弹性力学课件:第四章应力应变关系
弹性力学:04 应力和应变的关系
广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
弹性力学第四章应力应变PPT
2.具有一个弹性对称面的各向异性弹性体
如果物体内每一点都存在这样一个平面,和该面对称的方向 具有相同的弹性性质,则称该平面为物体的弹性对称面。垂 直于弹性对称面的方向称为物体的弹性主方向。 假设yz坐标面为弹性对称面,则x轴为弹性主方向。将x轴绕 动 z 轴转动π 角度,成为新的 Ox'y'z'坐标系。 新旧坐标系之间的转换关系为
等温过程:利用热力学第二定律
x v F x , y v F y , z v F z , x y v x F ,y y z v F y,z x z v F xz
9
统一的形式:
x v x , y v y , z v z , x y v x ,y y z v y,z x z v x z
第四章 应力和应变的关系
在应力分析中,仅从静力学的观点出发,引入了 9个应力分量 ij ,它们满足三个平衡微分(运动方程) 剪应力互等定理,由此得到应力张量对称的结论, 因此独立的应力分量只有六个。在应变分析中,从 物体的几何连续性观点出发,研究物体变形,得到 三个位移分量 u i 和6个独立的应变分量 i j 。这样我们
y z C 4x 1 C 4y 2 C 4z 3 C 4y 4 z C 4x 5 z C 4x 6 y (4-2) x z C 5x 1 C 5y 2 C 5z 3 C 5y 4 z C 5x 5 z C 5x 6 y x y C 6x 1 C 6y 2 C 6z 3 C 6y 4 z C 6x 5 z C 6x 6y
v x z x zC 5x 1 C 5y 2 C 5z 3 C 5y 4 z C 5x 5 z C 5x 6y
2v
xz y
C52
根据偏导数次序可交换原则,可证C25=C52。对于其它的
《应力与应变》课件
目录
CONTENTS
• 应力概述 • 应变概述 • 应力与应变的关系 • 应力与应变的应用 • 实验与演示 • 总结与展望
01 应力概述
CHAPTER
定义与概念
定义
应力定义为物体内部单位面积上 所承受的力,用于描述物体受力 状态。
概念
应力是物体受力时内部各部分之 间的相互作用,是物体抵抗变形 和破坏的内在能力。
压缩实验
总结词
通过观察物体在压缩过程中的形变,了解应 力和应变的基本性质。
详细描述
压缩实验是应力与应变研究中另一种重要的 实验方法。在实验中,我们将物体的一端固 定,另一端施加逐渐增大的压力,使物体发 生压缩形变。通过测量压缩量,我们可以计 算出物体的应力和应变。通过观察和记录实 验数据,学生可以了解应力和应变的基本性
应力分类
按作用方式
可分为正应力和剪应力。正应力表示 垂直于受力面的力,剪应力表示与受 力面平行且垂直于切线方向的力。
按作用效果
可分为拉应力和压应力。拉应力表示 使物体拉伸的力,压应力表示使物体 压缩的力。
应力单位与表示方法
单位
应力的单位是帕斯卡(Pa),国际单位制中的基本单位。
表示方法
应力的表示方法通常采用符号“σ”或“σxx”(xx表示方向),例如正应力的 表示符号为σ或σxx,剪应力的表示符号为τ或τxy(xy表示剪切方向)。
进步。
谢谢
THANKS
压缩试验
测定材料的抗压强度、弹性模量等指 标,了解材料在受压状态下的性能表 现。
有限元分析
模型建立
根据实际结构或系统建立有限元 模型,将复杂结构离散化为有限
个单元。
加载与约束
《弹塑性力学》第四章 应力应变关系(本构方程)-精品文档42页
28.09.2019
2
第四章 应力应变关系(本构方程)
共9个方程,但需确定的未知函数共15个:
ui,ij=ji, ij=ji,
还需要根据材料的物理性质来建立应力与 应变间的关系:
ij = ji = fij ( kl )
Wijij
——W为
的函数。
ij
28.09.2019
11
§4-1 应变能、应变能密度与弹性材料的
本构关系
因为W只取决于弹性体的初始应变状态和最 终应变状态,与变形过程(加载路线)无关,
所以W 为它的全微分
W
W
ij
ij
28.09.2019
12
§4-1 应变能、应变能密度与弹性材料的
时刻达到 t +t:位移有增量 uuiei
应变增量 ijeiej 外力功增量:A Vfu d V S F u d S
28.09.2019
8
§4-1 应变能、应变能密度与弹性材料的
A 本构f关u 系d VF u d :函S 数增量
则 [C] 为对称矩阵 [C]= [C]T。
28.09.2019
19
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 的独立系数为21个——材料为各向
异性线弹性材料。
*对各向异性材料的本构关系可见,剪应 变引起正应力,正应变也产生剪应力。 弹性材料性质一般都具有某些对称性, 利用对称可进一步简化 [C] 中系数。
V
S
Vfiuid V sF iuid SU V Wd
应变能增量A 中有体积分和面积分,利用
弹性力学平面应力平面应变问题 ppt课件
系,即 σx = Eεx 这就是虎克定律。 应力
(Hooke‘s Law)
Y
弹塑性范围
弹性范围
斜率, E
应变
工程上,一般将应变与应力间的关系表示为
xE 1xyz yE 1yzx
xy
1
G
xy
yz
1
G
yz
zE 1zxy
zx
1
G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
1
0
对 1 0
称
1
2
对于平面应变问题的弹性矩阵,只须在上式
中,以 E
1 2
代E,
1
代μ即可。
小结
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
其中 t u , 为弹性体的完整边界。
§2-3 平面应变和平面应力问题
平面应变问题
位移:按平面应变的定义,三个方向的位移函数是
uux,y vv(x,y) w0
应变:由几何方程应变-位移关系,得
x
u x
1x,
y,
y
v y
3x,
y,
xy yz
u y
v x
2x,
v w0 z y
y
z
w0, z
zx
u z
弹塑性力学第四章
x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
关于弹性体受力后某一方向的应力与应变关系
弹性力学中应力与应变为线性关系,应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
应力是应变的原因,应变是应力的结果。
应力概念解释:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
拓展资料
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材
料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。
弹性力学基础 应力应变
上式就是空间问题的应力边界条件,它表明应力分
量的边界值与面力分量之间的关系。
过一点任意斜面的正应力与切应力
问题2:求经过该点的任何斜面上的正应力和切应力? 平面ABC上的正应力sn即为
上面所求的全应力p向法线方向 n的投影:
s n lp x mpy npz 平面ABC上的切应力tn则由
2 yz 2 xz
s x t xy t xz I 3 t yx s y t yz t zx t zy s z
过一点任意斜面的主应力与主方向
s I1s I 2s I 3 0
3 2
主应力特征方程有三个实数根,s1,s2,s3 分别表示这
三个根,代表某点三个主应力,从而确定弹性体内部任 意一点主应力。
弹性体内任意一点的最大正应力为s1,最小正应力为s 3
最大切应力可以通过主应力计算,等于(s 1-s3)/2 。 最大切应力作用平面也可以通过主应力方向得到,其作用 平面通过s 2 应力主方向,并且平分s 1和s 3应力主方向的 夹角(即45°角)。
(t n )极值
(s 1 s 3 ) 2
由泰勒级数展开,求各面应力
空间问题的平衡微分方程
分析问题方法:空间力系和力矩的平衡条件(6个)
F M
x
0,
x
0,
F 0, F 0 M 0, M 0
y z y z
切应力互等定理
平衡微分方程
t yx s x t zx fx 0 x y z t xy s y t zy fy 0 x y z t yz t xz s z fz 0 x y z
空间问题的基本未知量与方程
第四章应力应变关系
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
弹性力学平面应力平面应变问题 ppt课件
系,即 σx = Eεx 这就是虎克定律。 应力
(Hooke‘s Law)
Y
弹塑性范围
弹性范围
斜率, E
应变
工程上,一般将应变与应力间的关系表示为
xE 1xyz yE 1yzx
xy
1
G
xy
yz
1
G
yz
zE 1zxy
zx
1
G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
其中 t u , 为弹性体的完整边界。
§2-3 平面应变和平面应力问题
得
x
1
E
1 x
y
y
1
E
1 y
x
xy
1 G
x
y
21
E
xy
平面应变问题
应力:如果用应变分量来表示应力分量,则有
x
E(1) (1)(12)
x
1y
y
E(1) (1)(12)
1x
y
xy
E
2(1)
xy
E(1) (1)(12)
12 2(1)
xy
由上面的分析可知,独立的应力分量只有 σx、σy 和xy
??2???????????????????1?zyxxe???????????1111??2???????????????????1?zyxye???????????1111???2????????e?e?e??1e???????1?????????????zyxz??????????111??xyxy????12??yzyz????12??zxzx????12若令???????????t?zxyzxyzyx??????tzxyzxyzyx??????代表应变列阵和应力列阵则应力应变关系可写成矩阵形式可写成矩阵形式?????????d其中??d??22???????????????????????????????????11????????11??2????????????221000111111111称对e????????????????1??1??2??22100000210000称为弹性矩阵弹性矩阵由弹性常数e和决定
弹性力学 第四章 本构关系
0 0 0 0
0 0 0 0
σ zz σ xx σ yy σ xy
= ν xσ xx +ν y σ zz
Ey Ez
σ zz
2)各向同性平面应变本构关系
E2 = E3 = E , ν2 = ν3 = ν , G3 = G,
0 1 / E −ν / E −ν / E 0 ε 1 / E −ν / E 0 22 = ε 33 1/ E 0 1 / 2G ε 23 sys. σ 11 σ 22 σ 33 σ 23
5个独立的材料常数:E2 ,ν 2 , E3 ,ν 3 , G3 −( σ ε11 = 22 + E2
ν2
ν3
E3
σ 33 )
σ 22 σ 33 σ 23
ε 22 1/ E2 −ν 3 / E3 0 ε = 1/ E3 0 33 ε 23 sym. 1/ 2G3 σ 22 σ = 33 σ 23
E2 / m E2ν 3 / m 0 sym. E3 / m 0 , m = 1 − E2ν 32 / E3 G3
2 → x,
y (3) 3 → y, 1→ z
εzz =−(
εxx εyy ε xy σxx σ yy σ xy
νx
Ex
σxx +
νy
Ey
5个独立的材料常数: Ex ,ν x , E y ,ν y , G y
σ yy )
0 0 1 / 2 Gy
x(2)
1 / Ex = .. sym
− ν y / Ey 1 / Ey
弹性力学第四章应力和应变关系
第四章应力和应变关系应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系一、内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二、重点1、应变能函数和格林公式;2、广义胡克定律的一般表达式;3、具有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求知识点解方法和思路简化,因此能量原理是一个有效的分析工具本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
4. 弹性应力应变关系和弹性问题求解
(八)弹性问题的求解
③ 将上式代入平衡微分方程
∂ 2u ∂ 2 v ∂ 2u ∂ 2u ∂ 2u ∂2w ∂e =0 λ + G + + G + + 2+ 2 2 2 ∂x ∂y ∂z ∂x ∂x∂y ∂x∂z ∂x
复杂加载时的弹性变形能密度
(三)弹性变形能
1 U 0 = σ ij ε ij 2 U 0 (σ ij ) =
广义虎克定律
1 2 2 2 (σ x2 + σ y2 + σ z2 ) − ν (σ xσ y + σ yσ z + σ zσ x ) + 1 (τ xy ) + τ yz + τ zx E 2E 2G 1 [σ 12 + σ 22 + σ 32 − 2ν (σ 1σ 2 + σ 2σ 3 + σ 3σ 1 )] U 0 (σ i ) = 2E
x z y
ε x = ε y = −νε z = −ν
σz
σx
当 τxy 单独作用时
1 1 1 τ xy ε x = σx −νε y −νε z = [σ x −ν (σ y + σ z )] ; γ xy = 2G E E 1 1 ε y = [σ y −ν (σ z + σ x )] ; γ yz = τ yz E 2G 1 1 ε z = [σ z −ν (σ x + σ y )] ; γ zx = τ zx E 2G
U 0 (ε ij ) =
λ
2 2
(ε
2 2 2 2 2 2 ) ( ) ( ) 2 G G ε ε ε ε ε ε ε ε + + + + + + + + z xy yz zx x y z x y 2
弹性力学第四章应力应变
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
f1 f1 f1 f1 f1 f1 xy x ( f1 )0 x y z yz xz z 0 x 0 xz 0 y 0 yz 0 xy 0
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。 可以证明各弹性常数之间存在关系式 cmn = c nm 。对于最一般的各向异性介质,弹 性常数也只有21个。
§4.2 弹性体变形过程中的功与能
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
(4-2)
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
0 0 0
f3 f3 f3 f3 f3 f3 z ( f3 )0 z yz x y xz xy z 0 x 0 xz 0 y 0 yz 0 xy 0
弹性力学中的应变与应力关系
弹性力学中的应变与应力关系弹性力学是物理学中的一个重要分支,主要研究物质体积和形状在外力作用下所发生的变化及其原因。
具体来说,就是通过研究应力(反映外力作用效果的物理量)和应变(反映物质形状和体积改变的物理量)之间的关系,来理解和解释物质的弹性行为。
本文将详细阐述应力和应变在弹性力学中的相关内容。
首先,我们需要明确应力和应变的概念,以便更好地理解二者之间的关系。
应力是弹性力学研究的基本物理量,它可以反映物质内部的力的大小和方向。
根据力的分布特点和作用方式,可以将应力分为正应力和剪应力等类型。
与此同时,应变是描述物体位形变化的物理量,它可以反映物体形状和体积的变化情况。
在弹性力学中,应力和应变之间的基本关系通常用应力--应变法则或哈肋定律来描述。
具体来说,对于同一物体,存在一个比例系数(即弹性模量),当其应力不超过一定值(即弹性限度)时,应力和应变之间达到正比关系,即应力等于弹性模量乘以应变。
这就是典型的线性弹性行为。
当然,应力和应变的关系并不总是线性的。
当物体受到的应力超过一定值后,应变可能导致物体的永久性形变,这就涉及到弹性物质的塑性行为。
塑性行为是弹性力学的另一个重要研究方向,对于理解材料的力学行为有着特别重要的意义。
在实际应用中,不同的应力类型和物质性质可能会引起不同的应变特性。
因此,为了更具体、精确地描述和理解应力和应变之间的关系,出现了多种理论和模型,如弹塑性理论、粘弹性理论、破坏理论等。
这些理论和模型都在一定程度上解释了应力和应变之间的复杂关系,并为理解和控制各种物质的弹性行为提供了重要的理论工具。
总的来说,弹性力学中的应力与应变关系是一个复杂而重要的主题,只有深入理解和掌握应力与应变的特性,才能准确地分析和预测物质在受力情况下的弹性行为。
而对于这些知识的理解和应用,在工程技术、材料科学等领域有着广泛的应用前景。
弹性力学 第四章应力和应变的关系
vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
弹性力学 第04章应力和应变关系
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
弹性力学第四章应力应变
弹性力学问题的求解方法
解析法
通过数学手段,将弹性力学问题转化为数学方程,如微分方程或积 分方程,然后求解这些方程得到弹性体的应力和应变。
数值法
对于一些难以解析求解的弹性力学问题,可以采用数值方法进行求 解,如有限元法、有限差分法等。
实验法
通过实验手段测量弹性体的应力和应变,如拉伸、压缩、弯曲等实验。
本构方程描述了物体内部的应力与应变之间的关系,是材料力学性质的表现。
本构方程的数学表达式因材料而异,对于线性弹性材料,本构方程为:$sigma_{ij} = lambda epsilon_{kk} + 2mu epsilon_{ij}$,其中$lambda$和$mu$分别为拉梅 常数。
04
弹性力学问题解法
01
材料性能评估
利用弹性力学理论,可以对材料的性能进行评估,包括材料的弹性模量、
泊松比、剪切模量等参数,为材料的加工和应用提供依据。
02
材料结构设计
通过弹性力学理论,可以对材料进行结构设计,通过调整材料的微观结
构和组分,优化材料的性能,提高材料的承载能力和稳定性。
03
材料失效分析
弹性力学还可以用于材料失效分析,通过分析材料的应力分布和应变状
分类
单位
根据不同的分类标准,应变可以 分为多种类型,如线应变、角应 变、剪应变等。
应变的单位是单位长度上的变形 量,常用的单位有百分数、弧度 等。
应变状态
01
02
03
单轴应变
当物体受到单向拉伸或压 缩时,只在某一方向上发 生形变,其他方向上保持 不变。
多轴应变
当物体受到多方向上的作 用力时,会在多个方向上 发生形变,形变情况比较 复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章应力应变关系静力平衡和几何变形
通过具体物体的材料性质相联系材料的应力应变的内在联系
材料固有特性,因此称为物理方程或者本构关系
目录
§4.1广义胡克定理
§4.2拉梅常量与工程弹性常数§4.3弹性体的应变能函数
§4.1广义胡克定义
•应力应变关系属于材料性能
•称为物理方程或者本构方程
•单向拉伸或者扭转应力应变关系可以通过实验确定
•复杂应力状态难以通过实验确定
•广义胡克定理——材料应力应变一般关系
xz
yz xy z y x xz xz yz xy z y x yz xz yz xy z y x xy xz yz xy z y x z xz yz xy z y x y xz yz xy z y x x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετγγγεεετγγγεεετγγγεεεσγγγεεεσγγγεεεσ666564636261565554535251464544434241363534333231262524232221161514131211+++++=+++++=+++++=+++++=+++++=+++++=•工程材料,应力应变关系受到一定的限制
•一般金属材料为各向同性材料
•复合材料在工程中的应用日益广泛
弹性体变形过程的功与能
•能量守恒是一个物理学重要原理
•利用能量原理可以使得问题分析简化
•能量原理的推导是多样的,本节使用热力
学原理推导。
外力作用——弹性体变形——变形过程外力作功——弹性体内的能量也发生变化
根据热力学概念绝热过程
格林公式
等温过程
弹性体的应变能函数表达式
内能等于应变能
xz
xz yz
yz xy
xy z
z y
y x
x U U U U U U γτγτγτεσεσεσ∂∂=
∂∂=∂∂=∂∂=∂∂=∂∂=0
,
,
,
,
,
)
(2
1
0xz xz yz yz xy xy z z y y x x U γτγτγτεσεσεσ+++++=
工程材料
•各向同性材料•各向异性材料——金属材料
⏹完全各向异性⏹弹性对称面
一个弹性对称面
21个弹性常数
xz
xy xz yz z y x yz xz
xy xy yz z y x z yz z y x y yz z y x x C C C C C C C C C C C C C C C C C C C C γγτγεεετγγτγεεεσγεεεσγεεεσ6664555352514644353332312523222115131211+=+++=+=+++=+++=+++=13个弹性常数
两个弹性对称面
xz
xz yz yz xy xy z y x z z y x y z y x x C C C C C C C C C C C C γτγτγτεεεσεεεσεεεσ665544333231232221131211===++=++=++=9个弹性常数
相互垂直的3个平面中有两个弹性对称面,第三个必为弹性对称面拉压与剪切变形
不同平面内的剪切之间称为正交各向异性
正应力仅与正应变有关;切应力仅与对应的切应变有关。
没有耦合作用
各向同性弹性体
•物理意义——物体各个方向上的弹性性质完全相同,即物理性质的完全对称。
•数学反映——应力和应变关系在所有方位不同的坐标系中都一样。
•金属材料——各向同性弹性体,是最常见的工程材料。
•弹性力学主要讨论各向同性材料。
根据正交各向异性本构关系
1.各向同性材料沿x ,y 和z 座标轴的的弹性性质相同;
2.弹性性质与座标轴的任意变换方位也无关
各向同性材料广义胡克(Hooke )定理
xz
xz z z yz yz y y xy xy x x μγτμελθσμγτμελθσμγτμελθσ=+==+==+=,2,2,2ij
ij kk ij μεδλεσ2+=λ, μ称为拉梅(Lame )弹性常数
应力表示本构方程
G G G v v E
v E v v E v E
v v E v E
xz
xz yz yz xy xy z y x z z y z x y y x z y x x τγτγτγσσσσεσσσσεσσσσε==
=
Θ-+=+-=Θ-+=+-=Θ-+=+-=])1[(1)]([1])1[(1)]([1])1[(1)]([1•E 为弹性模量•G 为剪切弹性模量•v 为横向变形系数——泊松比
§4.2拉梅常量与工程弹性常数
杨泊松
工程弹性常数与拉梅弹性常数之间的关系为
μ
μλλμλμμλ=+=++=G v E ,)(2,)22(两个独立的弹性常数
)
1(2v E G +=实验测定:
单向拉伸实验可以测出弹性模量E
薄壁管扭转实验可以测定剪切弹性模量G
各向同性材料
主应力状态——对应的切应力分量均为零。
所有的切应变分量也为零。
所以,各向同性弹性体
应力主轴同时又是应变主轴
应力主方向和应变主方向是重合的
应变能
§4.3弹性体的应变能函数)(2
10xz xz yz yz xy xy z z y y x x U γτγτγτεσεσεσ+++++=)(2)())(2(2
12
2
2
2220xz
yz xy z x z y y x z y x U γγγμ
εεεεεεμεεεμλ+++++++++=应变表示的应变能函数
)
)(1(2)(2[212222220xz yz xy z x z y y x z y x E
U τττνσσσσσσνσσσ++++++-++=应力表示的应变能函数
泊松比ν恒小于1,所以U 0恒大于零。
单位体积的应变能总是正的。
§4.3 应变能2。