结构动力学专题
结构动力学题解(1)
题图
23 l 3 = 1536 EI
则系统的自振频率
ω=
1 1536 EI = mδ 23ml 3 1 1536 EI = 2 ω 1536 EI − 23ml 3ω 2 1− ω2 1536 EI 23l 3 ⋅ ⋅F 1536 EI − 23ml 3ω 2 1536 EI
2 2 1 l12 l2 l12 k1 + l2 k2 = 1 / m + 3 2 3EI (l + l ) (l + l ) k k mδ 1 2 1 2 1 2
(e) 解,考虑质体水平单位位移时的系统劲度。
k1 = k3 = k2 =
12 EI 2 h3
3EI 2 h3
令 δ t 为两支座弹簧无限刚度时单位力作用下质体的垂直位移
1 1 l1l2 2 l1l2 l12 l22 δt = × (l1 + l2 ) × × = 3 EI (l1 + l2 )2 3 (l1 + l2 )2 2 3EI (l1 + l2 )
总变形: δ = δ t + δ M 其自振频率: ω =
F (t ) = F sin ω t
y0 =
l3 3EI 3EI ml 3
题图
系统自振频率 ω =
动力系数 µ =
1 3EI = 2 ω 3EI − ml 3ω 2 1− ω2 3EI l3 Fl 3 ⋅ ⋅ F = 3EI − ml 3ω 2 3EI 3EI − ml 3ω 2
&& , Fi1 = Fi 2 = mY
两柱的侧移劲度相等为: k =
3i 3EI = 3 (单位位移下的水平剪力) l2 l
第十章结构动力学
度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11
1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t
或
y(t) 2 y(t) F sin t m
结构动力学 期末复习重点
一1、结构动力学计算的特点?(对比静力问题)○1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。
○2与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响。
2、结构动力学是研究什么的?包含什么内容?结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和 方法的一门理论和技术学科。
目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。
二、1、动力系数(有阻尼、无阻尼。
简谐、半功率点法、位移计……)2、动力系数和哪些因素有关动力放大系数受阻尼比控制,Rd 曲线形状可以反映出阻尼比的影响。
主要有两点:其一是峰值大小;其二是曲线的胖瘦。
3、动力系数在工程(隔震、调频减震)的应用4、如何用动力系数测阻尼比三、1、阻尼 阻尼也称阻尼力,是引起结构能量的耗散,使结构振幅逐渐变小的作用。
阻尼的来源:1固体材料变形时的内摩擦,或材料快速反应引起的热耗散;2结构连接部位的摩擦;3结构周围外部介质引起的阻尼。
2.阻尼比常用的测量方法及其优缺点:(1)对数衰减率法:相邻振动峰值比的自然对数值称为对数衰减率。
采用自由振动试验,测一阶振型的阻尼比较容易。
测量高阶振型阻尼比的关键是能激发出按相应振型的自由振动。
(2) 共振放大法:采用强迫振动试验,通过共振得到(Rd )max 由于静荷载下的位移较难确定,应用上存在一定的技术困难,但通过一定数学上的处理还是可以用的。
(Ust 是零频时的静位移,不容易测得。
)(3) 半功率点(带宽)法:采用强迫振动试验,测出Rd-w/wn 图上振幅值等于倍最大振幅的点,对应的长度的1/2即为阻尼比。
不但能用于单自由度体系,也可以用于多自由度体系,对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远,保证在确定相应于某一自振频率的半功率点时不受相邻自振频率的影响。
3、等效粘滞阻尼比○1、粘性阻尼是一种理想化的阻尼,具有简单和便于分析计算的优点。
《结构动力学》考试复习题
《结构动力学》考试复习题一、(概念题)(1) (填空题)某等效单自由度振动系统具有下列参数:17.5m kg =,70/k N cm =,阻尼比0.2ξ=,则系统的固有频率ω为 rad/s ,等效阻尼系数c 为 N. s/m 。
(2) (填空题)某振动系统具有下列参数:17.5m kg =,70/k N cm =,0.7/c N s cm =⋅,则系统的固有频率ω为 ,阻尼比ξ为 ,对数衰减率n 为 。
(3) (简单计算题)一弹簧悬挂某质量块,弹簧产生了静变形mm 4=∆st ,试确定系统作自由振动的固有频率 (重力加速度取2s m /10=g )。
(10分)(4) (填空题)当系统受简谐力作用发生共振时,系统所受的外力是由 来平衡。
(5) (问答题)某单自由度系统具有非线性的弹簧,其运动方程为:()()mx cx f x F t ++=,能否用杜哈美积分计算该系统的受迫振动响应?并说明理由。
(6) (填空题)同种材料的弦承受相同的张力,如果长度增加到原来的4倍,截面积减小到原来的4倍,则作该弦横向振动的各阶固有频率将 。
(7) (填空题)图示两个系统,已知各质点的质量 i m ,刚架的质量不计,忽略杆的轴向变形,试分别确定两系统的动力自由度: (1) n = ; (2) n = 。
(8) (作图题) 0.1ξ=时单自由度系统受迫振动的相频曲线如图所示,其中ω为系统的固有频率,p 为激振力的频率,ϕ为位移响应滞后于激振力的相位角。
试大致绘出0.05ξ=和0.2ξ=时相频曲线的形状。
(9) (问答题)模态分析法能否求解多自由度系统的弹塑性地震响应?并说明理由。
(10) (选择题) 对于一个单自由度系统而言,其临界阻尼与系统的固有特性参数 ,与系统所受的阻尼力 。
(a) 有关,有关;(b) 无关,无关;(c) 有关,无关;(d) 无关,有关2ωpππ二、(计算题)(1) 图示两个系统,已知EI 和M ,弹簧刚度316k EI l =,不计梁的质量,试确定:(1) 简支梁的等效刚度L k ;(2)两个系统的等效刚度a k 和b k ;(3) 两个系统的固有频率a ω和b ω。
结构动力学试题及答案
结构动力学试题及答案(本文按试题和答案格式进行编写)试题一:1. 请问什么是结构动力学?2. 简述结构动力学的研究对象和主要内容。
3. 结构动力学分析常用的方法有哪些?4. 结构动力学分析中常用的数学模型有哪些?5. 结构动力学的应用领域有哪些?答案一:1. 结构动力学是研究结构在外力作用下的动态响应及其稳定性的学科。
2. 结构动力学的研究对象是各种工程结构,主要内容包括结构的振动、冲击响应、瞬态响应和稳态响应等。
3. 结构动力学分析常用的方法有模态分析法、频率响应分析法、时程分析法等。
4. 结构动力学分析中常用的数学模型有单自由度体系、多自由度体系、连续体系等。
5. 结构动力学的应用领域广泛,包括建筑结构工程、桥梁工程、风力发电机组、地震工程等。
试题二:1. 结构动力学分析中,模态分析的基本原理是什么?2. 简述模态分析的步骤和计算方法。
3. 常用的模态分析软件有哪些?4. 请问什么是结构的固有频率和阻尼比?5. 结构的模态振型对结构动力响应有什么影响?答案二:1. 模态分析是基于结构的振动特性,通过求解结构的固有频率、模态振型和阻尼比等参数,来研究结构的动力响应。
2. 模态分析的步骤包括建立结构有限元模型、求解结构的固有频率和模态振型、计算结构的阻尼比等。
常用的计算方法有有限元法、拉普拉斯变换法等。
3. 常用的模态分析软件有ANSYS、ABAQUS、MSC.NASTRAN等。
4. 结构的固有频率是结构在无外力作用下自由振动的频率,阻尼比是结构振动过程中能量耗散的程度。
5. 结构的模态振型对结构动力响应有很大影响,不同的模态振型会导致不同的振动特性和反应。
试题三:1. 结构动力学分析中,频率响应分析的基本原理是什么?2. 简述频率响应分析的步骤和计算方法。
3. 频率响应分析和模态分析有什么区别?4. 结构的频率响应函数和传递函数有什么区别?5. 频率响应分析在结构设计中的应用有哪些?答案三:1. 频率响应分析是研究结构在单频激励下的响应特性,通过求解结构的频率响应函数,来获得结构的响应。
结构动力学课件PPT
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
结构动力学复习题全解
*本章讨论结构在动力荷载作用下的反应。 **学习本章注重动力学的特征------惯性力。 *结构动力计算的目的在于确定结构在动力荷载作用下的位移、内力等量值随时间变化 的规律,从而找出其最大值作为设计的依据。 *动力学研究的问题:动态作用下结构或构件的强度、刚度及稳定性分析。 一、 本章重点 1.振动方程的建立 2.振动频率和振型的计算 3.振型分解法求解多自由度体系 4.最大动位移及最大动应力 二、 基础知识 1.高等数学 2.线性代数 3.结构力学 三、 动力荷载的特征 1.大小和方向是时间 t 的函数 例如:地震作用,波浪对船体的作用,风荷载,机械振动等 2.具有加速度,因而产生惯性力 四、 动力荷载的分类 1.周期性动力荷载 例如:①机械运转产生的动力荷载,②打桩时的锤击荷载。 P(t) P(t)
Δt 时间内,干扰力的作用近似的看作是初速度为 v (t ) = 的自由振动。 由(3)式可知:
p∆t p ( ∆t ) 2 ,初位移为 y(t ) = =0 m 2m
y(t ) = y 0 cosωt +
v0 p∆t sinωt sinωt = ω mω
---------------------(9)
& (t ) FD= - C y
,称为粘滞阻尼力,阻尼力 与运动方向相反。
一切引起振动衰减的因素均称为阻尼,包括 EI ①材料的内摩擦引起的机械能转化为热能消失 ②周围介质对结构的阻尼(如,空气的紫力) ③节点,构件与支座连接之间的摩擦阻力 ④通过基础散失的能量 2.弹性恢复力 FE= - K y(t) ,K 为侧移刚度系数,弹性恢复力 与运动方向相反。 3.惯性力
,阻尼系数为 C ,横梁具有分布质量 m =
m L
。
结构动力学试题
结构动力学试题一、选择题1. 结构动力学中的“动力响应”是指:A. 结构在静态载荷下的变形B. 结构在动态载荷下的变形C. 结构的自然频率D. 结构的阻尼比2. 单自由度系统的周期公式为:A. T = 2π√(m/k)B. T = 2π√(k/m)C. T = 2π/mD. T = π√(m/k)3. 多自由度系统的振型分解法是基于以下哪个原理?A. 结构的对称性B. 结构的不确定性C. 结构的线性叠加原理D. 结构的能量守恒原理4. 在地震分析中,反应谱方法的主要优点是:A. 考虑了地震动作用的非线性B. 可以处理任意形状的地震波形C. 能够直接给出结构的响应结果D. 适用于快速评估结构的地震安全性5. 结构阻尼比的增大通常会导致:A. 自然频率的提高B. 振幅的减小C. 周期的延长D. 响应的不稳定二、填空题1. 在结构动力学中,________是用来描述结构在动态载荷作用下的运动状态。
2. 动态载荷下,结构的响应可以通过________方法进行求解,该方法基于结构振动的线性叠加原理。
3. 地震波的________特性对结构的响应有显著影响,因此在进行地震分析时需要特别考虑。
4. 结构的阻尼比可以通过________方法进行实验测定,以评估结构的能量耗散能力。
5. 在进行结构动力分析时,通常需要将结构简化为________自由度系统,以便于计算和分析。
三、简答题1. 请简述单自由度系统与多自由度系统的区别及其各自的适用场景。
2. 描述地震波的基本特性,并解释为什么需要对其进行频谱分析。
3. 说明结构阻尼对动力响应的影响,并讨论如何通过设计来提高结构的阻尼性能。
四、计算题1. 一个单自由度系统的质量为500 kg,刚度为2000 N/m。
请计算该系统的自然频率和阻尼比为0.05时的周期。
2. 假设一个结构在地震作用下的最大加速度为0.3g,其中g为重力加速度(9.81 m/s²),请使用反应谱方法计算该结构在自然频率为2Hz时的响应加速度。
结构动力学_2
初相位
4、振幅C和初相位
x0 C sin
x0 Ccos
C
x02
x02
2
arctan x0
x0
——振幅 ——初相位
第2章 单自由度系统
x
3
x02
x02
2
sin(t
)
x
x02 2
x02
T 2
x0 0
t
图2.7 无阻尼系统自由振动位移曲线
-3
0
3
第2章 单自由度系统
x x02 x022 cos(t )
mx cx kx 0
设:
x Aept
第2章 单自由度系统
mp2 cp k 0
p1,2 c
c2 4mk 2m
c2 4mk
1、过阻尼系统
0 x A1e p1t A2e p2t
第2章 单自由度系统
2、临界阻尼系统
0
c2 4mk 0
cc 2 mk 2m
x
e
c 2m
t
第2章 单自由度系统
3、解的形式
x Asint x Bcost x Asint Bcost
x A2 B2 ( A sint B cost)
A2 B2
A2 B2
A2 B2 (cos sint sincost)
C sin(t )
第2章 单自由度系统
x C sin(t )
振幅
剪切变形
第2章 单自由度系统
3EI
ml 3
——弯曲频率
2 3EI
ml 3
——剪切频率
第2章 单自由度系统
图2.5 框架的剪切变形
第2章 单自由度系统
③摆问题
第10章 结构动力学
5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10
…
广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。
结构动力学试题及答案
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构动力学试题(一)
结构动力学第1章单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。
1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。
1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。
1.4 求图1-33中标出参数的系统的固有频率。
1.5 求图1-34所示系统的固有频率。
图中匀质轮A 半径R,重物B 的重量为P/2,弹簧刚度为k.1.6求图1-35所示系统的固有频率。
图中磙子半径为R,质量为M,作纯滚动。
弹簧刚度为K 。
1.7求图1-36所示齿轮系统的固有频率。
已知齿轮A 的质量为A m ,半径为A r ,齿轮B 的质量为B m ,半径为B r ,杆AC 的扭转刚度为A k , ,杆BD 的扭转刚度为B k 。
1.8已知图1-37所示振动系统中,匀质杆长为l ,质量为m,两弹簧刚度皆为K,阻尼系数为C,求当初始条件000==θθ 时 〔1〕t F t f ωsin )(=的稳态解; 〔2〕t t t f )()(δ=的解;1.9图1-38所示盒内有一弹簧振子,其质量为m,阻尼为C,刚度为K,处于静止状态,方盒距地面高度为H,求方盒自由落下与地面粘住后弹簧振子的振动历程与振动频率。
1.10汽车以速度V 在水平路面行使。
其单自由度模型如图1-39。
设m 、k 、c 已知。
路面波动情况可以用正弦函数sin()y h at =表示。
求:〔1〕建立汽车上下振动的数学模型;〔2〕汽车振动的稳态解。
1.11.若电磁激振力可写为t H t F 02sin )(ω=,求将其作用在参数为m 、 k 、 c 的弹簧振子上的稳态响应。
1.12.若流体的阻尼力可写为3xb F d -=,求其等效粘性阻尼。
第1章1.4 a> ()3314848EIl EI k l mω=+31348k l EImlω+= c>3133k l EIml ω+= d>mk 21=ω1.5ω=1.6ω=1.7ω==1.8 运动微分方程: 366()c k f t m m mlθθθ++= 〔1〕)t θωα=-236c arctgk m ωαω=- 〔2〕()sin nt d d h e t m θωω-=22632d k cm m ω⎛⎫=- ⎪⎝⎭1.9()sin nt d dx t ω-=d ω=1.10 〔1〕)sin()cos(at kh at ach ky y cym +=++ 〔2〕sin()y t ωϕ=- 3222tan()()mc acr k k m c ωϕωω=-+1.110()sin(2/2)2Hx t A t k ωϕπ=--+20220216)4(2ωωωn mHA n +-=2202arctan4n n ωϕωω=-mk m c n n ==2,2ω 1.122243A b c n eq ω=第2章 两个自由度系统2.1 求如图2-11所示系统的固有频率和固有振型,并画出振型。
结构力学课件—结构动力学
中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动
第十四章 结构动力学(单自由度)
3 / 77
第十四章
结构动力学
简谐周期荷载 (振动荷载)
五、动荷载的分类(按变化规律):
周期性荷载 确定性荷载 动 荷 载
一般周期荷载 冲击荷载 非周期性荷载 突加荷载
风荷载 地震荷载 其他无法确定变化规律的荷载 其他确定规律的 动荷载(如:快速 移动荷载)
不确定性荷载 (随机荷载)
4 / 77
动力分析的特点是要考虑惯性力,因此在确 定计算简图时,必须确定质量分布情况,确定质 点位移形态。 结构在弹性变形过程中确定全部质点位臵所 需的独立参数的数目,称为该结构振动的自由度。 具有一个自由度的结构称为单自由度结构。 自由度大于1的结构则称为多自由度结构。 确定结构振动的自由度方法有以下几种:
速
度
velocity
acceleration
21 / 77
加速度
第十四章
取质点为研究对象
结构动力学
W kys弹簧初拉力与质点重量相平衡
FI Fe ky k ( ys yd ) W kyd 称为弹簧拉力 Fe
FR
W
FR y yd 称为阻尼力 FI m md 称为惯性力 y y
与刚度法推出的运动方程相比较可见
24 / 77
第十四章
m FP(t)
结构动力学
2l 3 1 3 EI k
3 EI mu 3 u FP ( t ) 2l
设:真空中质量 m 的位移为 u ,向右为正。 试求:振动微分方程?
解:刚度法:问题是如何确定其中的刚度系数 k。
柔度法:则是将所有外力作用于质量 m,确定任意时 刻质点的位移y。
27 / 77
结构动力学问题(一)
结构动力学问题(一)
结构动力学问题
1. 什么是结构动力学问题?
•结构动力学问题是指在工程结构体系中,因为外界的荷载作用或结构自身的振动等因素导致的结构反应、结构稳定性、结构振动
等相关问题。
2. 结构的响应问题
•各种荷载作用下,结构的应力、应变等响应特性是结构动力学研究的关键内容之一。
•结构的响应问题可以包括结构强度、刚度、振动特性等。
3. 结构稳定性问题
•结构稳定性是指结构在荷载作用下能够保持原有的强度和刚度,不发生失稳的能力。
•结构稳定性问题主要包括屈曲、扭转和稳定失效等。
4. 结构振动问题
•结构振动是指结构在自然频率下受到的激励而发生的周期性振动。
•结构振动问题包括自由振动、受迫振动以及结构的阻尼等。
5. 结构动力学分析方法
•结构动力学分析方法用于解决结构动力学问题,包括有限元法、动力试验法、模态分析法等。
•这些方法可以用来计算结构的响应、稳定性和振动情况,并提供结构设计和改进的依据。
6. 结构动力学问题的应用
•结构动力学问题的研究和解决对于工程领域非常重要,涉及建筑物、桥梁、飞机、船舶等领域。
•在工程设计和施工中,需要考虑结构的动力学特性,以确保结构的安全性和可靠性。
7. 结论
•结构动力学问题是工程结构领域中一个重要且广泛的研究方向,涉及结构响应、稳定性和振动等问题。
•通过合适的分析方法和工程实践,可以解决和优化结构动力学问题,提高结构的性能和可靠性。
结构动力学教学课件(共10章)第10章 结构动力学专题
··
∑ () + ∑
··
·
+2ζnωn + qn=-=
∑
=
=+
··
()
()
(10-19)
上式可简记为
··
·
··
··
+2ζnωn + qn=- + (10-20)
力位移。
由于[Kg]表示因支承单位位移在自由节点上产生的力,而[K]表示自由节点单位位移所产生的
力,因此{us}和{ug}满足条件
[K]{us}+[Kg]{ug}={0}(10-4)
由此可得到{us}和{ug}的关系为
{us}=-[K]-1[Kg]{ug}(10-5)
10.1
10.1.1
结构地震反应分析中的多点输入问题
点地震动输入下结构总的反应为
{ua}={us
}+{u}=-[K]-1[K
g]{ug}+
∑ {ϕ}nqn(t)
=
= ∑ [Egl]ugl+∑{ϕ}nqn(t)(10-15)
=
10.2
10.2.1
结构地震反应分析中的多维输入问题
非对称结构在多维地震输入时的振型叠加法
计算非对称结构在多维地震动作用下的反应时,在刚性楼板假定前提下通常每层考虑三个自
式(10-7)右端第二项表示结构与支座的阻尼耦联,由于比较小,通常可忽略。同时,根据式(10-4)和
式(10-5),则式(10-7)可简化为
··
{Peff(t)}=([M][K]-1[Kg]-[Mg]){ }(10-8)
(完整版)结构动力学-习题解答
解
11
5 48
l3 EI
;
3.098
EI ml 3
;
l/2
ml 3 T 2.027 ;
EI
m
EI y1(t)
l
l/2 l/2
l/4
7-1(b)试求图示体系的自振频率与周期。
解: 求柔度系数: 用位移法或力矩分配法 求单位力作用引起的弯矩图(图a); 将其与图b图乘,得
48EI 2k
T 2 ( 1 l3 1 )m
48 EI 2k
m
k EI
k
l/2
l/2
7-3 试求图示体系质点的位移幅值和最大弯矩值。
已知 0.6
l
解:
yst
FPl 3 EI
m
y1(t)
1
1
2
/
2
1.5625
位移幅值
A
yst
1.5625
FPl 3 EI
2l
yst
11
5 3
l3 EI
1 11
l
X11 0.4612 ; X12 4.336
X 21
X 22
12 7.965 EI / ml 3
2 2
65.53EI
/
ml 3
1 2.822 EI / ml3
8-6.试求图示刚架的自振频率和振型。设楼面质量分别为m1=120t和m2=100t,
柱的质量已集中于楼面, 柱的线刚度分别为i1=20MN.m和i2=14MN.m,横梁
m 2 A 0.3375 FP
l/2
EI=常数
FP sin t
2l
FP
FPl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性问题动力分析的振型叠加法 多自由度体系地震反应分析的振型分解反应谱 法 非线性体系动力分析的解析方法 结构-地基(土-结)开放系统动力相互作用问 题 参变系统动力分析 大型结构体系的安全监测
3
国家重点基础研究发展计划(973计划): 《灾害环境下重大工程安全性的基础研究 》 (2003-2007) 国家重点基础研究发展计划(973计划): 《城市工程的地震破坏与控制》(2007-2011) 国家自然科学基金重大研究计划: 《重大工程的动力灾变》(2007-2014)
2
10.5 结构动力分析中的几何非线性问题
结构的几何非线性是结构动力分析中遇到另外一种非线 性现象。几何非线性是指由于结构的几何变形所导致 的非线性现象,虽然结构材料本身仍保持为线弹性。 当结构的变形过大,按小变形假设建立的平衡方程不再 适用,必需根据结构大变形的实际状态建立体系的运 动方程。一个熟悉的例子是我们已经分析和建立的大 摆角的单摆或复合摆的运动方程。 前面介绍的多维地震动问题的本质,实际上也是一个几 何非线性问题。 目前已提出了一些分析方法考虑几何非线性影响。当 然,若采用基于 Lagrange 方程的大变形分析,则可以 合理考虑这一问题,并且可以同时考虑结构的物理非 线性。
4
10.4 结构动力分析中的物理非线性问题
结构动力分析中的物理非线性主要是指结构恢复力的非 线性问题。恢复力是指结构或构件在外荷载去除后恢 复原来形状的能力。恢复力曲线模型一般包括骨架曲 线、滞回特性、刚度退化规律三个组成部分。确定恢 复力曲线的方法有试验拟合法、系统识别法、理论计 算法。 已提出的结构非线性恢复力模型大体上可分为曲线型模 型和折线型模型。曲线型恢复力模型是由连续曲线构 成,刚度变化连续,符合工程需要,但刚度计算复 杂。折线型恢复力模型由若干直线段所构成,刚度变 化不连续,存在拐点或突变点,但由于刚度计算简 单,因而在工程中得到了广泛应用。常用的恢复力模 型有兰伯格-奥斯古德(Romberg-Osgood)模型、克拉夫 (Clough)退化双线性模型、武田(Tekeda)模型等等。
《大型商用飞机恶意撞击问题的研究 》(2011-2015)
深入认识飞机坠毁对核电厂构筑物撞击效应效应的作用机制,探索其内在 的应变-破坏机理和作用-反应规律,探讨核电厂安全重要构筑物防撞分析 的最佳方法,为核电厂构筑物设计提供依据,同时也为相关的安全审评提 供数据的支持,从而支持CAP1400的安全评审。
10.2 结构多点地震动输入问题
对多点(非一致)地震动输入问题仍可将结构的总位移 按牵连运动和相对运动分解:
u(t ) u(t ) u(t )
t
s
{u(t)}t ——体系总位移向量; {u(t)} —— 体系相对位移向量; {u(t)}s ——体系的牵连运动向量。 但此时由于结构基础处各点输入的地震动不同,由静力 方法计算的牵连运动已不是刚体运动,牵连运动本身 即会使结构产生变形,而相对运动对应的仍相当于对 应刚性基底的反应,仍可以采用振型叠加法进行求 解,但计算公式要变得复杂。
《高坝、地下结构及大型洞室群地震灾变集成研究》(2013- 2015)
重点突破与重大工程地震灾变全过程模拟相关的科学和技术问题。 研发并集成拥有自主知识产权的软件系统,形成高坝、地下结构与大型 洞室群地震灾变的全过程模拟软件平台。 预测新建高坝、地下结构与大型洞室群等重大工程在强震作用下可能的 破坏模式,揭示其地震灾变机理。
国家科技重大专项:
《核安全相关钢板混凝土结构抗震技术研究 》(2011-2015)
探讨钢板混凝土结构在我国核电厂中的应用技术要求,完善核电工程钢板 混凝土结构抗震设计动力反应分析方法和试验技术,探讨核电工程钢板混 凝土结构抗震性能和特征,为编制适合我国国情的核安全相关钢板混凝土 结构抗震设计和安全运行规程的编制与完善提供依据。
结构动力学
教师:刘晶波 助教:宝鑫
第10章 结构动力学专题
清华大学土木工程系 2016年秋
本章将简要介绍结构动力反应研究工作中 的几个问题
结构多维地震动输入问题 结构多点地震动输入问题 动态子结构法 结构动力分析中的物理非线性问题 结构动力分析中的几何非线性问题 结构动力参数识别和动力检测
10.3 动态子结构方法
在近代结构分析中,经常要对一些十分复杂的结构进行 总体动力分析,如航空航天飞行器、高层建筑、海上 采油平台和大坝等,这种结构的有限元模型可能含有 数以万计的自由度。如果直接计算,计算工作量很 大,这时可以通过划分子结构以实现特征方程的降 阶,先将结构划分为彼此独立、自由度较少的子结 构,使其容易分析,然后再将各子结构装配恢复成原 先的结构,最终获得总体动力特性参数。 子结构法的思想于20世纪60年代提出的,现已发展成为 大型复杂结构的有效计算方法。 动态子结构法包括:模态综合法和界面位移综合法等
10.1 结构多维地震动输入问题
地震动多维输入问题这一命题实际隐含着的深层含义 是:在结构的动力反应分析中需要考虑结构不同反应 分量之间的耦合影响,即所谓的“二阶效应” ,典型的 例子是P-效应。 在结构地震反应问题中,当结构较高和地震动较强时, 即使结构是对称的,结构两(三)个方向(一般沿结构主 轴方向)的地震反应将产生耦合影响,这种耦合影响的 结果将产生二阶附加的力矩 ( 扭矩或弯矩, P- 效应 为弯矩,水平运动的互相影响为扭矩)。 这种二阶力有时会对结构动力反应产生不可忽略的影 响,这时采用地震动分别沿结构主轴方向输入的分析 方法,或同时输入、但采用小变形理论分析将无法反 映二阶力的影响,必须开展进一步的研究工作。
1
结构多点地震动输入问题
——也称为非一致地震动输入问题。 在结构地震反应中,一般把结构的运动分解成随地面一 起运动的牵连运动加上相对于地面的运动。牵连运动 是随地面一起移动的刚体运动(是已知的),结构不 产生变形,而仅有相对运动使结构产生变形,相对运 动是待求的,可用振型叠加法求解。 以上分析方法对于地基性质良好,结构基础尺寸不很大 且整体性较好时是正确的。但对于一些大尺度结构, 例如大跨桥梁、大型拱坝、地下管线、长隧道,地震 动的输入不能看成是在一个点上,或更确切地说,不 能看成是均匀的,因此在结构基础的不同点上地震动 的输入是不同的,存在相位差,这即是多点输入问 题。
国家重点基础研究发展计划(973计划):
《近海重大交通工程地震破坏机理及全寿命性能设计与控制》 (2011-2016)
海域复杂地震地质环境下近海工程场地地震动特性。 地震、波浪和海流等共同作用下多介质体动力相互作用。 近海重大交通工程结构地震损伤破坏演化过程模拟。
国家自然科学基金重大研究计划集成项目-重大 工程的动力灾变:
10.6 结构动力参数识别和动力检测
结构的性态在物理空间内通过结构的刚度、质量和阻尼 等物理参数,或者在模态空间内通过固有频率、阻尼 比和振型等模态参数来描述。 结构动力参数识别是指利用通过动力测试得到的结构动 力反应来识别结构参数的方法,目前已发展了一系列 结构参数动力识别方法,并得到一定的应用。 理论研究成果往往不能胜任实际工程的动力检测,因 此,工程结构的动力检测仍然是结构工程领域中具有 挑战性的研究课题之一。
10.6 结构动力参数识别和动力检测
随着计算能力和计算方法的发展,结构分析模型的精度 越来越高。但是由于认识水平和结构复杂性的限制, 理论模型和实际结构之间总是存在一定的差距。其中 最主要的是边界条件不完全符合实际、复杂结构中的 某些材料特性也随着环境条件而变化、还有设计和施 工误差造成理论模型与实际结构不符等;同时使用期 间的疲劳与退化也改变了结构的特性。因此需要对结 构进行参数识别和检测,以评估其实际的运行状态, 并为维护、加固提供可靠的依据。 动力检测,是指利用结构的动力反应进行结构性态识别 的方法,包括对结构进行激励的方式、反应量(位 移、速度和加速度)和测量位置的选择,以及对测量 信号的处理方式和结构识别方法。
长大桥梁、大型建筑(包括超高层建筑、大型空间建 筑、城市大型地下建筑)和高坝等重大工程在强地震 动场/台风场作用下的损伤破坏演化过程,揭示重大 工程的损伤机理和破坏倒塌机理,为保障重大工程的 安全建设和运营提供科学支撑。
国家自然科学基金和北京自然科学基金重点项目:
《钢-混凝土组合结构强地震反应及地震易损性研究 》(2010-2012) 《钢框架-混凝土核心筒结构抗震性能及设计新技术研究 》(2010-2012) 《地铁车站立体交叉结构地震响应及抗震设计方法 》(2011-2013)