。
算法与数学模型求解算法如下:第一步:输入人口数据,并计算所有人口数据的对数值;第二步:建立超定方程组的系数矩阵,并计算对应的正规方程组的系数矩阵和右端向量;第三步:求解超定方程组并输出结果:a,b;第四步:利用数据结果构造指数函数计算2000年人口近似值N(2000),结束。
MATLAB程序t=1960:1968;t0=2000;N=[29.72 30.61 31.51 32.13 32.34 32.85 33.56 34.20 34.83];y=log(N);A=[ ones(9,1), t' ];d=A\ y' ;a=d(1),b=d(2)N0=exp(a+b*t0)x=1960:2001;yy=exp(a+b*x);plot(x,yy,t,N,'o',2000,N0,'o')计算结果为a =-33.0383,b = 0.0186N (2000) = 63.2336所以取五位有效数,可得人口数据的指数拟合函数t e t N 0186.00383.33)(+-=经计算得2000年人口预测值为:63.2336 (亿)。
例2.温度数据的三角函数拟合问题 洛杉矶郊区在11月8日的温度记录如下在不长的时期内,气温的变化常以24小时为周期,考虑用Fourier 级数的部分和(有限项)做拟合函数。
即,求最小二乘曲线:∑=++=nk k k x k b x k a a x 10)]sin()cos([)(ωωϕ其中,ω = 2π / 24。
例如,当n=2时拟合函数为ϕ(x )= a 0 + a 1 cos(ωx ) + b 1 sin(ωx ) + a 2 cos(2ωx ) + b 2 sin(2ωx )对不同的n ,确定拟合函数中的各系数。
绘出最小二乘曲线与离散数据点,并计算出拟合函数的残差2-范数。
算法分析:以n=2时的拟合函数为对象作算法分析。
24小时的温度记录可列为数表如下将24个数据点代入拟合函数得超定方程组⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡24212211024242424222211112sin 2cos sin cos 12sin 2cos sin cos 12sin 2cos sin cos 1y y y b a b a a x x x x x x x xx x x xωωωωωωωωωωωω 可以证明方程组的系数矩阵列向量组是正交向量组,于是由最二乘法所推出的正规方程组系数矩阵是对角矩阵。
所以原方程组的最小二乘解为∑==2410241k k y a∑∑===24122411cos /cos k k k k k x y x a ωω,∑∑===241224122cos /2cos k k k k k x y x a ωω∑∑===24122411sin /sin k k k k k x y x b ωω, ∑∑===241224122sin /2sin k k k k k x y x b ωωMATLAB 程序(运行程序时需输入参数n ): n=input('input n=: '); w=2*pi/24;x=[1:24]';y=[66;66;65;64;63;63;62;61;60;60;59;58; 58;58;58;58;57;57;57;58;60;64;67;68]; a0=sum(y)/24; for k=1:nck=cos(k*w*x);sk=sin(k*w*x);a(k)=(ck'*y)/(ck'*ck); b(k)=(sk'*y)/(sk'*sk); end yy=a0; for k=1:nyy=yy+a(k)*cos(k*w*x)+b(k)*sin(k*w*x); endplot(x,y,'x',x,yy) r=norm(yy-y)3.切比雪夫多项式的前两项为:T 0(x ) = 1,T 1(x ) = x ,对于n ≥2,有递推公式T n+1(x ) = 2xT n (x ) – T n – 1(x )当x ∈[ – 1,1 ] 时,利用递推公式,计算并绘出 T 0(x ),T 1(x ),T 2(x ),T 3(x ),T 4(x )的函数图形MATLAB 程序如下:x=-1:.05:1;T0=ones(size(x)); T1=x;plot(x,T0,'b',x,T1,'b'); hold on for k=2:4T=2*x.*T1-T0; plot(x,T)T0=T1;T1=T; end axis off4.1912年,伯恩斯坦给出了关于多项式一致逼近连续函数的构造性证明,提出了著名的伯恩斯坦多项式,设 f (x )在区间 [0,1]上连续,他的多项式为B x f kn C x x n n k n k k k n()()()=--=∑10试利用组合数的递推公式 111---+=k n k n k n C C C ,设计一个计算n 次伯恩斯坦多项式函数值的算法。
并对函数 f (x ) = sin x 给以验证。
MATLAB 程序如下 n=input('input n='); x=[0:n]/n; f=sin(x*pi); for i=1:n+1 y=f;t=x(i); for k=n:-1:1 for j=1:ky(j)=t*y(j)+(1-t)*y(j+1); end endp(i)=y(1);endmax(abs(f-p))plot(x,f,'b',x,p,'o',x,p,'r')运行四次程序,分别输入n=10,n=20,n=30,n=40得下面图形5.Bezier曲线是法国雷诺汽车公司的工程师Bezier于1971年提出了一种新的参数曲线表示法。
这种方法可以交互式地确定一组控制多边形顶点以获得所需要的曲线形式。
设曲线参数方程x = x(t),y = y(t)如果给定控制多边形顶点P0,P1,…,P m的坐标(x0,y0),(x1,y1),……,(x m,y m)则相应的Bezier多项式由下式定义∑=--=mkkkmkkmxttCtx) 1()(,∑=--=mkkkmkkmyttCty) 1()(用矢量函数的形式来表示平面曲线则有数学表达式∑=--=mk k k m kk m P t t C t P 0)1()(三次Bezier 曲线数学表达式为P t t P t t P t t P t P t ()()()()=-+-+-+≤≤131310130212233试给定四个平面点绘制飞机机翼剖面轮廓曲线 function z=bez3(p) t=[0:.05:1]';t1=1-t;z=[t1.^3 3*t.*t1.^2 3*t1.*t.^2 t.^3]*p; plot(p(:,1),p(:,2),z(:,1),z(:,2))首先录入这一函数文件,文件名为bez3.m 。
为了调用这一函数,必须先定义多边折线的结点数组,在MA TLAB 环境下键入: p=[0 0;0 0.4;0.5 1;2 0] bez3(p)计算机将绘制出对应的曲线。
一、数值试验1. SARS 的传播及预防问题非典的爆发和蔓延给我国的经济发展和人民生活带来了很大的影响,下表给出了北京市当年4月份到6月份的疫情数据,通过拟合确诊的累积病人曲线,若延后5天采取严格的预防措施,对疫情的传播所生成的影响做出估计. 日期已确诊病例累积现有疑似病例死亡累积治愈出院累积 4月20日 297 402 18 33 4月30日 1584 1408 75 90 5月1日 1640 1415 82 100 5月10日 1988 1397 116 175 5月20日 2189 1225 150 395 5月30日230970617610066月1日 2319 739 181 1124 6月10日2394351184 1747 6月20日 2439 31912189(1) 根据已有数据,用MATLAB 绘出确诊累积病人离散图(2) 取拟合曲线的拟合函数为如下非线性函数xb a y +=1 试确定拟合函数中的参数:a ,b ,并推测五天后累积病人数量。
2.蠓虫分类问题生物学家试图对两类蠓虫(Af 与 Apf)进行鉴别,依据的资料是蠓虫的触角和翅膀的长度,已经测得9只Af 和6只Apf 的数据(触角长度用x 表示,翅膀长度用y 表示)现需要解决三个问题:(1)如何凭借原始资料(15 对数据,被称之为学习样本)制定一种方法区分两类蠓虫; (2)依据确立的方法,对题目提供的三个样本:(1.24,1.80),(1.28,1.84),(1.40,2.04)加以识别;(3)设Af 是宝贵的传粉益虫,Apf 是某种疾病的载体,是否应该修改分类方法。
问题分析:首先画出15对数据的散点图,其中,Af 用 * 标记,Apf 用 × 标记。
观察图形,可以发现,Af 的点集中在图中右下角,而 Apf 的点集中在图中左上角。
应该存在一条直线 L 位于两类点之间, 作为 Af 和 Apf 分界线,这条直线 L 的确定应依据问题所给的数据,即学习样本。
设这条直线的方程为w 1 x + w 2 y + w 0 = 0对于平面上任意一点 P (x ,y ),如果该点在直线上,将其坐标代入直线方程则使方程成为恒等式,即使方程左端恒为零;如果点P (x ,y )不在直线上,将其坐标代入直线方程,则方程左端不为零。
由于 Af 和 Apf 的散点都不在所求的直线上,故将问题所提供的数据代入直线方程左端应该得到表达式的值大于零或者小于零两种不同的结果。
为了建立判别准则,利用直线方程左端表达式定义判别函数g (x ,y ),使得当平面上某点P (x ,y )属于 Af 类时,g (x ,y )>0,否则 g (x ,y )<0。