2019上海高三数学杨浦一模

合集下载

2019-2020学年上海市杨浦区高三年级一模考试数学试卷

2019-2020学年上海市杨浦区高三年级一模考试数学试卷

2019-2020学年上海市杨浦区高三一模考试数学试卷2019.12 一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1.函数12()f x x -=的定义域为 【答案】(0,)x ∈+∞ 【解析】12()f x x-==(0,)x ∈+∞ 2. 关于x ,y 的方程组2130x y x y -=⎧⎨+=⎩的增广矩阵为【答案】211130-⎛⎫⎪⎝⎭【解析】根据增广矩阵的含义,所以是211130-⎛⎫⎪⎝⎭3.已知函数()f x 的反函数12()log f x x -=,则(1)f -=【答案】12【解析】因为21log 12=-,所以1(1)2f -= 4.设a R ∈,2(1)a a a a i --++为纯虚数(i 为虚数单位),则a = 【答案】02a =或【解析】因为2(1)a a a a i --++为纯虚数,所以2010a a a a ⎧--=⎨+≠⎩,所以02a =或5.已知圆锥曲线的底面半径为1cm ,侧面积为22cm π,则母线与底面所成角的大小为【答案】3π【解析】2clS =(c 为底面圆周长,l 为母线长),因为2c π=所以2l =,所以母线与底面所成角的大小为3π6.已知7(1)ax +二项展开式中的3x 系数为280,则实数a = 【答案】2【解析】3334735280T C a a =⋅==,所以2a = 7.椭圆22194x y +=焦点为1F ,2F ,P 为椭圆上一点,若15PF =,则12cos F PF ∠= 【答案】35【解析】因为3a ==,2b ==,所以c =,所以1(F,2F ,225651PF a =-=-=,所以22212513cos 2155F PF +-∠==⋅⋅ 8.已知数列{}n a 的通项公式为*1(2)()1()(3)2n n n n a n N n -≤⎧⎪=∈⎨≥⎪⎩,n S 是数列{}n a 的前n 项和,则lim n n S →∞=【答案】72【解析】因为1112+48n S =++⋅⋅⋅⋅⋅⋅,所以174lim 3+=121-2n n S →∞=9.在直角坐标平面xOy 中,(2,0)A -,(0,1)B ,动点P 在圆22:+2C x y =上,则PA PB ⋅的取值范围为【答案】(22+【解析】因为22+2x y =,设)P θθ,则(2,)PA θθ=--,(,1)PB θθ=,22222cos 2sin PAPB θθθθ⋅=++, 22)PA PBθθθϕ⋅=+-=+,(22PA PB ⋅∈-+10.已知六个函数(1)21y x=;(2)cos y x =;(3)12y x =;(4)arcsin y x =;(5)1lg()1xy x+=-;(6)1y x =+,从中任选三个函数,则其中弃既有奇函数又有偶函数的选法有 种。

上海市2019年高考数学一模试卷(解析版)

上海市2019年高考数学一模试卷(解析版)

2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。

杨浦数学一模(定稿)2019.12评分参考

杨浦数学一模(定稿)2019.12评分参考

杨浦区2019学年度第一学期高三年级模拟质量调研数学学科试卷评分标准 2019.12.一、 填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. (0,)+∞; 2. 211130-⎛⎫ ⎪⎝⎭; 3. 12; 4. 2; 5.3π; 6. 2; 7. 35; 8. 72;9.[2-+ ; 10. 12; 11. 34,23⎛⎤-- ⎥⎝⎦; 12. ①②④二、 选择题(本题共有4题,满分20分,每题5分) 13. D ; 14. A ; 15. C ; 16. D三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)连接EF ,因为E F 、分别为PD PA 、的中点. 所以EF ∥AD (2分)又因为BC ∥AD ,可得:EF ∥BC (4分) 所以B C E F 、、、四点共面 (6分) (2)设AC 与BD 交于点Q ,连接EQ 由,E Q 分别为,DP DB 的中点,可得EQ ∥PB所以AEQ ∠或其补角为异面直线PB 与AE 所成的角 (8分) 由PA ⊥平面ABCD 可得:,PA AB PA AD ⊥⊥ 因为1AB AP ==,AD =PB =2PD = (10分)122EQ PB == 112AE PD == 112==AQ AC (12分)(给在12的关系上)222111cos2+-+-∠===⋅AE EQ AQAEQAE EQ.arccos(0,)42AEQπ∠=∈异面直线PB与AE所成角的大小为(14分)说明:第⑵题也可以用空间向量求解⑵【解】:建立如图空间直角坐标系,(1,0,0)B,D,(0,0,1)P,1(0,)22E(1,0,1)PB=-,1(0,)22AE=(12分)PB与AE所成的角θ满足||2cos||||PB AEPB AEθ⋅==⋅∴异面直线PB与AE所成角的大小为.(14分)18(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由(0)17f a=+=,所以6a=,(2分)方程6252xx+=即2(2)5260x x-⋅+=,可得:22x=或23x=(4分)解得1x=或2log3x=(6分)(2)函数的定义域为R(8分)当1a=时,1()22xxf x=+,对任意R x ∈,均有11()22()22x x x x f x f x ---=+=+= 所以1()22x xf x =+为偶函数; (10分) 当1a =-时,1()22x x f x =-,对任意R x ∈,均有11()22()22x x x x f x f x ---=-=-=-所以1()22x x f x =+为奇函数; (12分)当1a ≠ 且1a ≠-时,()22x x af x =+,由(1)22a f =+,1(1)22f a -=+55(1)(1)022f f a +-=+≠,33(1)(1)022f f a --=-≠所以()22x x af x =+为非奇非偶函数。

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.2019年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2}.【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用补集定义直接求解.【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为6π.【考点】G8:扇形面积公式.【专题】11:计算题;31:数形结合;44:数形结合法;56:三角函数的求值.【分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.【解答】解:根据扇形的弧长公式可得l=αr=×6=2π,根据扇形的面积公式可得S=lr=•2π•6=6π.故答案为:6π.【点评】本题考查扇形的弧长与面积公式,正确运用公式是解题的关键,属于基础题.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为900.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由双曲线方程,求得其渐近线方程,求得直线的夹角,即可求得两条渐近线夹角.【解答】解:双曲线x2﹣y2=11的两条渐近线的方程为:y=±x,所对应的直线的倾斜角分别为90°,∴双曲线x2﹣y2=1的两条渐近线的夹角为90°,故答案为:90°.【点评】本题考查双曲线的几何性质,考查直线的倾斜角的应用,属于基础题.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=3.【考点】DA:二项式定理.【专题】35:转化思想;49:综合法;5P:二项式定理.【分析】由题意利用二项式系数的性质,求得n的值.【解答】解:(a+b)n展开式的二项式系数之和为2n=8,则n=3,故答案为:3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是[﹣,].【考点】7F:基本不等式及其应用.【专题】11:计算题;57:三角函数的图象与性质.【分析】三角换元后,利用二倍角正弦公式和正弦函数的值域可得.【解答】因为x2+y2=1,所以可设x=cosθ,y=sinθ,则xy=cosθsinθ=sin2θ∈[﹣,]故答案为[﹣,]【点评】本题考查了三角换元以及正弦函数的值域.属基础题.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于12πcm3.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题.【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12πcm3.【点评】本题考查圆锥侧面积的求法.注意圆锥的高,母线长,底面半径组成直角三角形.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.【考点】8J:数列的极限.【专题】11:计算题;54:等差数列与等比数列.【分析】无穷等比数列{a n}中,,推出0<|q|<1,然后求出首项a1的取值范围.【解答】解:因为无穷等比数列{a n}中,,所以|q|<1,=,所以,∵﹣1<q<1且q≠0∴0<a1<1且a1≠故答案为:.【点评】本题考查无穷等比数列的极限存在条件的应用,解题时要注意极限逆运算的合理运用.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为[﹣1,0].【考点】1C:集合关系中的参数取值问题.【专题】36:整体思想;4O:定义法;5J:集合.【分析】先化简集合A,由B⊆A,得,得﹣1≤a≤0.【解答】解:∵>0,∴(x+1)(x﹣1)<0,∴﹣1<x<1,∴A=(﹣1,1);∵B⊆A,∴,∴﹣1≤a≤0,∴实数a的取值范围为[﹣1,0].故答案为[﹣1,0].【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是﹣1.【考点】OY:三阶矩阵.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】将行列式按第3行第2列展开,由f(x)=A32=﹣=﹣(4×2x﹣4×4x)=﹣2x+2(1﹣2x),令y=1+f(x)=1﹣2x+2(1﹣2x)=0,解得:x=﹣1,即可求得y =1+f(x)的零点.【解答】解:第3行第2列的元素的代数余子式A32=﹣=﹣4×2x+4×4x=﹣2x+2(1﹣2x),∴f(x)=﹣2x+2(1﹣2x),y=1+f(x)=1﹣2x+2(1﹣2x),令y=0,即2x+2(1﹣2x)=1,解得:2x=,x=﹣1故答案为:﹣1.【点评】本题考查三阶行列式的余子式的定义,考查函数的零点的定义,属于中档题.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期π.【考点】A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】38:对应思想;4R:转化法;57:三角函数的图象与性质;5N:数系的扩充和复数.【分析】由已知求得Z1,Z2的坐标,结合∠Z1OZ2=90°可得f(x)的解析式,降幂后利用辅助角公式化积,再由周期公式求周期.【解答】解:由题意,Z1(cos x,2f(x)),,∴∠Z1OZ2=90°,∴,即2f(x)=﹣,∴f(x)=.则函数f(x)的最小正周期为π.故答案为:π.【点评】本题考查复数的代数表示法及其几何意义,考查三角函数周期的求法,是基础的计算题.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为2.【考点】3R:函数恒成立问题.【专题】11:计算题;35:转化思想.【分析】想法求出左边式子的最小值,首先把分式形式乘以a2,变形为2+[+]+[+],利用均值不等式得出式子的最小值.【解答】解:∵(+)a2=(+)[x+(a﹣x)]2=(+)[x2+2x(a﹣x)+(a﹣x)2]=2+[+]+[+]≥2+4+2=8∴+≥∴≥2'∴0<a≤2.【点评】考查了对式子的配凑变形,均值定理的应用,思路不太好想,有一定难度.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为3,4.【考点】8E:数列的求和.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】求得n=1,2,3,4,5时,数列{b n}的前5项,即可求出通项公式,再求得d 和首项a1,得到等差数列{a n}的通项公式,求得n=1,2,3,4,H2n﹣1的特点,结合k =3,4,5,6,集合的特点,即可得到所求取值.【解答】解:T n+=(﹣1)n b n(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.答案为:3,4【点评】本题考查新定义的理解和运用,考查等差数列的通项公式的求法,集合的性质和数列的单调性的判断和应用,考查化简整理的运算能力,属于难题.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x【考点】3E:函数单调性的性质与判断;3K:函数奇偶性的性质与判断.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】可看出f(x)=arcsin x在[﹣1,1]上单调递增,y=lg|x|和f(x)=cos x都是偶函数,从而判断A,B,D都错误,只能选C.【解答】A.f(x)=arcsin x在区间[﹣1,1]上单调递增;∴该选项错误;B.y=lg|x|为偶函数,∴该选项错误;C.f(x)=﹣x是奇函数,且在[﹣1,1]上单调递减;∴该选项正确;D.f(x)=cos x是偶函数,∴该选项错误.故选:C.【点评】考查反正弦函数和一次函数的单调性,以及奇函数和偶函数的定义.14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】确定基本事件的个数,即可求出概率.【解答】解:随机选派2人参加象棋比赛,有=10种,选出的2人中恰有1人是女队员,有=6种,∴所求概率为=,故选:B.【点评】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c【考点】3G:复合函数的单调性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】先判断f(x)在(0,+∞)上是减函数,再比较,,的大小关系,从而得到a,b,c的大小关系.【解答】解:∵f(x)=log sinθx,θ∈(0,),∴sinθ∈(0,1),故f(x)在(0,+∞)上为减函数.∵a=f(),b=f(),c=f(),∵≥>0,∴a=f()≤b=f (),a≤b.又≤=,即)≥,∴b=f()≤c=f(),即b≤c.综上,a≤b≤c,故选:D.【点评】本题主要考查复合函数的单调性,基本不等式的应用,比较两个数大小的方法,属于中档题.16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)【考点】19:集合的相等.【专题】32:分类讨论;35:转化思想;5J:集合.【分析】由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,解得:0<n<4;综上所述,0≤n+m<4;故选:A.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)转换底面,代入体积公式计算;(2)利用线线垂直证明AF⊥平面PBC,即可得出结论.【解答】(1)解:∵P A⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵P A⊥平面ABCD,∴P A⊥AB,又∵P A=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又P A⊥BC,BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,又AF⊂平面P AB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE⊂平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)【点评】本题给出特殊的四棱锥,考查了线面垂直的证明与性质的运用,考查了学生的空间想象能力与推理论证能力,关键是要熟练掌握定理的条件.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.【考点】9O:平面向量数量积的性质及其运算;HR:余弦定理.【专题】15:综合题;35:转化思想;58:解三角形;5A:平面向量及应用.【分析】(1)利用同角三角函数基本关系式可求sin B,由sin B>sin A,可得A为锐角,可求cos A,根据三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算得解cos C 的值.(2)由余弦定理,基本不等式可求得ac≤13,根据平面向量数量积的运算,诱导公式即可计算得解.【解答】解:(1)∵cos B=,可得:sin B==,∵sin B=>sin A=,∴B>A,可得A为锐角,∴cos A==,∴cos C=﹣cos(A+B)=sin A sin B﹣cos A cos B=.(2)证明:∵由余弦定理b2=a2+c2﹣2ac cos B,可得:a2+c2﹣ac=16,∵a2+c2≥2ac,∴解得:ac≤13,当且仅当a=c时等号成立,∴=ac cos(π﹣B)=﹣ac cos B=﹣ac≥﹣5.得证.【点评】本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,余弦定理,基本不等式,平面向量数量积的运算,诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.【考点】5A:函数最值的应用;5C:根据实际问题选择函数类型.【专题】34:方程思想;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解出即可得出.(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].可得获得利润f(t)=5×+1﹣=﹣+1,t>0.利用反比例函数的单调性即可得出.【解答】解:(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解得:3≤x≤10,因此要使生产该产品2小时获得的利润不低于30元,x的取值范围为[3,10].(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].则获得利润f(t)=5×+1﹣=﹣+1,t>0.由反比例函数的单调性可得:f(t)在t∈[90,900]单调递减.∴t=90时,即该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.故该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.【点评】本题考查了不等式的解法、利用导数研究函数的单调性极值与最值,考查了数形结合方法、推理能力与计算能力,属于中档题.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.【考点】KN:直线与抛物线的综合.【专题】34:方程思想;4I:配方法;4J:换元法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由抛物线方程求得p,则答案可求;(2)P(x P,y P),设A(,y1),B(,y2),运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,由根与系数的关系即可得到结论;(3)由题意可得,﹣1≤x P<0,﹣2<y P<2,可得△P AB面积为S=|PM|•|y1﹣y2|,再由配方和换元法结合函数单调性求最值.【解答】(1)解:由抛物线C:y2=4x,得2p=4,则p=2,∴抛物线C的焦点到准线的距离为2;(2)证明:P(x P,y P),设A(,y1),B(,y2),AB中点为M的坐标为M(x M,y M),则M(,),抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上,可得,,化简可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,可得y1+y2=2y P,y1y2=8,可得;(3)解:若P是曲线x2+=1(x<0)上的动点,可得,﹣1≤x P<0,﹣2<y P<2,由(2)可得y1+y2=2y P,y1y2=8,由PM垂直于y轴,可得△P AB面积为S=|PM|•|y1﹣y2|=()•=[﹣]•=(),令t===,得时,t取得最大值.x P=﹣1时,t取得最小值2,即2≤t≤,则S=在2≤t≤递增,可得S∈[6,],∴△P AB面积的最小值为6.【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,训练了利用换元法及函数的单调性求最值,属于难题.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)a n=2n+cos,可得a1=2,a2=3,a3=8,M3,m3.即可得出b3.(2)充分性:若“数列{a n}是等差数列”,设其公差为d,可得b n=,b n+1=.b n+1﹣b n=常数,即可证明“数列{b n}是等差数列”.必要性:若“数列{b n}是等差数列”,设其公差为d′,b n+1﹣b n=﹣=+=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n =a1,进而得出.同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.由|b n|=1,b n=1或﹣1,对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反.在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<….﹣1===…==,1===…===…,=﹣1,=1.=﹣1,=1,由于≥与≤中只有一个等号成立,必有>,=.可得=+4.==+4.k i>k i﹣1,k i≥k i﹣1+1,≥+1,≥+4,﹣≥4.利用累加求和方法即可得出.【解答】解:(1)∵a n=2n+cos,∴a1=2,a2=3,a3=8,∴M3=8,m3=2.∴b3==5.(2)证明:充分性:若“数列{a n}是等差数列”,设其公差为d,则b n=,b n+1=.∴b n+1﹣b n=,故“数列{b n}是等差数列”必要性:若“数列{b n}是等差数列”,设其公差为d′则b n+1﹣b n=﹣=+=d′根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1﹣b n=﹣==d′,即a n+1﹣a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.∵|b n|=1,∴b n=1或﹣1,∴对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反∴在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<…且﹣1===…==,1===…===…∵=﹣1,=1即=﹣1,=1,由于≥与≤中只有一个等号成立,∴必有>,=.可得=+4.∴==+4.∵k i>k i﹣1∴k i≥k i﹣1+1∴≥+1∴≥+4∴﹣≥4.利用累加求和方法可得:≥+4(m﹣1),∴≥+4×(1010﹣1)>﹣2018+4036=2018.这与|a n|<2018矛盾,故假设错误,∴存在K∈N*,使∀n≥K,有b n+1=b n.【点评】本题考查了数列递推关系、等差数列的通项公式与单调性、累加求和方法、不等式的解法、充要条件,考查了推理能力与计算能力,属于难题.。

上海市杨浦区2019-2020学年度第一学期高三年级模拟质量调研数学试卷(含答案)

上海市杨浦区2019-2020学年度第一学期高三年级模拟质量调研数学试卷(含答案)

杨浦区2019学年度第一学期高三年级模拟质量调研数学学科试卷 2019.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果. 1.函数12()f x x-= 的定义域为 .2.关于,x y 的方程组2130x y x y -=⎧⎨+=⎩的增广矩阵为 .3.已知函数()f x 的反函数12()log -=fx x ,则(1)-=f .4.设R ∈a ,22(1)i --++a a a 为纯虚数(i 为虚数单位),则a = . 5.已知圆锥的底面半径为1cm ,侧面积为22cm π,则母线与底面所成角的大小为 .6.已知7(1)ax +的二项展开式中3x 的系数为280,则实数a = .7.椭圆22194x y +=的焦点为12 ,F F ,P 为椭圆上一点,若1||5PF =,则 12cos F PF ∠= .8.已知数列{}n a 的通项公式为1(2)1(3)2-≤⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩n n nn a n (*N ∈n ),n S 是数列{}n a 的前n 项和.则lim n n S →+∞= .9. 在直角坐标平面xOy 中,(2,0),(0,1)-A B ,动点P 在圆22:2C x y +=上,则PA PB ⋅ 的取值范围为 .10.已知六个函数:①21y x=;②c o s y x =;③12y x =;④a r c s i n y x =;⑤1l g ()1xy x+=-;⑥1y x =+.从中任选三个函数,则其中既有奇函数又有偶函数的选法有 种.11.已知函数1()1f x x=-(0x >),若关于x 的方程2[()]()230+++=f x m f x m 有三个不相等的实数解,则实数m 的取值范围为 .12 .向量集合(){},,R ==∈ 、S a a x y xy .对于任意,S αβ∈,以及任意()1,0∈λ,都有()1S λαλβ+-∈,则称S 为“C 类集”.现有四个命题:① 若S 为“C 类集”,则集合{}M a a S μ=∈(μ为实常数)也是“C 类集”; ② 若,S T 都是“C 类集”,则集合{},=+∈∈M a b a S b T 也是“C 类集”;③ 若12A ,A 都是“C 类集”,则1A 2A 也是“C 类集”;④ 若12A ,A 都是“C 类集”,且交集非空,则1A 2A 也是“C 类集”.其中正确的命题有_________.(填所有正确命题的序号)二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知实数,a b 满足>a b ,则下列不等式中恒成立的是 ( )()A 22>a b ()B11<a b()C >a b ()D 22>a b 14.要得到函数2sin(2)3y x π=+的图象,只要将2sin 2y x =的图象 ( )()A 向左平移6π个单位 ()B 向右平移6π个单位 ()C 向左平移3π个单位 ()D 向右平移3π个单位15.设12、z z 为复数,则下列命题中一定成立的是 ( )()A 如果120->z z ,那么12>z z ()B 如果12||||=z z ,那么12=±z z ()C 如果121>z z ,那么12>z z ()D 如果22120+=z z ,那么120==z z 16.对于全集R 的子集A ,定义函数1()()0()∈⎧=⎨∈⎩A Rx A f x x A ð为A 的特征函数.设,A B 为全集R 的子集,下列结论中错误的是 ( )()A 若A B ⊆,则()()A B f x f x ≤ ()B ()1()=-R A A f x f x ð()C ()()()A B A B f x f x f x =⋅ ()D ()()()A B A B f x f x f x =+三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD .1AB PA ==,AD =,E F 分别为棱,PD PA 的中点.⑴ 求证:B C E F 、、、四点共面; ⑵ 求异面直线PB 与AE 所成的角.18.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()22xxaf x =+,其中a 为实常数. ⑴ 若(0)7f =,解关于x 的方程()5f x =; ⑵ 判断函数()f x 的奇偶性,并说明理由.19.(本题满分14分,第1小题满分6分,第2小题满分8分)东西向的铁路上有两个道口A B 、,铁路两侧的公路分布如图,C 位于A 的南偏西15︒,且位于B 的南偏东15︒方向,D 位于A 的正北方向,2AC AD km ==,C 处一辆救护车欲通过道口前往D 处的医院送病人,发现北偏东45︒方向的E 处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60/km h . ⑴ 判断救护车通过道口A 是否会受火车影响,并说明理由;⑵ 为了尽快将病人送到医院,救护车应选择A B 、中的哪个道口?通过计算说明.DECA B20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 如图,在平面直角坐标系xOy 中,已知抛物线2:4C y x =的焦点为F ,点A 是第一象限内抛物线C 上的一点,点D 的坐标为(,0)t (0>t ).⑴ 若||OA =A 的坐标;⑵ 若AFD ∆为等腰直角三角形,且90∠=︒FAD ,求点D 的坐标;⑶ 弦AB 经过点D ,过弦AB 上一点P 作直线x t =-的垂线,垂足为点Q ,求证:“直线QA 与抛物线相切”的一个充要条件是“P 为弦AB 的中点”.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知无穷数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,均有2120,0n n S S -≥≤,则称数列{}n a 具有性质P .⑴ 判断首项为1,公比为2-的无穷等比数列{}n a 是否具有性质P ,并说明理由; ⑵ 已知无穷数列{}n a 具有性质P ,且任意相邻四项之和都相等,求证:40S =;⑶ 已知21n b n =-(*N n ∈),数列{}n c 是等差数列,122()()n n n b n a c n +⎧⎪=⎨⎪⎩为奇数为偶数,若无穷数列{}n a 具有性质P ,求2019c 的取值范围.杨浦区2019学年度第一学期高三年级模拟质量调研数学学科试卷评分标准 2019.12.一、 填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. (0,)+∞; 2. 211130-⎛⎫ ⎪⎝⎭; 3. 12; 4. 2; 5.3π; 6. 2; 7. 35; 8. 72;9.[2-+ ; 10. 12; 11. 34,23⎛⎤-- ⎥⎝⎦; 12. ①②④二、 选择题(本题共有4题,满分20分,每题5分) 13. D ; 14. A ; 15. C ; 16. D三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)连接EF ,因为E F 、分别为PD PA 、的中点. 所以EF ∥AD (2分)又因为BC ∥AD ,可得:EF ∥BC (4分) 所以B C E F 、、、四点共面 (6分) (2)设AC 与BD 交于点Q ,连接EQ 由,E Q 分别为,DP DB 的中点,可得EQ ∥PB所以AEQ ∠或其补角为异面直线PB 与AE 所成的角 (8分) 由PA ⊥平面ABCD 可得:,PA AB PA AD ⊥⊥ 因为1AB AP ==,AD =PB =2PD = (10分)12EQ PB == 112AE PD == 112==AQ AC (12分)(给在12的关系上)222111cos24+-+-∠===⋅AE EQ AQAEQAE EQ.arccos(0,)42AEQπ∠=∈异面直线PB与AE所成角的大小为arccos4(14分)说明:第⑵题也可以用空间向量求解⑵【解】:建立如图空间直角坐标系,(1,0,0)B,D,(0,0,1)P,1(0,)22E(1,0,1)PB=-,1(0,,)22AE=(12分)PB与AE所成的角θ满足||2cos4||||PB AEPB AEθ⋅==⋅∴异面直线PB与AE所成角的大小为.(14分)18(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)由(0)17f a=+=,所以6a=,(2分)方程6252xx+=即2(2)5260x x-⋅+=,可得:22x=或23x=(4分)解得1x=或2log3x=(6分)(2)函数的定义域为R(8分)当1a=时,1()22xxf x=+,对任意R x ∈,均有11()22()22xx x x f x f x ---=+=+= 所以1()22xxf x =+为偶函数; (10分) 当1a =-时,1()22xx f x =-,对任意R x ∈,均有11()22()22x xx x f x f x ---=-=-=-所以1()22xx f x =+为奇函数; (12分)当1a ≠ 且1a ≠-时,()22xx a f x =+,由(1)22a f =+,1(1)22f a -=+55(1)(1)022f f a +-=+≠,33(1)(1)022f f a --=-≠所以()22xx a f x =+为非奇非偶函数。

2019学年第一学期杨浦区高三数学试卷含答案

2019学年第一学期杨浦区高三数学试卷含答案

B

,故
f AB
x

fA
x
fB
x ,选 D
三、解答题 17、如图,四棱锥 P ABCD 中,底面 ABCD 为矩形, PA 底面 ABCD , AB PA 1, AD 3 , E、F 分别 为棱 PD、PA 的中点
(1)求证: B、C、E、F 四点共面; (2)求异面直线 PB 与 AE 所成的角。


解析:如图,由 1 OC, 0,1 可知 C 为线段 AB 上的动点,
由共线原理可知, C 类集为线段,或者多边形区域
①根据相似原理,无论线段还是多边形,均符合题意



a1 S , a2 S,则a0 a1 1 a2 S ;
R
的子集
A
,定义函数
fA
x

1, x A
0,

x

CR
A


A
的特征函数,设
A,
B
为全集
R
的子集,下列结
论中错误的是( )
A、若 A B , fA x fB x
B、 fCRA x 1 fA x
C、 fAB x fA x fB x
而当“ C 类集”中存在四个顶点时,为四边形区域,故不可能只是两条线段;
④若交集非空,则交集为线段,或者多边形公共区域,故符合题意,④对;
综上①②④
二、选择题
13、已知实数 a, b 满足 a b ,则下列不等式中恒成立的是( )
A、a2 b2
B、1 1 ab
C、a b
D、2a 2b
Sn

上海市杨浦区2019年高三第一学期期末(一模)学科质量检测数学试题及答案(word解析版)

上海市杨浦区2019年高三第一学期期末(一模)学科质量检测数学试题及答案(word解析版)

杨浦区2018-2019学年第一学期高三年级质量调研考试 数学试卷 2018.12考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则U A =ð 2. 已知扇形的半径为6,圆心角为3π,则扇形的面积为 3. 已知双曲线221x y -=,则其两条渐近线的夹角为 4. 若()n a b +展开式的二项式系数之和为8,则n = 5. 若实数x 、y 满足221x y +=,则xy 的取值范围是6. 若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于 3()cm7. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的 取值范围为9. 在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则 1()y f x =+的零点是10. 已知复数1cos 2()i z x f x =+,2(3sin cos )i z x x =++(x ∈R ,i 为虚数单位),在复平面上,设复数1z 、2z 对应的点分别为1Z 、2Z ,若1290Z OZ ︒∠=,其中O 是坐标原点,则函数()f x 的最小正周期为 11. 当0x a <<时,不等式22112()x a x +≥-恒成立,则实数a 的最大值为 12. 设d 为等差数列{}n a 的公差,数列{}n b 的前n 项和n T ,满足1(1)2n n n n T b +=-(n ∈*N ),且52d a b ==,若实数23{|}k k k m P x a x a -+∈=<<(k ∈*N ,3k ≥),则称m 具有性质k P ,若n H 是数列{}n T 的前n 项和,对任意的n ∈*N ,21n H -都具有性质k P ,则所有满足条件的k 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( )A. ()arcsin f x x =B. ()lg ||f x x =C. ()f x x =-D. ()cos f x x = 14. 某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( ) A.310 B. 35 C. 25 D. 2315. 已知sin ()log f x x θ=,(0,)2πθ∈,设sin cos ()2a f θθ+=,(sin cos )b f θθ=⋅, sin 2()sin cos c f θθθ=+,则a 、b 、c 的大小关系是( )A. a c b ≤≤B. b c a ≤≤C. c b a ≤≤D. a b c ≤≤ 16. 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围是( ) A. [0,4) B. [1,4)- C. [3,5]- D. [0,7)三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中心,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .18. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且5cos 13B =. (1)若4sin 5A =,求cos C ; (2)已知4b =,证明:5AB BC ⋅≥-.19. 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是3(51)x x+-元,其中110x ≤≤.(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20. 如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A 、B ,满足PA 、PB 的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且(,)P P P x y ,(,)M M M x y ,证明:P M y y =;(3)若P 是曲线2214y x +=(0x <)上的动点,求△PAB 面积的最小值.21. 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,n ∈*N . (1)若2cos2nn n a π=+,请写出3b 的值; (2)求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3)若对任意n ,有||2018n a <,且||1n b =,请问:是否存在K ∈*N ,使得对于任意不小于K 的正整数n ,有1n n b b +=成立?请说明理由.杨浦区2018-2019学年第一学期高三年级质量调研考试数学试卷参考答案一. 填空题1. {1,2}2. 6π3.2π4. 35. 11[,]22- 6. 12π 7. 11(0,)(,1)228. [1,0]- 9. 1x =- 10. π 11. 2 12. 3或4 二. 选择题13. C 14. B 15. D 16. A 三. 解答题19.答案:(1)[3,10];(2)6x =,最大值为4575. 解析:(1)2(5x+1-3x )≥30,即5x+1-3x≥15 整理可得:251430x x --≥,解得:x≥3或x≤-15(舍去) 所以: 3≤x≤10(2) 要使生产900千克该产品获得的利润最大时为y , 生产900千克该产品需要时间:t=900x, y =900x ×3(51)x x +-=4500+900x -22700x =-2700(2113x x-)+4500=-2700211()6x-+45751≤x≤10,所以当x=6,y 取最大值为4575元20.(1)焦点坐标为(1,0),准线方程为x =-1,所以,焦点到准线的距离为2(2)设00(,)P x y ,211(,)4y A y ,222(,)4y B y ,则PA 中点为20011(,)282x y y y ++,由AP 中点在抛物线上,可得220101()4()228y y x y +=+,化简得2210100280y y y x y -+-=,显然21y y ≠, 且对2y 也有2220200280y y y x y -+-=,所以12,y y 是二次方程22000280y y y x y -+-=的两不等实根,所以1202y y y +=,1202M P y y y y y +===。

杨浦数学一模(定稿)2019.12

杨浦数学一模(定稿)2019.12

1杨浦区2019学年度第一学期高三年级模拟质量调研数学学科试卷 2019.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果. 1.函数12()f x x-= 的定义域为 .2.关于,x y 的方程组2130x y x y -=⎧⎨+=⎩的增广矩阵为 .3.已知函数()f x 的反函数12()log -=fx x ,则(1)-=f .4.设R ∈a ,22(1)i --++a a a 为纯虚数(i 为虚数单位),则a = . 5.已知圆锥的底面半径为1cm ,侧面积为22cm π,则母线与底面所成角的大小为 .6.已知7(1)ax +的二项展开式中3x 的系数为280,则实数a = .7.椭圆22194x y +=的焦点为12 ,F F ,P 为椭圆上一点,若1||5PF =,则 12cos F PF ∠= .8.已知数列{}n a 的通项公式为1(2)1(3)2-≤⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩n n nn a n (*N ∈n ),n S 是数列{}n a 的前n 项和.则lim n n S →+∞= .9. 在直角坐标平面xOy 中,(2,0),(0,1)-A B ,动点P 在圆22:2C x y +=上,则PA PB ⋅ 的取值范围为 .210.已知六个函数:①21y x=;②c o s y x =;③12y x =;④a r c s i n y x =;⑤1l g ()1xy x+=-;⑥1y x =+.从中任选三个函数,则其中既有奇函数又有偶函数的选法有 种.11.已知函数1()1f x x=-(0x >),若关于x 的方程2[()]()230+++=f x m f x m 有三个不相等的实数解,则实数m 的取值范围为 .12 .向量集合(){},,R ==∈ 、S a a x y xy .对于任意,S αβ∈,以及任意()1,0∈λ,都有()1S λαλβ+-∈,则称S 为“C 类集”.现有四个命题:① 若S 为“C 类集”,则集合{}M a a S μ=∈(μ为实常数)也是“C 类集”; ② 若,S T 都是“C 类集”,则集合{},=+∈∈M a b a S b T 也是“C 类集”; ③ 若12A ,A都是“C 类集”,则1A 2A 也是“C 类集”;④ 若12A ,A 都是“C 类集”,且交集非空,则1A 2A 也是“C 类集”.其中正确的命题有_________.(填所有正确命题的序号)二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知实数,a b 满足>a b ,则下列不等式中恒成立的是 ( )()A 22>a b ()B11<a b()C >a b ()D 22>a b 14.要得到函数2sin(2)3y x π=+的图象,只要将2sin 2y x =的图象 ( )()A 向左平移6π个单位 ()B 向右平移6π个单位 ()C 向左平移3π个单位 ()D 向右平移3π个单位15.设12、z z 为复数,则下列命题中一定成立的是 ( )3()A 如果120->z z ,那么12>z z ()B 如果12||||=z z ,那么12=±z z ()C 如果121>z z ,那么12>z z ()D 如果22120+=z z ,那么120==z z 16.对于全集R 的子集A ,定义函数1()()0()∈⎧=⎨∈⎩A Rx A f x x A ð为A 的特征函数.设,A B 为全集R 的子集,下列结论中错误的是 ( )()A 若A B ⊆,则()()A B f x f x ≤ ()B ()1()=-R A A f x f x ð()C ()()()A B A B f x f x f x =⋅ ()D ()()()A B A B f x f x f x =+三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD .1AB PA ==,AD =,E F 分别为棱,PD PA 的中点.⑴ 求证:B C E F 、、、四点共面; ⑵ 求异面直线PB 与AE 所成的角.418.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()22x x af x =+,其中a 为实常数. ⑴ 若(0)7f =,解关于x 的方程()5f x =; ⑵ 判断函数()f x 的奇偶性,并说明理由.19.(本题满分14分,第1小题满分6分,第2小题满分8分)东西向的铁路上有两个道口A B 、,铁路两侧的公路分布如图,C 位于A 的南偏西15︒,且位于B 的南偏东15︒方向,D 位于A 的正北方向,2AC AD km ==,C 处一辆救护车欲通过道口前往D 处的医院送病人,发现北偏东45︒方向的E 处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60/km h . ⑴ 判断救护车通过道口A 是否会受火车影响,并说明理由;⑵ 为了尽快将病人送到医院,救护车应选择A B 、中的哪个道口?通过计算说明.DECA B520.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 如图,在平面直角坐标系xOy 中,已知抛物线2:4C y x =的焦点为F ,点A 是第一象限内抛物线C 上的一点,点D 的坐标为(,0)t (0>t ). ⑴若||OA =A 的坐标;⑵ 若AFD ∆为等腰直角三角形,且90∠=︒FAD ,求点D 的坐标;⑶ 弦AB 经过点D ,过弦AB 上一点P 作直线x t =-的垂线,垂足为点Q ,求证:“直线QA 与抛物线相切”的一个充要条件是“P 为弦AB 的中点”.621.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知无穷数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,均有2120,0n n S S -≥≤,则称数列{}n a 具有性质P .⑴ 判断首项为1,公比为2-的无穷等比数列{}n a 是否具有性质P ,并说明理由; ⑵ 已知无穷数列{}n a 具有性质P ,且任意相邻四项之和都相等,求证:40S =;⑶ 已知21n b n =-(*N n ∈),数列{}n c 是等差数列,122()()n n n b n a c n +⎧⎪=⎨⎪⎩为奇数为偶数,若无穷数列{}n a 具有性质P ,求2019c 的取值范围.。

2019届上海市杨浦区高三上学期模拟质量调研(一模)数学试卷及答案

2019届上海市杨浦区高三上学期模拟质量调研(一模)数学试卷及答案

2019届杨浦区高三上学期模拟质量调研(一模)数学试卷2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分)1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u =ð2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____ 8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112xa x +≥-恒成立,则实数a 的最大值为______12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) (A )()arcsin f x x= (B )lg y x= (C )()f x x =-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( ) (A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin,,2sin cos a f b fc f θθθθθ+⎛⎫⎛⎫=== ⎪ ⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是(A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4(B )[]1,4-(C )[]3,5-(D )[]0,7三、解答题(本大题共有5题,满分76分)17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。

2019-2020学年上海市杨浦区高考数学一模试卷

2019-2020学年上海市杨浦区高考数学一模试卷

高 【解答】解:基本事件共 6×6 个,
点数和为 4 的有(1,3)、(2,2)、(3,1)共 3 个,
您 故 P= = .
故答案为: .
祝8.(5 分)数列{an}的前 n 项和为 Sn,若点(n,Sn)(n∈N*)在函数 y=log2(x+1)
的反函数的图象上,则 an= 2n﹣1 .
【解答】解:由题意得 n=log2(Sn+1)⇒sn=2n﹣1.
为奇函数,
则: 解得:
(k∈Z), ,

故答案为:

12.(5 分)已知点 C、D 是椭圆 则实数 λ 的取值范围为
成 上的两个动点,且点 M(0,2),若


到 【解答】解:假设 CD 的斜率存在时,设过点 M(0,2)得直线方程为 y=kx+2,
马 联立方程
,整理可得(1+4k2)x2+16kx+12=0,
到 ②y=x2;是偶函数,图象关于 y 轴对称,满足条件.
③y=2|x|是偶函数,图象关于 y 轴对称,满足条件.
马 ④y=arcsinx 是奇函数,图象关于 y 轴不对称,不满足条件,
故选:B.
考 15.(5 分)“t≥0”是“函数 f(x)=x2+tx﹣t 在(﹣∞,+∞)内存在零点”的(

高 A.充分非必要条件 B.必要非充分条件
(1)求圆锥的体积; (2)求异面直线 SO 与 PA 所成角的大小.(结果用反三角函数值表示)
19.(14 分)已知函数
! 的定义域为集合 A,集合 B=(a,a+1),且 B
⊆A. (1)求实数 a 的取值范围;

成 (2)求证:函数 f(x)是奇函数但不是偶函数.

上海杨浦区2019高考一模试题--数学(文)

上海杨浦区2019高考一模试题--数学(文)

上海杨浦区2019高考一模试题--数学(文)数学试卷(文)〔一模〕 2018.1.考生注意:1、答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上、2、本试卷共有23道题,总分值150分,考试时间120分钟、一、填空题〔本大题总分值56分〕本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否那么一律得零分、 1.假设函数()xx f 3=的反函数为()x f1-,那么()=-11f 、2、假设复数iiz -=1(i 为虚数单位),那么=z . 3、抛物线x y 42=的焦点到准线的距离为. 4.假设线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛211321,那么该线性方程组的解是、 5、假设直线l :012=--x y ,那么该直线l 的倾斜角是.6.假设7)(a x +的二项展开式中,5x 的系数为7,那么实数=a 、7.假设圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,那么该圆椎的侧面积为2cm .8.设数列}{n a (n ∈*N )是等差数列.假设2a 和2012a 是方程03842=+-x x 的两根,那么数列}{n a 的前2013项的和=2013S ______________、9.假设直线l 过点()1,1-,且与圆221x y +=相切,那么直线l 的方程为、10.将一颗质地均匀的骰子连续投掷两次,朝上的点数依次为b 和c , 那么2≤b 且3≥c 的概率是_______.11.假设函数1)23(log )(+-=xa x f (1,0≠>a a )的图像过定点P ,点Q 在曲线022=--y x 上运动,那么线段PQ 中点M 轨迹方程是、12、如图,边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米.为了合理利用这块钢板,将在五边 形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 那么矩形BNPM 面积的最大值为____平方米.13、设ABC ∆的内角C B A 、、的对边长分别为c b a 、、,且A MEPDCB N Fc A b B a 53cos cos =-,那么B A cot tan 的值是___________、14、函数()()⎩⎨⎧≤-->+=.0,2,0,1log 22x x x x x x f 假设函数()()m x f x g -=有3个零点, 那么实数m 的取值范围是___________、【二】选择题〔本大题总分值20分〕本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否那么一律得零分. 15、“3=a ”是“函数22)(2+-=ax x x f 在区间[)+∞,3内单调递增”的………〔〕)(A 充分非必要条件、)(B 必要非充分条件、 )(C 充要条件、)(D 既非充分又非必要条件、16、假设无穷等比数列{}n a 的前n 项和为n S ,首项为1,公比为23-a ,且a S n n =∞→lim , (n ∈*N ),那么复数ia z +=1在复平面上对应的点位于………〔〕)(A 第一象限、)(B 第二象限、)(C 第三象限、)(D 第四象限、17、假设1F 、2F 为双曲线C :1422=-y x 的左、右焦点,点P 在双曲线C 上, ∠21PF F =︒60,那么P到x轴的距离为………〔〕)(A 、)(B 、)(C 、)(D 、18.数列{}n a 是各项均为正数且公比不等于1的等比数列〔n ∈*N 〕.对于函数()y f x =,假设数列{}ln ()n f a 为等差数列,那么称函数()f x 为“保比差数列函数”.现有定义在(0,)+∞上的如下函数:①1()f x x=,②2()f x x =,③()e x f x =,④()f x =为“保比差数列函数”的所有序号为………〔〕)(A ①②、)(B ③④、)(C ①②④、)(D ②③④、【三】解答题〔本大题总分值74分〕本大题共5题,解答以下各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19、〔此题总分值12分〕此题共有2个小题,第1小题总分值5分,第2小题总分值7分、 如图,在三棱锥ABC P -中,⊥PA 平面ABC ,AB AC ⊥,4==BC AP ,︒=∠30ABC ,E D 、分别是AP BC 、的中点,PABDE〔1〕求三棱锥ABC P -的体积;〔2〕假设异面直线AB 与ED 所成角的大小为θ,求θtan 的值. 20、〔此题总分值14分〕此题共有2个小题,第1小题总分值7分,第2小题总分值7分、 (文)函数π()cos()4f x x =-,〔1〕假设()10f α=,求sin 2α的值; 〔2〕设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.21、〔此题总分值14分〕此题共有2个小题,第1小题总分值6分,第2小题总分值8分、椭圆:C 22221(0)x y a b a b+=>>的两个焦点分别是()0,11-F 、()0,12F ,且焦距是椭圆C上一点P 到两焦点21F F 、距离的等差中项. 〔1〕求椭圆C 的方程;〔2〕设经过点2F 的直线交椭圆C 于N M 、两点,线段MN 的垂直平分线交y 轴于点 ),0(0y Q ,求0y 的取值范围.[22、〔此题总分值16分〕此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值6分. 函数)0(121)(>-=x x x x f 的值域为集合A ,〔1〕假设全集R U =,求A C U ; 〔2〕对任意⎥⎦⎤⎝⎛∈21,0x ,不等式()0≥+a x f 恒成立,求实数a 的范围; 〔3〕设P 是函数()x f 的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为A 、B ,求⋅的值、23、〔此题总分值18分〕此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值8分.设数列{}n x 满足0>n x 且1≠n x 〔n ∈*N 〕,前n 项和为n S 、点),(111S x P ,),(222S x P ,()n n n S x P ,,⋅⋅⋅都在直线b kx y +=上(其中常数k b 、且0≠k ,1≠k ,0≠b ),又n n x y 21log =、〔1〕求证:数列{}n x 是等比数列;〔2〕假设n y n 318-=,求实数k ,b 的值;〔3〕如果存在t 、∈s n ∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上、问 是否存在正整数M ,当M n >时,1>n x 恒成立?假设存在,求出M 的最小值,假设不存在,请说明理由、杨浦区2018学年度第一学期高三年级学业质量调研 2018.1.5一、填空题:1.0;2、2;3、2;4.⎩⎨⎧==11y x 〔向量表示也可〕;5、2arctan ;6.33±;7.π508.2018;9.1=x 或1=y ;10.92;11.x x y 222-= 12、48;13、1-;14、)1,0( 【二】选择题:15、)(A ;16、)(D ;17、)(B ;18.)(C 、【三】解答题19、〔此题总分值12分〕此题共有2个小题,第1小题总分值5分,第2小题总分值7分、 (1)由得,,32,2==AB AC ………2分所以,体积33831==∆--PA S V ABC ABC P ………5分 (2)取AC 中点F ,连接EF DF ,,那么DF AB //, 所以EDF ∠就是异面直线AB 与ED 所成的角θ.………7分 由,52,32,2=====PC AB AD EA AC ,EF DF EF AB ⊥∴⊥, .………10分在EFD Rt ∆中,5,3==EF DF ,所以,315tan =θ.………12分 (其他解法,可参照给分) 20、〔此题总分值14分〕此题共有2个小题,第1小题总分值7分,第2小题总分值7分、解:〔1〕因为π()cos()410f αα=-=,sin )αα+=,所以7cos sin 5αα+=.………3分 平方得,22sin 2sin cos cos αααα++=4925,………5分 所以24sin 225α=.………7分 〔2〕因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=sin )sin )x x x x +-………9分 =221(cos sin )2x x - =1cos 22x .………11分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦.………12分 所以,当0x =时,()g x 的最大值为12;………13分 当π3x =时,()g x 的最小值为14-.………14分 21、〔此题总分值14分〕此题共有2个小题,第1小题总分值6分,第2小题总分值8分、〔1〕解:设椭圆C 的半焦距是c .依题意,得1c =.………1分 由题意得a c 24=,2=a2223b a c =-=.………4分故椭圆C 的方程为22143x y +=.………6分〔2〕解:当MN x ⊥轴时,显然00y =.………7分当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得0)3(48)43(2222=-+-+k x k x k . ………9分设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,那么2122834k x x k +=+.………10分所以212324234x x k x k +==+,3323(1)34k y k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222kk x k k k y +--=++. 在上述方程中令0=x ,得k kk k y 4314320+=+=.………12分当0k <时,34k k +≤-;当0k >时,34k k+≥.所以0012y -≤<,或0012y <≤.………13分综上,0y 的取值范围是[1212-.………14分 22、〔此题总分值16分〕此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值6分. (1)由得,0>x ,那么222)(≥+=xx x f ………1分 当且仅当xx 2=时,即2=x 等号成立, [)∞+=∴,22M ………3分所以,()22,∞-=M C U ………4分 (2)由题得⎪⎭⎫⎝⎛+-≥x x a 2………5分 函数⎪⎭⎫ ⎝⎛+-=x x y 2在⎥⎦⎤⎝⎛∈21,0x 的最大值为29-………9分29-≥∴a ………10分(3)设⎪⎪⎭⎫ ⎝⎛+002,x x x P ,那么直线PA 的方程为()0002x x x x y --=⎪⎪⎭⎫ ⎝⎛+-,即0022x x x y ++-=,………11分 由⎪⎩⎪⎨⎧++-==0022xx x y xy 得)1,1(0000x x x x A ++………13分 又⎪⎪⎭⎫⎝⎛+002,0x x B ,………14分 所以)1,1(00x x -=,)0,(0x PB -=,故1)(100-=-=⋅x x ………16分 23、〔此题总分值18分〕此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值8分.〔1〕因为点1,+n n P P 都在直线b kx y +=上,所以k x x S S nn nn =--++11,得n n kx x k =-+1)1(,………2分其中0111≠-=kx 、………3分 因为常数0≠k ,且1≠k ,所以11-=+k kx x n n 为非零常数、 所以数列{}n x 是等比数列、………4分〔2〕由n n x y 21log =,得6821-=⎪⎭⎫ ⎝⎛=n y n nx ,………7分所以81=-k k ,得78=k 、………8分 由n P 在直线上,得b kx S n n +=,………9分令1=n 得7871785111--=-=-=x x S b 、………10分〔3〕由n n x y 21log =知1>n x 恒成立等价于0<ny 、因为存在t 、∈s n ∈*N ,t s ≠使得点()s y t ,和点()t y s ,都在直线12+=x y 上、 由12+=t y s 与12+=s y t 做差得:)(2s t y y t s -=-、………12分易证{}n y 是等差数列,设其公差为d ,那么有d t s y y t s )(-=-,因为t s ≠, 所以02<-=d ,又由2)(2++=+s t y y t s ,而4)(22)2)(1()2)(1(111++-=--++--+=+t s y t y s y y y t s 得2)(24)(221++=++-s t t s y 得01)(21>-+=t s y即:数列是首项为正,公差为负的等差数列,所以一定存在一个最小自然数M , ………16分使,⎩⎨⎧<≥+001M M y y ,即⎩⎨⎧<-+-+≥--+-+0)2(1)(20)2)(1(1)(2M t s M t s 解得2121++≤<-+t s M t s因为*∈N M ,所以t s M +=,即存在自然数M ,其最小值为t s +,使得当M n >时,1>n x 恒成立、………18分 〔其它解法可参考给分〕。

2019年上海民办杨浦实验学校高考数学选择题专项训练(一模)

2019年上海民办杨浦实验学校高考数学选择题专项训练(一模)

2019年上海民办杨浦实验学校高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。

第 1 题:来源:辽宁省大连经济技术开发区得胜高级中学2019届高三数学上学期第二次月考试题理已知锐角满足,则的值为()A.B. C. D.【答案】A第 2 题:来源: 17年山西省临汾市高考数学二模试卷(文科)含答案解析.设复数z=,则z=()A.1+i B.1﹣i C.1 D.2【答案】C【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由求解.【解答】解:∵z==,∴z=|z|2=1.故选:C.第 3 题:来源:山东省烟台市2016_2017学年高二数学下学期期末自主练习试题理试卷及答案已知函数(且)是上的减函数,则的取值范围是()A. B. C. D.【答案】 B第 4 题:来源:湖北省武汉市2017届高三四月调研测试数学试题(理)含答案执行如图所示的程序框图,则输出的A.7B. 8C.9D. 10【答案】C第 5 题:来源:重庆市巴蜀中学2018_2019学年高一数学上学期期中复习试题函数的定义域为()A. B. C.D.【答案】C【解析】要使函数有意义,则,解得,则函数的定义域是,故选C.第 6 题:来源:贵州省遵义市2016_2017学年高一数学下学期第一次月考试题试卷及答案已知,那么的值是()A. B. C. D.【答案】D第 7 题:来源:新疆维吾尔自治区阿克苏市2017_2018学年高二数学上学期第二次月考试题试卷及答案理若命题:“”为假命题,则实数的取值范围是()A. B. C. D.【答案】B【解析】由题意可得:对于∀,恒成立,当a=0时,命题成立,否则,结合二次函数的性质应满足:,求解关于实数a的不等式可得:,综上可得:实数的取值范围是.第 8 题:来源: 2018届高考数学文科总复习课时跟踪检测试卷(14)导数与函数的单调性试卷及答案函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )【答案】C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.第 9 题:来源:山东省威海市2017届高考第二次模拟考试数学试题(理)含答案过点P(1,2)的直线l与圆相切,若直线与直线l垂直,则a=(A) (B) (C) (D)2【答案】B第 10 题:来源:湖南省岳阳县、汨罗市2017_2018学年高二数学10月月考试题理试卷及答案已知直线和平面,下列推理错误的是()A、且B、∥且C、∥且∥D、且∥或【答案】 C第 11 题:来源:山西省运城市空港新区2017_2018学年高二数学上学期第一次月考试题理试卷及答案正方体的内切球和外接球的半径之比为A. B. C. D.【答案】D第 12 题:来源: 2016_2017学年浙江省东阳市高二数学下学期期中试题试卷及答案是虚数单位,则复数的虚部为()A. B. C.D.【答案】C第 13 题:来源:福建省霞浦县2018届高三数学上学期第二次月考试题理已知,且为第二象限角,则A. B. C. D.【答案】B第 14 题:来源:四川省成都市郫都区2017_2018学年高二数学上学期第一次月考试题试卷及答案理下列命题是真命题的是A.若,则 B.若,则C.若,则 D.若,则【答案】 B第 15 题:来源:江西省横峰县2017_2018学年高二数学上学期第一次月考试题理试卷及答案设x,y满足x+4y=40,且x,y都是正数,则lgx+lgy的最大值是( )A. 40 B.10 C.4 D.2【答案】D第 16 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高二数学下学期期中试题理若复数满足,则A.1B.C.2D.【答案】D第 17 题:来源:内蒙古包头市第四中学2018_2019学年高一数学上学期期中模拟测试试题(一)下列函数中,在(0,+∞)上是减函数的是()A. B. C. D.【答案】C第 18 题:来源: 2017届安徽省黄山市高三第二次模拟考试理数试题含答案解析《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A. 种B. 种C. 种D. 种【答案】A第 19 题:来源:云南省昆明市2017届高三数学仿真试卷理(含解析)设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A. p B.1﹣p C.1﹣2p D.﹣p【答案】D【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,利用P(ξ>1)=p,即可求出P(﹣1<ξ<0).【解答】解:∵随机变量ξ服从正态分布N(0,1),∴正态曲线关于ξ=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p.故选:D.第 20 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学下学期期中试题(普通班)文函数的导数是()A. B. C . D.【答案】C第 21 题:来源:甘肃省武威市第六中学2018_2019学年高一数学下学期第三次学段考试试题关于x的不等式(a2-1)x2-(a-1)x-1<0的解集为R,则a的取值范围为()【答案】D第 22 题:来源:湖北省宜昌市葛洲坝中学2018_2019学年高二数学上学期期中试题理已知点,,,直线将分割为面积相等的两部分,则的取值范围是( )A.(0,)B.C.D.【答案】B第 23 题:来源:四川省成都市郫都区2018届高三数学阶段测试(期中)试题理试卷及答案已知命题;命题;则下列命题为真命题的是()A、 B、 C、 D、【答案】第 24 题:来源:甘肃省会宁县第一中学2018_2019学年高二数学上学期期中试题理各项都为正数的数列中,首项,且点在直线上,则数列的前项和为()A.B.C.D.【答案】B第 25 题:来源:陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三数学3月联考试卷理(含解析)如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.第 26 题:来源:江西省新余市两校2018届高三数学第一次联考试题理试卷及答案已知为的重心,点为内部(含边界)上任一点,分别为上的三等分点(靠近点),(),则的最大值是()A. B. C. D.【答案】C第 27 题:来源:黑龙江省双鸭山市2017_2018学年高二数学9月月考试题理试卷及答案设双曲线上的点P到点的距离为15,则P点到的距离是()A.7 B.23 C.5或23 D.7或23 【答案】D第 28 题:来源:重庆市巴蜀中学2018_2019学年高一数学上学期期中复习试题已知函数,,则函数的图象大致为()A.B.C.D.【答案】B【解析】由题意得,函数为偶函数,∴函数为偶函数,其图象关于轴对称,故只需考虑时的情形即可.由函数的取值情况可得,当时,函数的取值情况为先负、再正、再负,所以结合各选项得B满足题意.故选B.第 29 题:来源:甘肃省镇原县二中2018_2019学年高二数学上学期期末考试试题理下列说法正确的是( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“∃x0∈R,使得x+x0+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若α=β,则sin α=sin β”的逆否命题为真命题【答案】D“x2=1”是“x=1”的必要不充分条件,“x=-1”是“x2-5x-6=0”的充分不必要条件,A、B均不正确;C中命题的否定应该为“∀x∈R,均有x2+x+1≥0”,故C不正确.第 30 题:来源:黑龙江省鸡西市2016_2017学年高二数学下学期期末考试试题理已知a>2,b>2,则a+b与ab的大小关系是( )A.a+b>ab B.a+b<abC.a+b≥ab D.a+b≤ab【答案】B第 31 题:来源:湖北省襄阳市2017届高三第三次适应性考试数学试题(理)含答案若圆与直线交于不同的两点,则实数的取值范围为()A. B. C. D.【答案】C第 32 题:来源:河北省武邑中学2018_2019学年高二数学上学期开学考试试题理(含解析)已知的面积为,且,则等于( )A. 30°B. 30°或150°C. 60°D. 60°或120°【答案】D【详解】由面积公式得,∴,A=60°或120°,第 33 题:来源:山西省太原市小店区2017_2018学年高二数学上学期9月月考试题试卷及答案等于()A. B. C. D.【答案】C第 34 题:来源: 2016-2017学年重庆市璧山中学高一数学上学期期中试题试卷及答案下列函数:①f(x)=x3+2x2;②f(x)=x2+;③f(x)=x5+x2中,非奇非偶函数有()个A.0 B.1 C.2 D.3 【答案】D第 35 题:来源:宁夏石嘴山市2018届高三数学下学期入学考试试题文已知是定义在上的偶函数,且在上单调递增,若实数满足,则的取值范围是()A. B. C. D.【答案】C第 36 题:来源:湖北省武汉市蔡甸区两校2017_2018学年高二数学上学期12月联考试题理试卷及答案运行如图所示的程序框图,若输出的结果为,则判断框内可以填A. B.C. D.【答案】B第 37 题:来源:西藏拉萨市2016_2017学年高二数学下学期第六次月考(期中)试卷理(含解析)计算定积分(2x﹣)dx的值是()A.0 B. C. D.【答案】B【考点】67:定积分.【分析】根据定积分的计算法则计算即可.【解答】解:(2x﹣)dx=(x2+)|=(9+)﹣(1+1)=,故选:B.第 38 题:来源:安徽省滁州市定远县育才学校2018_2019学年高二数学下学期期中试题(普通班)文对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(ui,vi)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关【答案】C第 39 题:来源:安徽省舒城中学2016-2017学年高二数学寒假作业第11天常用逻辑用语理下列四个命题中的假命题是()A.若方程x2+(a-3) x+a=0有一个正实根,一个负实根,则a<0B.函数的图像既关于原点对称,又关于y轴对称C.函数f (x)的值域是[-2,2],则函数f (x+1)的值域为[-3,1]D.曲线y=|3-x2|和直线y=a的公共点个数是m,则m的值不可能是1【答案】C第 40 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.1利用导数判断函数的单调性课后导练新人教B版选修1_120171101245若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是( )A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]【答案】D。

上海杨浦区2019高三重点测试数学试卷(理科)及参考解析

上海杨浦区2019高三重点测试数学试卷(理科)及参考解析

上海杨浦区2019高三重点测试数学试卷(理科)及参考解析2018.3.考生注意:1、答卷前,考生务必在答题纸写上姓名、考号、 2、本试卷共有23道题,总分值150分,考试时间120分钟、一、填空题〔本大题总分值56分〕本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否那么一律得零分、1、假设线性方程组的增广矩阵为135246⎛⎫⎪⎝⎭,那么其对应的线性方程组是、2、51)的展开式中2x 的系数是〔结果用数字作答〕.3、假设双曲线2221(0)9x y a a -=>的一条渐近线方程为023=-y x ,那么a =_________、4、计算:2111lim(1)333n n →∞++++=. 5、假设直线l 过点(2,0)-,且与圆221x y +=相切,那么直线l 的斜率是. 6、函数2)cos (sin )(x x x f -=的最小正周期为.7、一支田径队有男运动员48人,女运动员36人,假设用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,那么抽取男运动员的人数为___________.8、假设行列式093114212=-x x,那么=x 、 9、如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面 内的两个测点C 与D .测得 75=∠BCD , 60=∠BDC ,30=CD 米,并在点C 测得塔顶A 的仰角为 60,那么塔高=AB ________米.10.在不考虑空气阻力的条件下,火箭的最大速度v 〔米/秒〕和燃料的质量M 〔千克〕、火箭〔除燃料外〕的质量m 〔千克〕的关系式是)1ln(2000mMv +=.当燃料质量与火箭〔除燃料外〕的质量之比为时,火箭的最大速度可达12〔千米/秒〕、 11.圆柱形容器内部盛有高度为8cm 的水,假设放入三个相同的球〔球的半径与圆柱的底面半径相同〕后,水恰好淹没最上面的球〔如下图),那么球的半径是 cm 、12.设幂函数3)(x x f =,假设数列{}n a 满足:20121=a ,且)(1n n a f a=+,)(*∈Nn 那么数列的通项=n a 、13.对任意一个非零复数z ,定义集合{}*∈==N n zA nz ,ωω,设α是方程012=+x 的一个根,假设在αA 中任取两个不同的数,那么其和为零的概率为P =(结果用分数表示)、 14、函数11y x=-的图像与函数2sin y x π=)42(≤≤-x 的图像所有交点的横坐标之和等于__________.二、选择题〔本大题总分值20分〕本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否那么一律得零分. 15、以下函数中既是奇函数,又在区间()1,1-上是增函数的为()、()A y x =()B sin y x = ()C x x y e e -=+()D 3y x =-16、执行如下图的程序框图,输出的S 值为〔〕()A 1.()B 1-.()C 2-.()D 0.17、“tan x =5π6x =”()、()A 充分非必要条件.()B 必要非充分条件.()C 充要条件.()D 既非充分也非必要条件.18、点(1,1)A --、假设曲线G 上存在两点,B C ,使ABC △为正三角形,那么称G 为Γ型曲线、给定以下三条曲线:①3(03)y x x =-+≤≤;②(0)y x =≤≤;③1(0)y x x=->、 其中,Γ型曲线的个数是()、()A .0()B .1()C .2()D .3三、解答题〔本大题总分值74分〕本大题共5题,解答以下各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19、〔此题总分值12分〕此题共有2个小题,第1小题总分值4分,第2小题总分值8分、 关于x 的不等式022<-+mx x 解集为()2,1-. 〔1〕求实数m 的值;〔2〕假设复数ααsin cos ,221i z i m z +=+=,且21z z ⋅为纯虚数,求α2tan 的值. 20、〔此题总分值14分〕此题共有2个小题,第1小题总分值7分,第2小题总分值7分、1A ABECD1B 1C 1D 如下图,直四棱柱1111ABCD A B C D -的侧棱1AA 长为a ,底面A B C D 是边长2AB a =,BC a =的矩形,E 为11C D 的中点,(1)求证:DE ⊥平面EBC ; (2)求点C 到平面EBD 的距离. 21、〔此题总分值14分〕此题共有2个小题,第1小题总分值6分,第2小题总分值8分、 设R a ∈,122)(2+-⋅=-x x a a x f 为奇函数.〔1〕求函数11242)()(-+-+=xxx f x F 的零点; 〔2〕设)1(log 2)(2kx x g +=,假设不等式1()()f x g x -≤在区间12[,]23上恒成立,求实数k 的取值范围.22、〔此题总分值16分〕此题共有3个小题,第1小题总分值4分,第2小题总分值6分,第3小题总分值6分. 数列12:,,,n n A a a a .如果数列12:,,,n n B b b b 满足1n b a =,11k k k k b a a b --=+-,其中2,3,,k n =,那么称n B 为n A 的“生成数列”.〔1〕假设数列41234:,,,A a a a a 的“生成数列”是4:5,2,7,2B -,求4A ;〔2〕假设n 为偶数,且n A 的“生成数列”是n B ,证明:n B 的“生成数列”是n A ; 〔3〕假设n 为奇数,且n A 的“生成数列”是n B ,n B 的“生成数列”是n C ,….依次将数列n A ,n B ,n C ,…的第(1,2,,)i i n =项取出,构成数列:,,,i i i i a b c Ω.探究:数列i Ω是否为等差数列,并说明理由.23、〔此题总分值18分〕此题共有2个小题,第1小题总分值4分,第2小题的①总分值6分;②总分值8分.如图,椭圆14:221=+y x C ,x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.〔1〕求实数b 的值;〔2〕设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点B A 、,直线MB MA 、分别与1C 相交与、D E .①证明:0=⋅ME MD②记△B MA ,△MDE 的面积分别是12,S S . 假设21S S =λ,求λ的取值范围. .上海市杨浦区2018届高三第二学期模拟测试〔一〕 一、填空题〔本大题总分值56分〕2018.3.16 1.⎩⎨⎧=+=+64253y x y x ;2.5;3.理,2;4.理23; 5.理33±; 6.理π;7.12;8.理2或3-;9.245;10.16-e ;11.4; 12.理132012-n ;13.,理31;14理8; 【二】选择题〔本大题总分值20分〕本大题共有4题 15.B ;16.D ;17.B ;18.C ;【三】解答题〔本大题总分值74分〕本大题共5题 19.解:(1)4+2m -2=0,解得m=-1(2)21z z ⋅=(-cos α-2sin α)+(-sin α+2cos α)i 为纯虚数 所以,-cos α-2sin α=0,tan α=-12, 所以,α2tan =-4320.(1)证明:由EC ED ==,2CD a EC ED =⇒⊥,……2分BC ⊥平面11CC D D BC DE ⇒⊥,……4分即DE 垂直于平面EBC 中两条相交直线, 因此DE ⊥平面EBC,……7分(2)[理]解1:结合第(1)问得,由a DE a DB 2,5==,……8分a BE 3=,BE DE ⊥,所以,2263221a a a S BED ==∆……10分1A A BEC()D O 1B 1C 1D xyz又由BCD E BED C V V --=得32312631a a h=……12分 故C 到平面BDE 的距离为a h 36=……14分 解2:如图建立直角坐标系,那么(0,,)E a a ,(0,,)OE a a =,(,2,0)B a a ,(,2,0)OB a a =,……9分 因此平面EBD 的一个法向量可取为(2,1,1)n =-, 由(0,2,0)C ,得(1,0,0)BC =-,……11分因此C 到平面BDE 的距离为||6||n BC d n ⋅==.〔其他解法,可根据【解1】的评分标准给分〕 21.解:由f(x)是奇函数,可得a=1,所以,f 〔x 〕=2121xx-+ 〔1〕F 〔x 〕=2121x x -++42121xx --+=2(2)2621x x x +-+ 由2(2)26x x+-=0,可得2x =2,所以,x=1,即F 〔x 〕的零点为x =1。

上海市杨浦区2019届高三一模数学卷word版(附详细答案)

上海市杨浦区2019届高三一模数学卷word版(附详细答案)

杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则UA = ▲ .2.已知扇形的半径为6,圆心角为3π,则扇形的面积为 ▲ . 3.已知双曲线221x y -=,则其两条渐近线的夹角为 ▲________.4. 若nb a )(+展开式的二项式系数之和为8,则n = ▲________. 5. 若实数,x y 满足 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,高)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ⊆, 则实数a 的取值范围为▲________.9. 在行列式中,第3行第2列的元素的代数余子式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若︒=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最小正周期 ▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成立,则实数a 的最大值为 ▲________. 12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满足)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P . 若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满足条件274434651xx--()f x 1()y f x =+的k 的值为▲________.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 下列函数中既是奇函数,又在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5人,其中女队员2人. 现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+⎛⎫=⎪⎝⎭b f =,sin 2sin cosc f θθθ⎛⎫= ⎪+⎝⎭,则c b a ,,的大小关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)-()C . [3,5]- ()D . [0,7)三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)()A ()B ()C ()D )2,0(πθ∈如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动. (1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1小题满分7分,第2小题满分7分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且5cos 13B =. (1)若4sin 5A =,求cos C ; (2)若4b =,求证:5-≥⋅BC AB .19. (本题满分14分,第1小题满分6分,第2小题满分8分)上海某工厂以x 千克/小时的速度匀速生产一种产品,每一小时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20. (本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线x y C 4:2=上存在不同的两点B A ,,满足PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ∆面积的最小值.21. (本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分) 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不小于K 的正整数n ,有1n n b b += 成立?请说明理由.杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷评分标准 2018.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.一、 填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果. 1. ;2. ;3.2π; 4. 3 ;5. 11,22⎡⎤-⎢⎥⎣⎦;6. π12 ;{}1,26π7. )1,21()21,0( ;8. [1,0]- ;9. 1- ; 10. π ;11. 2 ;12. 3或4二、 选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.;14. ;15. ;16.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)…… 6分(2)只需证明因为,故,又, 故,所以;……10分 中,,点是的中点,故 ……12分 所以,,故无论点在边的何处,都有. ……14分(用向量证明类似评分)22. (本题满分14分,第1小题满分7分,第2小题满分7分) 解:(1)在中,由得,. .故为锐角. ……3分 .∴.……7分 (2)由余弦定理得,, 当且仅当时等号成立..∴. ……14分23. (本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)根据题意,30)315(2≥-+x x ,得03145≥--xx ……2分 解得3≥x 或51-≤x ……4分又101≤≤x ,可得103≤≤x ……6分(2)设利润为y 元,则)315(900xx x y -+=, ……8分 ()C ()B ()D ()A 1133P ADE ADE V PA S -∆=⋅⋅=AF PBC ⊥面PA ABCD ⊥面PA BC ⊥BC AB ⊥BC AB ⊥面P BC AF ⊥PAB ∆PA AB =F PB AF PB ⊥AF PBC ⊥面E BC AF PE ⊥ABC ∆5cos 13B =12sin 13B =12sin sin ,13B A =>B A ∴>A 3cos 5A ∴=33cos cos()cos cos sin sin 65C A B A B A B =-+=-+=2222cos b a c ac B =+-22101016162131313a c ac ac ac ac =+-≥-=a c =13ac ∴≤5cos()cos 513AB BC ac B ac B ac ⋅=π-=-=-≥-]1261)611(3[9002+--=x , ……12分故6=x 时,4575max =y ……14分 24. (本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)解:(1)焦点到准线的距离2; ……4分 (2)设),(),,(2211y x B y x A ,则⎪⎩⎪⎨⎧+=+=,24)2(,4121121P Px x y y x y ……6分 整理得,0822121=-+-P P P y x y y y ,同理,0822222=-+-P P P y x y y y , ……8分 所以,21,y y 是关于y 的方程08222=-+-P P P y x y y y 的两根,故M 的纵坐标为P y y y =+221,即M P y y =; ……9分(3)若直线x AB ⊥轴,则M 的纵坐标为0, 因此,)0,1(-P ,则B A ,两点的纵坐标满足082=-y ,22±=y 故)22,2(),22,2(-B A ,2624321=⨯⨯=∆PAB S ; ……10分若直线AB 的斜率存在,方程为)(121211x x x x y y y y ---=-,即121222121)41()(41y y x y y y y y +---=,整理得,2121214y y y y x y y y +++=,将⎩⎨⎧-==+,8,222121P P P y x y y y y y 代入得,直线PPP P y y x x y y AB 282:2-+=, ……12分故)4)(4(2)4(841||41||2222212P P P P P P P x y y x y y y y y AB -+=-⨯+=-+=, 而点P 到直线AB 的距离为4|4|2341|282|2222+-=+--+=P P P PP PP P P P y y x y y y y x x y h , ……14分 故232)4(423||21P P PABx y h AB S -=⨯=∆, 而)0(1422<=+P PPx y x ,故232232])12(5[423)444(423+-=+--=∆P P P PABx x x S , ……15分由(1,0)P x ∈-得,2444(4,5]P P x x --+∈,PAB S ∆∈ 综上,PAB ∆的面积的最小值为26. ……16分 25. (本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分) 解:(1)因为8,3,2321===a a a ……2分 所以52823=+=b ……4分 (2) (必要性)当数列是等差数列时,设其公差为 当 时, ,所以,所以,, 当 时, ,所以,所以,, 当 时, ,所以,所以,综上,总有 所以 ,所以数列是等差数列 ……6分(充分性) 当数列是等差数列时,设其公差为 因为, {}n a d d >010n n a a d --=>1n n a a ->nn M a =1n m a =d <010n n a a d --=<1n n a a -<1nM a =n n m a =d =010n n a a d --==1n n a a -=1nM a =n n m a =12n n a a b +=1111222n n n n a a a a db b --++-=-={}n b {}n b d **11111+2222n n n n n n n n n n M m M m M M m m b b d -----+----=-==根据的定义,有以下结论:,且两个不等式中至少有一个取等号当时,则必有,所以,所以是一个单调递增数列,所以,,所以 所以,即为等差数列当时,则必有,所以所以是一个单调递减数列,所以,,所以 所以,即为等差数列当时,0222211111=-+-=+-+=------n n n n n n n n n n m m M M m M m M b b 因为中必有一个为0, 根据上式,一个为0,则另一个亦为0, 所以 所以为常数数列,所以为等差数列综上,结论得证. ……9分(3)存在 ……10分假设不存在, 因为,即 或者,所以对任意,一定存在,使得符号相反 ……12分 所以在数列中存在,其中 且 ,……14分因为,即n n M m ,11n n n n M M m m --≥≤,d >*01n n M M ->11n n n n a M M a --=>≥{}n a n n M a =1n m a =*11111222n n n n n n a a a a a a b b d ---++--=-==*12n n a a d --={}n a d <*01n n m m -<11n n n n a m m a --=<≤{}n a 1n M a =n n m a =*11111222n n n n n n a a a a a a b b d ---++--=-==*12n n a a d --={}n a d =*011n n n n M M m m ----,11,,nn n n M M m m --=={}n a {}n a ||1nb =1n b =1n b =-*K ∈N i K ≥1,i i b b +{}n b 1231,,,...,,....i i k k k k k b b b b b +123......i k k k k <<<<12311.......i i k k k k k b b b b b +-======1231111111......i i k k k k k b b b b b ++++++======11,1i i k k b b +=-=111,122i ii i k k k k M m M m ++++=-=注意到,且有且仅有一个等号成立, 所以必有……16分所以,所以 因为,所以 ,所以 所以 所以 所以 所以…… 所以 所以所以,这与矛盾,所以假设错误, ……18分所以存在,使得任意,,有.11,i i i i k k k k M M m m ++≥≤11,i i i ik k k k M M m m ++>=14i i k k M M +=+114i i i k k k a M M ++==+1i i k k ->11i i k k -≥+-1+1i i k k M M ≥-11+144i i i k k k a M M +=+≥+-11+14i i k k a a +≥+-11+14i i k k a a +-≥21114k k a a ++-≥32114k k a a ++-≥43114k k a a ++-≥1114m m k k a a -++-≥11+14(1)m k k a a m +-≥-11+14(1)m k k a a m +≥+-101011+14(10101)201840362018k k a a +≥+->-+=||2018n a <*K ∈N n n K ≥1n n b b +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市杨浦区2019届高三一模数学试卷
2018.12
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)
1. 设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则U A =
2. 已知扇形的半径为6,圆心角为3
π,则扇形的面积为 3. 已知双曲线221x y -=,则其两条渐近线的夹角为 4. 若()n a b +展开式的二项式系数之和为8,则n = 5. 若实数x 、y 满足221x y +=,则xy 的取值范围是
6. 若圆锥的母线长5()l cm =,高4()h cm =,则这个圆锥的体积等于
3()cm
7. 在无穷等比数列{}n a 中,121lim()2
n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是
8. 若函数的定义域为集合A ,集合(,1)B a a =+,且B A ⊆,则实数a 的 取值范围为
9. 在行列式中,第3行第2列的元素的代数余子式记作()f x ,则
1()y f x =+的零点是
10. 已知复数
1cos 2()i z x f x =+,2cos )i z x x =++(x ∈R ,i 为虚数单位),在复平面上,设复数1z 、2z 对应的点分别为1Z 、2Z ,若1290Z OZ ︒∠=,其中O 是坐标原点,则函数()f x 的最小正周期为
11. 当0x a <<时,不等式恒成立,则实数a 的最大值为 12. 设d 为等差数列{}n a 的公差,数列{}n b 的前n 项和n T ,满足(n ∈*N ), 且52d a b ==,若实数23{|}k k k m P x a x a -+∈=<<(k ∈*N ,3k ≥),则称m 具有性质k P ,
若n H 是数列{}n T 的前n 项和,对任意的n ∈*N ,21n H -都具有性质k P ,则所有满足条件的
k 的值为
二. 选择题(本大题共4题,每题5分,共20分)
13. 下列函数中既是奇函数,又在区间[1,1]-上单调递减的是( )
A. ()arcsin f x x =
B. ()lg ||f x x =
C. ()f x x =-
D.
()cos f x x =
14. 某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )
A.
310 B. 35 C. 25 D. 2
3
15. 已知
sin ()log f x x θ=,,设,b f =,
,则a 、b 、c 的大小关系是( )
A. a c b ≤≤
B. b c a ≤≤
C. c b a ≤≤
D.
a b c ≤≤
16. 已知函数2()2x f x m x nx =⋅++,记集合{|()0,}A x f x x ==∈R ,集合
{|[()]0,}B x f f x x ==∈R ,若A B =,且都不是空集,则m n +的取值范围
是( )
A. [0,4)
B. [1,4)-
C. [3,5]-
D. [0,7)
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB
的中心,点E 在边BC 上移动. (1)求三棱锥E PAD -的体积;
(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .
18. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且. (1)若,求cos C ;
(2)已知4b =,证明:5AB BC ⋅≥-.
19. 上海某工厂以x 千克/小时的速度匀速生产某种产品,每一小时可获得的利润是 元,其中110x ≤≤.
(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.
20. 如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A 、
B ,满足PA 、PB 的中点均在抛物线
C 上.
(1)求抛物线C 的焦点到准线的距离;
(2)设AB 中点为M ,且(,)P P P x y ,(,)M M M x y ,证明:P M y y =; (3)若P 是曲线(0x <)上的动点,求△PAB 面积的最小值.
21. 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令,n ∈*N . (1)若,请写出3b 的值;
(2)求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;
(3)若对任意n ,有||2018n a <,且||1n b =,请问:是否存在K ∈*N ,使得对于任意不小于K 的正整数n ,有1n n b b +=成立?请说明理由.
参考答案
一. 填空题
1. {1,2}
2. 6π
3. 2
π 4. 3 5. 6. 12π 7. 8. [1,0]- 9. 1x =- 10. π 11. 2 12. 3或4
二. 选择题
13. C 14. B 15. D 16. A
三. 解答题
17.(1);(2)略. 18.(1)33
;(2)略.
65
19.(1)[3,10];(2)6
x ,最大值为4575.
20.(1)2;(2)略;(3)
21.(1)5;(2)略;(3)略.。

相关文档
最新文档