伍德里奇计量经济学论文指导
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。
讨
2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解OLS用于时间序列数据的其他问题第11章OLS用于时间序列数据的其他问题11.1复习笔记考点一:平稳和弱相关时间序列★★★★1.时间序列的相关概念(见表11-1)表11-1时间序列的相关概念2.弱相关时间序列(1)弱相关对于一个平稳时间序列过程{x t:t=1,2,…},随着h的无限增大,若x t和x t+h“近乎独立”,则称为弱相关。
对于协方差平稳序列,如果x t和x t+h之间的相关系数随h的增大而趋近于0,则协方差平稳随机序列就是弱相关的。
本质上,弱相关时间序列取代了能使大数定律(LLN)和中心极限定理(CLT)成立的随机抽样假定。
(2)弱相关时间序列的例子(见表11-2)表11-2弱相关时间序列的例子考点二:OLS的渐近性质★★★★1.OLS的渐近性假设(见表11-3)表11-3OLS的渐近性假设2.OLS的渐近性质(见表11-4)表11-4OLS的渐进性质考点三:回归分析中使用高度持续性时间序列★★★★1.高度持续性时间序列(1)随机游走(见表11-5)表11-5随机游走(2)带漂移的随机游走带漂移的随机游走的形式为:y t=α0+y t-1+e t,t=1,2,…。
其中,e t(t=1,2,…)和y0满足随机游走模型的同样性质;参数α0被称为漂移项。
通过反复迭代,发现y t的期望值具有一种线性时间趋势:y t=α0t+e t+e t-1+…+e1+y0。
当y0=0时,E(y t)=α0t。
若α0>0,y t的期望值随时间而递增;若α0<0,则随时间而下降。
在t时期,对y t+h的最佳预测值等于y t加漂移项α0h。
y t的方差与纯粹随机游走情况下的方差完全相同。
带漂移随机游走是单位根过程的另一个例子,因为它是含截距的AR(1)模型中ρ1=1的特例:y t=α0+ρ1y t-1+e t。
2.高度持续性时间序列的变换(1)差分平稳过程I(1)弱相关过程,也被称为0阶单整或I(0),这种序列的均值已经满足标准的极限定理,在回归分析中使用时无须进行任何处理。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:I.引言- 计量经济学的定义- 计量经济学的重要性II.伍德里奇计量经济学导论的基本内容- 经济数据的收集和处理- 建立经济模型- 参数估计和假设检验- 应用计量经济学III.伍德里奇计量经济学导论的特点- 强调经济理论和统计学方法的结合- 注重对经济模型的参数估计和假设检验- 涵盖了多种计量经济学方法IV.伍德里奇计量经济学导论的应用- 政策分析- 企业决策- 经济学研究V.结论- 伍德里奇计量经济学导论的重要性- 计量经济学在实际应用中的优势正文:I.引言计量经济学是经济学的一个重要分支,它运用数学和统计学的方法,通过建立经济模型,对经济变量之间的关系进行定量分析。
伍德里奇计量经济学导论是一本关于计量经济学的经典教材,涵盖了计量经济学的基本概念、方法和应用。
II.伍德里奇计量经济学导论的基本内容伍德里奇计量经济学导论主要包括以下内容:经济数据的收集和处理、建立经济模型、参数估计和假设检验、应用计量经济学。
书中详细介绍了如何收集和处理经济数据,如何建立经济模型,以及如何进行参数估计和假设检验。
此外,书中还介绍了一些应用计量经济学的方法,例如,政策分析、企业决策和经济学研究等。
III.伍德里奇计量经济学导论的特点伍德里奇计量经济学导论的特点是强调经济理论和统计学方法的结合,注重对经济模型的参数估计和假设检验。
书中涵盖了多种计量经济学方法,例如,普通最小二乘法、最大似然估计法和矩估计法等。
此外,书中还提供了丰富的案例和应用,帮助读者理解和掌握计量经济学的方法和应用。
IV.伍德里奇计量经济学导论的应用伍德里奇计量经济学导论可以应用于政策分析、企业决策和经济学研究等多个领域。
通过运用计量经济学的方法,我们可以更好地理解经济变量之间的关系,更准确地预测未来的发展趋势,更有效地制定政策和决策。
V.结论伍德里奇计量经济学导论是一本非常重要的教材,它为读者提供了计量经济学的基本概念、方法和应用。
计量经济学伍德里奇第六版stata代码
文章主题:探寻计量经济学伍德里奇第六版stata代码的应用与意义1. 引言计量经济学作为经济学的一个重要分支,旨在运用数学、统计学和计算机科学的方法来分析经济问题和经济现象,从而为实证经济研究提供理论和方法。
而伍德里奇的《计量经济学》第六版,作为该领域的经典教材,常常被用来进行实证研究和教学。
在本文中,我们将深入探讨这本教材中的stata代码部分,分析其应用与意义。
2. 计量经济学伍德里奇第六版stata代码的意义在《计量经济学》第六版中,作者伍德里奇通过stata代码来展示实证分析的方法和过程。
这些代码不仅仅是为了教学目的,更重要的是为了让读者能够学会如何用计量经济学的方法来研究实际经济问题。
通过学习这些stata代码,读者可以掌握实证分析的基本技能,了解如何处理实际数据、构建模型、进行估计和推断,从而在实际研究中能够灵活运用计量经济学的方法。
3. 深入理解计量经济学伍德里奇第六版stata代码在伍德里奇的《计量经济学》第六版中,stata代码涵盖了从简单的OLS回归分析到复杂的面板数据模型的估计方法,涉及了各种实证问题和分析工具。
通过深入学习这些代码,读者可以逐步理解和掌握计量经济学的核心内容,包括数据的处理与清洗、模型的构建与估计、假设检验与推断等方面的知识和技能。
这样的深入理解将使读者能够更好地应用计量经济学的方法来解决实际经济问题,并且能够进行批判性思考和创新性研究。
4. 个人观点和理解作为一名计量经济学的研究者和教学者,我深切理解学习和掌握计量经济学伍德里奇第六版stata代码的重要性。
这些代码不仅仅是一种工具,更是一种思维方式和方法论,是我们用来研究经济现象和问题的利器。
通过不断地学习和实践,我相信我们能够更好地理解和应用计量经济学的方法,为经济学研究和实践带来更多的启发和进步。
5. 总结通过本文的探讨,我们深入了解了《计量经济学》第六版中stata代码的应用与意义。
这些代码的存在不仅仅是为了让我们学会如何进行实证分析,更重要的是让我们深刻理解和掌握计量经济学的思想和方法。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论伍德里奇计量经济学导论是一门涉及经济学与统计学的重要学科,它旨在通过运用统计方法、模型和理论分析,帮助我们理解经济现象和解决经济问题。
伍德里奇计量经济学导论对于经济学和实证研究具有非常重要的指导意义。
在伍德里奇计量经济学导论中,我们首先学习了概率与统计的基础知识。
概率理论和统计方法是计量经济学的基石,通过学习这些知识,我们可以为经济现象建立数学模型,对数据进行检验和分析。
在学习了基础知识后,我们进一步学习了线性回归模型。
线性回归模型是计量经济学中最为常用的模型之一,它通过建立一个包含解释变量和被解释变量的关系式,来分析变量之间的因果关系。
通过线性回归模型,我们可以研究变量之间的数值关系,并用来预测变量的值。
除了线性回归模型,我们还学习了其他一些计量经济学模型,如时间序列模型和面板数据模型。
时间序列模型主要用于分析时间上的变动趋势,面板数据模型则能够将个体数据与时间数据结合起来进行分析,这些模型都可以帮助我们更全面地理解经济现象。
在学习了这些模型后,我们还学习了模型诊断和推断方法。
模型诊断可以帮助我们评估模型的准确性和可靠性,推断方法则可以帮助我们得出有关参数和假设的统计推断结果。
通过这些方法,我们可以对经济现象的规律和特征进行更深入的探讨。
除了理论知识,伍德里奇计量经济学导论还特别注重实证研究的方法和技巧。
通过实证研究,我们可以通过真实的数据对经济问题进行研究和解决。
因此,该导论课程还教授了如何收集、整理和分析数据以及报告研究结果等实践技能,使我们能够在真实的经济问题中应用所学知识。
综上所述,伍德里奇计量经济学导论是一门内容生动、全面且具有指导意义的课程。
通过学习这门课程,我们可以深入理解经济现象,掌握经济学与统计学的实证研究方法,为解决经济问题提供有力支持。
无论是从事学术研究还是从业实践,伍德里奇计量经济学导论都能为我们提供有益的指导。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论一、导论计量经济学是经济学的一个重要分支,旨在通过运用数理统计方法和经济理论来分析经济现象。
伍德里奇(Woodridge)是一位著名的计量经济学家,他的著作《计量经济学导论》是该领域的经典教材之一。
本文将对伍德里奇的计量经济学导论进行全面详细、完整深入的介绍。
二、计量经济学的基本概念计量经济学是研究经济现象的定量方法。
它通过建立数学模型,运用统计学原理和经济理论,对经济现象进行量化分析。
计量经济学的基本概念包括:1.回归分析:回归分析是计量经济学的核心方法之一。
它通过建立经济模型,利用样本数据来估计模型中的参数,从而对经济关系进行分析和预测。
2.假设检验:假设检验是计量经济学中的一种统计推断方法。
它用于检验经济模型中的假设是否成立,判断经济关系的显著性。
3.时间序列分析:时间序列分析是计量经济学中研究时间相关性的方法。
它通过对时间序列数据的观察和分析,揭示经济现象的演变规律和趋势。
4.面板数据分析:面板数据分析是计量经济学中研究面板数据(即跨时期和跨个体的数据)的方法。
它可以同时考虑个体特征和时间变动,对经济关系进行更全面的分析。
三、伍德里奇计量经济学导论的内容伍德里奇的《计量经济学导论》是一本系统介绍计量经济学基本理论和方法的教材。
该书的主要内容包括:1.回归分析基础:介绍了回归分析的基本概念和原理,包括线性回归模型、最小二乘法估计、假设检验等内容。
2.多元回归分析:扩展了回归分析的内容,引入了多个自变量的情况,讨论了多元回归模型的估计和推断。
3.回归模型的假设检验:详细介绍了回归模型中各项假设的检验方法,包括正态性检验、异方差性检验等。
4.回归模型的问题和解决方法:讨论了回归模型中可能出现的问题,如多重共线性、异方差等,并提出了相应的解决方法。
5.时间序列分析:介绍了时间序列分析的基本原理和方法,包括平稳性、自相关性、移动平均模型、自回归模型等。
6.面板数据分析:讲解了面板数据分析的基本概念和方法,包括固定效应模型、随机效应模型等。
伍德里奇《计量经济学导论--现代观点》1
T his appendix derives various results for ordinary least squares estimation of themultiple linear regression model using matrix notation and matrix algebra (see Appendix D for a summary). The material presented here is much more ad-vanced than that in the text.E.1THE MODEL AND ORDINARY LEAST SQUARES ESTIMATIONThroughout this appendix,we use the t subscript to index observations and an n to denote the sample size. It is useful to write the multiple linear regression model with k parameters as follows:y t ϭ1ϩ2x t 2ϩ3x t 3ϩ… ϩk x tk ϩu t ,t ϭ 1,2,…,n ,(E.1)where y t is the dependent variable for observation t ,and x tj ,j ϭ 2,3,…,k ,are the inde-pendent variables. Notice how our labeling convention here differs from the text:we call the intercept 1and let 2,…,k denote the slope parameters. This relabeling is not important,but it simplifies the matrix approach to multiple regression.For each t ,define a 1 ϫk vector,x t ϭ(1,x t 2,…,x tk ),and let ϭ(1,2,…,k )Јbe the k ϫ1 vector of all parameters. Then,we can write (E.1) asy t ϭx t ϩu t ,t ϭ 1,2,…,n .(E.2)[Some authors prefer to define x t as a column vector,in which case,x t is replaced with x t Јin (E.2). Mathematically,it makes more sense to define it as a row vector.] We can write (E.2) in full matrix notation by appropriately defining data vectors and matrices. Let y denote the n ϫ1 vector of observations on y :the t th element of y is y t .Let X be the n ϫk vector of observations on the explanatory variables. In other words,the t th row of X consists of the vector x t . Equivalently,the (t ,j )th element of X is simply x tj :755A p p e n d i x EThe Linear Regression Model inMatrix Formn X ϫ k ϵϭ .Finally,let u be the n ϫ 1 vector of unobservable disturbances. Then,we can write (E.2)for all n observations in matrix notation :y ϭX ϩu .(E.3)Remember,because X is n ϫ k and is k ϫ 1,X is n ϫ 1.Estimation of proceeds by minimizing the sum of squared residuals,as in Section3.2. Define the sum of squared residuals function for any possible k ϫ 1 parameter vec-tor b asSSR(b ) ϵ͚nt ϭ1(y t Ϫx t b )2.The k ϫ 1 vector of ordinary least squares estimates,ˆϭ(ˆ1,ˆ2,…,ˆk ),minimizes SSR(b ) over all possible k ϫ 1 vectors b . This is a problem in multivariable calculus.For ˆto minimize the sum of squared residuals,it must solve the first order conditionѨSSR(ˆ)/Ѩb ϵ0.(E.4)Using the fact that the derivative of (y t Ϫx t b )2with respect to b is the 1ϫ k vector Ϫ2(y t Ϫx t b )x t ,(E.4) is equivalent to͚nt ϭ1xt Ј(y t Ϫx t ˆ) ϵ0.(E.5)(We have divided by Ϫ2 and taken the transpose.) We can write this first order condi-tion as͚nt ϭ1(y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0͚nt ϭ1x t 2(y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0...͚nt ϭ1x tk (y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0,which,apart from the different labeling convention,is identical to the first order condi-tions in equation (3.13). We want to write these in matrix form to make them more use-ful. Using the formula for partitioned multiplication in Appendix D,we see that (E.5)is equivalent to΅1x 12x 13...x 1k1x 22x 23...x 2k...1x n 2x n 3...x nk ΄΅x 1x 2...x n ΄Appendix E The Linear Regression Model in Matrix Form756Appendix E The Linear Regression Model in Matrix FormXЈ(yϪXˆ) ϭ0(E.6) or(XЈX)ˆϭXЈy.(E.7)It can be shown that (E.7) always has at least one solution. Multiple solutions do not help us,as we are looking for a unique set of OLS estimates given our data set. Assuming that the kϫ k symmetric matrix XЈX is nonsingular,we can premultiply both sides of (E.7) by (XЈX)Ϫ1to solve for the OLS estimator ˆ:ˆϭ(XЈX)Ϫ1XЈy.(E.8)This is the critical formula for matrix analysis of the multiple linear regression model. The assumption that XЈX is invertible is equivalent to the assumption that rank(X) ϭk, which means that the columns of X must be linearly independent. This is the matrix ver-sion of MLR.4 in Chapter 3.Before we continue,(E.8) warrants a word of warning. It is tempting to simplify the formula for ˆas follows:ˆϭ(XЈX)Ϫ1XЈyϭXϪ1(XЈ)Ϫ1XЈyϭXϪ1y.The flaw in this reasoning is that X is usually not a square matrix,and so it cannot be inverted. In other words,we cannot write (XЈX)Ϫ1ϭXϪ1(XЈ)Ϫ1unless nϭk,a case that virtually never arises in practice.The nϫ 1 vectors of OLS fitted values and residuals are given byyˆϭXˆ,uˆϭyϪyˆϭyϪXˆ.From (E.6) and the definition of uˆ,we can see that the first order condition for ˆis the same asXЈuˆϭ0.(E.9) Because the first column of X consists entirely of ones,(E.9) implies that the OLS residuals always sum to zero when an intercept is included in the equation and that the sample covariance between each independent variable and the OLS residuals is zero. (We discussed both of these properties in Chapter 3.)The sum of squared residuals can be written asSSR ϭ͚n tϭ1uˆt2ϭuˆЈuˆϭ(yϪXˆ)Ј(yϪXˆ).(E.10)All of the algebraic properties from Chapter 3 can be derived using matrix algebra. For example,we can show that the total sum of squares is equal to the explained sum of squares plus the sum of squared residuals [see (3.27)]. The use of matrices does not pro-vide a simpler proof than summation notation,so we do not provide another derivation.757The matrix approach to multiple regression can be used as the basis for a geometri-cal interpretation of regression. This involves mathematical concepts that are even more advanced than those we covered in Appendix D. [See Goldberger (1991) or Greene (1997).]E.2FINITE SAMPLE PROPERTIES OF OLSDeriving the expected value and variance of the OLS estimator ˆis facilitated by matrix algebra,but we must show some care in stating the assumptions.A S S U M P T I O N E.1(L I N E A R I N P A R A M E T E R S)The model can be written as in (E.3), where y is an observed nϫ 1 vector, X is an nϫ k observed matrix, and u is an nϫ 1 vector of unobserved errors or disturbances.A S S U M P T I O N E.2(Z E R O C O N D I T I O N A L M E A N)Conditional on the entire matrix X, each error ut has zero mean: E(ut͉X) ϭ0, tϭ1,2,…,n.In vector form,E(u͉X) ϭ0.(E.11) This assumption is implied by MLR.3 under the random sampling assumption,MLR.2.In time series applications,Assumption E.2 imposes strict exogeneity on the explana-tory variables,something discussed at length in Chapter 10. This rules out explanatory variables whose future values are correlated with ut; in particular,it eliminates laggeddependent variables. Under Assumption E.2,we can condition on the xtjwhen we com-pute the expected value of ˆ.A S S U M P T I O N E.3(N O P E R F E C T C O L L I N E A R I T Y) The matrix X has rank k.This is a careful statement of the assumption that rules out linear dependencies among the explanatory variables. Under Assumption E.3,XЈX is nonsingular,and so ˆis unique and can be written as in (E.8).T H E O R E M E.1(U N B I A S E D N E S S O F O L S)Under Assumptions E.1, E.2, and E.3, the OLS estimator ˆis unbiased for .P R O O F:Use Assumptions E.1 and E.3 and simple algebra to writeˆϭ(XЈX)Ϫ1XЈyϭ(XЈX)Ϫ1XЈ(Xϩu)ϭ(XЈX)Ϫ1(XЈX)ϩ(XЈX)Ϫ1XЈuϭϩ(XЈX)Ϫ1XЈu,(E.12)where we use the fact that (XЈX)Ϫ1(XЈX) ϭIk . Taking the expectation conditional on X givesAppendix E The Linear Regression Model in Matrix Form 758E(ˆ͉X)ϭϩ(XЈX)Ϫ1XЈE(u͉X)ϭϩ(XЈX)Ϫ1XЈ0ϭ,because E(u͉X) ϭ0under Assumption E.2. This argument clearly does not depend on the value of , so we have shown that ˆis unbiased.To obtain the simplest form of the variance-covariance matrix of ˆ,we impose the assumptions of homoskedasticity and no serial correlation.A S S U M P T I O N E.4(H O M O S K E D A S T I C I T Y A N DN O S E R I A L C O R R E L A T I O N)(i) Var(ut͉X) ϭ2, t ϭ 1,2,…,n. (ii) Cov(u t,u s͉X) ϭ0, for all t s. In matrix form, we canwrite these two assumptions asVar(u͉X) ϭ2I n,(E.13)where Inis the nϫ n identity matrix.Part (i) of Assumption E.4 is the homoskedasticity assumption:the variance of utcan-not depend on any element of X,and the variance must be constant across observations, t. Part (ii) is the no serial correlation assumption:the errors cannot be correlated across observations. Under random sampling,and in any other cross-sectional sampling schemes with independent observations,part (ii) of Assumption E.4 automatically holds. For time series applications,part (ii) rules out correlation in the errors over time (both conditional on X and unconditionally).Because of (E.13),we often say that u has scalar variance-covariance matrix when Assumption E.4 holds. We can now derive the variance-covariance matrix of the OLS estimator.T H E O R E M E.2(V A R I A N C E-C O V A R I A N C EM A T R I X O F T H E O L S E S T I M A T O R)Under Assumptions E.1 through E.4,Var(ˆ͉X) ϭ2(XЈX)Ϫ1.(E.14)P R O O F:From the last formula in equation (E.12), we haveVar(ˆ͉X) ϭVar[(XЈX)Ϫ1XЈu͉X] ϭ(XЈX)Ϫ1XЈ[Var(u͉X)]X(XЈX)Ϫ1.Now, we use Assumption E.4 to getVar(ˆ͉X)ϭ(XЈX)Ϫ1XЈ(2I n)X(XЈX)Ϫ1ϭ2(XЈX)Ϫ1XЈX(XЈX)Ϫ1ϭ2(XЈX)Ϫ1.Appendix E The Linear Regression Model in Matrix Form759Formula (E.14) means that the variance of ˆj (conditional on X ) is obtained by multi-plying 2by the j th diagonal element of (X ЈX )Ϫ1. For the slope coefficients,we gave an interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the covariance between any two OLS estimates:multiply 2by the appropriate off diago-nal element of (X ЈX )Ϫ1. In Chapter 4,we showed how to avoid explicitly finding covariances for obtaining confidence intervals and hypotheses tests by appropriately rewriting the model.The Gauss-Markov Theorem,in its full generality,can be proven.T H E O R E M E .3 (G A U S S -M A R K O V T H E O R E M )Under Assumptions E.1 through E.4, ˆis the best linear unbiased estimator.P R O O F :Any other linear estimator of can be written as˜ ϭA Јy ,(E.15)where A is an n ϫ k matrix. In order for ˜to be unbiased conditional on X , A can consist of nonrandom numbers and functions of X . (For example, A cannot be a function of y .) To see what further restrictions on A are needed, write˜ϭA Ј(X ϩu ) ϭ(A ЈX )ϩA Јu .(E.16)Then,E(˜͉X )ϭA ЈX ϩE(A Јu ͉X )ϭA ЈX ϩA ЈE(u ͉X ) since A is a function of XϭA ЈX since E(u ͉X ) ϭ0.For ˜to be an unbiased estimator of , it must be true that E(˜͉X ) ϭfor all k ϫ 1 vec-tors , that is,A ЈX ϭfor all k ϫ 1 vectors .(E.17)Because A ЈX is a k ϫ k matrix, (E.17) holds if and only if A ЈX ϭI k . Equations (E.15) and (E.17) characterize the class of linear, unbiased estimators for .Next, from (E.16), we haveVar(˜͉X ) ϭA Ј[Var(u ͉X )]A ϭ2A ЈA ,by Assumption E.4. Therefore,Var(˜͉X ) ϪVar(ˆ͉X )ϭ2[A ЈA Ϫ(X ЈX )Ϫ1]ϭ2[A ЈA ϪA ЈX (X ЈX )Ϫ1X ЈA ] because A ЈX ϭI kϭ2A Ј[I n ϪX (X ЈX )Ϫ1X Ј]Aϵ2A ЈMA ,where M ϵI n ϪX (X ЈX )Ϫ1X Ј. Because M is symmetric and idempotent, A ЈMA is positive semi-definite for any n ϫ k matrix A . This establishes that the OLS estimator ˆis BLUE. How Appendix E The Linear Regression Model in Matrix Form 760Appendix E The Linear Regression Model in Matrix Formis this significant? Let c be any kϫ 1 vector and consider the linear combination cЈϭc11ϩc22ϩ… ϩc kk, which is a scalar. The unbiased estimators of cЈare cЈˆand cЈ˜. ButVar(c˜͉X) ϪVar(cЈˆ͉X) ϭcЈ[Var(˜͉X) ϪVar(ˆ͉X)]cՆ0,because [Var(˜͉X) ϪVar(ˆ͉X)] is p.s.d. Therefore, when it is used for estimating any linear combination of , OLS yields the smallest variance. In particular, Var(ˆj͉X) ՅVar(˜j͉X) for any other linear, unbiased estimator of j.The unbiased estimator of the error variance 2can be written asˆ2ϭuˆЈuˆ/(n Ϫk),where we have labeled the explanatory variables so that there are k total parameters, including the intercept.T H E O R E M E.4(U N B I A S E D N E S S O Fˆ2)Under Assumptions E.1 through E.4, ˆ2is unbiased for 2: E(ˆ2͉X) ϭ2for all 2Ͼ0. P R O O F:Write uˆϭyϪXˆϭyϪX(XЈX)Ϫ1XЈyϭM yϭM u, where MϭI nϪX(XЈX)Ϫ1XЈ,and the last equality follows because MXϭ0. Because M is symmetric and idempotent,uˆЈuˆϭuЈMЈM uϭuЈM u.Because uЈM u is a scalar, it equals its trace. Therefore,ϭE(uЈM u͉X)ϭE[tr(uЈM u)͉X] ϭE[tr(M uuЈ)͉X]ϭtr[E(M uuЈ|X)] ϭtr[M E(uuЈ|X)]ϭtr(M2I n) ϭ2tr(M) ϭ2(nϪ k).The last equality follows from tr(M) ϭtr(I) Ϫtr[X(XЈX)Ϫ1XЈ] ϭnϪtr[(XЈX)Ϫ1XЈX] ϭnϪn) ϭnϪk. Therefore,tr(IkE(ˆ2͉X) ϭE(uЈM u͉X)/(nϪ k) ϭ2.E.3STATISTICAL INFERENCEWhen we add the final classical linear model assumption,ˆhas a multivariate normal distribution,which leads to the t and F distributions for the standard test statistics cov-ered in Chapter 4.A S S U M P T I O N E.5(N O R M A L I T Y O F E R R O R S)are independent and identically distributed as Normal(0,2). Conditional on X, the utEquivalently, u given X is distributed as multivariate normal with mean zero and variance-covariance matrix 2I n: u~ Normal(0,2I n).761Appendix E The Linear Regression Model in Matrix Form Under Assumption E.5,each uis independent of the explanatory variables for all t. Inta time series setting,this is essentially the strict exogeneity assumption.T H E O R E M E.5(N O R M A L I T Y O Fˆ)Under the classical linear model Assumptions E.1 through E.5, ˆconditional on X is dis-tributed as multivariate normal with mean and variance-covariance matrix 2(XЈX)Ϫ1.Theorem E.5 is the basis for statistical inference involving . In fact,along with the properties of the chi-square,t,and F distributions that we summarized in Appendix D, we can use Theorem E.5 to establish that t statistics have a t distribution under Assumptions E.1 through E.5 (under the null hypothesis) and likewise for F statistics. We illustrate with a proof for the t statistics.T H E O R E M E.6Under Assumptions E.1 through E.5,(ˆjϪj)/se(ˆj) ~ t nϪk,j ϭ 1,2,…,k.P R O O F:The proof requires several steps; the following statements are initially conditional on X. First, by Theorem E.5, (ˆjϪj)/sd(ˆ) ~ Normal(0,1), where sd(ˆj) ϭ͙ෆc jj, and c jj is the j th diagonal element of (XЈX)Ϫ1. Next, under Assumptions E.1 through E.5, conditional on X,(n Ϫ k)ˆ2/2~ 2nϪk.(E.18)This follows because (nϪk)ˆ2/2ϭ(u/)ЈM(u/), where M is the nϫn symmetric, idem-potent matrix defined in Theorem E.4. But u/~ Normal(0,I n) by Assumption E.5. It follows from Property 1 for the chi-square distribution in Appendix D that (u/)ЈM(u/) ~ 2nϪk (because M has rank nϪk).We also need to show that ˆand ˆ2are independent. But ˆϭϩ(XЈX)Ϫ1XЈu, and ˆ2ϭuЈM u/(nϪk). Now, [(XЈX)Ϫ1XЈ]Mϭ0because XЈMϭ0. It follows, from Property 5 of the multivariate normal distribution in Appendix D, that ˆand M u are independent. Since ˆ2is a function of M u, ˆand ˆ2are also independent.Finally, we can write(ˆjϪj)/se(ˆj) ϭ[(ˆjϪj)/sd(ˆj)]/(ˆ2/2)1/2,which is the ratio of a standard normal random variable and the square root of a 2nϪk/(nϪk) random variable. We just showed that these are independent, and so, by def-inition of a t random variable, (ˆjϪj)/se(ˆj) has the t nϪk distribution. Because this distri-bution does not depend on X, it is the unconditional distribution of (ˆjϪj)/se(ˆj) as well.From this theorem,we can plug in any hypothesized value for j and use the t statistic for testing hypotheses,as usual.Under Assumptions E.1 through E.5,we can compute what is known as the Cramer-Rao lower bound for the variance-covariance matrix of unbiased estimators of (again762conditional on X ) [see Greene (1997,Chapter 4)]. This can be shown to be 2(X ЈX )Ϫ1,which is exactly the variance-covariance matrix of the OLS estimator. This implies that ˆis the minimum variance unbiased estimator of (conditional on X ):Var(˜͉X ) ϪVar(ˆ͉X ) is positive semi-definite for any other unbiased estimator ˜; we no longer have to restrict our attention to estimators linear in y .It is easy to show that the OLS estimator is in fact the maximum likelihood estima-tor of under Assumption E.5. For each t ,the distribution of y t given X is Normal(x t ,2). Because the y t are independent conditional on X ,the likelihood func-tion for the sample is obtained from the product of the densities:͟nt ϭ1(22)Ϫ1/2exp[Ϫ(y t Ϫx t )2/(22)].Maximizing this function with respect to and 2is the same as maximizing its nat-ural logarithm:͚nt ϭ1[Ϫ(1/2)log(22) Ϫ(yt Ϫx t )2/(22)].For obtaining ˆ,this is the same as minimizing͚nt ϭ1(y t Ϫx t )2—the division by 22does not affect the optimization—which is just the problem that OLS solves. The esti-mator of 2that we have used,SSR/(n Ϫk ),turns out not to be the MLE of 2; the MLE is SSR/n ,which is a biased estimator. Because the unbiased estimator of 2results in t and F statistics with exact t and F distributions under the null,it is always used instead of the MLE.SUMMARYThis appendix has provided a brief discussion of the linear regression model using matrix notation. This material is included for more advanced classes that use matrix algebra,but it is not needed to read the text. In effect,this appendix proves some of the results that we either stated without proof,proved only in special cases,or proved through a more cumbersome method of proof. Other topics—such as asymptotic prop-erties,instrumental variables estimation,and panel data models—can be given concise treatments using matrices. Advanced texts in econometrics,including Davidson and MacKinnon (1993),Greene (1997),and Wooldridge (1999),can be consulted for details.KEY TERMSAppendix E The Linear Regression Model in Matrix Form 763First Order Condition Matrix Notation Minimum Variance Unbiased Scalar Variance-Covariance MatrixVariance-Covariance Matrix of the OLS EstimatorPROBLEMSE.1Let x t be the 1ϫ k vector of explanatory variables for observation t . Show that the OLS estimator ˆcan be written asˆϭΘ͚n tϭ1xt Јx t ΙϪ1Θ͚nt ϭ1xt Јy t Ι.Dividing each summation by n shows that ˆis a function of sample averages.E.2Let ˆbe the k ϫ 1 vector of OLS estimates.(i)Show that for any k ϫ 1 vector b ,we can write the sum of squaredresiduals asSSR(b ) ϭu ˆЈu ˆϩ(ˆϪb )ЈX ЈX (ˆϪb ).[Hint :Write (y Ϫ X b )Ј(y ϪX b ) ϭ[u ˆϩX (ˆϪb )]Ј[u ˆϩX (ˆϪb )]and use the fact that X Јu ˆϭ0.](ii)Explain how the expression for SSR(b ) in part (i) proves that ˆuniquely minimizes SSR(b ) over all possible values of b ,assuming Xhas rank k .E.3Let ˆbe the OLS estimate from the regression of y on X . Let A be a k ϫ k non-singular matrix and define z t ϵx t A ,t ϭ 1,…,n . Therefore,z t is 1ϫ k and is a non-singular linear combination of x t . Let Z be the n ϫ k matrix with rows z t . Let ˜denote the OLS estimate from a regression ofy on Z .(i)Show that ˜ϭA Ϫ1ˆ.(ii)Let y ˆt be the fitted values from the original regression and let y ˜t be thefitted values from regressing y on Z . Show that y ˜t ϭy ˆt ,for all t ϭ1,2,…,n . How do the residuals from the two regressions compare?(iii)Show that the estimated variance matrix for ˜is ˆ2A Ϫ1(X ЈX )Ϫ1A Ϫ1,where ˆ2is the usual variance estimate from regressing y on X .(iv)Let the ˆj be the OLS estimates from regressing y t on 1,x t 2,…,x tk ,andlet the ˜j be the OLS estimates from the regression of yt on 1,a 2x t 2,…,a k x tk ,where a j 0,j ϭ 2,…,k . Use the results from part (i)to find the relationship between the ˜j and the ˆj .(v)Assuming the setup of part (iv),use part (iii) to show that se(˜j ) ϭse(ˆj )/͉a j ͉.(vi)Assuming the setup of part (iv),show that the absolute values of the tstatistics for ˜j and ˆj are identical.Appendix E The Linear Regression Model in Matrix Form 764。
计量经济学导论-伍德里奇02及应用
误差项干扰项斜率参数截距参数对解释变量的假设解释变量X是确定变量,不是随机变量;、解释变量X在所抽取的样本中具有变异性,随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。
即;伪回归问题对随机干扰项的假设假设3、假设4、假设5、经典假设高斯(Gauss)假设经典线性回归模型yf(y)..E(y|x) = β0+ β1x...x x x x }}{{u 1u 2u 3u 4E(y|x ) = β0 + β1x ●●●●矩估计法,利用样本矩来估计总体中相应的参数计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.▪..x {●●●●●●●●=拟合值=残差例(1)线性性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐近有效性小样本性质。
最佳线性无偏估计量大样本渐近性质高斯—马尔可夫定理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。
2、无偏性3、有效性(最小方差性),普通最小二乘估计量最佳线性无偏估计量BLUE2、随机误差项µ的方差σ2的估计在估计的参数的方差表达式中,都含有随机扰动项的方差。
由于实际上是未知的,因此的方差实际上无法计算,这就需要的对其进行估计。
由于随机项µi不可观测,只能从µi的估计——残差e i出发,对总体方差进行估计。
可以证明最小二乘估计量极大似然法σ2的极大似然估计量不具无偏性,但却具有一致性。
伍德里奇《计量经济学导论》笔记和课后习题详解(一个经验项目的实施)【圣才出品】
第19章一个经验项目的实施19.1 复习笔记一、问题的提出提出一个非常明确的问题,其重要性不容忽视。
如果没有明确阐述假设和将要估计的模型类型,那么很可能会忘记收集某些重要变量的信息,或是从错误的总体中取样,甚至收集错误时期的数据。
1.查找数据的方法《经济文献杂志》有一套细致的分类体系,其中每篇论文都有一组标识码,从而将其归于经济学的某一子领域之中。
因特网(Internet)服务使得搜寻各种主题的已发表论文更为方便。
《社会科学引用索引》(Social Sciences Citation Index)在寻找与社会科学各个领域相关的论文时非常有用,包括那些时常被其他著作引用的热门论文。
网络搜索引擎“谷歌学术”(Google Scholar)对于追踪各类专题研究或某位作者的研究特别有帮助。
2.构思题目时首先应明确的几个问题(1)要使一个问题引起人们的兴趣,并不需要它具有广泛的政策含义;相反地,它可以只有局部意义。
(2)利用美国经济的标准宏观经济总量数据来进行真正原创性的研究非常困难,尤其对于一篇要在半个或一个学期之内完成的论文来说更是如此。
然而,这并不意味着应该回避对宏观或经验金融模型的估计,因为仅增加一些更新的数据便对争论具有建设性。
二、数据的收集1.确定适当的数据集首先必须确定用以回答所提问题的数据类型。
最常见的类型是横截面、时间序列、混合横截面和面板数据集。
有些问题可以用任何一种数据结构进行分析。
确定收集何种数据通常取决于分析的性质。
关键是要考虑能够获得一个足够丰富的数据集,以进行在其他条件不变下的分析。
同一横截面单位两个或多个不同时期的数据,能够控制那些不随时间而改变的非观测效应,而这些效应通常使得单个横截面上的回归失效。
2.输入并储存数据一旦你确定了数据类型并找到了数据来源,就必须把数据转变为可用格式。
通常,数据应该具备表格形式,每次观测占一行;而数据集的每一列则代表不同的变量。
(1)不同类型数据的输入要求①对时间序列数据集来说,只有一种合理的方式来进行数据的输入和存储:即以时间为序,最早的时期列为第一次观测,最近的时期列为最后一次观测。
计量经济学导论伍德里奇数据集
数据集概述:计量经济学导论伍德里奇数据集是一个包含了多个经济指标的样本数据集,用于开展计量经济学研究和统计推断。
该数据集是经济计量学领域中常用的数据集之一,可用于分析各种经济现象之间的相互关系和影响。
本篇文章将介绍数据集的基本情况、样本选择的原因和意义,以及数据预处理和结果分析的方法。
数据集特点:计量经济学导论伍德里奇数据集包含了多个经济指标的时间序列数据,包括国内生产总值、失业率、消费支出、投资额等。
这些指标涵盖了宏观经济领域的多个方面,可以用于分析各种经济现象之间的相互关系和影响。
数据集的时间跨度较长,包含了多个年份的数据,为研究经济变化提供了丰富的样本。
此外,数据集还提供了不同年份的季节调整数据,方便了对经济指标进行更准确的统计分析。
样本选择原因和意义:本篇文章选择计量经济学导论伍德里奇数据集作为研究样本的原因和意义在于,该数据集包含了多个重要的宏观经济指标,可以用于分析宏观经济现象之间的相互关系和影响。
通过对该数据集进行深入分析和挖掘,可以更好地了解经济运行规律和趋势,为政策制定和预测提供更有价值的参考依据。
此外,该数据集还可以用于检验计量经济学模型的准确性和适用性,为经济学的理论研究和应用提供有力的支持。
数据预处理:在进行数据分析之前,需要对数据进行预处理,包括缺失值填充、异常值处理和数据清洗等。
在本篇文章中,我们采用了以下方法进行数据预处理:1. 缺失值填充:对于缺失的数据,我们采用了均值插补的方法进行了填充。
2. 异常值处理:通过对数据进行箱型图观察,剔除了明显异常的数据点。
3. 数据清洗:对不符合要求的数据进行了清洗,如去除无效样本和不符合研究目的的数据。
结果分析:通过对预处理后的数据进行统计分析,我们发现了一些有趣的结论:1. 国内生产总值和失业率之间存在负相关关系,即当失业率上升时,国内生产总值也相应下降。
这可能是由于失业率上升时,消费者和投资者的信心受到影响,导致需求下降,进而影响到经济增长。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:I.计量经济学的性质与经济数据A.计量经济学的定义B.经济数据的特点和来源II.简单回归模型A.回归模型的基本概念B.线性回归模型的建立与估计C.线性回归模型的检验III.多元回归分析A.多元回归模型的基本概念B.多元回归模型的建立与估计C.多元回归模型的检验IV.回归模型的应用与拓展A.回归模型在经济学研究中的应用B.回归模型的拓展与修正正文:伍德里奇在《计量经济学导论》一书中,对计量经济学的基本概念、方法和应用进行了系统性的介绍。
首先,他明确了计量经济学的定义,即在一定的经济理论基础之上,采用数学与统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
为了更好地进行计量分析,书中详细阐述了经济数据的特点和来源,以及如何有效地利用这些数据。
在简单回归模型部分,伍德里奇介绍了回归模型的基本概念,以及如何建立和估计线性回归模型。
他详细地说明了最小二乘法(Least Squares Method)在回归模型估计中的运用,并通过实例展示了线性回归模型的检验方法。
在多元回归分析部分,伍德里奇进一步阐述了多元回归模型的基本概念,以及如何建立和估计多元回归模型。
他详细地介绍了矩阵代数在多元回归模型估计中的应用,并通过实例展示了多元回归模型的检验方法。
此外,他还介绍了如何通过回归模型对经济变量之间的关系进行解释和预测。
在回归模型的应用与拓展部分,伍德里奇通过实例展示了回归模型在经济学研究中的具体应用,包括对产出、消费、投资等经济变量的分析。
他还介绍了如何对回归模型进行拓展和修正,以更好地反映现实经济中的复杂关系。
伍德里奇:计量经济学导论chapter12
CHAPTER 12SOLUTIONS TO PROBLEMS12.1 We can reason this from equation (12.4) because the usual OLS standard error is anestimate of /σthe AR(1) parameter, , tends to be positive in time series regression models. Further, the independent variables tend to be positive correlated, so (x t - x )(x t +j - x ) – which is what generally appears in (12.4) when the {x t } do not have zero sample average – tends to be positive for most t and j . With multiple explanatory variables the formulas are more complicated but have similar features.If ρ < 0, or if the {x t } is negatively autocorrelated, the second term in the last line of (12.4)could be negative, in which case the true standard deviation of 1ˆβ is actually less than /σ12.3 (i) Because U.S. presidential elections occur only every four years, it seems reasonable to think the unobserved shocks – that is, elements in u t – in one election have pretty much dissipated four years later. This would imply that {u t } is roughly serially uncorrelated.(ii) The t statistic for H 0: ρ = 0 is -.068/.240 ≈ -.28, which is very small. Further, theestimate ˆρ= -.068 is small in a practical sense, too. There is no reason to worry about serial correlation in this example.(iii) Because the test based on ˆt ρ is only justified asymptotically, we would generally beconcerned about using the usual critical values with n = 20 in the original regression. But any kind of adjustment, either to obtain valid standard errors for OLS as in Section 12.5 or a feasible GLS procedure as in Section 12.3, relies on large sample sizes, too. (Remember, FGLS is not even unbiased, whereas OLS is under TS.1 through TS.3.) Most importantly, the estimate of ρ ispractically small, too. With ˆρso close to zero, FGLS or adjusting the standard errors would yield similar results to OLS with the usual standard errors.12.5 (i) There is substantial serial correlation in the errors of the equation, and the OLS standard errors almost certainly underestimate the true standard deviation in ˆE Z β. This makes the usualconfidence interval for βEZ and t statistics invalid.(ii) We can use the method in Section 12.5 to obtain an approximately valid standard error.[See equation (12.43).] While we might use g = 2 in equation (12.42), with monthly data we might want to try a somewhat longer lag, maybe even up to g = 12.SOLUTIONS TO COMPUTER EXERCISESC12.1 Regressingˆu on 1ˆt u-, using the 69 available observations, givesˆρ≈ .292 andtse(ˆρ) ≈ .118. The t statistic is about 2.47, and so there is significant evidence of positive AR(1) serial correlation in the errors (even though the variables have been differenced). This means we should view the standard errors reported in equation (11.27) with some suspicion.C12.3 (i) The test for AR(1) serial correlation gives (with 35 observations) ˆρ≈–.110,se(ˆρ)≈ .175. The t statistic is well below one in absolute value, so there is no evidence of serial correlation in the accelerator model. If we view the test of serial correlation as a test of dynamic misspecification, it reveals no dynamic misspecification in the accelerator model.(ii) It is worth emphasizing that, if there is little evidence of AR(1) serial correlation, there is no need to use feasible GLS (Cochrane-Orcutt or Prais-Winsten).C12.5 (i) Using the data only through 1992 givesdem w ins= .441 -.473 partyWH+ .479 incum+ .059 partyWH⋅gnews(.107) (.354) (.205) (.036)- .024 partyWH⋅inf(.028)n = 20, R2 = .437, 2R = .287.The largest t statistic is on incum, which is estimated to have a large effect on the probability of winning. But we must be careful here. incum is equal to 1 if a Democratic incumbent is running and –1 if a Republican incumbent is running. Similarly, partyWH is equal to 1 if a Democrat is currently in the White House and –1 if a Republican is currently in the White House. So, for an incumbent Democrat running, we must add the coefficients on partyWH and incum together, and this nets out to about zero.The economic variables are less statistically significant than in equation (10.23). The gnews interaction has a t statistic of about 1.64, which is significant at the 10% level against a one-sided alternative. (Since the dependent variable is binary, this is a case where we must appeal to asymptotics. Unfortunately, we have only 20 observations.) The inflation variable has the expected sign but is not statistically significant.(ii) There are two fitted values less than zero, and two fitted values greater than one.(iii) Out of the 10 elections with demwins = 1, 8 of these are correctly predicted. Out of the 10 elections with demwins = 0, 7 are correctly predicted. So 15 out of 20 elections through 1992 are correctly predicted. (But, remember, we used data from these years to obtain the estimated equation.)(iv) The explanatory variables are partyWH = 1, incum = 1, gnews = 3, and inf = 3.019. Therefore, for 1996,dem w ins = .441 - .473 + .479 + .059(3) - .024(3.019) ≈ .552.Because this is above .5, we would have predicted that Clinton would win the 1996 election, as he did.(v) The regression of ˆu on 1ˆt u- produces ˆρ≈ -.164 with heteroskedasticity-robust standardterror of about .195. (Because the LPM contains heteroskedasticity, testing for AR(1) serial correlation in an LPM generally requires a heteroskedasticity-robust test.) Therefore, there is little evidence of serial correlation in the errors. (And, if anything, it is negative.)(vi) The heteroskedasticity-robust standard errors are given in [⋅] below the usual standard errors:dem w ins = .441 -.473 partyWH + .479 incum + .059 partyWH⋅gnews(.107) (.354) (.205) (.036)[.086] [.301] [.185] [.030]– .024 partyWH⋅inf(.028)[.019]n = 20, R2 = .437, 2R = .287.In fact, all heteroskedasticity-robust standard errors are less than the usual OLS standard errors, making each variable more significant. For example, the t statistic on partyWH⋅gnews becomes about 1.97, which is notably above 1.64. But we must remember that the standard errors in the LPM have only asymptotic justification. With only 20 observations it is not clear we should prefer the heteroskedasticity-robust standard errors to the usual ones.C12.7 (i) The iterated Prais-Winsten estimates are given below. The estimate of ρis, to three decimal places, .293, which is the same as the estimate used in the final iteration of Cochrane-Orcutt:chnimp = -37.08 + 2.94 log(chempi) + 1.05 log(gas) + 1.13 log(rtwex) log()(22.78) (.63) (.98) (.51)-.016 befile6- .033 affile6- .577 afdec6(.319) (.322) (.342)n = 131, R2 = .202(ii) Not surprisingly, the C-O and P-W estimates are quite similar. To three decimal places,they use the same value of ˆρ(to four decimal places it is .2934 for C-O and .2932 for P-W). The only practical difference is that P-W uses the equation for t = 1. With n = 131, we hope this makes little difference.C12.9 (i) Here are the OLS regression results:log()avgprc = -.073 - .0040 t - .0101 mon - .0088 tues + .0376 wed + .0906 thurs (.115) (.0014) (.1294) (.1273) (.1257) (.1257)n = 97, R 2 = .086The test for joint significance of the day-of-the-week dummies is F = .23, which gives p -value = .92. So there is no evidence that the average price of fish varies systematically within a week.(ii) The equation islog()avgprc = -.920 - .0012 t - .0182 mon - .0085 tues + .0500 wed + .1225 thurs (.190) (.0014) (.1141) (.1121) (.1117) (.1110)+ .0909 wave2 + .0474 wave3(.0218) (.0208)n = 97, R 2 = .310Each of the wave variables is statistically significant, with wave2 being the most important. Rough seas (as measured by high waves) would reduce the supply of fish (shift the supply curve back), and this would result in a price increase. One might argue that bad weather reduces the demand for fish at a market, too, but that would reduce price. If there are demand effects captured by the wave variables, they are being swamped by the supply effects.(iii) The time trend coefficient becomes much smaller and statistically insignificant. We can use the omitted variable bias table from Chapter 3, Table 3.2 to determine what is probably going on. Without wave2 and wave3, the coefficient on t seems to have a downward bias. Since we know the coefficients on wave2 and wave3 are positive, this means the wave variables arenegatively correlated with t . In other words, the seas were rougher, on average, at the beginning of the sample period. (You can confirm this by regressing wave2 on t and wave3 on t .)(iv) The time trend and daily dummies are clearly strictly exogenous, as they are just functions of time and the calendar. Further, the height of the waves is not influenced by past unexpected changes in log(avgprc ).(v) We simply regress the OLS residuals on one lag, getting ˆ垐.618,se().081,7.63.t ρρρ=== Therefore, there is strong evidence of positive serial correlation.(vi) The Newey-West standard errors are 23垐se().0234 and se().0195.wave wave ββ== Given the significant amount of AR(1) serial correlation in part (v), it is somewhat surprising that these standard errors are not much larger compared with the usual, incorrect standard errors. In fact,the Newey-West standard error for 3ˆwave βis actually smaller than the OLS standard error.(vii) The Prais-Winsten estimates arelog()avgprc = -.658 - .0007 t + .0099 mon + .0025 tues + .0624 wed + .1174 thurs (.239) (.0029) (.0652) (.0744) (.0746) (.0621)+ .0497 wave2 + .0323 wave3(.0174) (.0174)n = 97, R 2 = .135The coefficient on wave2 drops by a nontrivial amount, but it still has a t statistic of almost 3. The coefficient on wave3 drops by a relatively smaller amount, but its t statistic (1.86) is borderline significant. The final estimate of ρ is about .687.C12.11 (i) The average of 2ˆi uover the sample is 4.44, with the smallest value being .0000074 and the largest being 232.89.(ii) This is the same as C12.4, part (ii):2ˆi u = 3.26 - .789 return t-1 + .297 21t return - + residual t (0.44) (.196) (.036)n = 689, R 2 = .130.(iii) The graph of the estimated variance function isThe variance is smallest when return -1 is about 1.33, and the variance is then about 2.74.(iv) No. The graph in part (iii) makes this clear, as does finding that the smallest variance estimate is 2.74.(v) The R -squared for the ARCH(1) model is .114, compared with .130 for the quadratic in return -1. We should really compare adjusted R -squareds, because the ARCH(1) model contains only two total parameters. For the ARCH(1) model, 2R is about .112; for the model in part (ii), 2R = .128. Therefore, after adjusting for the different df , the quadratic in return -1 fits better than the ARCH(1) model.(vi) The coefficient on 22ˆt uis only .042, and its t statistic is barely above one (t = 1.09). Therefore, an ARCH(2) model does not seem warranted. The adjusted R -squared is about .113, so the ARCH(2) fits worse than the model estimated in part (ii).。
伍德里奇《计量经济学导论--现代观点》1
T his appendix derives various results for ordinary least squares estimation of themultiple linear regression model using matrix notation and matrix algebra (see Appendix D for a summary). The material presented here is much more ad-vanced than that in the text.E.1THE MODEL AND ORDINARY LEAST SQUARES ESTIMATIONThroughout this appendix,we use the t subscript to index observations and an n to denote the sample size. It is useful to write the multiple linear regression model with k parameters as follows:y t ϭ1ϩ2x t 2ϩ3x t 3ϩ… ϩk x tk ϩu t ,t ϭ 1,2,…,n ,(E.1)where y t is the dependent variable for observation t ,and x tj ,j ϭ 2,3,…,k ,are the inde-pendent variables. Notice how our labeling convention here differs from the text:we call the intercept 1and let 2,…,k denote the slope parameters. This relabeling is not important,but it simplifies the matrix approach to multiple regression.For each t ,define a 1 ϫk vector,x t ϭ(1,x t 2,…,x tk ),and let ϭ(1,2,…,k )Јbe the k ϫ1 vector of all parameters. Then,we can write (E.1) asy t ϭx t ϩu t ,t ϭ 1,2,…,n .(E.2)[Some authors prefer to define x t as a column vector,in which case,x t is replaced with x t Јin (E.2). Mathematically,it makes more sense to define it as a row vector.] We can write (E.2) in full matrix notation by appropriately defining data vectors and matrices. Let y denote the n ϫ1 vector of observations on y :the t th element of y is y t .Let X be the n ϫk vector of observations on the explanatory variables. In other words,the t th row of X consists of the vector x t . Equivalently,the (t ,j )th element of X is simply x tj :755A p p e n d i x EThe Linear Regression Model inMatrix Formn X ϫ k ϵϭ .Finally,let u be the n ϫ 1 vector of unobservable disturbances. Then,we can write (E.2)for all n observations in matrix notation :y ϭX ϩu .(E.3)Remember,because X is n ϫ k and is k ϫ 1,X is n ϫ 1.Estimation of proceeds by minimizing the sum of squared residuals,as in Section3.2. Define the sum of squared residuals function for any possible k ϫ 1 parameter vec-tor b asSSR(b ) ϵ͚nt ϭ1(y t Ϫx t b )2.The k ϫ 1 vector of ordinary least squares estimates,ˆϭ(ˆ1,ˆ2,…,ˆk ),minimizes SSR(b ) over all possible k ϫ 1 vectors b . This is a problem in multivariable calculus.For ˆto minimize the sum of squared residuals,it must solve the first order conditionѨSSR(ˆ)/Ѩb ϵ0.(E.4)Using the fact that the derivative of (y t Ϫx t b )2with respect to b is the 1ϫ k vector Ϫ2(y t Ϫx t b )x t ,(E.4) is equivalent to͚nt ϭ1xt Ј(y t Ϫx t ˆ) ϵ0.(E.5)(We have divided by Ϫ2 and taken the transpose.) We can write this first order condi-tion as͚nt ϭ1(y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0͚nt ϭ1x t 2(y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0...͚nt ϭ1x tk (y t Ϫˆ1Ϫˆ2x t 2Ϫ… Ϫˆk x tk ) ϭ0,which,apart from the different labeling convention,is identical to the first order condi-tions in equation (3.13). We want to write these in matrix form to make them more use-ful. Using the formula for partitioned multiplication in Appendix D,we see that (E.5)is equivalent to΅1x 12x 13...x 1k1x 22x 23...x 2k...1x n 2x n 3...x nk ΄΅x 1x 2...x n ΄Appendix E The Linear Regression Model in Matrix Form756Appendix E The Linear Regression Model in Matrix FormXЈ(yϪXˆ) ϭ0(E.6) or(XЈX)ˆϭXЈy.(E.7)It can be shown that (E.7) always has at least one solution. Multiple solutions do not help us,as we are looking for a unique set of OLS estimates given our data set. Assuming that the kϫ k symmetric matrix XЈX is nonsingular,we can premultiply both sides of (E.7) by (XЈX)Ϫ1to solve for the OLS estimator ˆ:ˆϭ(XЈX)Ϫ1XЈy.(E.8)This is the critical formula for matrix analysis of the multiple linear regression model. The assumption that XЈX is invertible is equivalent to the assumption that rank(X) ϭk, which means that the columns of X must be linearly independent. This is the matrix ver-sion of MLR.4 in Chapter 3.Before we continue,(E.8) warrants a word of warning. It is tempting to simplify the formula for ˆas follows:ˆϭ(XЈX)Ϫ1XЈyϭXϪ1(XЈ)Ϫ1XЈyϭXϪ1y.The flaw in this reasoning is that X is usually not a square matrix,and so it cannot be inverted. In other words,we cannot write (XЈX)Ϫ1ϭXϪ1(XЈ)Ϫ1unless nϭk,a case that virtually never arises in practice.The nϫ 1 vectors of OLS fitted values and residuals are given byyˆϭXˆ,uˆϭyϪyˆϭyϪXˆ.From (E.6) and the definition of uˆ,we can see that the first order condition for ˆis the same asXЈuˆϭ0.(E.9) Because the first column of X consists entirely of ones,(E.9) implies that the OLS residuals always sum to zero when an intercept is included in the equation and that the sample covariance between each independent variable and the OLS residuals is zero. (We discussed both of these properties in Chapter 3.)The sum of squared residuals can be written asSSR ϭ͚n tϭ1uˆt2ϭuˆЈuˆϭ(yϪXˆ)Ј(yϪXˆ).(E.10)All of the algebraic properties from Chapter 3 can be derived using matrix algebra. For example,we can show that the total sum of squares is equal to the explained sum of squares plus the sum of squared residuals [see (3.27)]. The use of matrices does not pro-vide a simpler proof than summation notation,so we do not provide another derivation.757The matrix approach to multiple regression can be used as the basis for a geometri-cal interpretation of regression. This involves mathematical concepts that are even more advanced than those we covered in Appendix D. [See Goldberger (1991) or Greene (1997).]E.2FINITE SAMPLE PROPERTIES OF OLSDeriving the expected value and variance of the OLS estimator ˆis facilitated by matrix algebra,but we must show some care in stating the assumptions.A S S U M P T I O N E.1(L I N E A R I N P A R A M E T E R S)The model can be written as in (E.3), where y is an observed nϫ 1 vector, X is an nϫ k observed matrix, and u is an nϫ 1 vector of unobserved errors or disturbances.A S S U M P T I O N E.2(Z E R O C O N D I T I O N A L M E A N)Conditional on the entire matrix X, each error ut has zero mean: E(ut͉X) ϭ0, tϭ1,2,…,n.In vector form,E(u͉X) ϭ0.(E.11) This assumption is implied by MLR.3 under the random sampling assumption,MLR.2.In time series applications,Assumption E.2 imposes strict exogeneity on the explana-tory variables,something discussed at length in Chapter 10. This rules out explanatory variables whose future values are correlated with ut; in particular,it eliminates laggeddependent variables. Under Assumption E.2,we can condition on the xtjwhen we com-pute the expected value of ˆ.A S S U M P T I O N E.3(N O P E R F E C T C O L L I N E A R I T Y) The matrix X has rank k.This is a careful statement of the assumption that rules out linear dependencies among the explanatory variables. Under Assumption E.3,XЈX is nonsingular,and so ˆis unique and can be written as in (E.8).T H E O R E M E.1(U N B I A S E D N E S S O F O L S)Under Assumptions E.1, E.2, and E.3, the OLS estimator ˆis unbiased for .P R O O F:Use Assumptions E.1 and E.3 and simple algebra to writeˆϭ(XЈX)Ϫ1XЈyϭ(XЈX)Ϫ1XЈ(Xϩu)ϭ(XЈX)Ϫ1(XЈX)ϩ(XЈX)Ϫ1XЈuϭϩ(XЈX)Ϫ1XЈu,(E.12)where we use the fact that (XЈX)Ϫ1(XЈX) ϭIk . Taking the expectation conditional on X givesAppendix E The Linear Regression Model in Matrix Form 758E(ˆ͉X)ϭϩ(XЈX)Ϫ1XЈE(u͉X)ϭϩ(XЈX)Ϫ1XЈ0ϭ,because E(u͉X) ϭ0under Assumption E.2. This argument clearly does not depend on the value of , so we have shown that ˆis unbiased.To obtain the simplest form of the variance-covariance matrix of ˆ,we impose the assumptions of homoskedasticity and no serial correlation.A S S U M P T I O N E.4(H O M O S K E D A S T I C I T Y A N DN O S E R I A L C O R R E L A T I O N)(i) Var(ut͉X) ϭ2, t ϭ 1,2,…,n. (ii) Cov(u t,u s͉X) ϭ0, for all t s. In matrix form, we canwrite these two assumptions asVar(u͉X) ϭ2I n,(E.13)where Inis the nϫ n identity matrix.Part (i) of Assumption E.4 is the homoskedasticity assumption:the variance of utcan-not depend on any element of X,and the variance must be constant across observations, t. Part (ii) is the no serial correlation assumption:the errors cannot be correlated across observations. Under random sampling,and in any other cross-sectional sampling schemes with independent observations,part (ii) of Assumption E.4 automatically holds. For time series applications,part (ii) rules out correlation in the errors over time (both conditional on X and unconditionally).Because of (E.13),we often say that u has scalar variance-covariance matrix when Assumption E.4 holds. We can now derive the variance-covariance matrix of the OLS estimator.T H E O R E M E.2(V A R I A N C E-C O V A R I A N C EM A T R I X O F T H E O L S E S T I M A T O R)Under Assumptions E.1 through E.4,Var(ˆ͉X) ϭ2(XЈX)Ϫ1.(E.14)P R O O F:From the last formula in equation (E.12), we haveVar(ˆ͉X) ϭVar[(XЈX)Ϫ1XЈu͉X] ϭ(XЈX)Ϫ1XЈ[Var(u͉X)]X(XЈX)Ϫ1.Now, we use Assumption E.4 to getVar(ˆ͉X)ϭ(XЈX)Ϫ1XЈ(2I n)X(XЈX)Ϫ1ϭ2(XЈX)Ϫ1XЈX(XЈX)Ϫ1ϭ2(XЈX)Ϫ1.Appendix E The Linear Regression Model in Matrix Form759Formula (E.14) means that the variance of ˆj (conditional on X ) is obtained by multi-plying 2by the j th diagonal element of (X ЈX )Ϫ1. For the slope coefficients,we gave an interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the covariance between any two OLS estimates:multiply 2by the appropriate off diago-nal element of (X ЈX )Ϫ1. In Chapter 4,we showed how to avoid explicitly finding covariances for obtaining confidence intervals and hypotheses tests by appropriately rewriting the model.The Gauss-Markov Theorem,in its full generality,can be proven.T H E O R E M E .3 (G A U S S -M A R K O V T H E O R E M )Under Assumptions E.1 through E.4, ˆis the best linear unbiased estimator.P R O O F :Any other linear estimator of can be written as˜ ϭA Јy ,(E.15)where A is an n ϫ k matrix. In order for ˜to be unbiased conditional on X , A can consist of nonrandom numbers and functions of X . (For example, A cannot be a function of y .) To see what further restrictions on A are needed, write˜ϭA Ј(X ϩu ) ϭ(A ЈX )ϩA Јu .(E.16)Then,E(˜͉X )ϭA ЈX ϩE(A Јu ͉X )ϭA ЈX ϩA ЈE(u ͉X ) since A is a function of XϭA ЈX since E(u ͉X ) ϭ0.For ˜to be an unbiased estimator of , it must be true that E(˜͉X ) ϭfor all k ϫ 1 vec-tors , that is,A ЈX ϭfor all k ϫ 1 vectors .(E.17)Because A ЈX is a k ϫ k matrix, (E.17) holds if and only if A ЈX ϭI k . Equations (E.15) and (E.17) characterize the class of linear, unbiased estimators for .Next, from (E.16), we haveVar(˜͉X ) ϭA Ј[Var(u ͉X )]A ϭ2A ЈA ,by Assumption E.4. Therefore,Var(˜͉X ) ϪVar(ˆ͉X )ϭ2[A ЈA Ϫ(X ЈX )Ϫ1]ϭ2[A ЈA ϪA ЈX (X ЈX )Ϫ1X ЈA ] because A ЈX ϭI kϭ2A Ј[I n ϪX (X ЈX )Ϫ1X Ј]Aϵ2A ЈMA ,where M ϵI n ϪX (X ЈX )Ϫ1X Ј. Because M is symmetric and idempotent, A ЈMA is positive semi-definite for any n ϫ k matrix A . This establishes that the OLS estimator ˆis BLUE. How Appendix E The Linear Regression Model in Matrix Form 760Appendix E The Linear Regression Model in Matrix Formis this significant? Let c be any kϫ 1 vector and consider the linear combination cЈϭc11ϩc22ϩ… ϩc kk, which is a scalar. The unbiased estimators of cЈare cЈˆand cЈ˜. ButVar(c˜͉X) ϪVar(cЈˆ͉X) ϭcЈ[Var(˜͉X) ϪVar(ˆ͉X)]cՆ0,because [Var(˜͉X) ϪVar(ˆ͉X)] is p.s.d. Therefore, when it is used for estimating any linear combination of , OLS yields the smallest variance. In particular, Var(ˆj͉X) ՅVar(˜j͉X) for any other linear, unbiased estimator of j.The unbiased estimator of the error variance 2can be written asˆ2ϭuˆЈuˆ/(n Ϫk),where we have labeled the explanatory variables so that there are k total parameters, including the intercept.T H E O R E M E.4(U N B I A S E D N E S S O Fˆ2)Under Assumptions E.1 through E.4, ˆ2is unbiased for 2: E(ˆ2͉X) ϭ2for all 2Ͼ0. P R O O F:Write uˆϭyϪXˆϭyϪX(XЈX)Ϫ1XЈyϭM yϭM u, where MϭI nϪX(XЈX)Ϫ1XЈ,and the last equality follows because MXϭ0. Because M is symmetric and idempotent,uˆЈuˆϭuЈMЈM uϭuЈM u.Because uЈM u is a scalar, it equals its trace. Therefore,ϭE(uЈM u͉X)ϭE[tr(uЈM u)͉X] ϭE[tr(M uuЈ)͉X]ϭtr[E(M uuЈ|X)] ϭtr[M E(uuЈ|X)]ϭtr(M2I n) ϭ2tr(M) ϭ2(nϪ k).The last equality follows from tr(M) ϭtr(I) Ϫtr[X(XЈX)Ϫ1XЈ] ϭnϪtr[(XЈX)Ϫ1XЈX] ϭnϪn) ϭnϪk. Therefore,tr(IkE(ˆ2͉X) ϭE(uЈM u͉X)/(nϪ k) ϭ2.E.3STATISTICAL INFERENCEWhen we add the final classical linear model assumption,ˆhas a multivariate normal distribution,which leads to the t and F distributions for the standard test statistics cov-ered in Chapter 4.A S S U M P T I O N E.5(N O R M A L I T Y O F E R R O R S)are independent and identically distributed as Normal(0,2). Conditional on X, the utEquivalently, u given X is distributed as multivariate normal with mean zero and variance-covariance matrix 2I n: u~ Normal(0,2I n).761Appendix E The Linear Regression Model in Matrix Form Under Assumption E.5,each uis independent of the explanatory variables for all t. Inta time series setting,this is essentially the strict exogeneity assumption.T H E O R E M E.5(N O R M A L I T Y O Fˆ)Under the classical linear model Assumptions E.1 through E.5, ˆconditional on X is dis-tributed as multivariate normal with mean and variance-covariance matrix 2(XЈX)Ϫ1.Theorem E.5 is the basis for statistical inference involving . In fact,along with the properties of the chi-square,t,and F distributions that we summarized in Appendix D, we can use Theorem E.5 to establish that t statistics have a t distribution under Assumptions E.1 through E.5 (under the null hypothesis) and likewise for F statistics. We illustrate with a proof for the t statistics.T H E O R E M E.6Under Assumptions E.1 through E.5,(ˆjϪj)/se(ˆj) ~ t nϪk,j ϭ 1,2,…,k.P R O O F:The proof requires several steps; the following statements are initially conditional on X. First, by Theorem E.5, (ˆjϪj)/sd(ˆ) ~ Normal(0,1), where sd(ˆj) ϭ͙ෆc jj, and c jj is the j th diagonal element of (XЈX)Ϫ1. Next, under Assumptions E.1 through E.5, conditional on X,(n Ϫ k)ˆ2/2~ 2nϪk.(E.18)This follows because (nϪk)ˆ2/2ϭ(u/)ЈM(u/), where M is the nϫn symmetric, idem-potent matrix defined in Theorem E.4. But u/~ Normal(0,I n) by Assumption E.5. It follows from Property 1 for the chi-square distribution in Appendix D that (u/)ЈM(u/) ~ 2nϪk (because M has rank nϪk).We also need to show that ˆand ˆ2are independent. But ˆϭϩ(XЈX)Ϫ1XЈu, and ˆ2ϭuЈM u/(nϪk). Now, [(XЈX)Ϫ1XЈ]Mϭ0because XЈMϭ0. It follows, from Property 5 of the multivariate normal distribution in Appendix D, that ˆand M u are independent. Since ˆ2is a function of M u, ˆand ˆ2are also independent.Finally, we can write(ˆjϪj)/se(ˆj) ϭ[(ˆjϪj)/sd(ˆj)]/(ˆ2/2)1/2,which is the ratio of a standard normal random variable and the square root of a 2nϪk/(nϪk) random variable. We just showed that these are independent, and so, by def-inition of a t random variable, (ˆjϪj)/se(ˆj) has the t nϪk distribution. Because this distri-bution does not depend on X, it is the unconditional distribution of (ˆjϪj)/se(ˆj) as well.From this theorem,we can plug in any hypothesized value for j and use the t statistic for testing hypotheses,as usual.Under Assumptions E.1 through E.5,we can compute what is known as the Cramer-Rao lower bound for the variance-covariance matrix of unbiased estimators of (again762conditional on X ) [see Greene (1997,Chapter 4)]. This can be shown to be 2(X ЈX )Ϫ1,which is exactly the variance-covariance matrix of the OLS estimator. This implies that ˆis the minimum variance unbiased estimator of (conditional on X ):Var(˜͉X ) ϪVar(ˆ͉X ) is positive semi-definite for any other unbiased estimator ˜; we no longer have to restrict our attention to estimators linear in y .It is easy to show that the OLS estimator is in fact the maximum likelihood estima-tor of under Assumption E.5. For each t ,the distribution of y t given X is Normal(x t ,2). Because the y t are independent conditional on X ,the likelihood func-tion for the sample is obtained from the product of the densities:͟nt ϭ1(22)Ϫ1/2exp[Ϫ(y t Ϫx t )2/(22)].Maximizing this function with respect to and 2is the same as maximizing its nat-ural logarithm:͚nt ϭ1[Ϫ(1/2)log(22) Ϫ(yt Ϫx t )2/(22)].For obtaining ˆ,this is the same as minimizing͚nt ϭ1(y t Ϫx t )2—the division by 22does not affect the optimization—which is just the problem that OLS solves. The esti-mator of 2that we have used,SSR/(n Ϫk ),turns out not to be the MLE of 2; the MLE is SSR/n ,which is a biased estimator. Because the unbiased estimator of 2results in t and F statistics with exact t and F distributions under the null,it is always used instead of the MLE.SUMMARYThis appendix has provided a brief discussion of the linear regression model using matrix notation. This material is included for more advanced classes that use matrix algebra,but it is not needed to read the text. In effect,this appendix proves some of the results that we either stated without proof,proved only in special cases,or proved through a more cumbersome method of proof. Other topics—such as asymptotic prop-erties,instrumental variables estimation,and panel data models—can be given concise treatments using matrices. Advanced texts in econometrics,including Davidson and MacKinnon (1993),Greene (1997),and Wooldridge (1999),can be consulted for details.KEY TERMSAppendix E The Linear Regression Model in Matrix Form 763First Order Condition Matrix Notation Minimum Variance Unbiased Scalar Variance-Covariance MatrixVariance-Covariance Matrix of the OLS EstimatorPROBLEMSE.1Let x t be the 1ϫ k vector of explanatory variables for observation t . Show that the OLS estimator ˆcan be written asˆϭΘ͚n tϭ1xt Јx t ΙϪ1Θ͚nt ϭ1xt Јy t Ι.Dividing each summation by n shows that ˆis a function of sample averages.E.2Let ˆbe the k ϫ 1 vector of OLS estimates.(i)Show that for any k ϫ 1 vector b ,we can write the sum of squaredresiduals asSSR(b ) ϭu ˆЈu ˆϩ(ˆϪb )ЈX ЈX (ˆϪb ).[Hint :Write (y Ϫ X b )Ј(y ϪX b ) ϭ[u ˆϩX (ˆϪb )]Ј[u ˆϩX (ˆϪb )]and use the fact that X Јu ˆϭ0.](ii)Explain how the expression for SSR(b ) in part (i) proves that ˆuniquely minimizes SSR(b ) over all possible values of b ,assuming Xhas rank k .E.3Let ˆbe the OLS estimate from the regression of y on X . Let A be a k ϫ k non-singular matrix and define z t ϵx t A ,t ϭ 1,…,n . Therefore,z t is 1ϫ k and is a non-singular linear combination of x t . Let Z be the n ϫ k matrix with rows z t . Let ˜denote the OLS estimate from a regression ofy on Z .(i)Show that ˜ϭA Ϫ1ˆ.(ii)Let y ˆt be the fitted values from the original regression and let y ˜t be thefitted values from regressing y on Z . Show that y ˜t ϭy ˆt ,for all t ϭ1,2,…,n . How do the residuals from the two regressions compare?(iii)Show that the estimated variance matrix for ˜is ˆ2A Ϫ1(X ЈX )Ϫ1A Ϫ1,where ˆ2is the usual variance estimate from regressing y on X .(iv)Let the ˆj be the OLS estimates from regressing y t on 1,x t 2,…,x tk ,andlet the ˜j be the OLS estimates from the regression of yt on 1,a 2x t 2,…,a k x tk ,where a j 0,j ϭ 2,…,k . Use the results from part (i)to find the relationship between the ˜j and the ˆj .(v)Assuming the setup of part (iv),use part (iii) to show that se(˜j ) ϭse(ˆj )/͉a j ͉.(vi)Assuming the setup of part (iv),show that the absolute values of the tstatistics for ˜j and ˆj are identical.Appendix E The Linear Regression Model in Matrix Form 764。
伍德里奇计量经济学导论第四版
课
后
(ii) plim(W1) = plim[(n – 1)/n] ⋅ plim( Y ) = 1 ⋅ µ = µ. plim(W2) = plim( Y )/2 = µ/2. Because plim(W1) = µ and plim(W2) = µ/2, W1 is consistent whereas W2 is inconsistent.
m
(ii) This follows from part (i) and the fact that the sample average is unbiased for the population average: write
W1 = n −1 ∑ (Yi / X i ) = n −1 ∑ Z i ,
i =1 i =1
n
n
where Zi = Yi/Xi. From part (i), E(Zi) = θ for all i. (iii) In general, the average of the ratios, Yi/Xi, is not the ratio of averages, W2 = Y / X . (This non-equivalence is discussed a bit on page 676.) Nevertheless, W2 is also unbiased, as a simple application of the law of iterated expectations shows. First, E(Yi|X1,…,Xn) = E(Yi|Xi) under random sampling because the observations are independent. Therefore, E(Yi|X1,…,Xn) = θ X i and so
伍德里奇《计量经济学导论--现代观点》
X
22
3
1.
15
p
0.2 0.1 0.1 0.1 0.1 0.3 0.1
( X ,Y ) (1,1) (1,0) (1,1) (2,1) (2,1) (3,0) (3,1)
( X Y )2 4 1 0 9 1 9 4
得 E[(X Y )2] 4 0.3 1 0.2 0 0.1 9 0.4 5.
( X ,Y ) (1,1) (1,0) (1,1) (2,1) (2,1) (3,0) (3,1) Y X 1 0 1 1 2 1 2 0 1 3
于是
E Y 1 0.2 0 0.1 1 0.1 1 0.1 1 0.1 0 0.3 1 0.1
(2) 级数的绝对收敛性保证了级数的和不 随级数各项次序的改变而改变 , 之所以这样要 求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
(3) 随机变量的数学期望与一般变量的算 术平均值不同.
例1 谁的技术比较好? 甲,乙两个射手,他们的射击技术分别为
甲射手
击中环数 8 9 10 概率 0.3 0.1 0.6
第四章
随机变量的数字特征
第一节 数学期望
一、随机变量的数学期望 二、随机变量函数的数学期望 三、数学期望的性质 四、小结
一、随机变量的数学期望
1. 离散型随机变量的数学期望
定义4.1设离散型随机变量 X 的分布律为
P{ X xk } pk , k 1,2,.
若级数
xk pk 绝对收敛,则称级数
故甲射手的技术比较好.
例2 如何确定投资决策方向?
某人有10万元现金, 想投资
计量经济学导论伍德里奇数据集
计量经济学导论伍德里奇数据集全文共四篇示例,供读者参考第一篇示例:计量经济学导论伍德里奇数据集是一个广泛使用的经济学数据集,它收集了来自不同国家和地区的大量经济数据,包括国内生产总值(GDP)、人口、失业率、通货膨胀率等指标。
这些数据被广泛用于经济学研究和实证分析,帮助经济学家们了解和预测经济现象。
伍德里奇数据集由经济学家Robert S. Pindyck和Daniel L. Rubinfeld于1991年编撰而成,现已成为许多大学和研究机构的经济学教学和研究工具。
该数据集包含了大量的时间序列和横截面数据,涵盖了从1960年至今的多个国家和地区。
在伍德里奇数据集中,经济指标按照国家和地区进行分类,每个国家或地区都有各种经济指标的时间序列数据。
这些数据不仅涵盖了宏观经济指标,如GDP、人口、通货膨胀率等,还包括了一些特定领域的数据,如能源消耗、就业情况、教育水平等。
研究人员可以使用伍德里奇数据集进行各种经济学研究,例如分析不同国家和地区的经济增长趋势、比较不同国家之间的经济表现、评估各种经济政策的效果等。
通过对数据集的分析,经济学家们可以更好地理解和解释经济现象,为政策制定和经济预测提供依据。
除了为经济学研究提供数据支持外,伍德里奇数据集还可以帮助经济学教学。
许多经济学课程都会使用这个数据集进行案例分析和实证研究,让学生们更直观地理解经济理论,并将理论应用到实际问题中去。
通过实际数据的分析,学生们可以培养独立思考和解决问题的能力,提高他们的经济学研究水平。
要正确使用伍德里奇数据集进行经济学研究和教学,研究人员和教师们需要对数据集的结构和特点有深入的了解。
他们需要了解数据集中各个变量的定义和计量单位,以确保数据分析的准确性。
他们需要熟悉数据集的时间跨度和覆盖范围,以便选择合适的时间段和国家样本进行研究。
他们还需要掌握数据处理和分析的方法,如时间序列分析、横截面分析等,以确保研究结论的可靠性和科学性。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:一、引言1.计量经济学的基本概念2.计量经济学的研究方法与应用领域二、概率论与数理统计基础1.随机变量与概率分布2.数学期望与方差3.抽样分布与假设检验三、线性回归分析1.回归方程的建立与估计2.回归系数的显著性检验3.回归模型的诊断与修正四、多元线性回归分析1.多元线性回归模型的建立2.多元线性回归的求解方法3.多元线性回归的显著性检验五、时间序列分析1.时间序列的基本概念与特点2.平稳时间序列的判定与转换3.时间序列模型的建立与预测六、非参数统计方法1.非参数检验的基本思想与方法2.非参数回归与插值方法3.非参数统计方法的优缺点及应用场景七、计量经济学在实践中的应用1.我国经济发展中的计量经济学应用案例2.计量经济学在国际贸易、金融、环境等领域的应用3.计量经济学在政策评估与制定中的作用八、伍德里奇计量经济学导论的评价与启示1.教材的结构与内容特点2.伍德里奇计量经济学导论在我国的影响力3.对我国计量经济学教育的启示正文:计量经济学是一门运用概率论、统计学、数学等方法研究经济现象及其规律的科学。
在当今经济学领域,计量经济学已成为一门重要的分支学科,广泛应用于科研、教学和实践。
伍德里奇《计量经济学导论》一书,系统地阐述了计量经济学的基本原理、方法及应用,为读者提供了宝贵的理论指导和实践经验。
本书首先介绍了计量经济学的基本概念和研究方法。
计量经济学的研究方法主要包括实证分析、理论分析及实证与理论相结合的分析方法。
研究范围涉及宏观、微观及政策评估等多个领域。
此外,本书还简要介绍了概率论和数理统计的基本知识,为后续章节的学习奠定了基础。
在概率论和数理统计基础部分,本书详细讲解了随机变量、概率分布、数学期望、方差等概念,以及抽样分布、假设检验等统计方法。
这些知识为后续的回归分析提供了理论支持。
线性回归分析是计量经济学的重要内容之一。
本书介绍了回归方程的建立与估计、回归系数的显著性检验以及回归模型的诊断与修正方法。
伍德里奇计量经济学导论第四版
236APPENDIX BSOLUTIONS TO PROBLEMSB.1 Before the student takes the SAT exam, we do not know – nor can we predict with certainty – what the score will be. The actual score depends on numerous factors, many of which we cannot even list, let alone know ahead of time. (The student’s innate ability, how the student feels on exam day, and which particular questions were asked, are just a few.) The eventual SAT score clearly satisfies the requirements of a random variable.B.2 (i) P(X ≤ 6) = P[(X – 5)/2 ≤ (6 – 5)/2] = P(Z ≤ .5) ≈ .692, where Z denotes a Normal (0,1) random variable. [We obtain P(Z ≤ .5) from Table G.1.](ii) P(X > 4) = P[(X – 5)/2 > (4 – 5)/2] = P(Z > −.5) = P(Z ≤ .5) ≈ .692.(iii) P(|X – 5| > 1) = P(X – 5 > 1) + P(X – 5 < –1) = P(X > 6) + P(X < 4) ≈ (1 – .692) + (1 – .692) = .616, where we have used answers from parts (i) and (ii).B.3 (i) Let Y it be the binary variable equal to one if fund i outperforms the market in year t . By assumption, P(Y it = 1) = .5 (a 50-50 chance of outperforming the market for each fund in each year). Now, for any fund, we are also assuming that performance relative to the market is independent across years. But then the probability that fund i outperforms the market in all 10 years, P(Y i 1 = 1,Y i 2 = 1, …, Y i ,10 = 1), is just the product of the probabilities: P(Y i 1 = 1)⋅P(Y i2 =1) … P(Y i ,10 = 1) = (.5)10 = 1/1024 (which is slightly less than .001). In fact, if we define a binary random variable Y i such that Y i = 1 if and only if fund i outperformed the market in all 10 years, then P(Y i = 1) = 1/1024.(ii) Let X denote the number of funds out of 4,170 that outperform the market in all 10 years. Then X = Y 1 + Y 2 + … + Y 4,170. If we assume that performance relative to the market is independent across funds, then X has the Binomial (n ,θ) distribution with n = 4,170 and θ = 1/1024. We want to compute P(X ≥ 1) = 1 – P(X = 0) = 1 – P(Y 1 = 0, Y 2 = 0, …, Y 4,170 = 0) = 1 – P(Y 1 = 0)⋅ P(Y 2 = 0)⋅⋅⋅P(Y 4,170 = 0) = 1 – (1023/1024)4170 ≈ .983. This means, if performance relative to the market is random and independent across funds, it is almost certain that at least one fund will outperform the market in all 10 years.(iii) Using the Stata command Binomial(4170,5,1/1024), the answer is about .385. So there is a nontrivial chance that at least five funds will outperform the market in all 10 years.B.4 We want P(X ≥.6). Because X is continuous, this is the same as P(X > .6) = 1 – P(X ≤ .6) = F (.6) = 3(.6)2 – 2(.6)3 = .648. One way to interpret this is that almost 65% of all counties have an elderly employment rate of .6 or higher.B.5 (i) As stated in the hint, if X is the number of jurors convinced of Simpson’s innocence, then X ~ Binomial(12,.20). We want P(X ≥ 1) = 1 – P(X = 0) = 1 – (.8)12 ≈ .931.课后答案网 w w w .k h d a w .c o m237(ii) Above, we computed P(X = 0) as about .069. We need P(X = 1), which we obtain from(B.14) with n = 12, θ = .2, and x = 1: P(X = 1) = 12⋅ (.2)(.8)11 ≈ .206. Therefore, P(X ≥ 2) ≈ 1 – (.069 + .206) = .725, so there is almost a three in four chance that the jury had at least two members convinced of Simpson’s innocence prior to the trial.B.6 E(X ) = 30()xf x dx ∫ = 320[(1/9)] x x dx ∫ = (1/9) 330x dx ∫. But 330x dx ∫ = (1/4)x 430| = 81/4. Therefore, E(X ) = (1/9)(81/4) = 9/4, or 2.25 years. B.7 In eight attempts the expected number of free throws is 8(.74) = 5.92, or about six free throws. B.8 The weights for the two-, three-, and four-credit courses are 2/9, 3/9, and 4/9, respectively. Let Y j be the grade in the j th course, j = 1, 2, and 3, and let X be the overall grade point average. Then X = (2/9)Y 1 + (3/9)Y 2 + (4/9)Y 3 and the expected value is E(X ) = (2/9)E(Y 1) + (3/9)E(Y 2) + (4/9)E(Y 3) = (2/9)(3.5) + (3/9)(3.0) + (4/9)(3.0) = (7 + 9 + 12)/9 ≈ 3.11. B.9 If Y is salary in dollars then Y = 1000⋅X , and so the expected value of Y is 1,000 times the expected value of X , and the standard deviation of Y is 1,000 times the standard deviation of X . Therefore, the expected value and standard deviation of salary, measured in dollars, are $52,300 and $14,600, respectively. B.10 (i) E(GPA |SAT = 800) = .70 + .002(800) = 2.3. Similarly, E(GPA |SAT = 1,400) = .70 + .002(1400) = 3.5. The difference in expected GPAs is substantial, but the difference in SAT scores is also rather large. (ii) Following the hint, we use the law of iterated expectations. Since E(GPA |SAT ) = .70 + .002 SAT , the (unconditional) expected value of GPA is .70 + .002 E(SAT ) = .70 + .002(1100) = 2.9. 课后答案网 w w w .k h d a w .c o m。
伍德里奇 计量经济学导论
伍德里奇计量经济学导论摘要:一、伍德里奇《计量经济学导论》概述二、伍德里奇对计量经济学的定义和方法三、伍德里奇《计量经济学导论》的主要内容四、伍德里奇《计量经济学导论》的学术价值和影响五、总结正文:一、伍德里奇《计量经济学导论》概述伍德里奇(John M.Woodridge)是美国著名的计量经济学家,他的《计量经济学导论》(Introduction to Econometrics)是计量经济学领域的经典教材,自1974 年首次出版以来,已经多次修订,深受全球经济学者和学者的欢迎。
二、伍德里奇对计量经济学的定义和方法在《计量经济学导论》中,伍德里奇对计量经济学进行了明确的定义。
他认为,计量经济学是一门以一定的经济理论为基础,采用数学和统计学的工具,通过建立计量经济模型对经济变量之间的关系进行定量分析的学科。
在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,通过检验后,可以利用模型进行经济预测和决策分析。
伍德里奇在书中详细介绍了计量经济学的方法,包括横截面数据的回归分析、多元回归分析、时间序列数据的分析等。
他还对线性回归模型、非线性回归模型、随机回归模型等常见的计量经济模型进行了深入的讲解和分析。
三、伍德里奇《计量经济学导论》的主要内容伍德里奇的《计量经济学导论》共分为六章,涵盖了计量经济学的基本概念、方法和应用。
具体内容包括:第一章:计量经济学的性质与经济数据,介绍了计量经济学的定义、特点和基本概念,以及经济数据的收集、整理和分析方法。
第二章:简单回归模型,讲解了线性回归模型的基本原理和估计方法,包括最小二乘法、极大似然估计法等。
第三章:多元回归分析,介绍了多元线性回归模型的估计和检验方法,包括普通最小二乘法、矩阵形式等。
第四章:多元回归分析的推断,讲解了多元回归模型的预测和假设检验方法。
第五章:时间序列数据的分析,介绍了时间序列数据的基本特征和分析方法,包括自相关、平稳性、ARIMA 模型等。
伍德里奇《计量经济学导论--现代观点》2
΄ ΅ A ϭ
2 Ϫ4
Ϫ1 5
7 0
(D.1)
where a13 ϭ 7. The shorthand A ϭ [aij] is often used to define matrix operations.
DEFINITION D.2 (Square Matrix) A square matrix has the same number of rows and columns. The dimension of a square matrix is its number of rows and columns.
Given any real number ␥ (often called a scalar), scalar multiplication is defined as ␥A ϵ [␥aij], or
΄ ␥a11 ␥a21 ␥A ϭ ...
␥a12 ␥a22
... ...
΅␥a1n
␥a2n .
␥am1 ␥am2 . . . ␥amn
For example, if ␥ ϭ 2 and A is the matrix in equation (D.1), then
΄ ΅ ␥A ϭ
4 Ϫ8
Ϫ2 10
14 0.
Matrix Multiplication
To multiply matrix A by matrix B to form the product AB, the column dimension of A must equal the row dimension of B. Therefore, let A be an m ϫ n matrix and let B be an n ϫ p matrix. Then matrix multiplication is defined as
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何利用计量经济学写实证论文
学习计量经济学的最后目的是为进行实证研究,但对初学计量经济学的人而言,要写一篇有实证研究的报告或论文时常有不知如何着手的感觉,这里我便对实证研究的规划以及论文的写作做一些粗浅的建议。
前期规划:
1.广泛收集参考文献,决定计划的目的和范畴:
1)决定所要解释的现象是什么?
2)决定所要检验的假设或理论是什么?
3)决定所要预测的趋势是什么?
4)决定所要评估的政策是什么?
2.建构实证计量模型;
除研读相关经济理论之外,应比较三至五篇有实证分析之文献中的实证计量模型:确认计量模型中解释变量和应变量之间的因果关系(causality);厘清各模型的异同及优缺点,思考改进文献中现存模型的可能;最后决定实证计量模型雏形;初步调查是否有相关的资料,若无则实证模型设计的再好也无用。
3.收集相关资料;
对数据的精确性一定要严格查核,对错假漏数据要仔细修正;使用电子表格软件对数据列表绘图,以验证数据的逻辑合理性,对不合理的数值要有所处理;不论要用的是横断面数据或是时间数列,数据数目越多越好,面板数据(Panel Data)尤佳;对资料数值作一些整理,表列各种基本统计量(样本平均值、变异数、变量间的样本相关系数等)、变量之间的两两交互列表、做一些初步图解分析。
计量方法的执行:
1.计量方法不应太简单(例如只做到最简单的 OLS),但也不必过于复杂,应针对问题采用恰到好处的计量方法。
若采用了比较复杂的计量方法,则要说明为什么简单的方法不适合。
计量方法的好坏不在其复杂程度,而在于它是否能够帮我们得到正确的估计值,以了解数据中所包含的真正信息。
2.除了估计值以及对应的 t 检定外外,也可做一些 F 检定之对多个系数的假设检定。
3.回归模型的设定,尤其是解释变量的取舍,可在估计过程中不断的修正。
对应变量和解释变量均可尝试诸如对数、指数、幂函数等不同的转换。
这些转换方式的决定,以经济理论上的考虑最为重要,不能单只为了提高模型的配适,而盲目的做一些不合理的变量转换。
4.选取解释变量时,应有如下的考虑:
解释变量和应变量之间的因果关系一定要正确,也就是说,解释变量是原因在先,应变量是结果在后,有一定的先后顺序。
尤其要注意,有些变量数值的产生很可能是和应变量同时决定的,或是因果关系不很明确(也就是说,相对于应变量而言,这些变量是内生的),则在选取这些变量作为解释变量时,便要非常小心。
解释变量的内生问题常常是研究被批评的主要原因;要注意解释变量的同构型,不能不分青红皂白的将一大堆彼此相关性很高的变量(包括相同变量的不同转换、或是几个变数间的各种交乘项)放进回归式内,造成严重的线性重合问题;经济理论所牵涉到的变量常常是无法观察到的,因此在做实证研究时必须采
用替代变量(Proxy),研究者要对所选用之替代变数的合理性详加说明。
由于数据总有些缺失,常有人在束手无策之下,采用了很多匪夷所思的替代变数;虚拟变量的定义要清楚而合理,使用要小心;要探讨解释变量不足、观察值有误差等数据缺失所可能造成的计量问题。
5.横断面数据要注意异方差(Heteroscedasticity)的问题,时间数列的数据则要注意干扰项自我相关(Autocorrelation)的问题。
要确定时间数列的稳定性(Stationarity),若有季节变动也要加以处理。
6.模型的稳定性要注意,可能需要诸如 Chow Test 或 CumSum Test 的检验。
7.若用到 MLE 或 GMM 等非线性计算,则在撰写报告时要对数值方法的细节,诸如统计软件及数值方法的名称、起始值之选取、收敛速度、是否产生区域解(local solution)、收敛条件的设定等,均需有所说明。
8.若实证模型中有多个应变量(和对应之方程式)值得同时分析,则可考虑采用 Seeming unrelated regression 甚至联立回归模型等系统模型,以更有效的利用各回归式之间的相关性。
报告的写作:
1.首页:报告题目,作者名字,系所,学号,日期。
2.摘要:对全文宗旨作一简单描述,并简述文章的目的是对经济结构的分析,还是对未来趋势的预测,还是对政策的评估;然后简单介绍所使用的模型及变量,数据的种类及来源,所估计的模型,所采用的计量方法;最后以最主要的实证结果为终结。
3.绪论:说明研究的性质、范围和目的,并从不同角度或一个比较宽广的视野(历史、社会、文献、问题严重性等)来解释研究的重要性。
4.文献回顾:对和主题有直接和间接关系的文献做一个简单清楚有系统的回顾,和主题有直接关系但有不同结果的文献,更是要有比较完整的解释。
5.模型设定:模型有理论模型和实证模型两类。
理论模型是从经济理论中直接导出,而实证模型则是从理论模型衍申出来,是要实际以资料来估计的。
理论模型通常需以数学推导,因此文章中可列出一些关键的数式以帮助理论的阐述,但不应长篇累牍的堆积只有间接关系的数式。
实证模型通常是以回归模型的形式表示,对模型中所涉及的变量均须给与明确的定义,对解释变量和应变量之间的关系要详尽的说明,也要解释对模型中主要系数(或由这些系数所导出之弹性、乘数等)可能数值的大小及符号有怎样的理论预期。
6.资料说明:对数据的种类,性质,来源出处,数据修订的方式,数据中可能有的错误和缺失,都要有详细的说明,最好也能将资料的基本统计量表列出来。
7.计量方法的描述:对所用到的每一个符号都要有清楚的定义。
8.实证结果的报告:
系数估计的主要结果均须以表列出,在表中每一系数对应之变量名称要写清楚,每一系数估计值旁均须伴随一标准差(s.e.)或 t 统计量,也可加列 p 值,对于显著的估计值也可附加诸如星号之特殊标记以提醒读者。
显示模型整体表现的统计量,诸如 R2(线性回归模型), F 检定统计量, Durbin-Watson 检定统计量(对时间数列资料),也可选择性的列于表内。
在表的脚注中,必须说明表中所有的特殊符号和简称,表中变量名称的选取,应尽量采用有意义的中文简称,少用无意义的英文字母组合。
制表的基本原则就是要让读者便捷、完整
而清楚的了解估计的结果;对主要回归系数(或由回归系数所导出之弹性、乘数等)估计值的大小、符号及显著与否要详加讨论,对于显著的估计值更要和理论预期值比较,若有明显的矛盾,则要探讨原因;若能在文献中找到类似模型的估计结果,则应择要报告,并做比较;对重要回归系数若是得不到显著的估计值,则要探讨其中原因。
也绝不能对不显著的估计值做出过度的解释,尤其不能宣称不显著的估计值支持或不支持某些特定结论。
我们要知道估计值不显著,就是表示所使用的数据不能够提供足够的信息,若是没有足够的信息,当然不能够也不应该做出任何确切的结论;为增加文章的清晰度,能够条列的结果应尽量条列(但要注意条列式的阐述易流于机械化而让读者失去兴趣),同样的,能够列表的结果应尽量列表,表格应尽可能的明确、独立自主而自成一体(多利用表格下端的附注详加解释表格的内容),尽可能让读者不用在文章中到处找相关说明。
此外,图表也是一个非常精准有效之传达信息的方式,应多加利用;所有具有政策意义的重要论点都要经过假设检定的严谨统计程序探讨其显著性;若要根据估计模型对数据外的时期或状况进行预测,则态度必须保守谨慎,尽可能设想预测可能不准的原因;所有列举的统计数字应尽量保持统一的小数点位数(小数点后三位数或四位数均可),如果有很小或很大的数字,则可以用科学表示法表示(例如1.2345 x 10-4),尽可能显示出三至五位有效数字。
9.结论:对所有重要结果做一个完整的总结,并经由理论或数据中不尽完美处的讨论,指明未来研究的方向。
10.列举参考文献。
一些注意事项:
1.正确的进行研究很重要,但如何将研究结果有条有理、完整而正确的写成报告则更是重要。
由于大学教育并不重视国文(英文)写作的训练,很多学期报告的问题都在于国文(英文)的写作。
所以对报告主体完成后的文字修饰工作,一定要给与很大的重视。
2.写论文应该抱持着推销产品的心态,所以在包装产品(即写文章)之前要清楚的了解顾客(读者)的基本心理:顾客基本上是报着不太关心但走着瞧的心理,所以写文章时,便要时时设想如何能在非常短的时间内让顾客对产品发生兴趣,当然也要设想如何能让他们在将产品消化后能对产品赞不绝口。
3.大家都知道文章中每一个章节都有一个主题(章节的标题就是用来点明该主题的),但很多人似乎是不知道,文章中的每一个段落也有各自的主题,也就是说每一个段落只是用来说明一件事情的。
很多人常在该分段的时候不分,以致一个段落中常挤进两三个不太相关连的主题,而让读者不易掌握文章重点。
4.相对的另一个问题是,同一个主题,也应该在同一个地方讲清楚,而不应该在文章中不同的地方重复出现(在序论及结论中对各主题之概论则例外),尤其是不应该在不同的地方出现互相矛盾的说法。
但有时候在对一个主题的解释过程中,可能需要先了解一些其它的概念,因此有必要将一个主题的解释,分置于文章中两个不同的段落。
若如此则在前一部份解释完成后,应预先告知往后还会有更多的说明。
这种做法既让读者有一个全盘了然的感觉,也提醒自己在前后不同地方的说明要彼此呼应而不重复或矛盾。