半导体的基本知识
半导体器件的基本知识
半导体器件的基本知识半导体器件的基本知识,真是个神奇的世界。
咱们常常提到“半导体”,脑海里浮现出那些小小的芯片,觉得它们离我们有点遥远。
其实,半导体就在我们身边,像个无形的助手,让生活变得更加便利。
一、半导体的基本概念1.1 半导体是什么?半导体,简单来说,就是一种介于导体和绝缘体之间的材料。
它们在某些条件下能导电,在其他情况下又不导电。
是不是听上去有点神秘?其实,最常见的半导体材料就是硅。
我们用的手机、电脑,里面的处理器,几乎都离不开硅的身影。
1.2 半导体的特性半导体有很多奇妙的特性,比如它的电导率。
温度变化、杂质掺入,都会影响它的导电性能。
说白了,半导体的电性就像人心一样,瞬息万变。
通过控制这些特性,工程师们可以设计出各种各样的电子器件。
二、半导体器件的类型2.1 二极管咱们来聊聊二极管。
这小家伙看似简单,却是半导体世界的基石。
二极管只允许电流朝一个方向流动。
它就像个单行道,确保电流不走回头路。
常见的应用就是整流器,把交流电转成直流电。
这在生活中非常重要,大家用的手机充电器,就离不开二极管的帮助。
2.2 晶体管接下来是晶体管。
晶体管的发明可谓是科技界的一场革命。
它不仅能放大电信号,还能用作开关,控制电流的流动。
晶体管的出现,让电子产品变得更小、更快。
你知道吗?现代计算机的核心,CPU,里面就有成千上万的晶体管在默默工作。
2.3 其他器件还有很多其他的半导体器件,比如场效应管、光电二极管等。
每种器件都有其独特的用途和应用领域。
它们一起构成了一个复杂而又和谐的生态系统。
可以说,半导体器件的多样性是现代科技发展的动力。
三、半导体的应用3.1 消费电子说到应用,咱们首先想到的就是消费电子。
手机、平板、电视,都是半导体的舞台。
随着科技的进步,半导体技术不断演变,产品功能越来越强大,性能越来越高。
可以说,半导体让我们的生活变得丰富多彩。
3.2 工业应用除了消费电子,半导体在工业中也大显身手。
自动化设备、传感器、控制系统,全都依赖于半导体技术的支持。
半导体基础知识
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4
半导体的基本知识
第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。
半导体器件是构成电子电路的基础。
半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。
顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。
1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。
通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。
1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。
半导体的电阻率对温度的变化十分敏感。
例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。
而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。
2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。
一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。
自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。
而金属导体在阳光下或在暗处其电阻率一般没有什么变化。
3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。
在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。
半导体基本知识总结
半导体基本知识总结半导体是一种介于导体(如金属)和绝缘体(如橡胶)之间的材料。
它的电导率介于导体和绝缘体之间,可以在特定条件下导电或导热。
半导体材料通常由硅(Si)或锗(Ge)等元素组成。
半导体具有以下几个重要特性:1. 带隙: 半导体具有能带隙,在原子之间存在禁止带,使得半导体在低温状态下几乎没有自由电子或空穴存在。
当半导体受到外部能量或掺杂杂质的影响时,带隙可以被克服,进而产生导电或导热行为。
2. 导电性: 半导体的电导性取决于其材料内部的掺杂情况。
掺杂是指将杂质元素(如硼或磷)引入半导体材料中,以改变其电子特性。
N型半导体中的杂质元素会提供额外的自由电子,增加导电性;P型半导体中的杂质元素会提供额外的空穴,也可以增加导电性。
3. PN结: PN结是由P型半导体和N型半导体通过特定方式连接而成的结构。
PN结具有整流特性,只允许电流在特定方向上通过。
当正向偏置(即正端连接正极,负端连接负极)时,电流可以自由通过;而反向偏置时,几乎没有电流通过。
4. 半导体器件: 多种半导体器件被广泛使用,如二极管、晶体管和集成电路。
二极管是一种具有正向和反向导电特性的器件,可用于整流和电压稳定等应用。
晶体管是一种具有放大和开关功能的半导体器件。
集成电路是把多个晶体管、电阻和电容等器件集成在一起,成为一个小型电路单元,用于各种电子设备。
半导体的发现和发展极大地推动了现代电子技术的进步。
它不仅广泛应用于计算机、通信设备和电子产品,还在光电子学、太阳能电池和传感器等领域发挥着重要作用。
随着半导体技术的不断发展,人们对于半导体材料与器件的研究仍在进行,为电子技术的未来发展提供了无限可能性。
半导体基础知识
生20%波动时,负载电压基本不变。
求:电阻R和输入电压 ui 的正常值。
解:令输入电压达到上限时,流过稳压管的电
流为Izmax 。
i
I zmax
U ZW RL
25mA
1.2ui iR U zW 25R 10
——方程1
(1-37)
令输入电压降到下限 时,流过稳压管的电 流为Izmin 。
i
iL
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
R
ui
DZ
iZRL uo
i
I
zm in
U ZW RL
10mA
0.8ui iR U zW 10R 10
——方程2
联立方程1、2,可解得:
ui 18.75V, R 0.5k
(1-38)
1.3.2 光电二极管
反向电流随光照强度的增加而上升。
I U
照度增加
(1-39)
1.3.3 发光二极管
有正向电流流过 时,发出一定波长 范围的光,目前的 发光管可以发出从 红外到可见波段的 光,它的电特性与 一般二极管类似。
注意:
1、空间电荷区中没有载流子。
半导体的基本知识
半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。
半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。
以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。
绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。
半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。
2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。
电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。
能隙:价带和导带之间的能量差称为能隙。
半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。
4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。
杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。
掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。
5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。
这是许多半导体器件的基础,如二极管和晶体管。
6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。
晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。
集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。
7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。
光电子学:光电二极管、激光二极管等。
太阳能电池:利用半导体材料的光伏效应。
这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。
半导体知识点总结
半导体知识点总结半导体是一种介于导体和绝缘体之间的材料,它具有一些特殊的电子性质,因此在现代电子技术中具有重要的应用。
本文将对半导体的基本概念、特性、原理以及应用进行详细的介绍和总结。
一、半导体的基本概念1、半导体材料半导体材料是一类电阻率介于导体和绝缘体之间的材料,它具有一些特殊的电子能带结构。
常见的半导体材料包括硅(Si)、锗(Ge)、GaAs等。
2、半导体的掺杂半导体材料经过掺杂后,可以改变其电子结构和导电性质。
常见的掺杂有N型和P型两种类型,分别通过掺入杂质原子,引入额外的自由电子或空穴来改变半导体的导电性质。
3、半导体的结构半导体晶体结构通常是由大量的晶格排列组成,具有一定的晶格参数和对称性。
在半导体器件中,常见的晶体结构有晶体管、二极管、MOS器件等。
二、半导体的特性1、能带结构半导体的能带结构是其特有的性质,它决定了半导体的导电性质。
半导体的能带结构通常包括价带和导带,其中价带中填充电子的能级较低,而导带中电子的能级较高,两者之间的能隙称为禁带宽度。
2、电子迁移和载流子在外加电场的作用下,半导体中的自由电子和空穴可以在晶体内迁移,并形成电流。
这些移动的载流子是半导体器件工作的基础。
3、半导体的导电性半导体的导电性是由自由电子和空穴共同贡献的,通过掺杂和外加电场的调制,可以改变半导体的导电性。
三、半导体的原理1、P-N结P-N结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。
P-N结具有整流、放大、开关等功能,是二极管、光电二极管等器件的基础。
2、场效应器件场效应器件是一类利用外加电场控制半导体导电性质的器件,包括MOS场效应管、JFET场效应管等。
场效应器件具有高输入电阻、低功耗等优点,在数字电路和模拟电路中得到广泛应用。
3、半导体光电器件半导体光电器件是一类利用光电效应将光能转化为电能的器件,包括光电二极管、光电导电器件等。
光电器件在光通信、光探测、光伏等领域有着重要的应用。
半导体基础知识
符号
1
+ W78XX +
2
_
3
_
W79XX
1 2
3
1.6.3 W78XX、W79XX系列 集成稳压器的使用方法
一、 组成输出固定电压的稳压电路
1. W78XX系列
+
1
W78XX
Co
2
+
Uo = 12V
改善负载 的暂态响 应,消除 高频噪声
注意 3 Ui 输入 Ci 电压 极性 抵消输入 长接线的 电感效, 防止自激 Ci : 0.1~1F
IR + +
R UR
IL
IZ RL
2、引起电压不 稳定的原因
UI
电源电压的波动 负载电流的变化
DZ
稳压二极管
+ UL
将微小的电压变化转 换成较大的电流变化
三端稳压器封装及电路符号
封装
塑料封装
金属封装
79LXX
W7805 1 3 2
W7905 1 3 2
78LXX
1
2
3
UI GND UO GND UI UO
空穴
负离子
电子
正离子
一、载流子的浓度差引 N型材料 起多子的扩散扩散使 交界面处形成空间电 荷区(也称耗尽层)
内电场方向
二、空间电荷区特点
基本无无载流子,仅 有不能移动的离子
三、扩散和漂移达到动态平衡
扩散电流= 漂移电流 总电流=0 利于少子的漂移
形成内电场
阻止多子扩散进行
1.2.2 PN结的单向导电性
外界条件决定半导体内部 载流子数量
三、本征半导体: 纯净的半导体
半导体的基本 知识
下一页 返回
第二节 半导体二极管
• 二、二极管的结构和符号 • 将PN结的两个区,即P区和N区分别加上相应的电极引线引出,并
用管壳将PN结封装起来就构成了半导体二极管,其结构与图形符号 如图6一1所示,常见外形如图6一2所示。从P区引出的电极为阳极 (或正极),从N区引出的电极为阴极(或负极),并分别用A,K表示。 • 三、二极管的伏安特性 • 二极管的主要特性是单向导电性,其伏安特性曲线如图6一3所示(以 正极到负极为参考方向)。 • 1.正向特性 • 外加正向电压很小时,二极管呈现较大的电队,几乎没有正向电流通 过。曲线OA段(或OA‘段)称作死区,A点(或A‘点)的电压称为死区电 压,硅管的死区电压一般为0. 5 V,锗管则约为0. 1 V 。
下一页 返回
第一节 半导体的基本知识
• 电阻是随着温度的上升而降低的。这是半导体现象的首次发现。 1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照 下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发 现的半导体的第二个特征。在1874年,德国的布劳恩观察到某些硫 化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端 加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电, 这就是半导体的整流效应,也是半导体所特有的第三种特性。同年, 舒斯特又发现了铜与氧化铜的整流效应。1873年,英国的史密斯发 现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特 有的性质。
半导体的基本知识总结
半导体的基本知识总结
半导体是指一种材料,其导电性介于导体和绝缘体之间。
半导体在电子学、物理学、材料科学等领域中具有重要的应用价值。
以下是对半导体基本知识的总结:
1. 半导体材料:半导体材料通常是元素周期表中的IV族、V族和VI族元素构成的化合物,如硅(Si)、锗(Ge)、砷化镓(GaAs)等。
2. 半导体导电性:半导体的导电性受温度、光照、杂质等因素影响。
在常温下,纯净的半导体材料是绝缘体,但当温度升高时,其导电性逐渐增强。
此外,半导体材料的导电性还受光照和杂质的影响。
3. 半导体中的载流子:半导体中的载流子包括电子和空穴。
在半导体中,电子从价带跃迁到导带,留下一个空穴。
电子和空穴分别带负电荷和正电荷。
4. 半导体中的能带:半导体中的能带分为价带、导带和禁带。
价带是指半导体中电子占据的能量最低的能带,导带是指能量比价带高的能带,禁带是指价带和导带之间的能量间隙。
5. 半导体的光吸收:半导体材料可以吸收不同波长的光,并产生光电流。
这一现象被广泛应用于太阳能电池和光探测器等器件中。
6. 半导体器件:半导体器件包括二极管、晶体管、场效应管、集成电路等。
这些器件在电子学和微电子学领域中具有广泛的应用。
7. 半导体工艺:半导体工艺包括薄膜制备、光刻、掺杂、热处理等步骤。
这些工艺用于制造半导体器件和集成电路。
总之,半导体的基本知识包括半导体材料、导电性、载流子、能带、光吸收、器件和工艺等方面。
这些知识对于理解半导体的性质和应用具有重要意义。
半导体知识点总结大全
半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。
它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。
本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。
一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。
原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。
2. 能带:在固体中,原子之间的电子形成了能带。
能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。
3. 半导体中的能带:半导体材料中,能带又分为价带和导带。
价带中的电子是成对出现的,导带中的电子可以自由运动。
(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。
典型的本征半导体有硅(Si)和锗(Ge)。
2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。
常见的杂质有磷(P)、硼(B)等。
(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。
P型半导体中导电的主要载流子是空穴。
2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。
N型半导体中导电的主要载流子是自由电子。
3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。
4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。
二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。
2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。
3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。
半导体的基本知识
半导体的基本知识1、物质的分类按照导电能力的大小可以分为导体、半导体和绝缘体。
导电能力用电阻率衡量。
导体:具有良好导电性能的物质,如铜、铁、铝电阻率一般小于10-4Ω•cm绝缘体:导电能力很差或不导电的物质,如玻璃、陶瓷、塑料。
电阻率在108Ω•cm以上半导体:导电能力介于导体和绝缘体之间的物质,如锗、硅。
纯净的半导体硅的电阻率约为241000Ω•cm2、半导体的特性与导体、绝缘体相比,半导体具有三个显著特点:(1)电阻率的大小受杂质含量多少的影响极大,如硅中只要掺入百万分之一的杂质硼,硅的电阻率就会从241000Ω•cm下降到0.4Ω•cm,变化了50多万倍;(2)电阻率受环境温度的影响很大。
例如:温度每升高8℃时,纯净硅的电阻率就会降低一半左右;金属每升高10℃时,电阻率只增加4%左右。
热敏电阻:正温度系数—随着温度的升高,电阻阻值增加。
负温度系数―随着温度的升高,电阻阻值减小。
(3)光线的照射也会明显地影响半导体地导电性能。
光敏电阻3、半导体的结构半导体材料锗和硅都是四价元素,它们原子核外层有四个价电子。
正常情况下电子受原子核的束缚,不能任意移动,所以导电性能差。
因为物体的导电是靠带电荷的粒子定向移动来实现的。
当向半导体内掺入杂质后,晶体内部原有的平衡被打破,当掺入硼原子时,它外层原有的三个价电子和周围的硅原子中的价电子形成“共价键”。
这时硅原子不再呈电中性,好像失去了一个带负电的价电子,留下空位,称它为”空穴”。
由于空穴有接收电子的性质,相当于一个正电荷。
当掺入磷原子,它外层有五个价电子,形成共价键时就多出了一个价电子。
此电子可以自由参加导电。
把半导体中载运电荷的粒子称为载流子,带负电的自由电子和带正电的空穴都是半导体中的载流子。
在掺杂的半导体中电子和空穴的数目是不相等的,这就有多数载流子和少数载流子之分。
半导体基础知识
半导体基础知识1. 半导体的概念与分类1.1 半导体的定义半导体是一种电导率介于导体和绝缘体之间的材料,其电导率会随着外界条件(如温度、光照、掺杂等)的变化而变化。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
1.2 半导体的分类根据半导体材料的类型,可分为元素半导体和化合物半导体。
•元素半导体:如硅(Si)、锗(Ge)等。
•化合物半导体:如砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
根据导电类型,半导体可分为n型半导体和p型半导体。
•n型半导体:掺杂有五价元素(如磷、砷等)的半导体材料。
•p型半导体:掺杂有三价元素(如硼、铝等)的半导体材料。
2. 半导体物理基础2.1 能带结构半导体的导电性能与其能带结构密切相关。
一个完整的周期性晶体结构可以分为价带、导带和禁带。
•价带:充满电子的能量状态所在的带,电子的能量低于价带顶。
•导带:电子的能量高于导带底时,可以自由移动的状态所在的带。
•禁带:价带和导带之间的区域,电子不能存在于这个区域。
2.2 掺杂效应掺杂是向半导体材料中引入少量其他元素,以改变其导电性能的过程。
掺杂分为n型掺杂和p型掺杂。
•n型掺杂:向半导体中引入五价元素,如磷、砷等,使得半导体中的自由电子浓度增加。
•p型掺杂:向半导体中引入三价元素,如硼、铝等,使得半导体中的空穴浓度增加。
2.3 载流子在半导体中,自由电子和空穴是载流子,负责导电。
n型半导体中的载流子主要是自由电子,而p型半导体中的载流子主要是空穴。
2.4 霍尔效应霍尔效应是研究半导体中载流子运动的一种重要物理现象。
当半导体中的载流子在外加磁场作用下发生偏转时,会在半导体的一侧产生电势差,即霍尔电压。
3. 半导体器件3.1 半导体二极管半导体二极管(DIODE)是一种具有单向导电性的半导体器件。
它由p型半导体和n型半导体组成,形成PN结。
当外界电压正向偏置时,二极管导通;反向偏置时,二极管截止。
半导体基础知识详细
半导体基础知识详细半导体是一种电子特性介于导体和绝缘体之间的材料。
它的电阻率介于导体和绝缘体之间,而且在外界条件下可以通过控制电场、光照、温度等因素来改变其电子特性。
半导体材料广泛应用于电子器件、太阳能电池、光电器件、传感器等领域。
1. 半导体的基本概念半导体是指在温度为绝对零度时,其电阻率介于导体和绝缘体之间的材料。
在室温下,半导体的电阻率通常在10^-3到10^8Ω·cm之间。
半导体的导电性质可以通过控制材料中的杂质浓度来改变,这种过程称为掺杂。
2. 半导体的晶体结构半导体的晶体结构分为两种:共价键晶体和离子键晶体。
共价键晶体是由原子间共享电子形成的晶体,如硅、锗等。
共价键晶体的晶格结构稳定,电子在晶格中移动时需要克服较大的势垒,因此其导电性较差。
离子键晶体是由正负离子间的静电作用形成的晶体,如氯化钠、氧化镁等。
离子键晶体的晶格结构较稳定,电子在晶格中移动时需要克服较小的势垒,因此其导电性较好。
3. 半导体的能带结构半导体的能带结构是指半导体中电子能量的分布情况。
半导体的能带结构分为价带和导带两部分。
价带是指半导体中最高的能量带,其中填满了价电子。
导带是指半导体中次高的能量带,其中没有或只有很少的电子。
当半导体中的电子受到外界激发时,可以从价带跃迁到导带,形成电子空穴对。
4. 半导体的掺杂半导体的掺杂是指向半导体中加入少量的杂质原子,以改变其电子特性。
掺杂分为n型和p 型两种。
n型半导体是指向半导体中掺入少量的五价杂质原子,如磷、砷等。
这些杂质原子会向半导体中释放一个电子,形成自由电子,从而提高半导体的导电性能。
p型半导体是指向半导体中掺入少量的三价杂质原子,如硼、铝等。
这些杂质原子会从半导体中吸收一个电子,形成空穴,从而提高半导体的导电性能。
5. 半导体器件半导体器件是利用半导体材料制造的电子器件,包括二极管、晶体管、场效应管、集成电路等。
二极管是一种由n型半导体和p型半导体组成的器件,具有单向导电性。
半导体主要知识点总结
半导体主要知识点总结一、半导体的基本概念1.1半导体的定义与特点:半导体是介于导体和绝缘体之间的一类材料,具有介于导体和绝缘体之间的电阻率。
与导体相比,半导体的电阻率较高;与绝缘体相比,半导体的电子传导性能较好。
由于半导体具有这种特殊的电学性质,因此具有重要的电子学应用价值。
1.2半导体的晶体结构:半导体晶体结构通常是由离子键或共价键构成的晶体结构。
半导体的晶体结构对其电学性质有重要的影响,这也是半导体电学性质的重要基础。
1.3半导体的能带结构:半导体的电学性质与其能带结构密切相关。
在半导体的能带结构中,通常存在导带和价带,以及禁带。
导带中的载流子为自由电子,价带中的载流子为空穴,而在禁带中则没有载流子存在。
二、半导体的掺杂和电子输运2.1半导体的掺杂:半导体的电学性质可以通过掺杂来调控。
通常会向半导体中引入杂质原子,以改变半导体的电学性质。
N型半导体是指将少量的五价杂质引入四价半导体中,以增加自由电子的浓度。
P型半导体是指将少量的三价杂质引入四价半导体中,以增加空穴的浓度。
2.2半导体中的载流子输运:在半导体中,载流子可以通过漂移和扩散两种方式进行输运。
漂移是指载流子在电场作用下移动的过程,而扩散是指载流子由高浓度区域向低浓度区域扩散的过程。
这两种过程决定了半导体材料的电学性质。
三、半导体器件与应用3.1二极管:二极管是一种基本的半导体器件,由N型半导体和P型半导体组成。
二极管具有整流和选择通道的功能,是现代电子设备中广泛应用的器件之一。
3.2晶体管:晶体管是一种由多个半导体材料组成的器件。
它通常由多个P型半导体、N型半导体和掺杂层组成。
晶体管是目前电子设备中最重要的器件之一,具有放大、开关和稳定电流等功能。
3.3集成电路:集成电路是将大量的电子器件集成在一块芯片上的器件。
它是现代电子设备中最重要的组成部分之一,可以实现各种复杂的功能,如计算、存储和通信等。
3.4发光二极管:发光二极管是一种将电能转化为光能的半导体器件,具有高效、省电和寿命长的特点。
半导体基本知识
4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。 空穴的出现是半导体导电区别于导体导电的一个主要特征。
如果在本征半导体中掺入微量杂质(其他元素),形成杂质半导体,其导电 能力会显著变化。根据掺入杂质的不同,可以分为P型半导体和N型半导体。
在本征半导体硅(或锗)中掺入微量的 五价元素,如磷、砷、锑等,就形成N型半 导体。杂质原子替代了晶格中的某些硅原子, 它的四个价电子和周围四个硅原子组成共价 键,而多出的一个价电子很容易受激发脱离 原子核的束缚成为自由电子,但并不同时产 生空穴,相应的五价元素的原子因失去一个 电子而成为不能自由移动的带正电粒子—— 正离子,由于杂质原子可以提供电子,故也 称施主原子,如右图所示。
在本征半导体硅(或锗)中掺入微量的 三价元素,如硼、铝、铟等,就形成P型半导 体。杂质原子替代了晶格中的某些硅原子, 它的三个价电子和周围四个硅原子组成共价 键,而第四个共价键因缺少一个价电子出现 空位,由于空位的存在,使邻近共价键内的 电子只需很小的激发能便能填补这个空位, 相应的三价元ቤተ መጻሕፍቲ ባይዱ的原子因得到一个电子而成 为不能自由移动的带负电粒子——负离子, 由于杂质原子得到电子,故也称为受主原子, 如右图所示。
这种杂质半导体的多子是空穴,因空穴 带正(positive)电,所以称为P型半导体。P 型半导体中空穴的浓度比电子的浓度高得多。 当在其两端加电压时,主要由空穴定向移动 形成电流。
半导体的基本知识
3.1 半导体的基本知识3.1.1 半导体材料 3.1.2 半导体的共价键结构 3.1.3 本征半导体 3.1.4 杂质半导体3.1.1 半导体材料物体导电能力不同:导体、绝缘体和半导体 半导体:导电性能介于导体与绝缘体之间。
半导体材料:硅Si、锗Ge、砷化镓GaAs等。
特点:导电性能随温度T、光照、掺杂显著改 变。
即具有热敏性、光敏性、掺杂性。
3.1.2 半导体的共价键结构以Si为例:原子序数14价电子价电子共价键硅和锗的原子结构简化模型及晶体结构本征半导体 (纯净,只含一种元素)本征激发: 价电子 受热或光作用 自由电子(带负电) 空穴(带正电)。
♦ 成对出现 ♦ 载流子 ♦ 数目少,导电性差 ♦ 温度,数目,导电性强空穴的移动——与电子运动方向反。
动画—本征激发 动画—空穴运动3.1.4 杂质半导体 在本征半导体中掺入杂质,半导体的导电性发生显著变化。
P型半导体——掺入三价杂质元素(如硼)的 半导体。
N型半导体——掺入五价杂质元素(如磷)的 半导体。
1. P型半导体(Positive)(1) 掺入少量三价元素(2)多数载流子(多子):空穴; 少数载流子(少子) :自由电子; 多子浓度由 掺杂浓度 决定 少子浓度由 热激发 决定(温度)(3)导电性好 。
呈电中性掺杂的:1空穴——B-热激发的:自由电子空穴成对出现2. N型半导体(Negative)(1)掺入少量五价元素(2)载流子 多子:自由电子; 少子:空穴(3)导电性好 。
呈电中性掺杂的:1自由电子—— P+ 热激发的少量自由电子空穴成对出现3. 杂质对半导体导电性的影响1 T=300 K室温下,本征硅的电子和空穴浓度: n = p =1.4×1010/cm32 掺杂后 N 型半导体中的自由电子浓度: n=5×1016/cm33 掺杂后 N 型半导体中的空穴浓度: p=4.2×103/cm31. 在杂质半导体中多子的数量与 a 有关,少子的数量与 b (a. 掺杂浓度、b.温度)2. 当温度升高时,少子的数量 c (a. 减少、b. 不变、c. 增多)。
半导体的基本知识
在本征半导体硅(或锗)中掺入微量五价元素磷,由于磷原子有5个价电 子,它与周围的硅原子组成共价键时,多余的一个价电子很容易摆脱原子核 的束缚成为自由电子。这种半导体导电主要靠电子,所以称为电子型半导体 或N型半导体,如下图所示。N型半导体中,自由电子是多子,空穴是少子。
第8页
半本
导征
电 工 电 子 技 术
过渡页
第2页
半导体的基本知识
• 1.1 半导体的基本特性 • 1.2 本征半导体和杂质半导体
半
导
体
的 基 本 知
半 导 体 的 基
识本
物质大体可分为导体、绝缘体和半导体 三大类。其中,容易导电、电阻率小于10-4Ω·cm的物质称为导体,如铜、铝、 银等金属材料;很难导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、 橡胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质称为半导体,如 硅、锗、硒及大多数金属氧化物和硫化物等。
半导体之所以被作为制造电子器件的主要材料在于它具有热敏性、 光敏性和掺杂性。 ➢ 热敏性:是指半导体的导电能力随着温度的升高而迅速增加的特性。利 用这种特性可制成各种热敏元件,如热敏电阻等。 ➢ 光敏性:是指半导体的导电能力随光照的变化有显著改变的特性。利用 这种特性可制成光电二极管、光电三极管和光敏电阻等。 ➢ 掺杂性:是指半导体的导电能力因掺入微量杂质而发生很大变化的特性。 利用这种特性可制成二极管、三极管和场效应管等。
导 体 和 杂 质
识半
导
体
1.2
本征半导体在绝对温度T=0K和 没有外界影响的条件下,价电子全部 束缚在共价键中。当温度升高或受光 照时,半导体共价键中的价电子会从 外界获得一定能量,少数价电子将挣 脱共价键的束缚,成为自由电子,同 时在原来共价键的相应位置上留下一 个空位,这个空位称为空穴,如右图 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1半导体的基本知识
课 题:半导体基本知识
教学目的、要求:1、了解半导体的导电特性; 2、掌握PN 结及其单向导电性。
教学重点、难点:1、PN 结形成的过程;(难点) 2、PN 结的单向导电性。
(重点) 授 课 方 法:多媒体课件讲授,提纲及重点板书。
授 课 提 纲:
教 学 内 容: 组织教学
准备教学材料,清点学生人数。
(课前2分钟) 引入新课
半导体器件是用半导体材料制成的电子器件。
常用的半导体器件有二极管、三极管、场效应晶体管等。
半导体器件是构成各种电子电路最基本的元件。
从本节课开始,我们先从半导体的基本知识开始,介绍常用的半导体器件。
要求大家本征半导体的特点,掌握PN 结的形成及单向导电性。
(2分钟) 进入新课
第一章 常用半导体器件
§1-1 半导体的基本知识【板书】
一、什么是半导体【板书】
1、物质按导电能力的分类【标题板书+内容多媒体】(8分钟)
自然界中的物质按其导电能力可以分为三大类:导体、绝缘体和半导体。
物质的导电特性取决于原子结构。
⑴导体:一般为低价元素,如铜、铁、铝等金属,其最外层电子受原子核的束缚力很小,因而极易挣脱原子核的束缚成为自由电子。
因此在外电场作用下,这些电子产生定向移动形成电流,呈现出较好的导电特性。
⑵绝缘体:高价元素(如惰性气体)和高分子物质(如橡胶,塑料)最外层电子受原子核的束缚力很强,极不易摆脱原子核的束缚成为自由电子,所以其导电性极差
, 可作为绝缘材料。
⑶半导体:半导体材料最外层电子既不像导体那样极易摆脱原子核的束缚,成为自由电子,也不像绝缘体那样被原子核束缚得那么紧,因此,半导体的导电特性介于二者之间。
半导体有硅(Si)、锗(Ge)和砷化镓(GaAs)及金属的氧化物和硫化物。
最常用的是硅和锗。
2、半导体的特点【标题板书+内容多媒体】(5分钟)
半导体之所以被用来制造电子元器件,不是在于它的导电能力处于导体与绝缘体之间,而是由于它的导电能力在外界某种因素作用下发生显著的变化,这种特点表现如下:
⑴半导体的电导率可以因为加入杂质而发生显著的变化。
例如在室温30℃时,纯硅中掺入一亿分之一的杂质,其电导率会增加好几百倍。
各种半导体器件的制作正是利用了掺杂特性来改变和控制半导体的电导率。
电导率:电阻率的倒数,符号为σ,单位为西门子/米(S/m),表示电流通过的难易程度,其数
值越大,表示电流越容易通过。
⑵温度的变化会使半导体的电导率发生显著的变化,利用这种热敏效应,人们制作出了热敏元件。
但另一方面热敏效应会使半导体器件的热稳定性下降。
⑶光照不仅可以改变半导体的电导率,还可以产生电动势,这就是半导体的光电效应。
利用光电效应可以制成光电晶体管、光耦合器和光电池等。
3、半导体导电特性【标题板书+内容多媒体】(12分钟)
⑴本征半导体
纯净晶体结构的半导体称为本征半导体。
常温下,本征半导体导电能力很弱,但温度升高,导电能力增强,且在本征半导体中掺入微量的其他元素,也可使导电能力大大增强。
⑵自由电子与空穴
共价键中的价电子由于热运动而获得一定的能量,其中少数能够摆脱共价键的束缚而成为自
1所示。
图
常温下,半导体中存在一定数量的电子-空穴对。
空穴的出现,是半导体区别于其他导体导电的一个重要特点。
⑶载流子
含空穴的原子失去了电子,因而带正电。
它将吸取相邻原子中的价电子,并使它挣脱原来的共价键的束缚去填补前面的空穴,从而出现了新的空穴。
当电子按照某一方向连续补空穴时,其效果完全等同于带正电的空穴向相反方向移动。
从这种意义上来看,电子和空穴一样都是一种运载电荷的粒子,称为载流子。
由此可见,半导体中存在着两种载流子:带负电的自由电子和带正电的空穴。
本征半导体中,自由电子与空穴是同时成对产生的,因此,它们的浓度是相等的。
4、N型和P型半导体【标题板书+内容多媒体】(13分钟)
⑴N型半导体
在本征半导体中,掺入微量五价元素(如磷、锑、砷等),则晶格中的某些硅(锗)原子被杂质原子代替。
由于杂质原子的最外层有5个价电子,因此它与周围4个硅(锗)原子组成共价键时,还多余1个价电子。
它不受共价键的束缚,而只受自身原子核的束缚,因此,它只要得到较少的能量就能成为自由电子,并留下带正电且不能参与导电的杂质离子。
如图2所示。
这种半导体的导电主要是靠电子,所以称它为电子半导体,简称N型半导体。
在N型半导体中,自由电子是多数载流子,空穴是少数载流子。
多数载流子的浓度取决于掺杂数目,少数载流子的浓度取决于温度。
⑵P型半导体
在本征半导体中,掺入微量三价元素,如硼、镓、铟等,则原来晶格中的某些硅(锗)原子被杂质原子代替。
如图3所示。
这种半导体的导电主要是靠空穴,所以称它为空穴半导体,简称P型半导体。
在P型半导体
二、PN结及其单向导电性
1、PN结的形成【标题板书+内容多媒体】(20分钟)
在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。
此时将在N型半导体和P型半导体的结合面上形成如下物理过程:
浓度差→多数载流子的扩散运动→由杂质离子形成空间电荷区→空间电荷区形成内电场→内电场促使少数载流子漂移、阻止多数载流子扩散
最后,多数载流子的扩散和少数载流子的漂移达到动态平衡。
对于P型半导体和N型半导体结合面,我们称为PN结。
PN结的形成如图4所示。
空间电荷区形成了一个方向由N区指向P区的内电场,内电场的作用是阻碍多数载流子的继续扩散,故称此空间电荷区为阻挡层。
空间电荷层没有载流子,所以也称耗尽层。
载流子的扩散运动PN结及其内电场
图4 PN结的形成
2、PN结的单向导电性【标题板书+内容多媒体】(15分钟)
⑴外加正向电压(也叫正向偏置)
外加电场与内电场方向相反,内电场削弱,扩散运动大大超过漂移运动,N区电子不断扩散到P区,P区空穴不断扩散到N区,形成较大的正向电流,这时称PN结处于导通状态。
如图5所示。
⑵外加反向电压(也叫反向偏置)
外加电场与内电场方向相同,增强了内电场,多子扩散难以进行,少子在电场作用下形成反向电流,因为是少子漂移运动产生的,反向电流很小,这时称PN结处于截止状态。
如图6所示。
图5 PN结外加正向电压图6 PN结外加反向电压
综上所述,当PN结正偏时,电阻很小,正向电流较大;当PN结反偏时,电阻很大,反向电流很小,近似认为当PN结截止。
这就是PN结的一个重要特性:单向导电性,即正偏导通,反偏截止。
课堂练习
提问以下问题:(3分钟)
1、根据导电能力来衡量,自然界的物质可以分为、和三类。
(导体、绝缘体、半导体)
2、常用的半导体材料是和。
(硅、锗)
3、PN结具有性能,即加正向电压时PN结,加反向电压时PN结。
(单向导电性、导通、截止)
4、半导体中传导电流的载流子有和。
(自由电子、空穴)
本节小结
半导体的基本知识(1分钟)
1、导体、绝缘体、半导体
2、半导体的导电特性
3、PN结及其单向导电性
布置作业
1、复习§1-1半导体的基本知识,完成习题册本节全部习题。
2、预习§1-2二极管,解决以下问题:
⑴了解二极管的结构、符号和类型。
⑵二极管具有什么特性?
⑶二极管有哪些主要参数?(1分钟)。