习题与复习题详解 线性空间 高等代数
高等代数-第5章习题及解答
习题 5.1解答A ⊆B A B =A A B =B 1. 设,证明:,.ααααααα∀∈A ⊆B ∈B ∴∈A B⊆A BAB ⊆AB =A∀∈A B ∈∈B A ⊆B ∈BA B ⊆B B ⊆A BAB =B证 A ,由,得 即得证A 又A 故 ,则A 或 但,因此无论那一种情形都有 此即,但 所以(B C C 2. :1)A =A B A 证明 )()();(((((((x x x x x x x x x x x x x x ∀∈∈∈∈∈∈∈⊆∈∈∈∈∈∈∈证 A (B C ),则A 且(B C )在后一情形,B 或C, 于是AB 或AC 所以AB)AC )由此得A (B C )A B)AC )反之,若A B)A C ),则AB 或AC在前一情形,A,B,因此B C 故A B C )在后一情(((((((x x x x ∈∈∈∈⊆形,A,C, 因此BC也得A BC ) 故A B)AC )AB C ) 于是AB C )=AB)AC )C C 2A B =A B A .)()()()x x x x x x x x x x x ∈∈∈∈∈∈∈∈∈∈∈∴⊆⊆ 证 若A (B C ),则A 或者BC在前一情形AB 且A C因而(A B )(AC )在后一情形B ,C ,因而AB 且AC即(A B )(A C ) A (B C )(A B )(A C )同理可证(A B )(AC )A (BC )故A (BC )=(AB )(AC )3:|,:|a b a b b f a bc d c d a ⨯⎛⎫⎛⎫→→+ ⎪ ⎪⎝⎭⎝⎭22 、问:法则g 是否为Q 到Q 的映射?单射还是双射?22(((a f f Q g g g ⨯⎛⎫⎛⎫∀∈∈⇒ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴解 当取0时在中没有象,所以不是映射;a 0a 0 a Q,有)=a,但000012121212)=3=),而00420042g 是满射不是单射.2()(),:()|()[]f x f x f x f x Q x φϕ'→→4. 问:满足:|是否为的变换?单射还是双射?φφφ'∈∴∀∈Φ解 (f(x))=f (x)Q[x] 是变换;又f(x)Q[x],有((x))=f(x),而22(())()(())(())()()f x f x f x f x f x f x φφφϕϕϕϕϕΦ∈'≠∴∀∈=∈∴∀∈=-=-≠∴⎰x(x)=f(x)dx Q[x],又 (f(x))=(f(x)+1)=f (x),而f(x)f(x)+1是满射不是单射.又f(x)Q[x],Q[x]是变换,又f(x)Q[x],但f(x)并且-f(x)没有原象,既不是单射又不是满射.{}|01y y y A B ≤<5. 设是一切非负实数构成的集合,又=是实数且:|1x f x x→A B + 证明: 是到的一个双射.()(),1,,1,111a ba b f a f b a ba b f yy y yyy fy y y f f ∀∈=+∴=∴∀∈≤≤∴≥-⎛⎫∴∈= ⎪--⎝⎭∴ 证 A,==1+ 是A 到B 的一个单射. B 00,A,且使得 是A 到B 的满射.综上所述得,是A 到B 的一个双射.{},:11,21,32,42;1223,4,1f g A →→→→→→→→6. 设=1,2,3,4规定 :,34.,f g fg gf fg gf A 1) 说明都是的变换;2) 求和,问和是否相等?(),():11,22,32,41:12,22,33,43.f x Ag x Af g fg gf g gf ∀∈∈∈∴→→→→→→→→≠证明 (1)x A,与都是由A 到A 的映射, 从而都是A 的变换. (2)所以f,,:::A B C f A B g B C gf A C g →→→7.证明是三个非空集合,是满射,,但是单射,证明是单射.1212121212,(),()()()()()f a a f a f a f a f a f a a f a f a ∈∴∃∈==⇒=⇒==∴12121212证明:设b ,b B,且g(b )=g(b )因是满射,A,使得b b 即有g()=g()g 是单射 即b b g 是单射习题 5.2解答1. 检验以下集合对所规定的代数运算是否作成数域上F 的线性空间.{}{}{}{}()|,()|,()|0,()|0n n n ij n ij i j a i j a 1) S=A M F A =A T=A M F A =-A U=A M F 时 L=A M F 时'∈'∈∈>=∈<=∴解S ,T ,U ,L 分别对称矩阵、反对称矩阵、上三角矩阵和下三角矩阵,所以S 、T 、U 、L 都非空,又根据其相应性质知,S 、T 、U 、L 中的元素关于矩阵的加法与F 中的数与矩阵的乘法都封闭,S 、T 、U 、L 都作成数域F 上的线性空间。
北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
孟道骥《高等代数与解析几何》(第3版)(上册)课后习题(含考研真题)详解-线性空间(圣才出品)
若 k=0,l≠0(k≠0,l=0),则 γ=lβ 与 β 共线(γ=kα 与 α 共线),亦有γ与α,β共
面.
若 k≠0,l≠0,作
,
(如图4-2-6),于是
因而α,β,γ均平行于由 A,B,C 决定的平面,故共面.得证.
图 4-2-5
4 / 110
圣才电子书 十万种考研考证电子书、题库视频学习平台
十万种考研考证电子书、题库视频学习平台
图 4-2-2
图 4-2-3
图 4-2-4
5.设向量α≠0.试证β与α共线的充分必要条件是存在实数 k,使得β=kα.且 k 由α,
β唯一确定.
证:若β=kα,根据向量与数的乘法的定义知,β 与 α 共线.
反之,设β与α共线,因为α≠0,故存在唯一的 k1≥0,使得
若α,β 共线.则 α,β,γ 共线,自然共面;若 α,β 不共线,则由习题 6,亦有α,β, γ共面.于是充分性亦得证.
综上所述,结论成立.
5 / 110
圣才电子书 十万种考研考证电子书、题库视频学习平台
8.设α,β,γ是三个非零向量,k,l,m 是三个非零实数.试证 kα-lβ,lβ-mγ,mγ -kα是三个共面向量.
图 4-2-6
7.试证向量α,β,γ共面的充分必要条件是存在不全为 0 的实数 k,l,m,使得 kα+ lβ+mγ=0.
证:先证必要性.若α,β,γ共面,可分三种情形. (i)α=β=γ=0.则可取 k,l,m 为任意数,自然可以是非零的. (ⅱ)α,β,γ 共线.其中有非零的,不妨设 α≠0.于是由习题 5,可得 β=k1α,γ= k2α.于是-(k1+k2)α+β+γ=0,即可取 k=-(k1+k2),l=m=1. (iii)α,β,γ 不共线,故其中至少有两个例如 α,β 不共线.于是根据习题 6 的结论 可得γ=kα+lβ,即 kα+lβ+(-1)γ=0. 总之,α,β,γ共面的所述的必要条件成立. 再证充分性.kα+lβ+mγ=0,k,l,m 不全为 0,不妨设 m≠0.于是有
东北大学线性代数_第七章课后习题详解线性空间与线性变换
教学基本要求:1.了解线性空间、线性子空间、基、维数、坐标等概念.2.了解基变换和坐标变换,会求过渡矩阵.3.了解线性变换的概念,了解线性变换的矩阵.4.了解内积、欧几里得空间的概念.5.了解规范正交基,会用施密特(Schmidt)正交化法把欧几里得空间中的线性无关向量组规范正交化.第七章线性空间与线性变换(P151)线性空间的理论具有高度的概括性和广泛的应用性,是线性代数的中心内容之一.本章将把在第四章中介绍的R n中的有关概念推广,给出更具一般性的线性空间定义,并讨论线性空间中的“极大线性无关组”与“秩”,介绍线性变换的概念和线性变换的矩阵.一、线性空间的概念及其性质空间是集合,线性空间则是存在“封闭的”线性运算、符合“八条”的集合.线性空间的线性运算与数域密切相关.1. 数域数域K K是一个数集,且(1)0,1∈K;(2) K关于“+,-,×,÷运算”封闭.大家熟知的数域:有理数域Q,实数域R,复数域C.不熟悉的数域:Q(√2)={a+b√2|a,b∈Q}是数域.任意数域都包含有理数域.数域无穷多.2. 线性空间的定义和例子(P152)数域K上的线性空间V K若在非空集合V和数域K上定义了加法“⊕”和数乘法“⊗”两种线性运算:对∀α,β,γ∈V,∀k,l∈K,有唯一的α⊕β∈V和唯一的k⊗α∈V(即运算封闭),且满足以下八条规律:“⊕”满足交换律α⊕β=β⊕α,∀α,β∈V;“⊕”满足结合律(α⊕β)⊕γ=α⊕(β⊕γ),∀α,β,γ∈V;“⊗”满足分配律k⊗(α⊕β)=(k⊗α)⊕(k⊗β),(k+l)⊗α=(k⊗α)⊕(l⊗α), (kl)⊗α=k⊗(l⊗α),∀α,β∈V,∀k,l∈K;V中有零元素“ο”α⊕ο=α,∀α∈V;每个元素有负元素∀α∈V,∃β∈V,∂α⊕β=ο,并记β=-α;“1⊗V ”的不变性1⊗α=α,∀α∈V , 则称V 是数域K 上的一个线性空间,记作V K .线性空间也称为向量空间,其中的元素(不论其含义如何)也称为向量. P 151第四章提到的向量空间R n 、齐次线性方程组的解空间V 和L(α1,α2,…,αm )都是线性空间.大家应该知悉的线性空间:1. 矩阵集合R m×n ={(a ij )m×n |a ij ∈R}关于通常的矩阵加法和数与向量的乘法是数域R 上的线性空间. (例7.1 P 152)2. 次数小于n 的所有一元多项式的集合{}n 1in i01n 1i 0R[x]a xa ,a ,,a R --==∈∑关于通常的函数加法与数与函数的乘法是数域R 上的线性空间. (例7.2 P 152)3. 一元多项式的集合{}ii i i 0R[x]a x a R +∞==∀∈∑关于通常的函数加法和数与函数的乘法是数域R 上的线性空间. P 1524. 区间[a,b]上所有连续函数的集合C[a,b]关于通常的函数加法与数与函数的乘法是数域R 上的线性空间. (例7.3 P 152)5. 区间[a,b]上具有一阶连续导数的函数的集合C 1[a,b]关于通常的函数加法与数与函数的乘法是数域R 上的线性空间.6. 数域R 按照数的加法和乘法构成数域R 上的线性空间R n . (例7.4 P 152)大家不熟悉的线性空间:7.正实数集合R +={a|a ∈R 且a>0}是数域R 上的线性空间.这里加法“⊕”和数量乘法“⊗”分别定义为:a ⊕b=ab,k ⊗a=a k ,∀a,b ∈R +,∀k ∈R . (例7.5 P 153)两种运算的封闭性易见,“⊕”的交换律、结合律,“⊗”的分配律易验证. R +有零元素1,每个元素a 有负元素a -1,“1⊗R +”具有不变性:1⊗a=a.3. 线性空间的基本性质(P 153)性质1线性空间中的零向量是唯一的.性质2线性空间中的每一个向量的负向量是唯一的. 性质3 0⊗α=ο, (-1)⊗α=-α,∀α∈V ;k ⊗ο=ο,∀k ∈K . 性质4 若k ⊗α=ο,则k =0或α=ο.* 定义和性质的直接意义:若某个集合不符合定义或性质中的任何一条,则它必不是线性空间.哪些集合不是线性空间?1. 数域R上的所有一元二次多项式的集合2ii0122i0V a x a,a,a R a0==∈≠⎧⎫⎨⎬⎩⎭∑且不是线性空间.因为V没有零元素.因为V关于函数的加法运算与数乘法运算均不封闭.2. n元非齐次线性方程组的解集合U={x|A x=β}(A∈R m×n)不是线性空间.因为U没有零元素.因为U没有负元素.因为U关于向量的加法运算与数乘法运算均不封闭.3. n阶实可逆矩阵的集合U={(a ij)n×n|a ij∈R且|(a ij)n×n|≠0}不是线性空间.因为U没有零元素.因为U关于矩阵的加法运算与数乘法运算均不封闭.4. 线性子空间(P154)线性空间V的子空间U若(1)U是V的非空子集;(2)U有与V相同的加法运算和数乘法运算;(3) U是线性空间,则称U是V的一个线性子空间,简称子空间. (定义7.2 P154)线性空间V的两个特殊的子空间:零子空间——只由V中零元素构成的子空间;全空间——V自身.零子空间和全空间称为V的平凡子空间,其他的叫V的非平凡子空间. P154定理7.1设U是线性空间V的非空子集,则U是V的子空间的充分必要条件是U对于V的加法和数乘运算是封闭的. (定理7.1 P154)例如,R n×n中的全体对称矩阵(反对称矩阵、上三角矩阵、下三角矩阵、对角矩阵)构成R n×n的一个子空间,但n阶可逆矩阵(或不可逆矩阵)的集合不是R n×n的子空间.(例7.6 P154)R[x]n是R[x]m(m≥n)的子空间,R[x]m是R[x]的子空间. P155在区间[a,b]上的函数集合C1[a,b]是C[a,b]的子空间. P155这里直接指出:在第三章中讨论n元数组时用到的线性表示、线性相关、线性无关、极大线性无关组和秩等概念都可以推广到线性空间中,由这些定义出发所得到的结论在线性空间中也都成立.设α1,α2,…,αs∈V K是线性空间V K的一组向量,那么集合L(α1,α2,…,αs)={k1α1+k2α2+…+k sαs|k1,k2,…,k s∈K}是线性空间V K的一个子空间,称为由α1,α2,…,αs生成的子空间. P155二、基维数坐标这里直接指出:在第三章中讨论n元数组时用到的线性表示、线性相关、线性无关、极大线性无关组和秩等概念都可以推广到线性空间中,由这些定义出发所得到的结论在线性空间中也都成立.线性空间要么只有零向量,要么有无穷多个向量.有无穷多个向量的线性空间有“极大线性无关组”、“秩”、“坐标”等概念.1. 基维数线性空间的基、维数、坐标的含义如下:基线性空间的“极大线性无关组”. (定义7.3 P155)维数线性空间的“极大线性无关组”中的向量个数. (定义7.3 P155)规定:仅含零向量的线性空间维数为0.如果线性空间有任意多个线性无关的向量,则称为无限维线性空间,维数为+∞. P155例如,R[x],C[a,b]都是无限维的线性空间.n 维数线性空间记为V n .以下仅讨论有限维的线性空间.例如,n 元齐次线性方程组A x =ο的基础解系是其解空间V={x |A x =ο}的基,维数为n-R(A).1,x,x 2,…,x n-1、1,1+x,1+x+x 2,…,1+x+…+x n-1和1,x-1,(x-1)2,…,(x-1)n-1等都是线性空间R[x]n 的基,R[x]n 的维数为n . (例7.7 P 155)100010001000000,,,,,000000000100010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭000001⎛⎫ ⎪⎝⎭是线性空间R 2×3的一组基,100110,,000000⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭111111111111,,,000100110111⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭是R 2×3的另一组基, R 2×3的维数为6. (例7.8 P 156)一般地,R m×n 是m×n 维线性空间.向量组α1,α2,…,αs 的一个“极大线性无关组”是生成空间L(α1,α2,…,αs )的一组基,R(α1,α2,…,αs )是该生成空间的维数.关于基、维数有以下结论:定理7.2设V n 是n 维线性空间,如果V n 中的向量组α1,α2,…,αm 线性无关,那么在V n 中必有n-m 个向量αm+1,αm+2,…,αn ,使得α1,α2,…,αm ,αm+1,αm+2,…,αn 是V n 的一组基. (定理7.2 P 156)定理7.2既说明基的存在性,同时给出得到基的一种方法.推论1 含有非零向量的线性空间存在基. (倒数第12行 P 156) 推论2 非空的欧氏空间存在规范正交基. (正数第11行 P 167)推论3 如果线性空间U 是线性空间V 的子空间,那么R(U)≤R(V).且若R(U)=R(V),则必有U=V. (推论 P 156)2.坐标坐标 向量由基线性表示的一组有序数. (定义7.4 P 156)同一个向量会随基的不同而有不同的坐标.例如,1,x,x 2是线性空间R[x]3的一组基,f(x)=-5x 2+3x-2在基1,x,x 2下的坐标为(-2,3,-5)T .而g(x)=2(x+1)2-3(x-4)-2=2x 2+x+12在基1,x,x 2下的坐标是(12,1,2)T ,在另一个基1,x-4,(x+1)2下的坐标则是(-2,-3,2)T . P 157向量111111⎛⎫⎪⎝⎭在R 2×3中基100020,,000000-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭001000000,,,000400020⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭0000010⎛⎫ ⎪⎝⎭下的坐标为(-1,1/2,1,1/4,-1/2,1/10)T ,即11110002000111110000000002000000000111 .40002000104210-⎛⎫⎛⎫⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫+-+⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭如果向量ξ在基α1,α2,…,αn 下的坐标为(x 1,x 2,…,x n )T ,仿照矩阵乘法,可以“形式地”记为1212n n x x (,,,)x =⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ξααα.3.线性空间的同构(P 157)坐标的引入,使得n 维抽象空间V n 中的元素与n 元有序数组(即通常意义上的向量)一一对应起来,且元素之间的线性运算也保持对应,这称为同构现象.线性空间U 与V 同构线性空间U 与V 的元素之间存在一一对应关系,且元素之间的线性运算也保持对应. (定义7.5 P 157)设U(11,⊕⊗)与V(22,⊕⊗)同构,且α1,α2∈U, β1,β2∈V,k ∈R ,则11221112221122, k k ↔↔⊕↔⊕⊗↔⊗αβαβαβαβαα线性空间的同构关系具有反身性、对称性、传递性. P 157可见,同一数域上的同维线性空间都同构. 同构的线性空间有相同的线性运算性质. P 158例如,R 2×3与R 6同构,有111211121313212223212223a a a a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎛⎫↔ ⎪⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭, 111112121111121213131313212122222323212122222323111211121313212223212223a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b a +b ka ka ka ka ka ka ka ka ka ka ka ka ⎛⎫ ⎪ ⎪ ⎪⎛⎫↔⎪ ⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪ ⎪⎛⎫↔⎪ ⎪⎝⎭ ⎪⎪ ⎝⎭,.⎪⎪由此可见,R 2×3中向量的线性相关性与在R 6中所对应的向量的线性相关性一致,R 2×3的基与R 6的基对应.三、基变换和坐标变换如果线性空间有非零向量,那么它就有无穷多元素,从而有不同的基,一个元素也会有不同的坐标,由此就有了以下概念.1.基变换(P 158)设α1,α2,…,αn 和β1,β2,…,βn 是线性空间V n 的两组基.基变换基之间的“线性表示”.即(β1,β2,…,βn )=(α1,α2,…,αn )C , P 144该式称为基变换公式.过渡矩阵构成基变换的矩阵.上式中的C 称为由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定义7.6 P 159)过渡矩阵是可逆矩阵,因为n=R(β1,β2,…,βn )≤min{R(α1,α2,…,αn ),R(C)}=R(C)≤n.例7.1(例7.9 P 159) 在线性空间R[x]3中,由基1,x,x 2到基1,1+2x,1+2x+3x 2的过渡为(1,1+2x,1+2x+3x 2)=(1,x,x 2)111022003⎛⎫ ⎪ ⎪ ⎪⎝⎭, 111022003⎛⎫⎪ ⎪ ⎪⎝⎭即是由基1,x,x 2到基1,1+2x,1+2x+3x 2的过渡矩阵.例7.2 在线性空间R 2×2中,由基11121001E =,E ,0000=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭21220000E ,E 1001==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭到基121011B ,B ,0000==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭341111B ,B 1011==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的过渡为 (B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)1111011100110001⎛⎫⎪⎪ ⎪⎪⎝⎭,1111011100110001⎛⎫⎪⎪ ⎪⎪⎝⎭即是由基E 11,E 12,E 21,E 22到基B 1,B 2,B 3,B 4的过渡矩阵.2.坐标变换(P 159)坐标变换同一个向量在两组基下的坐标之间的变换.定理7.3 如果向量ξ在基α1,α2,…,αn 与基β1,β2,…,βn 下的坐标分别为x 和y ,那么x =C y ,其中C 是由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定理7.3 P 159)证 12n 12n 1212n(,,,)(,,,)Cn 1212n n y y (,,,)y x x(,,,)x βββαααβββξααα=⎧⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭=⇒⎨⎛⎫⎪⎪⎪ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎩x =C y .例7.3 向量(1,2,1)T 在基e 1=(1,0,0)T ,e 2=(0,1,0)T ,e 3=(0,0,1)T 下的坐标为1,2,1,而基e 1,e 2,e 3到基η1=(1,1,1)T ,η2=(1,1,-1)T ,η3=(1,-1,-1)T 的过渡矩阵为111C 111111=---⎛⎫⎪ ⎪ ⎪⎝⎭, 即(η1,η2,η3)=(e 1,e 2,e 3)C ,于是(1,2,1)T 在基η1,η2,η3下的坐标(x 1,x 2,x 3)T 满足(1,2,1)T =C(x 1,x 2,x 3)T .所以(x 1,x 2,x 3)T =C -1(1,2,1)T =(1,1/2,-1/2)T ,其中11011C 0112110-=--⎛⎫ ⎪⎪⎪⎝⎭.也可以直接求向量(1,2,1)T 在基η1,η2,η3下的坐标.设(1,2,1)T =(η1,η2,η3)(x 1,x 2,x 3)T ,得 (x 1,x 2,x 3)T =(η1,η2,η3)-1(1,2,1)T111111111212111112-=-=---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例7.4(例7.10 P 159) 设121011B ,B ,0000==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭341111B ,B 1011==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭是线性空间R 2×2中的一组基,求向量12A 34=⎛⎫⎪⎝⎭在基下的坐标.解 方法一 向量A 在R 2×2中基11121001E =,E ,0000=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭21220000E ,E 1001==⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭下的坐标为(1,2,3,4)T,及基B 1,B 2,B 3,B 4由1112212210010000E =,E ,E ,E 00001001===⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭过渡的过渡矩阵为11110111C 00110001=⎛⎫ ⎪⎪ ⎪⎪⎝⎭,所以向量A 在基B 1,B 2,B 3,B 4下的坐标(y 1,y 2,y 3,y 4)T =C -1(1,2,3,4)T =(-1,-1,-1,4)T ,即A=-B 1-B 2-B 3+4B 4.方法二 设A=y 1B 1+y 2B 2+y 3B 3+y 4B 4,则1234y 11111y 20111y 30011y 40001=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11234y 111111y 011121y 001131y 000144---==-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故向量A 在基B 1,B 2,B 3,B 4下的坐标为(-1,-1,-1,4)T .四、线性变换及其矩阵表示线性空间V 到自身的映射称为V 的变换,能够保持线性运算关系的变换是线性变换,它反映线性空间的向量之间重要的、最基本的联系.1.线性变换线性空间V K 的线性变换T 满足线性运算的映射T: V K →V K :T(α⊕β)=T(α)⊕T(β), T(k ⊗α)=k ⊗T(α),∀α,β∈V K ,∀k ∈K.(定义7.7 P 160)例7.5(例7.11 P 160) 线性空间R n×n 中的映射:T(A)=A T , A ∈R n×n ,是R n×n 中的一个线性变换.例7.6(例7.12 P161) 设A∈R n×n,线性空间R n中的映射:T(α)=Aα, α∈R n是R n中的一个线性变换.例7.7(例7.13 P161) 线性空间R[x]n中的微商运算:D(f(x))=f’(x), f(x)∈R[x]n是R[x]n中的一个线性变换.微商运算不是线性空间C1[a,b]的线性变换.例7.8(例7.14 P161) 设λ∈R,线性空间V n中的映射:T(α)=λα, α∈V n是V n中的一个线性变换. 当λ=1,称T是恒等变换;当λ=0,称T是零变换.线性变换的性质:P161(1)T(ο)=ο;(2)T(-α)=-T(α);(3)T(k1α1+k2α2+…+k sαs)=k1T(α1)+k2T(α2)+…+k s T(αs).* T(α)=ο推不出α=ο.2.线性变换的矩阵线性变换的像线性空间的元素经线性变换映射的结果.T(α)是元素α经线性变换T : α→T(α)的像.线性变换在基下的矩阵以基表示基的像的矩阵(下式中的A称为线性变换T在基α1,α2,…,αn下的矩阵). (定义7.8 P162)(T(α1),T(α2),…,T(αn))=(α1,α2,…,αn)A.记(T(α1),T(α2),…,T(αn))T(α1,α2,…,αn),那么 T(α1,α2,…,αn )=(α1,α2,…,αn )A .像在基下的坐标设α=x 1α1+x 2α2+…+x n αn ,并记x =(x 1,x 2,…,x n )T ,则T(α)=T(x 1α1+x 2α2+…+x n αn )=x 1T(α1)+x 2T(α2)+…+x n T(αn )=(T(α1),T(α2),…,T(αn ))x =(α1,α2,…,αn )A x ,所以像T(α)在基下的坐标为A x .例7.9(例7.15 P 162) 在线性空间R[x]n 中,求微商变换D 在基1,x,x 2,…,x n-1下的矩阵. 解 由D(1)=0, D(x)=1,D(x 2)=2x,…,D(x n-1)=(n-1)x n-2,有(D(1),D(x),D(x 2),…,D(x n-1))=(0,1,2x,…,(n-1)x n-2)=(1,x,x 2,…,x n-1)01000020000n 1000-⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 故微商变换D 在基1,x,x 2,…,x n-1下的矩阵为01000020000n 1000-⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.类似地可得微商变换D 在基1,x,x 2/2!,…,x n-1/(n-1)!下的矩阵为10000100001000⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.例7.10(例7.16 P 163) 求线性空间R 2×2中的线性变换:T(X)=X T , X ∈R 2×2在基111221100100E =,E ,E ,000010==⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2200E 01=⎛⎫⎪⎝⎭下的矩阵. 解 由T(E 11)=E 11, T(E 12)=E 21, T(E 21)=E 12, T(E 22)=E 22,得 T(E 11,E 12,E 21,E 22)=(E 11,E 21,E 12,E 22)=(E 11,E 12,E 21,E 22)100000101000001⎛⎫⎪⎪ ⎪⎪⎝⎭.100000101000001⎛⎫ ⎪⎪ ⎪⎪⎝⎭即为线性变换T 在基E 11,E 12,E 21,E 22下的矩阵.例7.11(例7.17 P 163)定理7.4(同一线性变换在不同基下的矩阵之间的关系) 设T 是线性空间V n 的线性变换,A,B 分别是T 在基α1,α2,…,αn 和β1,β2,…,βn 下的矩阵,那么B=C -1AC ,其中C 是由基α1,α2,…,αn 到基β1,β2,…,βn 的过渡矩阵. (定理7.4 P 164)证 由 T(α1,α2,…,αn )=(α1,α2,…,αn )A ,T(β1,β2,…,βn )=(β1,β2,…,βn )B , (β1,β2,…,βn )=(α1,α2,…,αn )C ,得T(β1,β2,…,βn )=T((α1,α2,…,αn )C)=T(α1,α2,…,αn )C=(α1,α2,…,αn )AC =(β1,β2,…,βn )C -1AC.由于线性变换在基下的矩阵唯一,所以B=C -1AC.定理7.4表明,一个线性变换在不同的基下的矩阵相似.例7.12(例7.18 P 165) 设线性空间V 2中的线性变换T 在基α1,α2下的矩阵为12A 05=⎛⎫⎪⎝⎭,求线性变换T 在基β1=α1+2α2,β2=2α1+5α2下的矩阵.解 方法一 因为(β1,β2)=(α1,α2)1225⎛⎫⎪⎝⎭, T(α1,α2)=(α1,α2)A ,所以T 在基β1,β2下的矩阵为 112121251025052501B -⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.方法二因为(β1,β2)=(α1,α2)1225⎛⎫⎪⎝⎭, T(α1,α2)=(α1,α2)A,所以T(β1,β2)=T(α1,α2)1225⎛⎫⎪⎝⎭=(α1,α2)A1225⎛⎫⎪⎝⎭=(β1,β2)-1121212250525⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=(β1,β2)51001⎛⎫⎪⎝⎭,所以T在基β1,β2下的矩阵为51001⎛⎫ ⎪⎝⎭.五、欧氏空间具有度量性质的实线性空间——EuclidV空间(欧氏空间).1.定义和例子首先给出线性空间上的度量定义——内积.内积设V是实数域R上的一个线性空间,在V上定义一个二元函数,记作[α,β],如果它满足:对∀α,β,γ∈V,∀k∈R,有(1) [α,β]=[β,α](对称性);(2) [α+β,γ]=[α,γ]+[β,γ], [kα,β]=k[α,β](线性性);(3) [α,α]≥0.且仅当α=ο时,[α,α]=0(正定性),则称这个二元函数[α,β]是V上的内积. (定义7.9 P165)Euclid空间定义了内积的实线性空间. (定义7.9 P165)例如,向量空间R n中的内积,除了在第三章已定义的形式:[α,β]=a1b1+a2b2+…+a n b n,(这是常用形式)还可以定义为[α,β]=a1b1+2a2b2+…+na n b n.对应不同内积的欧氏空间被认为是不同的欧氏空间. P166例7.13(例7.19 P166) 在线性空间R[x]n中,定义[f(x),g(x)]=∫-11 f(x)g(x)dx, f(x),g(x)∈R[x]n.[f(x),g(x)]是R[x]n 中的内积,因此R[x]n 是欧氏空间.例7.14 在线性空间R m×n 中,定义mnij ij i 1j 1[A,B]a b ===∑∑, A=(a ij )n ,B=(b ij )n ∈R m×n .[A,B]是R m×n 中的内积,因此R m×n 是欧氏空间. P 166有了内积,在欧氏空间中就可以引入向量长度、向量的夹角等度量性的概念,而且有与R n 中的对应概念完全类似的性质.向量的长(或范数) |α. (定义7.10 P 166)|k α|=k|α|,∀α∈V n ,∀k ∈R .单位向量|α|=1.若α∈V n 且α≠ο,则α/|α|是单位向量. (规范性)向量的夹角<α,β>=arcos([α,β]/|α|·|β|), 0≤<α,β>≤π, α≠ο,β≠ο.(定义7.11 P 166) 易见,<α,β>=π/2 ⇔[α,β]=0, α≠ο,β≠ο.向量正交[α,β]=0. (定义7.12 P 166) 零向量与任意向量正交. 2.规范正交基在Euclid 空间中还有以下概念及结论: 规范向量组 向量长度皆为1的向量组.正交向量组/规范正交向量组向量均非零且互相正交(/既规范又正交)的向量组. (定义7.13 P 167)定理7.5 正交向量组必线性无关. (定理7.5 P 167)正交基/规范正交基 由正交(/规范正交)向量组成的基. (定义7.14 P 167)定理7.6 在欧氏空间中,如果向量组α1,α2,…,αm 线性无关,则有规范正交向量组ε1,ε2,…,εm 与之等价. (定理7.6 P 167)定理7.6表明:任意非零欧氏空间都存在规范正交基.得到规范正交基的方法——Schmidt 正交化法.在欧氏空间中,规范正交基之间的过渡矩阵是正交矩阵.例7.15(例7.20 P 167) 在线性空间R[x]3中,按例7.13定义内积,求R[x]3的一个规范正交基. 解 取R[x]3中的一个基:α1=1,α2=x,α3=x 2,令 β1=α1=1,β2=α2-([α2,β1]/[β1,β1])β1=x ,β3=α3-([α2,β1]/[β1,β1])β1-([α2,β2]/[β2,β2])β2=x 2-1/3. 再规范化,得规范正交基:ε1=√2/2,ε2=√6x/2,ε3=3√10(x 2-1/3)/4.六、应用实例[实例7-1]线性变换在二维计算机图形学中的应用 1. 旋转变换x cos sin x y sin cos y 'θ-θ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'θθ⎝⎭⎝⎭⎝⎭, 即coc sin 0x x sin coc 0y y 00111'θ-θ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪'=θθ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 表示点(x,y)绕原点逆时针旋转θ角得到点(x ,,y ,),换句话说,坐标系绕原点顺时针旋转θ角,点(x,y)在新坐标系下即为点(x ,,y ,).旋转变换是正交变换.2.伸缩变换x c x y c y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭, 即c0x x c 0y y 111'⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪'=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.平移变换00x x x y y y '+⎛⎫⎛⎫= ⎪ ⎪'+⎝⎭⎝⎭, 即00001x x x x x 1y y y y y 111 1'+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪'==+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.线性变换的复合是线性变换.[实例7-2]调味品配制问题七、习题(P 173) 选择题: 1. A提示:线性空间必有零元素,所以R n 的子空间必包含原点. 2. A提示:(α1+α2,α2+α3,α3+α1)=(α1,α2/2,α3/3)101220033⎛⎫⎪⎪ ⎪⎝⎭.3. A提示:T(α1,α2,…,αn )=(α1,α2,…,αn )A.4.C (注意:当n>2,B 选项也不正确.)5.D (参见例7.20) 填空题:1. a=6提示:α1,α2线性无关,且121012101210110211021102211a 330a 000a 6---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭2. 3提示:3阶反对称矩阵1213122313230a a a 0a a a 0⎛⎫⎪- ⎪ ⎪--⎝⎭中不同的数有3个. 3.-6,1,1提示:f(x)=x 2+2x-3=(x 2+x+2)+(x+1)-64.2312⎛⎫⎪--⎝⎭提示:(β1,β2)=(α1,α2)C ,即1111C 1201⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭.5.012122111⎛⎫ ⎪--- ⎪ ⎪⎝⎭提示:T(α1,α2,α3)=(000111,,010101--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭) =(101111,,000001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭)012122111⎛⎫ ⎪--- ⎪⎪⎝⎭解答题:1.(1)V={P(x)|P(x)=ax 2+bx+cx,a,b,c ∈R,a≠0}不是线性空间.因为若P(x)∈V ,则-P(x) ∈V ,但P(x)+(-P(x))=0∉V ,即V 关于多项式的加法运算不封闭. 因为P(x)∈V,0∈R ,但0·P(x)=0∉V ,即V 关于数与多项式的乘法运算不封闭. 因为V 没有零元素:P(x),-P(x)∈V ,但P(x)+(-P(x))=0∉V.(2)V={x |A x =β,β≠ο}不是线性空间.因为x ,y ∈V ,但x +y ∉V ,即V 关于向量的加法运算不封闭.因为x ∈V,0∈R ,但0x =ο∉V ,即V 关于数与向量的乘法运算不封闭. 因为V 没有负元素:x ∈V ,但-x ∉V. 因为V 没有零元素:A ο≠β,故ο∉V.(3)V={A|A ∈R n×n 且|A |≠0}不是线性空间.因为若A ∈V ,则-A ∈V ,但A +(-A)=O ∉V ,即V 关于矩阵的加法运算不封闭. 因为A ∈V,0∈R ,但0A=O ∉V ,即V 关于数与矩阵的乘法运算不封闭. 因为V 没有零元素:A ∈V ,则-A ∈V ,但A +(-A)=O ∉V .(4)V 1={A|A ∈R 3×3且A=A T }是线性空间. 因为V 1⊂R 3×3,R 3×3是线性空间,且A,B ∈V 1, k ∈R ⇒ A+B ∈V 1, kA ∈V 1,所以V 1是R 3×3的子空间.因此V 1是线性空间.V 2={A|A ∈R 3×3且A=-A T }是线性空间. 因为V 2⊂R 3×3,R 3×3是线性空间,且A,B ∈V 2, k ∈R ⇒ A+B ∈V 2, kA ∈V 2,所以V 2是R 3×3的子空间.因此V 2是线性空间.(5) V={X|XA=AX, A=1002⎛⎫⎪⎝⎭, X ∈R 2×2}是线性空间. 设X=a b c d ⎛⎫⎪⎝⎭,则由XA=AX ⇒X=a d ⎛⎫⎪⎝⎭.由于R 2×2是线性空间,且A,B ∈V, k ∈R ⇒ A+B ∈V, kA ∈V ,所以V 是R 2×2的子空间. 因此V 是线性空间.2. (4)V 1的一组基为100000000000,010,000,000000001⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 010*********,001,000000010100⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, R(V 1)=6.V 2的一组基为010*********,001000000010100--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,R(V 2)=3.(5)V 的一组基为10,01⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,R(V)=2.3. 提示:即求α1,α2,α3,α4的“极大线性无关组”及其“秩”.4. (1) V1是R n的子空间.因为V1⊂R n,且∀x=(0,x2,…,x n)T,y=(0,y2,…,y n)T∈V1, k∈R,有x+y=(0,x2+y2,…,x n+y n)T∈V1,k x=(0,kx2,…,kx n)T∈V1.(2)V2不是R n的子空间.因为x=(1,x2,…,x n)T,y=(1,y2,…,y n)T∈V2,但x+y=(2,x2+y2,…,x n+y n)T∉V2.因为x∈V2, k∈R,但0x=(0,0,…,0)T∉V2.因为V2没有零元素:(0,0,…,0)T∉V2.因为V2没有负元素:x=(1,x2,…,x n)T∈V2,但-x=(-1,-x2,…,-x n)T∉V2.(3)V3是R n的子空间.因为V3⊂R n,且∀x=(x1,x2,…,x n)T,y=(y1,y2,…,y n)T∈V3, k∈R,有x+y=(x1+y1,x2+y2,…,x n+y n)T,k x=(kx1,kx2,…,kx n)T,其中x1+y1+x2+y2+…+x n+y n=0, kx1+kx2+…+kx n=0,所以kx1,kx2,…,kx n∈V3, k x∈V3.(4)V4不是R n的子空间.因为x=(1,0,…,0)T, y=(0,1,…,0)T∈V4,但x+y=(1,1,…,0)T∉V4.因为x∈V4, k∈R,但0x=(0,0,…,0)T∉V4.因为V4没有负元素:例如x=(1,0,…,0)T∈V4,但-x=(-1,0,…,0)T∉V4.(5)V5是R n的子空间.因为V5⊂R n,且∀x=(x,2x,…,nx)T, y=(y,2y,…,ny)T∈V5, k∈R,有x+y=(x+y,2(x+y),…,n(x+y))T∈V5,k x=(kx,2kx,…,nkx)T∈V5.(6)V6是R n的子空间.因为V6⊂R n,且∀x=(x1,y1,…,y1)T, y=(x2,y2,…,y2)T∈V6, k∈R,有x+y=(x1+x2,y1+y2,…,y1+y2)T∈V6,k x=(kx1,ky1,…,ky1)T∈V6.5. (1) V1是n-1维线性空间.e2,e3,…,e n是V1的一组基.因为x=(0,x2,…,x n)T=x2e2+ x3e3+…+x n e n.(3)V3是n-1维线性空间.(1,0,…,0,-1)T, (0,1,…,0,-1)T,…, (0,0,…,1,-1)T是V3的一组基.因为x=(x1,x2,…,x n)T∈V3,总有(x1,x2,…,x n)T=x1(1,0,…,0,-1)T+x2(0,1,…,0,-1)T+…+x n-1(0,0,…,1,-1)T.(5)V5是1维线性空间,x=(1,2,…,n)T是V5的一组基.因为x=(x,2x,…,nx)T=x(1,2,…,n)T.(6) V6是2维线性空间,(1,0,…,0,0)T, (0,1,…,1,1)T是V6的一组基.因为x=(x,y,…,y)T=x(1,0,…,0,0)T+y(0,1,…,1,1)T.6. 提示:(1)由于α1,α2,α3,α4∈R4,且(α1,α2,α3,α4)11111111212101411110020101110111----⎛⎫⎛⎫ ⎪ ⎪---⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭111111110111011100230023007400013----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪→→⎪ ⎪---- ⎪ ⎪-⎝⎭⎝⎭所以R(α1,α2,α3,α4)=4,故α1,α2,α3,α4是线性空间R4的一组基.(2)设β=(α1,α2,α3,α4)x.由于(α1,α2,α3,α4,β)10001010020010100013⎛⎫⎪⎪→⎪-⎪⎝⎭行变换,所以β在基α1,α2,α3,α4下的坐标为(1,2,-1,3)T.7. 提示:1,(x-a),(x-a)2,…,(x-a)n-1∈R[x]n.令k1+k2(x-a)+…+k n(x-a)n-1=0,显然有k1,k2,…,k n=0,故1,(x-a),(x-a)2,…,(x-a)n-1线性无关.设∀f(x)=a0+a1x+…+a n-1x n-1∈R[x]n,则f(x)=f(a)+f’(a)(x-a)+…+f(n-1)(a)(x-a)(n-1)/n!.因此,1,(x-a),(x-a)2,…,(x-a)n-1是线性空间R[x]n的一组基,且f(x)=1+x+…+x n-1在此基下的坐标为(1+a+…+a n-1, 1+2a+…+(n-1)a n-2,…,1)T.8. 提示:(1)设(β1,β2,β3)=(α1,α2,α3)C,则过渡矩阵C=(α1,α2,α3)-1(β1,β2,β3)=…(2)设α=(α1,α2,α3)x,则α在基α1,α2,α3下的坐标为x=(α1,α2,α3)-1α=…设α=(β1,β2,β3)y,则α在基β1,β2,β3下的坐标为y=(β1,β2,β3)-1α=……或y=(β1,β2,β3)-1α=C-1(α1,α2,α3)-1α=C-1x=……9. 提示:(1)(α1,α2,α3)=(1,1+x,1+x+x2)=(1,x,x2)111 011 001⎛⎫ ⎪ ⎪ ⎪⎝⎭⇒过渡矩阵C=111011001⎛⎫ ⎪⎪ ⎪⎝⎭.(2)因为3+2x+x 2=(1,x,x 2)321⎛⎫ ⎪ ⎪ ⎪⎝⎭=(α1,α2,α3)1111310112100111-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以向量3+2x+x 在基α1,α2,α3下的坐标为(1,1,1)T .10. 提示:(1)、(3)、(4)是;(2)不是.(注:当n≠2时,(4)不是.)(2)因为T(A+B)=A+B+1101⎛⎫ ⎪⎝⎭=T(A)+T(B)-1101⎛⎫⎪⎝⎭≠T(A)+T(B).因为T(kA)=kA+1101⎛⎫ ⎪⎝⎭≠k A+k 1101⎛⎫ ⎪⎝⎭=kT(A) (当k≠1).(4)设A=11122122a a a a ⎛⎫ ⎪⎝⎭,B=11122122b b b b ⎛⎫ ⎪⎝⎭,则A *=22122111a a a a -⎛⎫⎪-⎝⎭,B *= 22122111b b b b -⎛⎫ ⎪-⎝⎭,(A+B)*=2222121221211111a b (a b )(a b )a b +-+⎛⎫ ⎪-++⎝⎭,且T(A+B)=(A+B)*=A *+B *,T(kA)=(kA)*=kT(A).11. 提示:首先求基在线性变换T 下的像:T(E 11),T(E 12),T(E 21),T(E 22),然后将其表示为T(E 11,E 12,E 21,E 22)=(E 11,E 12,E 21,E 22)C ,那么C 即为所求矩阵.(1)T(E 11,E 12,E 21,E 22)=(1111⎛⎫ ⎪--⎝⎭,0101⎛⎫ ⎪-⎝⎭,1111⎛⎫ ⎪⎝⎭,0101⎛⎫⎪⎝⎭)=(E 11,E 12,E 21,E 22)1010111110101111---⎛⎫ ⎪⎪ ⎪⎪⎝⎭, 所以线性变换T 在该基下的矩阵为1010111110101111---⎛⎫ ⎪⎪ ⎪⎪⎝⎭.(3) T(E 11,E 12,E 21,E 22)=(2000⎛⎫ ⎪⎝⎭,0110⎛⎫ ⎪⎝⎭,0110⎛⎫ ⎪⎝⎭,0002⎛⎫⎪⎝⎭)=(E 11,E 12,E 21,E 22)2000011001100002⎛⎫⎪⎪⎪ ⎪⎝⎭. 所以线性变换T 在该基下的矩阵为2000011001100002⎛⎫⎪⎪⎪⎪⎝⎭.(4)T(E 11,E 12,E 21,E 22)=(0001⎛⎫⎪⎝⎭,0100-⎛⎫ ⎪⎝⎭,0010⎛⎫ ⎪-⎝⎭,1000⎛⎫⎪⎝⎭) =(E 11,E 12,E 21,E 22)000010000101000⎛⎫⎪- ⎪ ⎪-⎪-⎝⎭1. 所以线性变换T 在该基下的矩阵为000010000101000⎛⎫⎪-⎪ ⎪-⎪-⎝⎭1.12. 提示:T(ε1)=(1,1,1)T , T(ε2)=(2,-1,1)T , T(ε3)=(0,0,1)T ,T(ε1,ε2,ε3)=( (1,1,1)T , (2,-1,1)T , (0,0,1)T )=(ε1,ε2,ε3)120110111⎛⎫ ⎪- ⎪ ⎪⎝⎭.则120110111⎛⎫⎪- ⎪ ⎪⎝⎭即为所求矩阵.13. 提示:(1)因为T(ε1,ε2,ε3)=(ε1,ε2,ε3)120111011-⎛⎫⎪- ⎪ ⎪-⎝⎭,所以线性变换T 在基ε1,ε2,ε3下的矩阵为120111011-⎛⎫⎪- ⎪ ⎪-⎝⎭.(2)因为(η1,η2,η3)=(ε1+ε2+ε3,ε1+ε2,ε1)=(ε1,ε2,ε3)111110100⎛⎫⎪⎪⎪⎝⎭,所以T(η1,η2,η3)=T(ε1,ε2,ε3)111 110 100⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,ε2,ε3)120111011-⎛⎫⎪-⎪⎪-⎝⎭111110100⎛⎫⎪⎪⎪⎝⎭=(η1,η2,η3)1111110100-⎛⎫⎪⎪⎪⎝⎭120111011-⎛⎫⎪-⎪⎪-⎝⎭111110100⎛⎫⎪⎪⎪⎝⎭=010 111 012⎛⎫ ⎪ ⎪⎪--⎝⎭,所以线性变换T在基η1,η2,η3下的矩阵为010 111 012⎛⎫ ⎪ ⎪⎪--⎝⎭.14. 提示:依题意有T(ε1,ε2,ε3)=(ε1,ε2,ε3)111213212223313233a a aa a aa a a⎛⎫ ⎪ ⎪ ⎪⎝⎭.(1)因为(ε3,ε2,ε1)=(ε1,ε2,ε3)001010100⎛⎫⎪⎪⎪⎝⎭,所以T(ε3,ε2,ε1)=T(ε1,ε2,ε3)001 010 100⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a aa a aa a a⎛⎫⎪⎪⎪⎝⎭001010100⎛⎫⎪⎪⎪⎝⎭=(ε3,ε2,ε1)1111213212223313233001a a a001 010a a a010 100a a a100-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=(ε3,ε2,ε1)111213212223313233001a a a 001010a a a 010100a a a 100⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭=(ε3,ε2,ε1)333231232221131211a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭333231232221131211a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭即为所求矩阵. (2)因为(ε1,k ε2,ε3)=(ε1,ε2,ε3)1000k 0001⎛⎫⎪⎪ ⎪⎝⎭,所以T(ε1,k ε2,ε3)=T(ε1,ε2,ε3)1000k 0001⎛⎫ ⎪⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a a a a a aa a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)11000k 0001-⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)10001k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭1000k 0001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1,k ε2,ε3)111213212223313233a ka a a k a a k a ka a ⎛⎫⎪ ⎪ ⎪⎝⎭, 所以111213212223313233a ka a a k a a k a ka a ⎛⎫⎪⎪ ⎪⎝⎭即为所求矩阵. (3)因为(ε1+ε2,ε2,ε3)=(ε1,ε2,ε3)100110001⎛⎫⎪⎪ ⎪⎝⎭,所以T(ε1+ε2,ε2,ε3)=T(ε1,ε2,ε3)100110001⎛⎫ ⎪⎪ ⎪⎝⎭=(ε1,ε2,ε3)111213212223313233a a a a a a aa a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)1100110001-⎛⎫ ⎪ ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)100110001⎛⎫ ⎪- ⎪ ⎪⎝⎭111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭100110001⎛⎫ ⎪ ⎪ ⎪⎝⎭=(ε1+ε2,ε2,ε3)11121213211122122212231331323233a a a a a a a a a a a a a a a a +⎛⎫⎪-+--- ⎪ ⎪+⎝⎭, 所以11121213211122122212231331323233a a a a a a a a a a a a a a a a +⎛⎫⎪-+--- ⎪ ⎪+⎝⎭即为所求矩阵.15.提示:T(x 2e x ,2xe x ,e x )=((x 2+2x)e x ,(x+1)e x ,e x )=(x 2e x ,xe x ,e x )100210011⎛⎫ ⎪⎪ ⎪⎝⎭,100210011⎛⎫⎪ ⎪ ⎪⎝⎭即为所求矩阵.16.提示:(α1,α2,α3,α4)=2141r r r 2r 11101110102101110111011123110111--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪→ ⎪ ⎪---- ⎪ ⎪---⎝⎭⎝⎭()3242123r r r r r r r 11110121011101110000000000000000++-⨯-⎛⎫⎛⎫ ⎪⎪---- ⎪ ⎪→→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 故由α1,α2,α3,α4生成的子空间V 的一组基为(1,1,0,2)T ,(1,0,1,3)T .正交化:(1,0,1,3)T -7(1,1,0,2)T /6=(-1,-7,6,4)T /6 // (-1,-7,6,4)T 单位化:√6(1,1,0,2)T /6,√102(-1,-7,6,4)T /102.故空间V 的一组规范正交基为√6(1,1,0,2)T /6, √102(-1,-7,6,4)T /102.17. 提示:先求出一个基础解系,然后正交化、规范化.18. 证明 []T A A ,A (A )A α=αα=ααT T T (A A)=αα=αα=α.19. 提示:(1)关于y 轴对称;(2)投影到x 轴; (3)关于直线y=x 对称; (4)逆时针旋转900.20. 提示:由T(A,B,C,D)=(A ’,B ’,C ’,D ’),有T((x,y)T )=A(x,y)T .(1)T((x,y)T )=(-x,y)T =10x 01y -⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭;(2)T((x,y)T )=(x,2y)T =10x 02y ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭; (3)T((x,y)T )=(2x+2y,-x+y)T =22x 11y ⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭.21. 参见P 171页上的例7.21.八、计算实践实践指导:(1)理解线性空间、线性子空间、基、维数和坐标等概念,会求线性空间的基、维数和坐标;(2)了解基变换和坐标变换,会求基的过渡矩阵; (3)了解线性变换的概念,会求线性变换的矩阵;(4)了解内积、Euclid 空间的概念,会用施密特(Schmidt )方法将线性无关的向量组正交标准化; (5)了解标准正交基、正交矩阵的概念及它们的性质,会求标准正交基.例7.1 设A,B 都是n 阶正交矩阵,证明: (1) A T 是正交矩阵;(2)A -1是正交矩阵; (3)AB 是正交矩阵;(4)A O O B ⎛⎫ ⎪⎝⎭是正交矩阵.提示:(1)A 是正交矩阵 ⇒A T A=E ⇒A T (A T )T =E ⇒A T 是正交矩阵. (2)A 是正交矩阵⇒A -1(A T )-1=A -1(A -1)T =E ⇒A -1是正交矩阵. (3) AB 是正交矩阵⇒AB(AB)T =ABB T A T =E ⇒AB 是正交矩阵.(4) AB 是正交矩阵⇒TT T A O A O A O A O E O B O B O B OB ⎛⎫⎛⎫⎛⎫⎛⎫==⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⇒A O O B ⎛⎫⎪⎝⎭是正交矩阵.例7.2 设A=(a ij )n 为正交矩阵,证明: (1)det(A)=1或det(A)=-1;(2)当det(A)=1时,a ij =A ij ;当det(A)=-1时,a ij =-A ij ,其中A ij (i, j=1,2,…,n )是元素a ij 的代数余子式. 提示:A 是正交矩阵 ⇔A T A=E ⇒det 2(A)=1⇒det(A)=±1. 另一方面,由A *A=det(A)E ,得A *=det(A)A -1=det(A)A T ,故ij ij ijij A a , A 1,A a ,A 1.⎧==⎪⎨=-=-⎪⎩当当例7.3 设A,B 都是n 阶正交矩阵,且det(A)+det(B)=0,证明:det(A+B)=0. 提示:det(A)+det(B)=0 ⇒det(A)·det(B)=-1. 再由 B T (A+B)A T =B T +A T =(A+B)T⇒det(B)·det (A+B)·det(A)=det (A+B) ⇒-det (A+B)=det (A+B) ⇒det (A+B)=0。
高等代数(II)期末考试试卷及问题详解(A卷)
高等代数(II )期末考试试卷及答案(A 卷)一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设是非零线性空间 V 的线性变换,则下列命题正确的是: (A )的核是零子空间的充要条件是(B )的核是V 的充要条件是(C )的值域是零子空间的充要条件是(D )的值域是V 的充要条件是3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
高代复习题及答案
V 2 ( x 1 , x 2 , x 3 , x 4 ) x 1 x 2 x 3 x 4 0 .求 V 1 V 2 与 V 1 V 2 的基与维数.
33.设 V 是 3 维线性空间, 1 , 2 , 3 为它的一个基.线性变换 : V V ,
x1 1 x 2 2 x 3 3 2 x1 1 3 x 2 2 4 x 3 3
1 40.设 1 , 2 , 3 是 3 维欧氏空间 V 的一组基,这组基的度量矩阵为 1 2
1
(3) V
(0)
(V ) .
2.已知是 n 维欧氏空间的正交变换,证明:的不变子空间 W 的正交补 W 也是的不变子空
间.
1 0 3.已知复系数矩阵 A 0 0
2 1 0 0
3 2 1 0
4 3 , 2 1
(1) 求矩阵 A 的行列式因子、不变因子和初等因子; (2) 求矩阵 A 的若当标准形.(15 分)
6.设 A 为 n 阶方阵,
W1 x R | Ax 0 , W 2 x R | ( A E ) x 0
n n
n 证明 A 为幂等矩阵,则 R W 1 W 2 .
7.若设 W= f ( x ) f (1) 0 , f ( x ) R [ x ] n , 试证:W 是 R [ x ] n 的子空间,并求出 W 的一组基及维数.
2 3
3 。 6
(1)证明: ( x , y ) 是 R 2 的内积,因而 R 2 按此内积构成一个欧氏空间, (2)求 R 2 的一组标准正交基, (3)求矩阵 P ,使得 A P P .
32.设 R 4 的两个子空间为: V 1
高等代数下期末复习
第六章 线性空间一 线性空间的判定线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证.若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。
例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 全体n 阶反对称矩阵,对于矩阵的加法和数量乘法;解: 1)否。
因两个n 次多项式相加不一定是n 次多项式,例如523n nx x ++--=()()。
2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。
“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。
当A ,B 为反对称矩阵,k 为任意一实数时,有'''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。
A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。
故反对称矩阵的全体构成线性空间。
例:齐次线性方程组A x =0的全体解向量的集合,对于向量的加法和数乘向量构成一个线性空间,通常称为解空间。
而非齐次线性方程组 A x =b 的全体解向量的集合,在上述运算下则不是线性空间,因为它们的两个解向量的和已经不是它的解向量。
二、基 维数 坐标定义:在线性空间V 中,如果存在n 个线性无关的向量12n ,,,ααα使得:V 中任一向量α都可由12n ,,,ααα线性表示,那么,12n ,,,ααα就称为线性空间V 的一个基,n 称为线性空间V 的维数。
记作dim V =n 。
维数为n 的线性空间称为n 维线性空间。
定义(向量的坐标):设12n ,,,ααα是线性空间n V 的一个基。
线性空间习题解答
第六章 线性空间习题解答P267.1设,,M N MN M MN N ⊆==证明:证明: 一方面.M N M ⊆ 另一方面, 由于M M ⊆,,N M ⊆ 得.N M M ⊆ 2 证明: (1))()()(L M N M L N M =.(2))()()(L M N M L N M =证明:(1).),(L N x M x L N M x ∈∈∈且则设 即.M x N x M x ∈∈∈或且L x ∈且. 于是有)()(L M N M x ∈.另一方面,因为 )(,)(L N M L M L N M N M ⊆⊆,所以)()()(L N M L M N M ⊆.(2) 一方面,))(,)(L M L N M N M L N M ⊆⊆,所以)()()(L M N M L N M ⊆.另一方面, .),()(L M x N M x L M N M x ∈∈∈∀且则若).(,L N M x M x ∈∈则 若∈∈∈∉x L x N x M x 所以且则.,.L N 总之有)()()(),(L N M L M N M L N M x ⊆∈所以.3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法. (2) 设A 是n ⨯n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法.(3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法.(4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法.(5) 全体实数的二元数列,对于下面定义的运算:),(),(),(2121212211a a b b a a b a b a +++=⊕, )2)1(,(),(211111a k k kb ka b a k -+= . (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法:k ⋅α=0.(7) 集合与加法同(6), 数量乘法为k ⋅α=α.(8) 全体正实数R +,加法和数量乘法定义为: a ⊕b=ab , ka=a k .(1) 否. ,因为2个n 次多项式相加不一定是n 次多项式. 取f (x )=x n , g (x )=x n -1. 则f (x )+g (x )=-1不再是n 次多项式.(2) 是. 因为集合]}[)(|)({x R x f A f V ∈=作为n 级实矩阵全体的子集, 关于矩阵的加法和数量乘法封闭.(3) 是. 因为实对称(反对称,上三角)矩阵之和或之倍数仍是实对称(反对称,上三角)矩阵.(4) 否. 设{}|V ααβ=为平面上不平行的向量, β=(a,b)≠0. 取α=(a+1,b), γ=(a-1, b), 则α, γ∈V, 但是, α+ γ∉V. (5) 证明: 10显然V 非空.022个代数运算封闭.03先设R t k b a r b a b a ∈===,),,(),,(),,(332221及βα=(kla 1,klb 1+211((1))2kl k a -=kl α(7)(k+l)α =((k+1)a1,(k+l)b 1+211()(1))2k l k l a ++-=((k+1)a 1,(k+l)b 1+22211(2))2k l kl k l a ++--(8)2121212121212121()(,)((),((1)())2k k a a b b a a k a a k b b a a k k a a αβ⊕=+++=++++-+22121122121211(,(1)(1)(1))22ka ka kb k k a kb k k a ka a k k a a =++-++-++-满足3,故V 是一个线性空间 (6) 否. 不满足定义3之(5): 1100αααα==≠,但这里。
北京大学数学系《高等代数》(第3版)【教材精讲+考研真题解析】第6章 线性空间 【圣才出品】
第6章线性空间[视频讲解]6.1本章要点详解本章要点■线性空间的定义与简单性质■维数、基与坐标■基变换与坐标变换■线性子空间的判定■线性子空间■子空间的交与和■子空间的直和■线性空间的同构重难点导学一、集合·映射1.集合(1)定义①集合:把一些事物汇集到一起组成的一个整体.②元素:组成集合的东西.a∈M,表示a是集合M的元素,读为:a属于M.a M,表示a不是集合M的元素,读为:a不属于M.③空集:不包含任何元素的集合.④子集合:如果集合M的元素全是集合N的元素,即由a∈M可以推出a∈N,则称M为N的子集合.空集合是任一集合的子集合.(2)集合的关系①集合相等:如果两个集合M与N含有完全相同的元素.即a∈M当且仅当a∈N.或者两个集合同时满足M∈N和N∈M.②集合的交:设M,N是两个集合.既属于M又属于N的全体元素所成的集合称为M与N的交,记为M∩N.③集合的并:属于集合M或者属于集合N的全体元素所组成的集合称为M与N的并,记为M∪N.2.映射(1)定义设M与M′是两个集合.存在一个法则,它使M中每一个元素a都有M′中一个确定的元素a′与之对应,则称这个法则为集合M到集合M′的一个映射.如果映射σ使元素a′∈M′与元素a∈M对应,则记为σ(a)=a′.a′称为a在映射σ下的像,而a称为a′在映射σ下的一个原像.M到M自身的映射,也称为M到自身的变换.集合M到集合M′的两个映射σ及τ.若对M的每个元素a都有σ(a)=τ(a),则称它们相等,记作σ=τ.(2)映射的乘积设映射,乘积定义为(a)=τ(σ(a)),即相继施行σ和τ的结果,是M到M"的一个映射.(3)映射的性质①设σ是集合M到M′的一个映射,用σ(M)代表M在映射σ下像的全体,称为M在映射σ下的像集合,显然σ(M)∈M′,如果σ(M)=M′,映射σ就称为映上的或满射.②如果在映射σ下.M中不同元素的像也一定不同.即由a1≠a2一定有σ(a1)≠σ(a2),则称映射σ为1-1的或单射.③一个映射如果既是单射又是满射称为1-1对应或双射.(4)可逆映射设映射σ:M→M′,若有映射τ:M′→M,使得,则称σ为可逆映射,τ为σ的逆映射,记作σ-1.二、线性空间的定义与简单性质1.线性空间的定义如果加法与数量乘法满足下述规则,则V称为数域P上的线性空间.加法满足下面四条规则(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中有一个元素0,对于V中任一元素α都有0+α=α(具有这个性质的元素0称为V的零元素);(4)对于V中每一个元素α,都有V中的元素β,使得α+β=0(β称为α的负元素).数量乘法满足下面两条规则(1)1α=α;(2)k(lα)=(kl)α.数量乘法与加法满足下面两条规则(1)(k+l)α=kα+lα;(2)k(α+β)=kα+kβ.在以上规则中,k,l表示数域P中的任意数;α,β,γ表示集合V中任意元素.由定义,几何空间中全部向量组成的集合是一个实数域上的线性空间.分量属于数域P 的全体n元数组构成数域P上的一个线性空间,这个线性空间用P n来表示.2.线性空间的简单性质(1)零元素是唯一的;(2)负元素是唯一的;(3)0α=0;k0=0;(-1)α=-α;(4)如果kα=0.那么k=0或者α=0.三、维数、基与坐标1.线性空间中向量之间的线性关系(1)有关定义①线性组合设V是数域P上的一个线性空间,α1,α2,…,αr(r≥1)是V中一组向量,k1,k2,…,k r是数域P中的数.使得向量α=k1α1+k2α2+…+k rαr,则称为向量组α1,α2,…,αr的一个线性组合,或者称向量α可以用向量组α1,α2,…,αr线性表出.②向量组等价设α1,α2,…,αr(6-1)β1,β2,…,βr(6-2)是V中两个向量组,如果向量组(6-1)中每个向量都可以用向量组(6-2)线性表出,则称向量组(6-1)可以用向量组(6-2)线性表出.如果向量组(6-1)与向量组(6-2)可以互相线性表出.则称向量组(6-1)与(6-2)为等价的.③线性无关线性空间V中向量α1,α2,…,αr(r≥1)称为线性相关,如果在数域P中有r个不全为零的数k1,k2,…,k r,使k1α1+k2α2+…+k rαr=0(6-3)如果向α1,α2,…,αr不线性相关,称为线性无关,或者称向量组α1,α2,…,αr为线性无关,如果式(6-3)只有在k1=k2=…=k r=0时才成立.(2)有关结论①单个向量α是线性相关的充分必要条件是α=0.两个以上的向量α1,α2,…,αr线性相关的充分必要条件是其中有一个向量是其余向量的线性组合;②如果向量组α1,α2,…,αr线性无关,而且可以被β1,β2,…,βr线性表出,那么r ≤s.。
习题与复习题详解线性空间高等代数
习题5. 11.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.答 是.因为是通常意义的矩阵加法与数乘; 所以只需检验集合对加法与数乘运算的封闭性.由n 阶实对称矩阵的性质知;n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵;数乘n 阶实对称矩阵仍然是n 阶实对称矩阵; 所以集合对矩阵加法与数乘运算封闭; 构成实数域上的线性空间. 2.全体正实数R +; 其加法与数乘定义为,,k a b ab k a a a b R k R+⊕==∈∈其中判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈;,R a R a a R λλλ++∀∈∈⇒=∈;所以R +对定义的加法与数乘运算封闭.下面一一验证八条线性运算规律1 a b ab ba b a ⊕===⊕;2()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;3 R +中存在零元素1; ∀a R +∈; 有11a a a ⊕=⋅=;4 对R +中任一元素a ;存在负元素1n a R -∈; 使111a a aa --⊕==;511a a a ==; 6()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;7 ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵;其加法定义为按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则1; 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ⨯中;{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间.答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零; 也就是说集合对加法不封闭.习题1.讨论22P ⨯中 的线性相关性.解 设11223344x A x A x A x A O +++=;即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知; 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中;求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫ ⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 1; 0 ; - 1 ; 0 . 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩. 由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为-7;11;-21;30. 4.已知3R 的两组基Ⅰ: 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11Ⅱ:123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443 (1) 求由基Ⅰ到基Ⅱ的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫⎪ ⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ.解1设C 是由基Ⅰ到基Ⅱ的过渡矩阵; 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭; 知基Ⅰ到基Ⅱ的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. 2首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭; 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭. 3β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭. 4 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭; 据题意有234010101⎛⎫⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭; 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫⎪ ⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数. 5.已知Px 4的两组基Ⅰ:2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,Ⅱ:2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g(1) 求由基Ⅰ到基Ⅱ的过渡矩阵;(2) 求在两组基下有相同坐标的多项式fx .解 1 设C 是由基Ⅰ到基Ⅱ的过渡矩阵; 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. 2设多项式fx 在基Ⅰ下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 因为01101101100111111001101021021021112C E ---==--==------所以方程组只有零解;则fx 在基Ⅰ下的坐标为(0,0,0,0)T ;所以fx = 0习题证明线性方程组的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0; 对系数矩阵施以初等行变换.()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3; 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1.求向量()1,1,2,3α=- 的长度.解α.2.求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解(,)d αβ=αβ-. 3.求下列向量之间的夹角 1 ()()10431211αβ==--,,,,,,,2 ()()12233151αβ==,,,,,,,3()()1,1,1,2311,0αβ==-,,,解1(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.2(),1321253118αβ=⨯+⨯+⨯+⨯=;,4παβ∴==.3(),13111(1)203αβ=⨯+⨯+⨯-+⨯=;α==β==,αβ∴=3.设αβγ,,为n 维欧氏空间中的向量;证明: (,)(,)(,)d d d αβαγγβ≤+.证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+- 所以22()αβαγγβ-≤-+-; 从而(,)(,)(,)d d d αβαγγβ≤+.习题1.在4R 中;求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交;则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 . 齐次线性方程组的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2.将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 1 正交化; 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ ; 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪- ⎪⎝⎭2 将123,,βββ单位化则*1β;*2β;*3β为R 3的一组基标准正交基. 3.求齐次线性方程组 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基;所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵 可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法; 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;将123,,βββ单位化得单位正交向量组因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解;所以*1β;*2β;*3β是解空间的一组标准正交基.3. 设1α;2α ;… ;n α 是n 维实列向量空间n R 中的一组标准正交基; A 是n 阶正交矩阵;证明: 1αA ;2αA ;… ;n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基; 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵; 所以T A A E =. 则故n A A A ααα,,,21 也是n R 中的一组标准正交基.5.设123,,ααα是3维欧氏空间V 的一组标准正交基; 证明 也是V 的一组标准正交基. 证明 由题知123,,βββ所以是单位正交向量组; 构成V 的一组标准正交基.习题五 A一、填空题1.当k 满足 时;()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠; 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩; 故答案为1. 3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义; 求解方程组就可得答案.设所求坐标为123(,,)x x x ; 据题意有112233x x x αααα=++. 为了便于计算; 取下列增广矩阵进行运算()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换; 所以123(,,)x x x = 33;-82;154.4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭; 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭. 5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3; 则该方程组的解空间的维数为 .解 5元线性方程组AX = 0的解集合的极大无关组基础解系含5 – 3 =2 个向量; 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=; 则12a =或1.故答案为12a =.二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是 . A (){}R x x x x V n n ∈=,,0,,0,111B (){}R x x x x x x x V i n n ∈=+++=,0,,,21212C (){}R x x x x x x x V i n n ∈=+++=,1,,,21213D (){}411,0,,0,0V x x R =∈解 C 选项的集合对向量的加法不封闭; 故选C.2.331,23P A ⨯⎛⎫⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为 .A 1B 2C 3D 4解 向量组A =123⎛⎫⎪ ⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩; 故选A.解 因 B 选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(); 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关. 故选B.解 因122313 ()()()0αααααα-+---=; 所以 C 选项中向量组线性相关; 故选C. 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r ; 该方程组的解空间的维数为s; 则 .A s=rB s=n-rC s>rD s<r 选B6. 已知A; B 为同阶正交矩阵; 则下列 是正交矩阵. A A+B B A-B C AB D kA k 为数 解 A; B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选C.7. 线性空间中;两组基之间的过渡矩阵 .A 一定不可逆B 一定可逆C 不一定可逆D 是正交矩阵 选BB1.已知4R 的两组基 Ⅰ: 1234, αααα,,Ⅱ:11234223433444,βααααβαααβααβα=+++=++=+=,, 1 求由基Ⅱ到Ⅰ的过渡矩阵;2 求在两组基下有相同坐标的向量. 解 1设C 是由基Ⅰ到基Ⅱ的过渡矩阵; 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭; 所以由基Ⅱ到基Ⅰ的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. 2设在两组基下有相同坐标的向量为α; 又设α在基Ⅰ和基Ⅱ下的坐标均为),,,(4321x x x x ; 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ; 即 1234()x x E C x x ⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪⎝⎭0 齐次线性方程的一个基础解系为(0,0,0,1)η=; 通解为(0,0,0,) ()X k k R *=∈. 故在基Ⅰ和基Ⅱ下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.解 1 由题有因0011001112220≠;所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量;构成3 R 的基. 2 因为所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭3 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫⎪- ⎪ ⎪⎝⎭向量在基下的坐标为 解 1 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭; 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.2112341234123411112(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭;12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.证明 设112233()()()0t f x t f x t f x ++=;则有222123(1)(12)(123)0t x x t x x t x x ++++++++=即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组只有零解. 故123(),(),()f x f x f x 线性无关; 构成3[]P x 线性空间的一组基.设112233()()()()f x y f x y f x y f x =++则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为1; 2; 3.5.当a 、b 、c 为何值时;矩阵A= 00010a bc ⎫⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵;应有 T AA E =⇒2221120 1a ac b c ⎧+=⎪⎪=⇒⎪+=⎪⎩①a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.6.设 是n 维非零列向量; E 为n 阶单位阵; 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量; T αα所以是非零实数.又22TTT TT T TA E E A αααααααα⎛⎫=-=-= ⎪⎝⎭; 所以22T T T TTA A AA E E αααααααα⎛⎫⎛⎫==--⎪⎪⎝⎭⎝⎭故A 为正交矩阵.7.设T E A αα2-=; 其中12,,,Tn a a a α=(); 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A T T T T T T T =-=-=-=αααααα2)(2)2(;所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=;所以A 为正交阵.证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且。
高等代数课后习题答案(山东大学出版社第二版)第六章线性空间
第六章 线性空间第一节 映射∙代数运算1.(1)双射. (2)非单射也非满射. (3)非单射也非满射. (4)满射. 2.(1)由b a b gf a gf =⇒=)()(.(2)C c ∈∀,B b ∈∃使c b g =)((因为g 为满射),对于b ,又A a ∈∃使b a f =)((因为f 为满射),即c a gf=)(.3.由2知gf为双射,且C I g gff=--11,C I gf g f=--11,因此111)(---=g fgf .4.A b a ∈∀,,若)()(b f a f =,则)()(b gf a gf =,由b a I gf A =⇒=,故f为单射.B b a f A a ∈=∃∈∀)(,,使a a gf b g ==)()(.第二节 线性空间的定义1. (1),(2)不是线性空间;(3),(4),(5),(6)是线性空间.2. 否.因为R i i ∉=⋅1.4. 设α为非零向量,F l k ∈∀,,当l k ≠时, ααl k ≠,因此V中含有无限个向量.5. 因为φ≠∈V )0,0(,显然⊕是V 上的代数运算,"" 为V V R →⨯的代数运算.且容易验证(1)——(8)条运算律均成立.6. 若在nF 中,通常的加法及如下定义的数量乘法: 0=⋅αk .容易验证当0≠α时,αα≠=⋅01,但其余7条运算律均成立.第三节 基维数坐标1. 提示:反证法.2.(1)一个基为),,2,1(n i E ij =,)(j i E E ji ij ≠+,维数为2)1(+n n .(2)一个基为)(j i E E ji ij≠-,维数2)1(-n n .(3)一个基为2,维数为1. (4)一个基2,,A A E ,维数为3.3. 易证n n n l ααααααα,,,,,,2121 +↔,由l 的任意性及当l k ≠时n n k l αααα+≠+11,可得结论.4.易知C x x x a x a x a xn n ),,,,1())(,,)(,,1(1212--=--- ,其中⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-------10)(100)(210)(133122112n n n n n n n a C a C a a a a C且01≠=C .其坐标为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1101n a a a C . 5. (1))3,4,1,4(--. (2) )0,1,0,1(-.6. 22n 维.一个基为),,2,1,(,n j k i E E kj kj =.第四节 基变换和坐标变换1.(1) 过渡矩阵为 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001100001000010 .(2) 过渡矩阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100010000100001 k .3. 非零向量=ξ),,,(k k k k -,F k ∈且0≠k .4. 易知C n n ),,,(),,,(2113221ααααααααα =+++,其中C 的行列式为1)1(1+-=+n C N k k n k n ∈⎩⎨⎧-===12,22,0. 因此当n 为偶数时不为V 的基;当n 为奇数时为V的基.第五节 线性子空间1. (1),(2)是nF 的 子空间,(3)不是nF 的 子空间. 2. (1) 一个基为1,12--x x ,维数为2.(2)一个基为421,,ααα,维数为3.3. (1)φ≠)(A C ,且)(,21A C B B ∈∀,易证AB B B B A )()(2121+=+,因此)(21A C B B ∈+,又Fk ∈∀,有A kB kB A )()(11=,所以n F kB ∈1,从而)(AC 是n F 子空间.(2)n n F A C ⨯=)(.(3) 一个基为),,2,1(n i E ii =,维数为n .4. 只证3221,,αααα↔.5.若1dim >W ,必V ∈∃βα,,对F k ∈∀均有βαk ≠.令),,,(),,,,(2121n n b b b a a a ==βα且11kb a =,当2≥n 时至少有一个i使i ikb a ≠,于是βαk -的第一个分量为0,但是第i个分量不为0的向量,矛盾.6. 只证V ∈∃α,但1W ∉α且2W ∉α.由1W 为真子空间知,V ∈∃α但1W ∉α,若2W ∉α则结论成立.若2W ∈α,则由2W 为真子空间知V∈∃β但2W ∉β,若则结论成立.若1W ∈β则V ∈+βα但1W ∉+βα,且2W ∉+βα.第六节 子空间的和与直和2.取V 的基n εεε,,,21 ,易证)()()(21n L L L V εεε⊕⊕⊕= .3.显然21211W W W V ++=,设21211=++ααα,其中2211),2,1(,W i W i i ∈=∈αα,则)(21211=++ααα及21W W V ⊕=,可得0,021211==+ααα,再由12111W W W ⊕=知01211==αα,故21211W W W V ⊕⊕=.4.必要性∑-=⋂∈∀11i j ji i W W α,则∑-=∈11i j ji W α于是令121-+++=i i αααα 从而由000121=+++-+++- i i αααα及∑=ti iW 1为直和可知0=i α.充分性 假设21=+++t ααα 中最后一个不为的是iα,即)1(,01>===+i t i αα ,则{}011121≠⋂∈----=∑-=-i j j i i i W W αααα 矛盾.5. 首先21W W Fn+=,其次2121),,,(W W a a a n ⋂∈=∀ α,由n a a a === 21及021=+++n a a a ,可知0=i a 即0=α.6.nF ∈∀α,由αααA E A +--=)(,易证21,)(W A W E A ∈∈--αα,故21W W +∈α,即21W W F n +⊆且n F W W ⊆+21,于是21W W F n +=.21W W +∈∀β,可得0=β,从而21W W F n ⊕=.7. 充分性n F X ∈∀,由X AE X X E X 22-++=,易证21W W Fn+⊆.且21W W ⋂∈∀α由 ⎝⎛=+=-0)(0)(ααE A E A ,可得0=α,故21W W F n ⊕=.必要性 由21W W F n ⊕=可知,nF X ∈∀有21X X X +=,且由⎪⎩⎪⎨⎧-==+=-21210)(0)(XX X X E A X E A ,可得X A E X X A E X 2,221-=+=.故0)(212)(2=-=+-X E A X A E E A ,由X 的任意性可知E A =2. 8. 余子空间为),(43εεL ,其中)1,0,0,0(),0,1,0,0(43==εε.9. 取W 的基r ααα,,,21 ,将其扩充成V 的基n r r ααααα,,,,,,121 +,取F k k L W n r r k ∈+=++),,,,(211αααα ,则k W 为W 的余子空间,且当l k ≠时,l k W W ≠.10.)3()2(),2()1(⇒⇒,显然.)4()3(⇒利用维数公式对t 用数学归纳法; )5()4(⇒只证i W 的基的联合是线性无关的即可; )1()5(⇒∑=∈∀ti iW 1α,设t t βββαααα+++=+++= 2121,其中ti W i i i ,,2,1,, =∈βα,令iiirir i i i i i b b b αααα+++= 2211,iiirir i i i i i c c c αααβ+++= 2211,其中iiri i ααα,,,21为iW 的基.由0)()()(2211=+++-+-t t βαβαβα 得0)()()()(111111*********=-++-++-++-t t t tr tr tr t t t r r r c b c b c b c b αααα于是0,,01111=-=-t t tr tr c b c b ,即t i i i ,,2,1, ==βα.第七节 线性空间的同构2.R x ∈∀,令x x 2)(=σ即可.3. 二者维数相同.n m ij F a A ⨯∈∈∀)(,令),,,,,,,,()(2111211mn m m n a a a a a a A =σ4.112210)(--++++=∀n n x a x a x a a x f ,令),,,())((110-=n a a a x f σ.5. 基为4321,,,ββββ,维数为4.6. 基为D C B A ,,,,维数为4.7. 令b a V V →:σ, )()(()()(x h b x x h a x x f -→-=a V x h a x x f x h a x x f ∈-=-=∀)()()(),()()(2211,若)()()()(21x hb x x h b x -=-则)()(21x h x h =,从而)()(21x f x f =,即σ为单射.)()()(1x g b x x g -=∀,有)()()(1x g a x x f -=使)())((x g x f =σ,即σ为满射.a V x f x f ∈∀)(),(21及F l k ∈∀,,易证)()(),()()((22121x f l x f x f k x lf x kf σσσ+=+.补充题六1.),,,(21 ++n n n x x x L .2. 设F 作为K 上的线性空间的维数为n ,其一个基为n e e e ,,,21 ,设E 作为F 上的线性空间的维数为m ,其一个基为n εεε,,,21 ,则{}m j n i e j i ,,2,1;,,2,1| ==ε为E 作为K 上的线性空间的一个基.事实上,E ∈∀α,可设m i F b e b i ni i i ,,2,1,,1 =∈=∑=α.而F 是K 上的线性空间,可设n j m i K a a a a b ij n in i i i ,,2,1;,,2,1,,2211 ==∈+++=εεε.故∑∑===mi nj j i ij e a 11)(εα.令0)(11=∑∑==mi nj i j ije kε,n j m i K k ij ,,2,1;,,2,1, ==∈,则0))(11=∑∑==m i nj i j ij e k ε,故j nj ijkε∑=1,进而n j m i k ij ,,2,1;,,2,1,0 ===.故{}m j n i e j i ,,2,1;,,2,1| ==ε是其一个基.3. 设1V 的基为r εεε,,,21 ,将其扩充为V的基n r r εεεεε,,,,,,121 +,令),,(11n r L W εε +=,则11W V V⊕=,又令),,,(22112r n n r r L W -+++++=εεεεεε这里r r n ≤-,易证r εεε,,,21 ,r n n r r -+++++εεεεεε,,,2211 线性无关,从而21W V V ⊕=.设21W W ⋂∈α,则n n r r r n n n r r l l k k εεεεεεα++=++++=++-++ 11111)()(,得到01===+n r k k ,进而0=α,即{}021=⋂W W .若2n r<上述问题不成立,用反证法,设2111W V W V V ⊕=⊕=,而{}021=⋂W W ,令n r r εεε,,,21 ++是1W 的基,''1,,n r εε +是2W 的基,则n r r εεε,,,21 ++,''1,,n r εε +线性无关.事实上,考察n n r r k k εε++++ 110''11=+++++nn r r l l εε 所以n n r r k k εε++++ 11{}021''11=⋂∈---=++W W l l nn r r εε 因此011=++++n n r r k k εε进而0,011====+=++n r n r l l k k ,而''11,,,,,n r n r εεεε ++共有)2(r n n r n r n -+=-+-个向量,因为2nr <,所以02,2>->r n r n ,故n r n r n >-+-,矛盾.4. 解 设)(x m A 为A 的最小多项式,令)(x m A 的次数m ,则1,,,-m A A E线性无关,从而m W =dim .事实上,首先1,,,-m A A E线性无关,否则存在110,,-m k k k 不全为零,使01110=+++--m m A k A k E k ,而令0,011===≠-+m i ik k k ,即10,010-≤<=+++m i A k A k E k i i ,与)(x m A 为A 的最小多项式矛盾,从而它们线性无关. ][)(x P x f ∈∀,则存在)(),(x r x q ,使,)(deg 0)(),()()()(m x r or x r x r x q x m x f A <=+=故 )()(A r A f =即)(A f 可由 1,,,-m A A E 线性表示.故 1,,,-m A A E 为W 的基.5. 参考本章第五节练习题6.6. 证 对用数学归纳法.当2=s 时,由上题知,结论成立;假定对1-s 个非平凡的子空间结论成立,即在V中存在向量α,使1,,2,1,-=∉s i V i α对第s 个子空间s V ,若s V ∉α,结论已对;若s V ∈α,则由于s V 为非平凡子空间,故存在s V ∉β.对任意数k ,向量s V k ∉+βα,且当21k k ≠时向量βαβα++21,k k 不属于同一个)11(-≤≤s i V i .今取s 个互不相同的数s k k k ,,,21 ,则s 个向量βαβαβα+++s k k k ,,,21中至少有一个不属于任何121,,,-s V V V ,这样的向量即满足要求.7. 只证0=X AA T 与0=X A T 同解即可.8. 设012=X A 与012=X B 的解空间分别为1V 与2V .1V ∈∀α,则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-ααααα2222222222121000A B A B A B A A ,故222V A ∈α.令αασ22:A →,易证σ是1V 到2V 的同构映射.9. 由维数公式)dim(dim )dim())dim((k j i k j i k j i W W W W W W W W W ++-++=⋂+得)dim ()dim (dim )dim (j i k j i k j i k W W W W W W W W d ⋂+++-++=)dim(dim dim dim k j i k j i W W W W W W ++-++=从而321d d d ==.10. 证 设齐次方程组0=AX 的解空间为1W ,齐次方程组0=BX 的解空间为2W .任取21W W ⋂∈α,则0,0==ααB A ,从而0=⎪⎪⎭⎫⎝⎛αB A ,由⎪⎪⎭⎫ ⎝⎛=B A C可逆,所以0=α,即{}021=+W W ,因此n F n W W dim )dim (21==+,且n F W W ⊆+21,因此21W W F n⊕=. 11. 证 任取)(AB N X ∈,由n I BD AC =+,则 BDX ACX X +=由0)()(==ABX C ACX B ,所以)(B N A C X ∈,由)()(==ABX D BDX A ,所以)(A N B D X ∈,从而)()()(B N A N AB N +=.任取)()(B N A N X ⋂∈,则)(A N X ∈,从而)(,0NB X AX ∈=,从而0=BX ,于是0)()(=+=+=BX D AX C BDX ACX X 即)()()(B N A N AB N ⊕=.12. 证法同上题. 13. (1)证 例如,取)1,,1,1( =α,则由α的一切倍数)(F k k ∈α作成的子空间W 中,每个非零向量0),,,,(≠=k k k k k α的分量都不是零.(2) 见习题6.5中的题5. 14. 证 必要性 显然; 充分性 设221121,,0V V ∈∈=+ββββ,则21ααα+=,由α的分解唯一可知021==ββ,故21V V +是直和. 15. 若n ααα,,,21 是V 作为C 上的线性空间的基,则n n i i ααααα,,,,,,121 是V作为R 上的线性空间的基.16. 若{}0=W ,则n n F A ⨯∈∀且0,0||=≠AX A 的解空间即为W ;若{}0≠W,且设r W =dim ,取其一个基r ααα,,,21 ,令r i in i i i ,,2,1),,,,(21 ==αααα则以n r ij a A ⨯=)(为系数矩阵的齐次方程组0=AX 的基础解系为r n -βββ,,,21 ,且令r n j b b b jn j j j -==,,2,1),,,,(21 β.则齐次方程组0=BY 的解空间为r 维,且r ααα,,,21 为其一个基础解系.即),,(21r L W ααα =,其中n r n ij b B ⨯-=)()(.17. 令121dim )dim(V t V V =+⋂,221dim )dim (V l V V =+⋂而1)dim ()dim (dim dim dim )dim (2121212121+⋂=+++=⋂-+=+V V t l V V V V V V V V于是1,01==⇒=+t l t l或者0,1==t l .当0=l时,221V V V =⋂,此时12V V ⊆.当0=t时,121V V V =⋂,此时21V V ⊆.18. 取基为n n αααα,,,21 ++.19. 设A 为半正定的,故存在秩为r 的矩阵B ,使B B A '=,由此'S S =.其中{}|'==xAx x S{}|'1==Ax x S 此时构成线性空间,维数为r n -.设A 为半负定的,则A -为半正定的.令 {}0|'==xAx x S {}0|'1==Ax x S若A 不定,则存在可逆矩阵Q 使 ⎪⎪⎪⎭⎫⎝⎛=0'qp E E QAQ 那么经过线性变换YQ X =,)(x f 化为221221'')(q p p p y y y y Y YQAQ x f ++---++==取1,111==+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(1 =x ,从而0)(1=x f ,取1,111=-=+p y y ,其它0=i y ,得)0,,0,1,0,,0,1(2 -=x ,从而0)(2=x f ,但是)0,,0,2,0,,0,0(21 =+x x ,04)(21≠-=+x x f ,所以此时不能构成线性空间.20. (1) 用定义直接验证; (2) 维数为n ,基:1,,,-n A A E .。
(完整版)高等代数(北大版)第7章习题参考答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数(北大版)第6章《线性空间》习题解答
第六章 线性空间1.设,N M ⊂证明:,MN M MN N ==。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M ∈α即证M NM ∈。
又因,M N M ⊂ 故M N M =。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N ⊂所以MN N =。
2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。
证 ),(L N M x ∈∀则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。
反之,若)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x NL ∈,得),(L N M x ∈故),()()(L N M L M N M ⊂于是)()()(L M N M L N M =。
若x M NL M NL ∈∈∈(),则x ,x 。
在前一情形X x MN ∈, X ML ∈且,x MN ∈因而()(M L )。
,,N L x M N X M L M N M M N MN ∈∈∈∈∈⊂在后一情形,x ,x 因而且,即X (M N )(M L )所以()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
2020年同济大学线性代数第六版第六章《线性空间与线性变换》同步练习与解析
第六章 线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基.(1) 2阶矩阵的全体S 1;解 设A , B 分别为二阶矩阵, 则A , B ∈S 1. 因为(A +B)∈S 1, kA ∈S 1,所以S 1对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε, ⎪⎭⎫ ⎝⎛=10004ε 是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解 设⎪⎭⎫⎝⎛-=a c b a A , ⎪⎭⎫ ⎝⎛-=d f e d B , A , B ∈S 2. 因为 2)(S d a a c b c d a B A ∈⎪⎭⎫ ⎝⎛++++-=+,2S ka kc kb ka kA ∈⎪⎭⎫ ⎝⎛-=, 所以S 2对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛-=10011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε是S 2的一个基.(3) 2阶对称矩阵的全体S 3. 解 设A , B ∈S 3, 则A T=A , B T=B . 因为 (A +B)T=A T+B T=A +B , (A +B)∈S 3, (kA)T=kA T =kA , kA ∈S 3,所以S 3对于加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=01102ε, ⎪⎭⎫ ⎝⎛=10003ε是S 3的一个基.2. 验证: 与向量(0, 0, 1)T不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间.解 设V ={与向量(0, 0, 1)T不平行的全体三维向量}, 设r 1=(1, 1, 0)T, r 2=(-1, 0, 1)T, 则r 1, r 2∈V , 但r 1+r 2=(0, 0, 1)T∉V , 即V 不是线性空间.3.在线性空间P[x]3中,下列向量组是否为一个基? (1)Ⅰ:1+x,x+x 2,1+x 3,2+2x+x 2+x 3(2)Ⅱ:-1+x,1-x 2,-2+2x+x 2,x 34. 在R 3中求向量α=(3, 7, 1)T在基α1=(1, 3, 5)T, α2=(6, 3, 2)T, α3=(3, 1, 0)T下的坐标. 解 设ε1, ε2, ε3是R 3的自然基, 则 (α1, α2, α3)=(ε1, ε2, ε3)A , (ε1, ε2, ε3)=(α1, α2, α3)A -1,其中⎪⎪⎭⎫ ⎝⎛=025133361A , ⎪⎪⎭⎫ ⎝⎛-----=-1528981553621A .因为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-173) , ,(173) , ,(1321321A αααεεεα⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----=173152898155362) , ,(321ααα⎪⎪⎭⎫⎝⎛-=1548233) , ,(321ααα,所以向量α在基α1, α2, α3下的坐标为(33, -82, 154)T.5. 在R 3取两个基α1=(1, 2, 1)T, α2=(2, 3, 3)T, α3=(3, 7, 1)T; β1=(3, 1, 4)T, β2=(5, 2, 1)T, β3=(1, 1, -6)T. 试求坐标变换公式.解 设ε1, ε2, ε3是R 3的自然基, 则 (β1, β2, β1)=(ε1, ε2, ε3)B , (ε1, ε2, ε3)=(β1, β2, β1)B -1,(α1, α2, α1)=(ε1, ε2, ε3)A =(β1, β2, β1)B -1A ,其中 ⎪⎪⎭⎫ ⎝⎛=131732121A , ⎪⎪⎭⎫⎝⎛-=614121153B .设任意向量α在基α1, α2, α3下的坐标为(x 1, x 2, x 3)T, 则⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-3211321321321) , ,() , ,(x x x A B x x x βββαααα,故α在基β1, β2, β3下的坐标为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'''-3211321x x x A B x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32149910726313941811913x x x .6. 在R 4中取两个基e 1=(1,0,0,0)T, e 2=(0,1,0,0)T, e 3=(0,0,1,0)T, e 4=(0,0,0,1)T; α1=(2,1,-1,1)T, α2=(0,3,1,0)T, α3=(5,3,2,1)T, α3=(6,6,1,3)T. (1)求由前一个基到后一个基的过渡矩阵; 解 由题意知⎪⎪⎪⎭⎫⎝⎛-=3101121163316502) , , ,() , , ,(43214321e e e e αααα, 从而由前一个基到后一个基的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛-=3101121163316502A . (2)求向量(x 1, x 2, x 3, x 4)T在后一个基下的坐标; 解 因为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e ,向量α在后一个基下的坐标为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-4321143213166123501301112x x x x y y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=432126937180092391213327912271x x x x . (3)求在两个基下有相同坐标的向量.解 令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------4321432126937180092391213327912271x x x x x x x x ,解方程组得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛11114321k x x x x (k 为常数).7.设线性空间S1中向量(2阶矩阵的全体S 1),a 1=(1210),a 2=(−1−111),b 1=(1331),b 2=(2−141),(1).问b 1能否由a 1, a 2线性表示;b 2能否由a 1, a 2线性表示;(2).求由向量组a 1, a 2 ,b 1 ,b 2所生成的向量空间L 的维数和一个基。
高等代数1复习题答案
高等代数1复习题答案一、线性代数基础1. 向量空间的定义与性质- 向量空间是由向量集合和满足加法与标量乘法的运算构成的代数结构。
向量空间必须满足加法的封闭性、结合律、单位元存在性、逆元素存在性,以及标量乘法的分配律、结合律和单位元性质。
2. 基与维数- 向量空间的基是一组线性无关的向量,通过这组基可以唯一地表示空间中的任何向量。
向量空间的维数是指基中向量的数量。
3. 线性变换与矩阵表示- 线性变换是保持向量加法和标量乘法的函数。
矩阵是线性变换在给定基下的表示。
4. 特征值与特征向量- 线性变换的特征值是使得变换后向量与原向量成比例的标量,而特征向量是这个比例因子对应的向量。
5. 内积空间- 内积空间是向量空间,其中定义了一个满足正定性、对称性和线性的内积运算。
二、矩阵理论1. 矩阵的运算- 矩阵加法、数乘、乘法以及转置是矩阵的基本运算。
2. 矩阵的秩- 矩阵的秩是矩阵中线性无关的行(或列)的最大数量。
3. 矩阵的逆- 方阵的逆是满足\[ AA^{-1} = A^{-1}A = I \]的矩阵,其中\( I \)是单位矩阵。
4. 行列式- 行列式是方阵的一个标量值,可以用于计算矩阵的逆和线性方程组的解的存在性。
5. 矩阵分解- 矩阵分解是将矩阵表示为几个特定类型矩阵的乘积,如LU分解、QR分解等。
三、线性方程组1. 高斯消元法- 高斯消元法是一种通过行操作求解线性方程组的方法。
2. 克拉默法则- 克拉默法则提供了一种在系数矩阵可逆时求解线性方程组的方法。
3. 线性方程组的解的结构- 线性方程组的解可以是唯一的、无解的或者有无穷多解,这取决于系数矩阵和增广矩阵的秩。
四、多项式代数1. 多项式的定义与运算- 多项式是由变量和系数通过加法、乘法运算得到的代数表达式。
2. 多项式的根- 多项式的根是使得多项式等于零的变量值。
3. 多项式函数的性质- 多项式函数具有连续性、可微性等性质。
4. 多项式的因式分解- 因式分解是将多项式表示为其根的乘积。
高等代数第三版习题答案
高等代数第三版习题答案高等代数是一门研究线性代数、多项式、群、环、域等代数结构及其性质的数学分支。
第三版的高等代数教材通常会包含大量的习题,旨在帮助学生更好地理解和掌握代数的基本概念和技巧。
以下是一些习题的答案示例,请注意,这些答案仅为示例,具体习题的答案需要根据实际的题目来确定。
第一章:线性空间习题1:判断下列集合是否构成线性空间,并说明理由。
- 解:集合\{(x, y) ∈ R^2 | x + y = 1\}不构成线性空间,因为它不满足加法封闭性。
例如,取两个元素(1, 0)和(0, 1),它们的和(1, 1)不在集合中。
习题2:证明线性空间的基具有唯一性。
- 解:设{v1, v2, ..., vn}和{w1, w2, ..., wm}是线性空间V的两个基。
根据基的定义,任何向量v ∈ V都可以唯一地表示为v =c1*v1 + c2*v2 + ... + cn*vn和v = d1*w1 + d2*w2 + ... + dm*wm。
由于表示是唯一的,我们可以得出n = m,并且存在一个可逆矩阵P,使得[v1, v2, ..., vn] = [w1, w2, ..., wn]P。
这意味着两个基是等价的,从而证明了基的唯一性。
第二章:线性变换习题1:确定线性变换T: R^3 → R^3,定义为T(x, y, z) = (x + y, x - y, z)的核和像。
- 解:核N(T)是所有满足T(v) = 0的向量的集合。
设(x, y, z) ∈ N(T),则(x + y, x - y, z) = (0, 0, 0)。
解这个方程组,我们得到x = 0,y = 0,z可以是任意实数。
因此,核是一维的,由向量(0, 0, 1)生成。
习题2:证明线性变换的复合是线性的。
- 解:设T: V → W和S: W → X是两个线性变换。
对于任意的v1, v2 ∈ V和任意的标量c,我们需要证明(S ∘ T)(cv1 + v2) = c(S∘ T)(v1) + (S ∘ T)(v2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性.由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为,,k a b ab k a a a b R k R+⊕==∈∈o 其中判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈o ,所以R +对定义的加法与数乘运算封闭.下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕;(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==;(5)11a a a ==o ; (6)()()a a a aa λμμλμλμλλμ⎛⎫==== ⎪⎝⎭o o o o ;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间.答 否. 121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题1.讨论22P ⨯中 的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭M M M M M2111301010001010000010100010⎛⎫⎪ ⎪−−−−→⎪- ⎪⎝⎭M M M M初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ). 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩. 由1011210007111030100111100400102110007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭M M M M M M MM 初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11 (Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫⎪ ⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭. (2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭. (3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫⎪- ⎪ ⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数. 5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101110111110(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫⎪ ⎪--⎪⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 1110001101121113C ⎛⎫ ⎪- ⎪∴=⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*) 因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T ,所以f (x ) = 0习题证明线性方程组的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.()2()3R A R A =∴=Q 线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1. 求向量()1,1,2,3α=- 的长度.解α.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解(,)d αβ=αβ-. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,(3)()()1,1,1,2311,0αβ==-,,,解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=Q .(2)(),1321253118αβ=⨯+⨯+⨯+⨯=Q ,,4παβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=Q ,α==β==,αβ∴=3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+- 所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题1. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交,则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====. 取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231101,2,1111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪- ⎪⎝⎭(2 ) 将123,,βββ单位化则*1β,*2β,*3β为R 3的一组基标准正交基. 3.求齐次线性方程组 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵 可得齐次线性方程组的一个基础解系123111100,,010004001ηηη--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基. 证明 因为n ααα,,,21Λ是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i10),(αααα (,1,2,,)i j n =L . 又因为A 是n 阶正交矩阵, 所以T A A E =. 则故n A A A ααα,,,21Λ也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明 也是V 的一组标准正交基. 证明 由题知123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且.2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1. 3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M M M M M 初等行变换, 所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 .解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 .解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量,故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1.故答案为12a =.二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111Λ(B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212ΛΛ (C ) (){}R x x x x x x x V i n n ∈=+++=,1,,,21213ΛΛ (D) (){}411,0,,0,0V x x R =∈L解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4 解 向量组A =123⎛⎫⎪ ⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ).解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆,所以1223312,23,3αααααα+++线性无关. 故选(B ).解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭.(2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.解 ( 1 ) 由题有因0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为 解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. (2 ) 11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭Q123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++=即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基.设112233()()()()f x y f x y f x y f x =++则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3).5.当a 、b 、c 为何值时,矩阵A= 00010a bc ⎫⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E =⇒2221120 1a ac b c ⎧+=⎪⎪=⇒+=⎪⎩①a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.6.设 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为是n 维非零列向量, T αα所以是非零实数.又22TTT TT T TA E E A αααααααα⎛⎫=-=-= ⎪⎝⎭, 所以22T T T T T A A AA E E αααααααα⎛⎫⎛⎫==--⎪⎪⎝⎭⎝⎭故A 为正交矩阵.7.设T E A αα2-=, 其中12,,,Tn a a a α=L (), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A T T T T T T T =-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=,所以A 为正交阵.证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且。