7第十二章 波动光学(一)答案(卜胜利0

合集下载

第12章波动光学

第12章波动光学

第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lfv π2 (C)vnlfπ2 (D)π2lfv5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则λe1n 2n 3n )1()2(T12-1-1图1S S 1t 1r 1n 2t 2n 2r PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D) 122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是1S 2SMT12-1-14图T12-1-17图T12-1-18图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dT12-1-23图S f 45M1T 2T L B•C AT12-1-25(a)图 T12-1-25(b)图26. 如T12-1-26(a)图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是 [ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉T12-1-26(a)图T12-1-26(b)图T12-1-29图31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 已知牛顿环两两相邻条纹间的距离不等.如果要使其相等, 以下所采取的措施中不可行的是[ ] (A) 将透镜磨成半圆柱形(B) 将透镜磨成圆锥形 (C) 将透镜磨成三棱柱形(D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角(B) 增大棱边长度(C) 换用波长较短的入射光(D) 换用折射率较小的液体T12-1-32图38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动(B) 间隔变小,向上移动(C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波(B) 光波传播速度比声波大 (C) 光是有颜色的(D) 光的波长比声波小得多44. 波长为λ 的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹(B) 第五级暗纹 (C) 第二级明纹(D) 第五级明纹S 1S 2S OCb12λT12-1-40图T12-1-44图46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是 [ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光(C) 增大单缝宽度 (D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是[ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A)λ(B)2λ(C)23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λλ53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动T12-1-53图T12-1-54图T12-1-55图60. 为测量一单色光的波长,下列方法中最准确的是( )实验. [ ] (A) 双缝干涉 (B) 牛顿环干涉 (C) 单缝衍射 (D) 光栅衍射 61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...)69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为 [ ] (A)ϕλsin 2 (B)ϕλsin (C)ϕλsin 2 (D)λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现. [ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多 (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变 (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少 72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是 [ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是 [ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零 (C) 光强始终为零(D) 光强始终为最大值 74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为 [ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱 (C) 干涉条纹间距变窄, 且明条纹亮度减弱 (D) 无干涉条纹 76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱 (C) 干涉条纹间距变窄, 且明条纹亮度减弱 (D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同 78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是 [ ] (A) 平行于纸面的振动少于垂直于纸面的振动 (B) 平行于纸面的振动多于垂直于纸面的振动 (C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为 (C) 折射光为线偏振光,折射角不能确定 (D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是 [ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光 (C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是 [ ] (A) 30° (B) 45°(C) 60° (D) 90°0IT12-1-82图4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对 84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为 [ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为: [ ] (A) 光强单调增加(B) 光强先增加,后又减小至零 (C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直(B) 传播方向相同,电场强度的振动方向不相互垂直 (C) 传播方向不同,电场强度的振动方向相互垂直 (D) 传播方向不同,电场强度的振动方向不相互垂直 88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是 [ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面 (C) 是O 光,偏振化方向平行于入射面 (D) 是O 光,偏振化方向垂直于入射面89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则IT12-1-83图ABC IT12-1-84图1P 3P 2PθT12-1-87图C A B D••iT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹 (C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、选择题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n = ____________.5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长 = 550nm, 则该云母片的厚度为___________.λe1n 2n 3n )1()2(T12-2-3图θθλ1S 2S d1r 2r )1(=n 1S 2S PET12-2-4图。

大学物理d07波动光学参考答案

大学物理d07波动光学参考答案

《大学物理D 》 练 习 七 波动光学一、填空题7.1.1.真空中波长为500nm 绿光在折射率为1.5 的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为 833.3 nm 。

7.1.2 在双缝干涉实验中,若缝间距为所用光波波长的1000倍,观察屏与双缝相距50cm .则相邻明纹的间距为 0.05 cm 。

7.1.3 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ的透射光能量。

假设光线垂直入射,则介质膜的最小厚度应为 4n λ .7.1.4 如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向______上____移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为_______(1)n e -___________.7.1.5 双缝干涉实验中,若在其中一缝后加一透明媒质薄片,使原光线光程增加2.5λ,则此时屏中心处为第___2________ 级_____暗______ 纹。

7.1.6 一束白光垂直照射厚度为0.4μm 的玻璃片, 玻璃的折射率为1.50, 在反射光中看见光的波长是___480__nm 。

7.1.7 在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,干涉条纹将向 劈尖棱 方向移动,相邻条纹间的距离将变 小 (填“变大”、 “变小”或“不变”)。

7.1.8 波长为480nm 的平行光垂直照射到宽为0.40mm 的单缝上,单缝后面的凸透镜焦距为60cm ,当单缝两边缘点A 、B 射向P 点的两条光线在P 点的相位差为π时,P 点离中央明纹中心的距离等于_0.36mm 。

7.1.9 在单缝夫琅和费衍射中,若单缝两边缘点A 、B 发出的单色平行光到空间某点P 的光程差为1.5λ,则A 、B 间可分为_____2____个半波带,P 点处为____明_____(填明或暗)条纹。

波动光学习题参考答案页PPT文档共145页文档

波动光学习题参考答案页PPT文档共145页文档

谢பைடு நூலகம்!
波动光学习题参考答案页PPT文档
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

大学物理 下册 9-13章 (罗益民 余燕 著) 北京邮电大学出版社 课后答案 第12章 波动光学 课后答案【khdaw_l

大学物理 下册 9-13章 (罗益民 余燕 著) 北京邮电大学出版社 课后答案 第12章  波动光学 课后答案【khdaw_l

(2k 1) 2 3 7.6 10 7 0.5 2a 2 10 4
w.

2 1 cm 10 5 (m) 1000
当 k 3, 3 6 10 m 恰在橙黄色波长范围内,所以入射光波长为 6000 A .
,可分别求得 1、2 两单色光第一级
co

m
m
12-11
由 l sin

2n2

5.893 107 sin 3.88 10 5 3 2n2l 2 1.52 5 10

3.88 10 5 rad 8
2n2
d 19(ek 1 ek ) 4.0 10 6 (m)
w.
3 (n 1)t 0
129
案 网
co
m
x (2k 1)
D D (0.2 0.3) 7.2 107 d 2 d 2 4 10 3 2
4.5 10 5 ห้องสมุดไป่ตู้m)
12-6 上面表达式也可直接由光程差推导而得. (1)由题 12-6 图可以看出

后 答

3 3 6.328 10 7 t 3.16 10 6 m 3.2 m n 1 1.6 1
6 k6 1 550 10 9 6.6 10 7 m 5 k5
50 102 D (红 紫 ) 1 (7.6 4.0) 10 7 0.25 10 3 d

2n2e 2 k
令 k=1,可得冰层的最小厚度为 emin 1027 A
12-10
根据题中折射间的关系,对
增透膜厚度 e

波动光学大学物理答案

波动光学大学物理答案

习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ). (C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

波动光学(习题与答案)

波动光学(习题与答案)

第11章波动光学一.基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯一一菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二.内容提要1. 相干光及其获得方法能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系光波在某一介质中所经历的几何路程I与介质对该光波的折射率n的乘积nl称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去一。

2来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差厶$与光程差3的关系为2其中入为光在真空中的波长。

3. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2n的整数倍,合成振幅最大一干涉加强;另一种是相位差为n的奇数倍,合成振动最弱或振幅为零一一称干涉减弱或相消。

其对应的光程差为k(k0,1,2 )干涉加强(2k 1)—2(k1,2,)干涉减弱杨氏双缝干涉的光程差还可写成x dD,式中d为两缝间距离,x为观察屏上纵轴坐标,D为缝屏间距。

杨氏双缝干涉明、暗条纹的中心位置x相邻明纹或暗纹中心距离4.平面膜的等倾干涉当单色平行光垂直入射薄膜上时,其反射光的光程差为en(反射光有半波损失)2en22 0(反射光无半波损失)5. 劈尖的等厚干涉 单色平行光垂直入射到劈尖膜上时, i=0,光程差为相邻明(或暗)纹的间距厶I 与其对应的劈尖厚度(高度)差其中B 为劈尖的夹角,其值很小。

同济大学物理下学期课件 波动光学I答案PPT

同济大学物理下学期课件 波动光学I答案PPT

2015/5/26
P.17
三、计算题
1.用复色光垂直照射一薄膜,此薄膜处于空气中,其 厚度e=4×10-7m,折射率为n2=1.4。试问在可见光范围 内,哪些波长的光在反射时干涉加强?
解:
2n2 e
2
k
4n2e
2k 1
1 2240 mm 2 746.7 mm 3 448 mm 4 320 mm
2015/5/26
P.16
8. 夫琅和费单缝衍射实验中,设第一级暗纹的衍射
角很小,若钠黄光(1 = 589nm )的中央明纹宽度为
4.0mm,则 2 = 442nm 的篮紫色光的中央明纹宽度


解:
l1
2f
1
a
l2
2f
2
a
l2 2 l1 1
442nm l2 589nm 4.0mm 3mm
纹(明、暗).若透镜焦距为 f , 则此条纹在透镜焦平面
屏上的位置 为半波长的偶数倍 是暗纹
a sin a x 3 x 3 f
f
a
2015/5/26
P.15
7.在单缝衍射中,级次越髙的明条纹,其亮
度越小,原因是

单缝处波前被分成的波带数越 多,每个波带面积越小。
2015/5/26
P.2
2. 在双缝干涉实验中,两缝间距为d ,双缝与屏幕的
距离为D( D >> d ),入射光波长为 ,屏幕上相邻明
条纹之间的距离为
D
(A)
d
d
(B)
D
D
(C)
2d
d
(D)
2D
解:由双缝干涉明、暗纹条件
[A]
kD

第十二章 波动光学(一)答案

第十二章 波动光学(一)答案

第十二章波动光学(一)答案一. 选择题[ C]基础训练2. 如图16-19所示,平行单色光垂直照耀到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为()2πn 2e /(n 1 λ1)(B )[4πn 1e /(n 2 λ1)] + π(C )[4πn 2e /(n 1 λ1)]+ π(D )4πn 2e /(n 1 λ1)参考解答:真空中波长= n 1λ1。

考虑半波损失后的总光程差=2 n 2e + n 1λ1/2,故相位差=(2 n 2e + n 1λ1/2)*2π/( n 1λ1)=[4πn 2e /(n 1 λ1)]+ π。

[ B ]基础训练6. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为()λ/ 4 (B )λ/ (4n )(C )λ/ 2 (D )λ/ (2n )参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度h 应满足如下关系式:212nh λλ+=?(要考虑半波损失),由此解得/(4)h n λ=。

[ B ]基础训练8. 用单色光垂直照耀在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹()向右平移(B )向中心收缩(C )向外扩张(D )静止不动(E )向左平移参考解答:根据牛顿环公式,此时固定位置的k 变大。

[ ]基础训练9. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()间隔变小,并向棱边方向平移(B )间隔变大,并向远离棱边方向平移(C )间隔不变,向棱边方向平移(D )间隔变小,并向远离棱边方向平移参考解答:条纹间距=λ/2/ sin θ,逆时针转动,导致变大,进而条纹间距变小,条纹向棱边方向移动。

波动光学作业题解(12物理)doc

波动光学作业题解(12物理)doc

波动光学作业题解第一章 光的干与在杨氏实验装置中,光源波长5104.6-⨯=λ厘米,两狭缝间距d 为毫米,光屏离狭缝距离0r 为50厘米。

试求:(a )光屏上第一亮条纹和中央亮纹之间的距离;(b )假设有P 点离中央亮纹的距离y 为毫米,问两束光在P 点的位置差是多少。

(c )求P 点的光强度和中央点的强度之比。

解:(a )按公式(1—7)得厘米25001100.8 104.604.050--⨯=⨯⨯==-λd r y y (b )由图几何关系可知 5012108.05001.004.0sin -⨯==≈≈-r y d d r r θ厘米 由公式(1-1)得 4108.0104.62)(25512ππλπϕ=⨯⨯⨯=-=∆--r r (c )由公式(1-6)得8536.042224cos1 8cos 0cos 421cos 2cos42cos 42022022122122=+=+==⋅=∆∆==πππϕϕA A A A I I Op O P在杨氏实验中,P 为光屏上第5级亮纹所在的位置。

现将玻璃片插入从S 1发出的光束途中,那么P 点变成中央亮条纹的位置,求玻璃片的厚度h (已知光的波长λ为5106-⨯厘米,玻璃折射率n 为)。

解:未加玻璃片时,S 1、S 2到P 点的程差,由公式(1-1)可知为λππλϕπλ5252212=⨯=∆=-r r 此刻S 1发出的光束途中插入玻璃片时,P 点程差为0022])[(12=⨯='∆=+--πλϕπλnh h r r 因此玻璃片的厚度为41210660000105.051-⨯====--=An r r h λλ厘米波长λ为7000A的光源与菲涅耳双镜的相交棱之间的距离r 为20厘米,这棱到屏间的距离L 为180厘米,假设所得干与条纹的相邻亮纹的距离为1毫米,求双镜平面之间的交角θ。

解:21105.3 1071.0202201802 2sin 235021'=⨯=⨯⨯⨯⨯+=∆⋅+≈+≈⋅≈==--弧度λθθθy r r L r L r r r d S S透镜表面通常覆盖一层如)38.1(2=n MgF 一类的透明薄膜,其目的是利用干与来降低玻璃表面的反射。

(整理)波动光学1考试与答案

(整理)波动光学1考试与答案

波动光学(1)波动光学试题1一、选择题:1、在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明条纹位于图中O处.现将光源S向下移动到示意图中的S'位置,则(A)中央明条纹也向下移动,且条纹间距不变.(B)中央明条纹向上移动,且条纹间距不变.(C)中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]2、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B)向上平移,且间距不变.(C)不移动,但间距改变.(D)向上平移,且间距改变.[]3、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为D (D>>d).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d.(B)λd / D.(C) dD /λ.(D)λD /d.[]4把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D>>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A)λD / (nd) (B) nλD/d.(C)λd / (nD).(D)λD / (2nd).[]5、一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)λ/ 4.(B)λ / (4n).(C)λ/ 2.(D)λ / (2n).[]6、在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k=.(B) r k=.(C) r k=.(D) r k=.[]7、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[]8、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A)λ / 2.(B)λ / (2n).(C)λ / n.(D) .[]9、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6个.(D) 8个.[]10、一束波长为λ的平行单色光垂直入射到一单缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则的长度为(A)λ/ 2.(B)λ.(C) 3λ/ 2.(D) 2λ.[]二、填空题1、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________;若使单色光波长减小,则干涉条纹间距_________________.2、把双缝干涉实验装置放在折射率为n的媒质中,双缝到观察屏的距离为D,两缝之间的距离为d (d<<D),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.3、在双缝干涉实验中,双缝间距为d,双缝到屏的距离为D (D>>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为_________________.4、在双缝干涉实验中,若两缝的间距为所用光波波长的N倍,观察屏到双缝的距离为D,则屏上相邻明纹的间距为_______________.5、用λ=600 nm的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm.(1 nm=10-9 m)6、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad,在波长λ=700 nm的单色光垂直照射下,测得两相邻干涉明条纹间距l=0.25 cm,由此可知此透明材料的折射率n=______________________.(1 nm=10-9 m)7、用波长为λ的单色光垂直照射折射率为n2的劈形膜(如图)图中各部分折射率的关系是n1<n2<n3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e=____________________.8、用波长为λ的单色光垂直照射如图所示的、折射率为n2的劈形膜(n1>n2,n3>n2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e=___________________.9、用波长为λ的单色光垂直照射折射率为n的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l,则劈尖角θ=_______________.10、用波长为λ的单色光垂直照射如图示的劈形膜(n1>n2>n3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e=___________________________.三、计算题:(每题10分)1、在双缝干涉实验中,所用单色光的波长为600 nm,双缝间距为1.2 mm双缝与屏相距500 mm,求相邻干涉明条纹的间距.2、在双缝干涉实验中,双缝与屏间的距离D=1.2 m,双缝间距d=0.45mm,若测得屏上干涉条纹相邻明条纹间距为1.5 mm,求光源发出的单色光的波长λ.3、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l= 1.56 cm的A处是从棱边算起的第四条暗条纹中心.(1)求此空气劈形膜的劈尖角θ;(2)改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?(3)在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?4、一束自然光以起偏角i0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56,求:(1)该液体的折射率.(2)折射角.5、三个偏振片P-1、P-2、P-3顺序叠在一起,P-1、P-3的偏振化方向保持相互垂直,P-1与P-2的偏振化方向的夹角为α,P-2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1)求穿过三个偏振片后的透射光强度I与α角的函数关系式;(2)试定性画出在P-2转动一周的过程中透射光强I随α角变化的函数曲线.大学物理------波动光学1参考答案一、选择题1-5BBDAB 6-10 BADBB二、填空题1.变小,变小;2. ;3. ;4. ;5.;6. ;7. ;8. ;9. ;10. ;三、计算题1、解:相邻明条纹间距为,代入a=1.2 mm,λ=6.0×10-4mm,D=500 mm可得∆x=0.25 mm。

(完整word版)波动光学(一)答案

(完整word版)波动光学(一)答案

一. 选择题[B ]1.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D)改用波长较小的单色光源.参考解答:根据条纹间距公式D x ndλ∆=,即可判断。

[B (A)故变[A (A)4?[B (A)??(C)??2[C ]5.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A)中心暗斑变成亮斑.(B)变疏.(C)变密.(D)间距不变.参考解答:条纹间距2h n λ∆=,此题中n 变大,故条纹变密。

[D ]6.在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明.(B) 全暗.(C) 右半部明,左半部暗.(D)右半部暗,左半部明.参考解答:接触点P 的左边两反射光的光程差为2left nh δ=,接触点P 的右边两反射光的光程差为22right nh λδ=+。

在P 点处,有0h =,所以0left δ=,2right λδ=。

故P 点的左半部为明,右半部为暗。

[A ]7.在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了4rad ,在波n =。

l l ∆∆2sin 5l θ∆4.如图所示,平凸透镜的顶端与平板玻璃接触,用单色光垂直入射,定性地画出透射光干涉所形成的牛顿环(标明明环和暗环).参考解答:画图注意两要点:①中心为暗斑;②越外,环越密。

5.图a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长为?的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图b 所示.则干涉条纹上A 点处所对应的空气薄膜厚度为e =3?/2. 参考解答:相邻暗条纹对应的高度差为:22n λλ=(空气劈尖的折射率为“1”)。

劈尖的顶角对应暗条纹(劈尖高度为“0”,其光程差为?/2),A 点对应第3条暗纹(从顶角开始数,不计顶角的暗条纹),故A 点对应的空气膜厚度为:33/22e λλ=⨯=。

波动光学一章习题解答.

波动光学一章习题解答.

波动光学一章习题解答习题15—1 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用另一纯蓝色的滤光片遮盖另一条缝,则:[ ] (A) 干涉条纹的宽度将发生改变。

(B) 产生红光和蓝光的两套彩色条纹。

(C) 干涉条纹的亮度将发生改变。

(D) 不产生干涉条纹。

解:因为这时两缝发出的光频率不同,已不满足相干条件,所以将不产生干涉条纹,应选择答案(D)。

习题15—2 在双缝干涉实验中,屏幕E 上的P 点处是明条纹。

若将S 2盖住,并在S 1S 2连线的垂直平分面处放一反射镜M ,如图所示,则此时:[ ](A) P 点处仍为明条纹。

(B) P 点处为暗条纹。

(C) 不能确定P 点处是明条纹还是暗条纹。

(D) 无干涉条纹。

解:原来正常情况下P 点处是明纹,当把S 2盖住并在S 1S 2连线的垂直平分面处放一反射镜后,就成为“洛埃镜”了,由于存在半波损失,这时干涉明暗条件与原来情况刚好相反,因此,原来情况下是明纹的P 点处现在刚好变成暗纹。

所以,应当选择(B)。

习题15─3 如图所示,假设有两个相同的相干光源S 1和S 2,发出波长为λ的光,A 是它们连线的中垂线上的一点。

若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的位相差=∆ϕ ;若已知A 5000=λ,n =1.5,A 点恰为第四级明条纹中心,则e = 。

解:(1) []λπλπδλπϕe n r ne e r )1(222-=-+-=⋅=∆ (2) 由题设条件 λδk e n ±=-=)1( k =0,1,2,3,… 令k =4可得A 40000)15.1(50004)1(4=-⨯=-=n e λ习题15―2图S 习题15―3图习题15—4 如图所示,在双缝干涉实验中,SS 1=SS 2。

用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹。

已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 ;若将整个装置放于种透明液体中,P 点处为第四级明纹,则该液体的折射率n = 。

波动光学考研试题及答案

波动光学考研试题及答案

波动光学考研试题及答案1. 简述光的干涉现象及其应用。

答案:光的干涉是指两束或多束光波在空间某一点相遇时,它们的振幅相加形成新的光波的现象。

干涉现象可以分为两种类型:相长干涉和相消干涉。

相长干涉发生在两束光波的相位差为0或2π的整数倍时,此时光强增强;相消干涉发生在相位差为π的整数倍时,此时光强减弱。

干涉现象在光学中有着广泛的应用,例如干涉仪用于测量物体的微小位移,干涉滤光片用于光谱分析等。

2. 描述光的衍射现象,并举例说明其在日常生活中的应用。

答案:光的衍射是指光波在遇到障碍物或通过狭缝时,光波的传播方向发生偏离直线传播的现象。

衍射现象是波动光学中的重要概念,它说明了光波在遇到障碍物时,光波的波前会弯曲,形成明暗相间的条纹。

衍射现象在日常生活中的应用包括但不限于:CD或DVD的读取、光学显微镜的成像原理、以及激光束通过光纤的传输等。

3. 什么是光的偏振?请解释马吕斯定律。

答案:光的偏振是指光波电场振动方向的特性。

在自然光中,电场振动方向是随机的,而在偏振光中,电场振动方向是有序的,只在一个平面内振动。

马吕斯定律描述了偏振光通过一个偏振片时,透射光强度与偏振片的偏振轴之间角度的关系。

根据马吕斯定律,透射光强度与偏振轴和入射光偏振方向之间夹角的余弦的平方成正比。

4. 简述光的色散现象,并解释为什么天空是蓝色的。

答案:光的色散是指不同波长的光在通过介质时,传播速度不同,导致光波的分离现象。

这种现象通常在光通过棱镜时观察到,不同颜色的光被分散成不同的角度。

天空呈现蓝色是因为大气中的气体分子和其他微粒对短波长的蓝光散射效果更强,使得更多的蓝光到达我们的眼睛。

5. 什么是菲涅尔方程?它在光学中有何应用?答案:菲涅尔方程是描述光波在两种不同介质界面上反射和折射时振幅比的一组方程。

它包括了反射系数和透射系数的计算,可以用来预测光波在界面上的反射和透射情况。

菲涅尔方程在光学设计、薄膜光学、光波导设计等领域有着重要的应用。

大学物理上第12章-波动光学-1

大学物理上第12章-波动光学-1


x1

D d
k4

k1
d x1,4 0.2103 7.5103 5107 m 500nm
D k4 k1
1
4 1
x

D d


1 6107 0.2 103
3103 m 3mm
例2. 无线电发射台的工作频率为1500kHz,两根相 同的垂直偶极天线相距400m,并以相同的相位作电 振动。试问:在距离远大于400m的地方,什么方向 可以接受到比较强的无线电信号?
5 4
d
3
暗纹: x 2k 1 D (k 1,2,)
2d
2 1
其中 k 称为条纹的级数
0 -1
屏幕中央(k = 0)为中央明纹
-2
-3
相邻两明纹或暗纹的间距:
-4
-5
x

xk 1
xk

D
d
说明:
条纹位置和波长有关,不同波长的同一级亮条 纹位置不同。因此,如果用白光照射,则屏上 中央出现白色条纹,而两侧则出现彩色条纹。
n2r2 n1r1 k
k 0,1,2, 明纹


n2 r2

n1r1

2k
1
2
k 1,2,3, 暗纹
注意:
薄透镜不引起附加的光
F
程差。
例3. 用薄云母片(n = 1.58)覆盖在杨氏双缝的其 中一条缝上,这时屏上的零级明纹移到原来的第七 级明纹处。如果入射光波长为550 nm,问云母片 的厚度为多少?
点光源 s* 镜子

M1
s1*
1 A
Ca

大学物理第十二章 波动光学

大学物理第十二章 波动光学

第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2vlf5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1SS PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(a)图T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 已知牛顿环两两相邻条纹间的距离不等.如果要使其相等, 以下所采取的措施中不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图T12-1-34图T12-2-35图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光S1S 2S O Cb 12λT12-1-40图T12-1-44图(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图[ ] (A) 双缝干涉(B) 牛顿环干涉 (C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图 4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。

大学物理下册波动光学习题解答 杨体强之欧阳歌谷创编

大学物理下册波动光学习题解答  杨体强之欧阳歌谷创编

波动光学习题解答欧阳歌谷(2021.02.01)1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm。

求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。

解:设两孔间距为d,小孔至屏幕的距离为D,光波波长为λ,则有=100dλ. (1)第1级和第3级亮条纹在屏上的位置分别为(2)两干涉条纹的间距为1-2 在杨氏双缝干涉实验中,用0λ的氦氖激光束垂直照射两=6328A小孔,两小孔的间距为 1.14mm,小孔至屏幕的垂直距离为1.5m。

求在下列两种情况下屏幕上干涉条纹的间距。

(1)整个装置放在空气中;(2)整个装置放在n=1.33的水中。

解:设两孔间距为d,小孔至屏幕的距离为D,装置所处介质的折射率为n,则两小孔出射的光到屏幕的光程差为所以相邻干涉条纹的间距为(1)在空气中时,n=1。

于是条纹间距为(2)在水中时,n=1.33。

条纹间距为1-3 如图所示,S、2S是两个相干光源,它们到P 点的距离分别为1r 和2r 。

路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。

这两条路径的光程差是多少? 解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。

由移过条纹的根数即可推知气体的折射率。

(1)设待测气体的折射率大于空气折射率,干涉条纹如何移动?(2)设 2.0l cm =,条纹移过20根,光波长为589.3nm ,空气折射率为1.000276,求待测气体(氯气)的折射率。

解:(1)条纹向上移动。

(2)设氯气折射率为n,空气折射率为n 0=1.002760,则有:所以0k n =n + 1.00027600.0005893 1.0008653lλ=+= 1-5 用波长为500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。

波动光学习题参考答案

波动光学习题参考答案
(4.60+3.00)(4.60-3.00) = 4×5×1030
=5.19×10-4 (mm) =590 (nm)
结束 返回
18、 一柱面平凹透镜A,曲率半径为R放在平玻 璃片B上,如图所示。现用波长为l 的单色平行光 自上方垂直往下照射,观察A和B间空气薄膜的反 射光的干涉条纹,如空气膜的最大厚度d =2l , (1)分析干涉条纹的特点(形状、分布、级次高 低),作图表示明条纹; (2)求明条纹距中心线的距离; (3)共能看到多少条明条纹; (4)若将玻璃片B向下 A 平移,条纹如何移动? d 若玻璃片移动了l /4, B 问这时还能看到几条明条纹?
结束 返回
解:由暗纹条件 解:
l = (k 1 )l 2ne = (2k+1) 2 +2
设 l 1 =500nm 为第k级干涉极小
l2 =700nm 为第(k-1)级干涉极小
1 1 1 l (k + 2 ) 1 = (k 1) 2 + 2 l2
l 1+ l 2 500+700 k= = 2(700-200) 2( l2 l1 )
x ´为k 级新的明条纹位置

原来的光程差为 d = r 2 r 1 = dsinj = d x = kl D d b + d (x ´ x ) =0 两式相减得到: D´ D D Δ x ´= b (x ´ x ) <0 D´
即条纹向下移动,而条纹间距不变
D´ S 2
o
D
结束 返回
7、 用单色光源S照射双缝,在屏上形 成干涉图样,零级明条纹位于O 点,如图所 示。若将缝光源 S 移至位置S ´,零级明条 纹将发生移动。欲使零级明条纹移回 O 点, 必须在哪个缝处覆盖一薄云母片才有可能? 若用波长589nm的单 色光,欲使移动了4个 屏 S1 明纹间距的零级明纹 S´ O 移回到O点,云母片的 S 厚度应为多少?云母片 S2 的折射率为1.58。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0,即:
r2 − r1 = l1 − l2 = 3λ 。所以 OP ≈ D( r2 − r1) / d = 3 Dλ / d ,即为所求。
(2)屏幕上任意一点,距离 O 的距离为 x ,则该点的光程差为:δ = d x − 3λ , D
课 后 答 案 网
故相邻明条纹的距离为:∆x
放入后,这条光路的光程改变了 (A) 2 ( n-1 ) d. (C) 2 ( n-1 ) d+λ / 2. (E) ( n-1 ) d.
(B) 2nd. (D) nd.
参考解答:光程差的改变量为:n⋅ 2d −1⋅ 2d = 2(n −1)d (其 中 :“1”为空气的折射率)。
二. 填空题
1. 波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差δ = 2.6e .
λ
n1 = 1.00
n2 = 1.30
e
n3 = 1.50
参考解答:两反射光的光程差为: n2 ⋅ 2e = 2n2e = 2.6e 。
2
第十二章 波动光学(一)
参考答案
2. 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑) 暗环对应的空气膜厚度为 1.2 µm.(1 nm=10-9 m)
e10
=
λ 2n
×
9.5
=
2.32 × 10−6
m

(2) r10 =
(2k −1) Rλ = 3.73 ×10−3m 。
2n
5. 在折射率 n=1.50 的玻璃上,镀上 n′ =1.35 的透明介质薄膜.入射光波垂直于介质
膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光 波干涉相长.且在 600 nm 到 700 nm 之间没有别的波长是最大限度相消或相长的情形.求 所镀介质膜的厚度.(1 nm = 10-9 m)
膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为
(A) λ / 4 .
(B) λ / (4n).
(C) λ / 2 .
(D) λ / (2n).
参考解答:反射光要干涉加强,其光程差应为半波长的偶数倍,故薄膜的最小厚度 h 应
满足 如 下 关 系 式 :
λ 2nh +
=1 ⋅λ
( 要考 虑 半 波 损 失 ) ,由 此 解 得
2
h = λ / (4n) 。
1
第十二章 波动光学(一)
参考答案
[ C ]5. 若把牛顿环装置(都是用折射率为 1.52 的玻璃制成的)由空气搬入折射率为
1.33 的水中,则干涉条纹 (A) 中心暗斑变成亮斑. (C) 变密.
(B) 变疏. (D) 间距不变.
参考解答:条纹间距 ∆h = λ ,此题中 n 变大,故条纹变密。 2n
单色光 空气
参考解答:画图注意两要点:①中心为暗斑;②越外,环越密。
5. 图 a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波长 为λ的单色光垂直照射.看到反射光干涉条纹 (实线为暗条纹)如图 b 所示.则干涉条纹上 A 点处所对应的空气薄膜厚度为 e= 3λ/2 .
图a
图b
A
参考解答:光程差变化了 2.5λ,原光程差为半波长的偶数倍(形成明纹),先光程差为半 波长的奇数倍,故变为暗条纹。
[ A ]3. 如图所示,波长为λ的平行单色光垂直入射在折射 n1
率为 n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄
膜厚度为 e,而且 n1>n2>n3,则两束反射光在相遇点的相位差为
参考解答:相邻暗条纹对应的高度差为: λ = λ (空气劈尖的折射率为“1”)。劈尖的顶角 2n 2
对应暗条纹(劈尖高度为“0”,其光程差为λ/2), A 点对应第 3 条暗纹(从顶角
3
第十二章 波动光学(一)
参考答案
开始数,不计顶角的暗条纹),故 A 点对应的空气膜厚度为: e = λ ×3 = 3λ / 2 。 2
空气
2
h e0
h = kλ − 2e0 。暗环的半径 r 应满足: r 2 = R2 − ( R − h )2 ≈ 2Rh 。
2
所以, r = 2Rh = R(kλ − 2e0 ) ,即为所求。
课 后 答 案 网
[ D ]6. 在图示三种透明材料构成的牛顿环装置中,用单色
光垂直照射,在反射光中看到干涉条纹,则在接触点 P 处形成的圆
斑为
(A)
全明.
(B)
全暗.
(C)
右半部明,左半部暗.
(D) 右半部暗,左半部明.
λ
1.62 1.52 1.62 1.75 P 1.52
参考解答:根据条纹间距公式 ∆x = D λ ,即可判断。 nd
[ B ]2. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若
玻璃纸中光程比相同厚度的空气的光程大 2.5 λ,则屏上原来的明纹处
(A) 仍为明条纹;
(B) 变为暗条纹;
(C) 既非明纹也非暗纹;
(D) 无法确定是明纹,还是暗纹
(1) 从中心向外数第十个明环所在处的液体厚度 e10. (2) 第十个明环的半径 r10.
参考解答:(1)任意位置的光程差为:δ=2nh + λ ,所以中心为暗斑( h = 0 )。而任意相邻暗 2
环(或明环)所在位置对应的高度差为 λ ,第 10 个明环所在位置离开中心暗 2n
斑的间距为 9.5 个相邻暗环间隔,故所对应的高度(液体厚度)为:
2n′
【选做题】
1. 如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙 e0.现用波长为λ的单色光 垂直照射,已知平凸透镜的曲率半径为 R,求反射光形成的牛顿环的各暗环半径.
参考解答:任意位置的光程差为: δ
=
2e0
+
2h +
λ 2

暗环所在的位置应满足:δ = (2k + 1) λ 由此可得:
三. 计算题
1. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距 a=2×10-4 m 的 双缝上,屏到双缝的距离 D=2 m.求:
(1) 中央明纹两侧的两条第 10 级明纹中心的间距; (2) 用一厚度为 e=6.6×10-5 m、折射率为 n=1.58 的玻璃片覆盖一缝后,零级明纹将移 到原来的第几级明纹处?(1 nm = 10-9 m)
=
xk +1
− xk
=
(k
+ 1)λ − k λ d
=
D d
λ。
D
3. 折射率为 1.60 的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ =600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满 n =1.40 的液体时的 相邻明纹间距比劈形膜内是空气时的间距缩小∆l=0.5 mm,那么劈尖角θ 应是多少?
第十二章 波动光学(一)
第十二章 波动光学(一)
参考答案
一. 选择题
[ B ]1. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是
课 后 答 案 网
(A) 使屏靠近双缝. (B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源.
参考解答:(1) ∆s = 2∆x = 2Dλ = 2× 20× 5.5×10−7 = 0.11m
d
2 × 10−4
(2)加玻璃片后,零级明纹所对应的光程差为:δ ′ = (n −1)e ±δ = 0(δ 为该明纹
所在位置处,在不加玻璃片时的光程差)。故不加玻璃片时,此处的光程差为:
δ
= ∓(n −1)e 。 k
6. 如图所示,假设有两个同相的相干点光源 S1 和 S2,发出波长 为λ的光.A 是它们连线的中垂线上的一点.若在 S1 与 A 之间插入
S1
e
厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的相
n
位差∆φ= 2π(n-1)e/λ .若已知λ=500 nm,n=1.5,A 点恰
A
课 后 答 案 网
参考解答 : ①空气中条纹间 距为:
∆x =
D λ
;水中条纹间 距为:
∆x′ =
D
λ 。所以
d
nd
∆x′ = ∆x = 3 mm 。 n4
②由 sinθ = ∆h = λ / (2n) 得: n = λ = 7 (可取近似: sinθ ≈ θ )。
∆l ∆l
2∆l sin θ 5
4. 如图所示,平凸透镜的顶端与平板玻璃接触,用单色光垂直入射,定性地画出透射 光干涉所形成的牛顿环(标明明环和暗环).
图中数字为各处的折射
参考解答:接触点 P 的左边两反射光的光程差为 δleft = 2nh ,接触点 P 的右边两反射
光的光 程差 为 δright
= 2nh + λ 2
。在
P 点处, 有
h
=0
,所 以
δ left
=0,
δright
=
λ 2
。故
P 点的左半部为明,右半部为暗。
[ A ]7. 在迈克耳孙干涉仪的一条光路中,放入一折射率为 n,厚度为 d 的透明薄片 ,
为第四级明纹中心,则e= 4000
nm.(1 nm =10-9 m)
S2
参考解答:①相位差: ∆φ = 光程差× 2π = (n −1)e × 2π 。
λ
λ
②明纹应满足:光程差 δ = kλ (其中 k 为整数),即有 δ = (n −1)e = kλ ,所以 厚度 e = kλ 。此题中 k = 4 ,故可计算出 e = 8λ = 4000nm 。 n −1
相关文档
最新文档