二次函数的性质_课件PPT

合集下载

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数 y=ax2的图象及其性质ppt课件

 二次函数 y=ax2的图象及其性质ppt课件

x轴
______对称.
如果已知y=ax2 (a≠0)的图象,可通过
2的图象.
翻折
_________更方便地得到y=-ax

当a>0时,抛物线开口向___;
当a<0时,抛物线开口向___.

y
7
6
5
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
-5
-6
y=2x2
1 2 3 4 5
x
y=-2x2
第1章 二次函数
1.2 二次函数的图象
第1课时 二次函数 y=ax²的图象及其性质
学习目标
知识与技能 :能够利用描点法画函数y=ax2的图象。
过程与方法 :
①经历二次函数y=ax2图象的作法。
②探索二次函数y=ax2性质,获得利用图象研究函数性质的经验。
重点:会画函数y=ax2的图象,并根据图象认识和理解二次函数y=ax2
0 时, y 随x 的增大而减小
当 x=0 时, y 最大值 =0
16
探究新知
例1 已知二次函数y=ax2 (a≠0)的图象经过点(-2,-3).
(1)求a的值,并写出这个二次函数的表达式.
解:把点(-2,-3)的坐标代入y=ax2 ,
得-3=a(-2)2,
解得 a=-

.

所以这个二次函数的表达式是y=-
0.5x2的图象,它们的共同特点是( D )
A.都关于x轴对称,抛物线开口向上
B.都关于原点对称,顶点都是原点
C.都关于y轴对称,抛物线开口向下
D.都关于y轴对称,顶点都是原点
24

2二次函数的图像和性质~22.PPT课件(人教版)

2二次函数的图像和性质~22.PPT课件(人教版)

A.50 m
B.100 m
C.160 m
D.200 m
C
).
22.1 二次函数的图像和性质
分析
建立如图22-1-9所示的平面直角坐标 系, 根据所建平面直角
坐标系的特点可设函数解析 式为y=ax2+c(a≠0). 由题意, 得B(0, 0.5),
C(1, 0), 分别将B, C两点的坐标代入y=ax2+c(a≠0), 得 a=-0.5, c=0.5, ∴函
向下(k<0)平移 |k|个单位长度, 得到的抛物线的函数解析式是
y=a(x-h)2+k.
22.1 二次函数的图像和性质
题型五 二次函数值的大小比较
例题5 已知二次函数y=2(x-1)2+k的图像上 有A(
C(2- , y3)三点, 则y1, y2, y3 的大小关系是(
A.y1>y2>y3
B.y2>y1>y3
数解析式为y=-0.5x2+0.5(-1≤x≤1). 当x=0.2时, y=0.48;当x=0.6时,
y=0.32. ∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)= 1.6(m), ∴所需不锈钢
支柱的总长度至少为1.6×100= 160(m).
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1.1 二次函数
2
22.1.2 二次函数y=ax 的图像和性质
2
22.1.3 二次函数y=a(x-h) +k的图像
和性质
考场对接
22.1 二次函数的图像和性质

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

5.二次函数的图像和性质课件

5.二次函数的图像和性质课件

-1
当x=0时,y取最____值____。
02
知识精讲
平移口诀1
函数y=x2+1的图像可以由函数y=x2的图像向上平移一个单位长度得到;
函数y=x2-1的图像可以由函数y=x2的图像向下平移一个单位长度得到;
函数y=-x2+1的图像可以由函数y=-x2的图像向上平移一个单位长度得到;
函数y=-x2-1的图像可以由函数y=-x2的图像向下平移一个单位长度得到。
的图像和性质
01
情境引入
Q1:用描点法画出y=(x+3)2的图像,并与y=x2作对照
x

y=(x+3)2 …
x
y=x2
-6 -5
9 4


-4
1
-3
9
-3
0
-2
4
-2
1
-1
1
-1
4
0
0
0
9
1
1


2
4
当自变量偏移3个单位长
将点(1,1)向左平移3个
度时,两个函数的值相同
单位长度得(-2,1)……
3
【平移口诀1】上加下减
02
知识精讲
练一练1:根据平移口诀1,完成下列填空:

4
向_____平移_____个单位得到

8
向_____平移_____个单位得到

3
向_____平移_____个单位得到

6
向_____平移_____个单位得到
02
知识精讲
练一练2:根据练一练1平移后的图像,完成下列填空:
5
y=-2x2+3

二次函数y=ax2的图象和性质ppt课件

二次函数y=ax2的图象和性质ppt课件

例4 如图, 四个二次函数的图象分别对应 ① y=ax2 ;② y=bx2;
③ y=cx2;④ y=dx2,且①与③,②与④分别关于x 轴对称.
(1)比较a,b,c,d 的大小; (2)说明a 与c,b 与d 的数量关系.
解:(1)由抛物线的开口方向,知 a > 0,b > 0,c < 0,d < 0,
由抛物线的开口大小,知 |a| > |b|,|c| > |d|, 因此a > b,c < d. ∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称,
∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
课堂练习
1、下列函数中,y总随x增大而减小的是( B )
归纳总结
位置开 开口向上,在x轴上方 开口向下,在x轴下方
口方向
a的绝对值越大,开口越小
对称性 顶点最值
关于y轴对称,对称轴方程是直线x=0 顶点坐标是原点(0,0)
当x=0时,y最小值=0 当x=0时,y最大值=0
增减性
在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
1、如右图,观察函数y=( k-1)x2的图象, 则k的取值范围是 k>1 .
复习引入
1.二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?





3.一次函数的图象是一条 直线.
4.通常怎样画一个函数的图象? 列表、描点、连线
那么,二次函数的图象会是什么样的图形呢?这节课我们 来学习最简单的二次函数y=ax2的图像
不同点: a的值越大,开口越小.

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件
二次函数的图像和性质ppt课件
contents
目录
• 引言 • 二次函数的定义和公式 • 二次函数的图像 • 二次函数的性质 • 二次函数的实际应用 • 总结与回顾 • 课后作业与思考题
01 引言
课程背景介绍
01
二次函数是数学中基础知识之一 ,掌握好二次函数的图像和性质 对于后续学习代数、几何等数学 领域都有重要的意义。
二次函数的定义
01
02
03
定义
一般地,形如$y = ax^2 + bx + c$($a$、$b$、 $c$是常数,$a \neq 0$ )的函数叫做二次函数。
解释
二次函数是包含未知数的 二次多项式的函数,其未 知数的最高次数为2。
示例
$y = 2x^2 + 3x - 4$是 一个二次函数。
二次函数的公式
01
02
03
04
当x增大时,如果a>0,y值会 随之增大;如果a<0,y值会
随之减小。
当x增大时,如果a>1,y值会 快速增大;如果0<a<1,y值
会缓慢增大。
当x减小时,如果a>0,y值会 随之减小;如果a<0,y值会
随之增大。
当x减小时,如果a>1,y值会 快速减小;如果0<a<1,y值
会缓慢减小。
减。
当$\Delta = 0$时,函
数有一个实根;当
$\Delta < 0$时,函数
没有实根。
极值:当$a > 0$时,二 次函数在区间$(-\infty, -b/2a)$上单调递增,在 区间$(-b/2a,+\infty)$ 上单调递减,此时$b/2a$为极小值点;当 $a < 0$时,二次函数在 区间$(-\infty, -b/2a)$ 上单调递减,在区间$(b/2a,+\infty)$上单调递 增,此时$-b/2a$为极 大值点。

二次函数的图像和性质(共48张PPT)

二次函数的图像和性质(共48张PPT)
C、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向上,对称轴 x= >0,应在 y 轴的右侧,故符合 题意; D、对于直线 y=ax+b 来说,由图象可以判断,a>0,b>0;而对于抛物线 y=ax2﹣bx 来说,图象开口向下,a<0,故不合题意,图形错误; 故选:C.
即当 x<-2ba时, 当 x<-2ba时,y 随 x y 随 x 的增大而减
的增大而增大;在对 小;在对称轴的右
称轴的右侧,即当 x 侧,即当 x>-2ba >-2ba时,y 随 x 的 时,y 随 x 的增大
增大而减小,简记为 而增大,简记为
“左增右减” “左减右增”
15
最值
抛物线有最 抛物线有最
1、二次函数的图像和性质
函数
二次函数 y=ax2+bx+c
(a,b,c 为常数,a≠0)
a<0
a>0
图象
13
开口 对称轴、顶点
抛物线开口向 抛物线开口向
上,并向上无限 下,并向下无限
延伸
延伸
对称轴是x=-
b 2a
,顶点坐标是
-2ba,4ac4-a b2
14
增减性
在对称轴的左侧, 在对称轴的左侧,即
低点,当 高点,当
x=-2ba时, x=-2ba时,
y 有最小值, y 有最大值,
y = 最小值
y = 最大值
4ac-b2 4a
4ac-b2 4a
16
2、二次函数y=ax2+bx+c的图象特征
与系数a,b,c的关系
项目 字母
字母的符号
图象的特征
a>0 a
a<0

二次函数的图像与性质-完整版课件

二次函数的图像与性质-完整版课件

二次函数与一元二次方程关系
一元二次方程 $ax^2 + bx + c = 0$($a neq 0$)的解即为二次函数 $y = ax^2 + bx + c$ 与 $x$ 轴交点的横坐标。
当 $Delta = b^2 - 4ac > 0$ 时,二次函数与 $x$ 轴有两个交点;当 $Delta = 0$ 时,有 一个交点;当 $Delta < 0$ 时,没有交点。
• 分析:根据题意设交点坐标为$(-1, y_1)$和$(3, y_2)$,代入直线方程可得两个方程。又因为这两个点也在抛 物线上,所以代入抛物线方程也可得两个方程。联立这四个方程即可求出二次函数的解析式。
• 示例2:已知二次函数$y = ax^2 + bx + c (a • eq 0)$的图像与直线$y = x + m (m • eq 0)$相交于两点,且这两点关于原点对称,求二次函数的解析式。 • 分析:根据题意设交点坐标为$(x_1, y_1)$和$(x_2, y_2)$,由于两点关于原点对称,所以有$x_1 = -x_2$和
BIG DATA EMPOWERS TO CREATE A NEW ERA
二次函数的图像与性质-完
整版课件
汇报人:XXX
2024-01-29
• 二次函数基本概念 • 二次函数图像特征 • 二次函数性质探讨 • 典型例题分析与解答 • 实际应用场景举例说明 • 总结回顾与拓展延伸
目录
CONTENTS
零点存在性及个数判断方法
零点定义
二次函数零点存在 性判断方法
对于函数f(x),若存在x0∈D, 使得f(x0)=0,则称x0为函数 f(x)的零点。
通过判别式Δ=b^2-4ac来判断 。当Δ>0时,二次函数有两个 不相等的零点;当Δ=0时,二 次函数有两个相等的零点(即 一个重根);当Δ<0时,二次 函数无零点。

二次函数的图像和性质PPT课件(共21张PPT)

二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件

CONTENCT

• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册

二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册
(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x


y


-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x

-3
-2
-1
0
1
2
3

y

9
4
1
0
1
4
9

(1)你能描述图象的形状吗?

第1讲二次函数的图象和性质复习课件(共39张PPT)

第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2a
o
③当 x b 时,函数有最大值4ac b2 。
2a
4a
y
( b , 4ac b2 ) 2a 4a
x
x b 2a
巩固练习2
已知二次函数 y 2x2 4x 3,当x 为何值时, y 随着x 的增大而增大?当x 为何值时,y 随着x 的增
大而减小?函数有最大值还是最小值,并求出最值。
通过演示可知,对于二次函数
y
y ax2的对称轴是 y 轴,顶点是原点,
当a 0时,抛物线 y ax2的开口向上, 当a 0 时,抛物线 y ax2的开口向下, o x | a |的值越大,开口越小,反之越大。
二次函数的性质
二次函数 y a(x h)2 k 的性质。
一般地,抛物线
y a(x h)2 k 与 y ax2的形状相同。抛 物线 y a(x h)2 k 有如
y x=h
下的特点:
①a 0 时,开口向上,
a 0时,开口向下; ②对称轴是直线x h ; ③顶点坐标是 (h,k ) 。
o
x
(h,k)
二次函数的性质
对于标准形式
y ax2 bx c(a 0 )
通过配方改写成为:
y
a
x
b 2a
2
4ac 4a
b2
因此,
抛物线 y ax2 bx c
的增大而增大; o
③当 x b 时,函数有最小值4ac b2 。
2a
4a
y x b 2a
x
(
b
4ac b2
,
)
2a 4a
二次函数的增减性
抛物线 y ax2 bx c (a 0 ),
a 0时,开口向下,结合图象可知:
①当 x b 时,y 随着x 的增大而增大; 2a
②当 x b 时,y 随着x 的增大而减小;
二次函数的相关概念
如右图是某二次函数的图象, 由于二次函数的图象形状象抛出 物体的运动轨迹,所以二次函数 图象又叫做抛物线。
y a
二次函数都是轴对称图形,
o
x
图中直线a 是函数图象的对称
轴。
M
对称轴与抛物线的交点叫
做抛物线的顶点,如图中的点M。
二次函数的性质
二次函数 y ax2 (a 0)的性质。
解这个方程组,得
a 1 ,b 0 ,c 2
∴函数解析式为 y x2 2
过顶点和一普通点的二次函数解析式确定
由 于 抛 物 线 y a(x h)2 k 顶 点 坐 标 是 (h,k ),反之,已知顶点坐标为(h,k ),则可设函数
解析式为 y a(x h)2 k 。 [ 例 题] 已 知 某 抛 物 线 的 顶 点 坐 标(3,4) 且 过 点
已知某二次函数的图象过(1,10) ,(1,4) ,(2,7) 三
点,求这个函数的解析式。
解:设所求函数解析式为 y ax2 bx c 由已知函数图象过(1,10) ,(1,4) ,(2,7) 三点得 a b c 10 a b c 4 4a 2b c 7 解这个方程组得a 2 ,b 3,c 5
增减性
解析式的确定
已知三点 已知顶点和另一点
的对称轴是直线 x b , 2a
顶点坐标 b ,4ac b2 。 2a 4a
y
x b 2a
y ax2 bx c(a 0)
o
x
( b , 4ac b2 ) 2a 4a
巩固练习1
已知二次函数 y 2x2 4x 3,试确定
的它开口方向、对称轴和顶点坐标。
解:∵a 2 0
2
1
o -1
1
-1
y x2 2x 1
x 2 3
-2
2、在连线时,在起始点和结束点还要沿
函数图象的趋势向外延长一部分。
小结
由此可知画二次函数图象的一般步骤是: 1、取值列表; 2、描点连线。 在此过程中需要注意的有: 1、自变量取值间隔要一致,通常取5或7个值; 2、在起始点和终点函数图象还要沿着函数图象 的趋势延长一部分; 3、函数图象要能够反映出函数的整体变化情况。
∴函数图象开口向上
y 2x2 4x 3 y 2(x 1)2 1
∴函数图象的对称轴是直线 x 1, 顶点坐标是( 1 ,1)。
二次函数的增减性
抛物线 y ax2 bx c (a 0 ),
a 0时,开口向上,结合图象可知:
①当 x b 时,y 随着x 的增大而减小; 2a
②当x b 时,y 随着x 2a
解:∵a 2 0
∴函数图象开口向上
b 4 1 2a 2 2
当 x 1时,y 随着x 的增大而增大 当 x 1时,y 随着x 的增大而减小 当 x 1时,y 有最小值,最小值为 1
二次函数解析式的确定
过三点的二次函数解析式的确定 过顶点和一普通点的二次函数解析式确定
过三点的二次函数解析式的确定
(1,8) ,求它的函数解析式。 解:∵顶点坐标是(3,4)
∴可设函数解析式为 y a(x 3)2 4 又过点(1,8)
∴8 a(1 3)2 4 解得a 1 ∴函数解析式为 y (x 3)2 4 即 y x21,1) ,且过 点 (2,0) 试确定它的函数解析式。
二次函数 y ax2 bx c(a 0)
定义
y x b 2a
图象
相关概念
o
性质
二次函数解析式的确定
y ax2 bx c(a 0)
x
(
b
4ac b2
,
)
2a 4a
二次函数的定义
一般地,如果
y ax2 bx c(a b, ,c 是常数,a 0 ) 那么, y 叫做x 的二次函数。
从二次函数的解析式可知二次函数的自
变量x 的取值范围是全体实数。
二次函数的图象
例 1.已知二次函数y x2 2x 1,试在
平面直角坐标系画出它的函数图象。
解:列表
x
-1 0 1 2 3
y=x2-2x-1 2 -1 -2 -1 2
描点画图
注意:
1、取值列表时,自变量X
-2
的取值间隔要一致;
y
4
3
∴所求得的函数解析式为 y 2x2 3x 5。
巩固练习4
已知某二次函数图象上有(1,3) ,(1,3) ,(2,6)三
个点,求它的函数解析式。
解:设函数解析式为 y ax2 bx c
由已知,函数图象上有(1,3) ,(1,3) ,(2,6)三个点,

a b c 3 a b c 3 4a 2b c 6
解:∵二次函数的顶点为(1, 1) ∴可设二次函数解析式为 y a(x 1)2 1 又函数过点 (2,0)
∴0 a(2 1)2 1
解得a 1 ∴二次函数的解析式为 y (x 1)2 1 即 y x2 2x
本课知识小结
二次函数
定义
相关概念
抛物线 对称轴
性质
顶点
开口方向、对称轴、顶点坐标
图象
相关文档
最新文档