14迈克尔孙和法珀两用干涉仪的调节和使用实验报告
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/4d4b7d2df342336c1eb91a37f111f18583d00c90.png)
迈克耳孙干涉仪的调节和使用实验报告大家好,今天我要给大家分享一下我最近做的一次实验——迈克耳孙干涉仪的调节和使用。
这次实验可真是让我大开眼界,原来科学实验可以如此有趣!好了,废话不多说,让我们开始吧!我要给大家介绍一下迈克耳孙干涉仪是什么。
迈克耳孙干涉仪是一种利用光的干涉现象来测量物体长度的仪器。
它的主要原理是:当两束光波相遇时,如果它们的光程差相等,那么它们就会发生相长干涉;如果它们的光程差相差半个波长,那么它们就会发生相消干涉。
通过测量干涉条纹的形态和位置,我们就可以计算出物体的长度。
接下来,我要给大家讲解一下实验的具体步骤。
我们需要准备两台迈克耳孙干涉仪,一台作为基准仪,另一台作为待测仪。
然后,我们需要将待测仪放置在一个已知长度的标准尺上。
这时,我们就可以开始调节基准仪了。
具体方法是:用一个已知长度的标准尺放在待测仪和基准仪之间,然后调整基准仪的高度和角度,使得两台干涉仪的光程差为半个波长。
这样一来,干涉条纹就会出现在标准尺上。
接下来,我们只需要观察干涉条纹的位置和形态,就可以计算出待测仪的长度了。
在实验过程中,我遇到了一些有趣的问题。
比如说,当我第一次调整基准仪的时候,总是调不好。
后来我才发现,原来是我没有注意观察干涉条纹的变化。
原来,只有在干涉条纹稳定后,我们才能准确地测量出待测仪的长度。
这让我深刻地体会到了“熟能生巧”的道理。
我还发现了一个有趣的现象。
那就是,当我把待测仪移动到不同位置时,干涉条纹的位置和形态都会发生变化。
这让我想到了那句老话:“人生就像一场戏,每天都有新花样。
”在这个世界上,没有什么是一成不变的,我们要学会适应变化,才能不断地进步。
总的来说,这次迈克耳孙干涉仪的实验让我收获颇丰。
我不仅学会了如何调节和使用干涉仪,还体会到了科学实验的乐趣。
我相信,只要我们用心去探索,就一定能够揭开自然界的神秘面纱。
我要感谢我的老师和同学们的支持和帮助,是你们让我在这个实验中取得了成功。
迈克耳孙干涉仪地调节和使用某实验报告材料
![迈克耳孙干涉仪地调节和使用某实验报告材料](https://img.taocdn.com/s3/m/e4167436c77da26924c5b05f.png)
实验十四迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson)与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643.84696nm)是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1.学习迈克耳孙干涉仪的原理和调节方法。
2.观察等倾干涉和等厚干涉图样。
3.用迈克耳孙干涉仪测定He-Ne激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He-Ne激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G1上,G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M1和M2上,经两平面镜反射至G1后汇合在一起。
仔细调节M1和M2,就可以在E处观察到干涉条纹。
G2为补偿板,其材料和厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克耳孙干涉仪的结构图如图7-2所示。
实验报告:迈克尔孙干涉仪的调节和使用
![实验报告:迈克尔孙干涉仪的调节和使用](https://img.taocdn.com/s3/m/20786452f01dc281e53af0a0.png)
指导教师评语及成绩
【评语】
成绩:指导教师签名:
批阅日期:
迈克尔逊干涉仪、H e-Ne激光器、钠光灯、低压汞灯、干涉滤光片、叉丝、白炽灯。
【实验原理】
迈克尔逊干涉仪的工作原理如图3所示,M1、M2为两垂直放置的平面反射镜,分别固定在两个垂直的臂上。P1、P2平行放置,与M2固定在同一臂上,且与M1和M2的夹角均为45度。M1由精密丝杆控制,可以沿臂轴前后移动。P1的第二面上涂有半透明、半反射膜,能够将入射光分成振幅几乎相等的反射光、透射光,所以P1称为分光板(又称为分光镜)。光经M1反射后由原路返回再次穿过分光板P1后成为光,到达观察点E处;光到达M2后被M2反射后按原路返回,在P1的第二面上形成光,也被返回到观察点处。由于光在到达E处之前穿过P1三次,而光在到达E处之前穿过P1一次,为了补偿、两光的光程差,便在M2所在的臂上再放一个与P1的厚度、折射率严格相同的P2平面玻璃板,满足了、两光在到达E处时无光程差,所以称P2为补偿板。由于、光均来自同一光源S,在到达P1后被分成、两光,所以两光是相干光。
次数
1
2
3
/mm
32.36894
33.95280
34.56958
/mm
32.65014
34.24611
34.86103
【数据处理及结果】
表1
表2
【讨论】
如果用一束平面光波代替点光源所产生的球面光波照射到干涉仪上,在观察屏处将得到怎样的干涉条纹?
对迈克尔逊干涉仪,它的成像主要分为两类:
1、如果两块反射平面严格互相垂直。此时为等倾干涉,成像为圆环,中心的级次高,边缘环的级次低。与牛顿环不同的,牛顿环是中心级次小,边缘环的级次高。
迈克尔逊干涉仪实验报告
![迈克尔逊干涉仪实验报告](https://img.taocdn.com/s3/m/cff6098a43323968011c92b9.png)
迈克尔逊和法布里-珀罗干涉仪摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。
通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。
本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。
关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率;一、引言【实验背景】迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。
法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。
在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。
【实验目的】1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。
【实验原理】(一) 迈克尔逊干涉仪1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G称为分光板,在其表面A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。
当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。
两束光在玻璃中的光程相等。
当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1M '。
实验报告迈克尔孙干涉仪的调节和使用
![实验报告迈克尔孙干涉仪的调节和使用](https://img.taocdn.com/s3/m/84edf107b207e87101f69e3143323968001cf45e.png)
实验报告迈克尔孙干涉仪的调节和使用摘要:本实验使用迈克尔孙干涉仪进行调节和使用的实验。
通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
实验结果表明,迈克尔孙干涉仪可以用于精确测量试样的折射率。
1.引言迈克尔孙干涉仪是一种常用的实验仪器,常用于测量试样的折射率。
其原理是利用干涉现象测量光的相位差,从而得到试样的折射率。
本实验的目的是通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
2.实验装置本实验使用的实验装置如下:-迈克尔孙干涉仪-光源-干涉条纹观察装置-试样3.实验步骤3.1调节光源位置首先,调节光源的位置,使得光线尽可能的聚焦。
将光源放置在干涉仪的一端,调节位置直到光线尽可能聚焦在另一端的反射镜上。
3.2调节反射镜位置接下来,调节干涉仪中的两个反射镜的位置,使得光线在两个反射镜上反射后能够相互叠加干涉。
调节两个反射镜的位置,使得光线在回程时能够与出发时的光线叠加干涉。
3.3调节反射镜角度在保持反射镜位置不变的情况下,调节反射镜的角度,使得光线在反射时达到最大干涉效果。
观察干涉条纹的亮度变化,调整反射镜角度直到达到最亮的干涉条纹。
3.4放置试样将试样放置在干涉仪的一端,观察干涉条纹的变化。
根据干涉条纹的变化,可以得到试样的折射率。
4.结果与分析实验结果表明,通过调节迈克尔孙干涉仪的各个参数,可以观察到干涉条纹的变化。
实验中观察到的干涉条纹的亮度变化可以用来测量试样的折射率。
根据干涉条纹的位置变化,可以计算出试样的相对折射率,进而得到试样的绝对折射率。
5.总结本实验通过调节迈克尔孙干涉仪的各个参数,观察干涉条纹的变化,并利用干涉条纹的变化来测量试样的折射率。
实验结果表明,迈克尔孙干涉仪可以用于精确测量试样的折射率。
这对于光学相关领域的研究具有重要的意义。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/2ca623b283d049649b6658ea.png)
实验十四 迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643.84696nm )是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1.学习迈克耳孙干涉仪的原理和调节方法。
2.观察等倾干涉和等厚干涉图样。
3.用迈克耳孙干涉仪测定He -Ne 激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He -Ne 激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
从氦氖激光器发出的单色光s ,经扩束镜L 将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G 1上,G 1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M 1和M 2上,经两平面镜反射至G 1后汇合在一起。
仔细调节M 1和M 2,就可以在E 处观察到干S-激光束;L-扩束镜;G 1-分光板;G 2-补偿板;M 1、M 2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图涉条纹。
G2为补偿板,其材料和厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克尔逊干涉仪的调整与使用实验报告
![迈克尔逊干涉仪的调整与使用实验报告](https://img.taocdn.com/s3/m/11c1d263580216fc700afd9f.png)
(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法;
(2)学习一种测定光波波长的方法,加深对等倾、等厚干涉的了理
(3)测量He-Ne激光波长。
二、实验使用仪器与材料
迈克尔逊干涉仪、钠光灯、毛玻璃屏、激光光源等。
3、实验步骤
【实验步骤】
观察扩展光源的等倾干涉条纹并测波长:
1点燃钠光灯,使之与分光板G1等高并且位于沿分光板和M1镜的中心线上,转动粗调手轮,使M1镜距分光板G1的中心与M1镜距分光板G1的中心大致相等(拖板上的标志线在主尺32 cm 位置)。
3再仔细调节M1镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉。
4测钠光D双线的平均波长。先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合。
5始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”100个干涉环时,M1镜位置,连续记录5次。
四、实验数据整理与归纳
N =50
I
圈数
位置I
1
0
30.27615
2
50
30.28768
3
100
30.29872
4
150
30.31034
5
200
30.32429
6
250
30.33202
7
300
2在光源与分光板G1之间插入针孔板,用眼睛透过G1直视M2镜,可看到2组针孔像。细心调节M1镜后面的 3 个调节螺钉,使 2 组针孔像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉。当2组针孔像完全重合时,就可去掉针孔板,换上毛玻璃,将看到有明暗相间的干涉圆环,若干涉环模糊,可轻轻转动粗调手轮,使M2镜移动一下位置,干涉环就会出现。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/175c083602020740be1e9bb0.png)
实验十四 迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643.84696nm )是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1.学习迈克耳孙干涉仪的原理和调节方法。
2.观察等倾干涉和等厚干涉图样。
3.用迈克耳孙干涉仪测定He -Ne 激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He -Ne 激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
从氦氖激光器发出的单色光s ,经扩束镜L 将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G 1上,G 1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M 1和M 2上,经两平面镜反射至G 1后汇合在一起。
仔细调节M 1和M 2,就可以在E 处观察到干S-激光束;L-扩束镜;G 1-分光板;G 2-补偿板;M 1、M 2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图涉条纹。
G2为补偿板,其材料和厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/8b44a5d6cc1755270622088b.png)
实验十四迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长Q643.84696nm )是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1.学习迈克耳孙干涉仪的原理和调节方法。
2.观察等倾干涉和等厚干涉图样。
3.用迈克耳孙干涉仪测定He - Ne激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He- Ne激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图从氦氖激光器发出的单色光S,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45?顷斜的分光板G1 上, G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M1和M2上,经两平面镜反射至G1后汇合在一起。
仔细调节M1和M2,就可以在E处观察到干涉条纹。
G 2为补偿板,其材料和厚度与 束(1)在玻璃中走过的光程大致相等。
G i 相同,用以补偿光束(2)的光程,使光束(2)与光Mr节»络4一补SS ; 5—分光扳67-粗说手轮;*-«圍螺绚9一 00 7-210. 11 一反射fflM2的微《装》・ 迈克耳孙干渉仪的结7-2所示。
迈克尔逊干涉仪的调节与使用实验报告
![迈克尔逊干涉仪的调节与使用实验报告](https://img.taocdn.com/s3/m/3bcad2f94128915f804d2b160b4e767f5bcf807d.png)
《迈克尔逊干涉仪的调节与使用》实验报告一、实验目的1.了解迈克尔逊干涉仪的结构原理并掌握调节方法。
2.观察等厚干涉、等倾干涉以及白光干涉。
3.测量氦氖激光的波长。
二、实验原理1.迈克尔逊干涉仪迈克尔逊干涉仪是一个分振幅法的双光干涉仪,其光路如下图所示,它反射镜M1、M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克耳孙干涉仪的结构如图所示。
镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M的下端还附有两个互相垂直的微动拉簧螺丝,用以精确地调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮。
在迈克尔逊干涉仪上可以实现等倾和等厚两种干涉。
为了分析方便,可将反射镜M1成像到M2的光路中。
2.He-Ne激光波长的测定如图1所示,当M1’、M2相互平行,即M1和M2相互严格垂直时,在E处可以观察到等倾干涉;在等倾干涉时,如果在迈克尔逊干涉仪上反射镜M1和M2到分束镜的距离差为d时,反射镜和M1’形成一个厚度为d的空气膜,其光程差如图2所示,当光线的入射角为i时,两反射镜反射光线的光程差为:Δ=2d cos i′=2d√n2−sin2i其中,n为两臂中介质的折射率,i和i'分别为光线入射到M2和M1上的入射角,当迈克尔逊干涉仪的两臂中介质相同时,i=i’。
当两臂中介质的折射率一定,且d不变时,光程差只取决于入射角i,在E处观察时,对于相同入射角的光,形成一个以光轴为中心的圆环。
当为波长的整数倍时是亮条纹。
由此,迈克尔逊干涉仪中,等倾干涉条纹级次是中间大外边小。
2016新编实验报告:迈克尔孙干涉仪的调节和使用
![2016新编实验报告:迈克尔孙干涉仪的调节和使用](https://img.taocdn.com/s3/m/8a29e883dc88d0d233d4b14e852458fb770b3888.png)
实验十四迈克尔孙干涉仪的调节和使用实验时间:2011.04.21 实验人:陈燕纯综上所述,光线是在分光板P 1的第二面反射得到的,这样使M 2在M 1的附近(上部或下部)形成一个平行于M 1的虚像M 2',因而,在迈克尔逊干涉仪中,自M 1 、M 2的反射相当于自M 1、M 2'的反射。
也就是,在迈克尔逊干涉仪中产生的干涉相当于厚度为的空气薄膜所产生的干涉,可以等效为距离为2d 的两个虚光源S 1和S 2'发出的相干光束。
即M 1和M 2'反射的两束光程差为idncos 22=δ (1)两束相干光明暗条件为式(2)中为反射光在平面反射镜M 1上的反射角,为激光的波长,为空气薄膜的折射率,为薄膜厚度。
凡相同的光线光程差相等,并且得到的干涉条纹随M 1和M 2…的距离而改变。
当时光程差最大,在点处对应的干涉级数最高。
由(2)式得2cos cos 2λλ⋅=⇒=ik d k i d (3)2λ⋅=∆N d (4)由(4)可得,当改变一个1/2时,就有一个条纹“涌出”或“陷入”,所以在实验时只要数出“涌出”或“陷入”的条纹个数,读出的改变量就可以计算出光波波长的值Nd ∆=2λ (5)从迈克尔逊干涉仪装置中可以看出,发出的凡与M2的入射角均为的圆锥面上所有光线,经M1与M2'的反射和透镜的会聚于的焦平面上以光轴为对称同一点处;从光源S2上发出的与S1中a 平行的光束b ,只要i 角相同,它就与、的光程差相等,经透镜L 会聚在半径为的同一个圆上,如图所示。
干部教育培训工作总结[干部教育培训工作总结] 年干部教育培训工作,在县委的正确领导下,根据市委组织部提出的任务和要求,结合我县实际,以兴起学习贯彻“三个代表”重要思想新高潮为重点,全面启动“大教育、大培训”工作,取得了一定的成效,干部教育培训工作总结。
现总结报告如下:一、基本情况全县共有干部**人,其中中共党员**人,大学本科以上学历**人,大专学历**人,中专学历**人,高中及以下学历**人。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/051d73d016fc700abb68fcff.png)
迈克耳孙干涉仪的调节与使用实验报告实验十四 迈克耳孙干涉仪的调节与使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A 、A 、 MiChelSon)与英合作者曾用此仪器进行了 “以太漂移”实验、标龙米尺及推断光谱精细结 构等三项著名的实验。
第一项实验解决了当时关于"以太”的争论,并为爱因斯坦创立相对 论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长 2=643、84696nm)就是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
她定 义Im=I553164、13镉红线波长,精度达到10勺,这项工作对近代i ∣崔技术的发展作岀了重要 贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结 构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍 然就是许多现代干涉仪的基础。
【实验目的与要求】1、 学习迈克耳孙干涉仪的原理与调Yj 方法。
2、 观察等倾干涉与等厚干涉图样。
3、 用迈克耳孙干涉仪测左He-NC 激光朿的波长与钠光双线波长差。
【实验仪器】迈克耳孙干涉仪.He-Nc 激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪就是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光 路图如图7-1所示。
S-激光束:L-扩束镜G-分光板G-补偿板M 、M2- 反射镜:E-观察屛。
图7-1迈克耳孙干涉仪光路图从氨筑激光器发出的单色光£,经扩束镜厶将光束扩朿成一个理想的发散光朿,该光朿射 到与光束成45。
倾斜的分光板Gl 上,G ∣的后表面镀有铝或银的半反射膜,光束被半反射膜分 成强度大致相同的反射光(1)与(2)。
这两朿光沿着不同的方向射到两个平而镜Ml 与M 2±, 经两平而镜反射至Gl 后汇合在一起。
仔细调肖Ml 与M2,就可以在E处观察到干涉条纹。
迈克耳孙干涉仪的调节与使用实验报告G2为补偿板,其材料与厚度与G相同,用以补偿光束⑵的光程,使光束⑵与光束(1)在玻璃中走过的光程大致相等。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/db2a8fc40129bd64783e0912a216147916117e0e.png)
迈克耳孙干涉仪的调节和使用实验报告探究迈克耳孙干涉仪的调节与使用嘿,朋友们,今天咱们来聊聊那个老掉牙但依旧让人津津乐道的实验——迈克耳孙干涉仪。
这个小家伙可是物理学界的宠儿,它不仅在理论上有着举足轻重的地位,而且在实际应用中也大放异彩。
得说说这迈克耳孙干涉仪的来历。
想象一下,一个古老的箱子里装着一堆神奇的小球,这些小球们就像是一个个小小的光子,它们在箱子里来回蹦跳,就像我们小时候玩的弹珠一样。
但是,这些小球可不是普通的弹珠,它们是被严格排布的,每个小球之间都保持着特定的距离。
那么,这些小球是怎么保持距离的呢?这就需要我们来调节迈克耳孙干涉仪了。
调节的过程就像是给小球们安排座位,让它们之间的距离恰到好处。
这个过程可不简单,需要精确到毫米级别的调整,才能保证小球们之间的“亲密接触”不会破坏整个装置的稳定性。
接下来,让我们来谈谈这迈克耳孙干涉仪怎么用。
简单来说,就是通过控制小球们的位置,让它们产生干涉现象。
想象一下,当一束光线穿过这个装置时,那些小球们就会像镜子一样反射光线,形成明暗相间的条纹。
这就是干涉现象,也是迈克耳孙干涉仪的核心所在。
那么,这些干涉条纹又是怎么回事呢?简单来说,就是小球们之间的相对位置决定了光线的传播路径。
当小球们排列得当,光线就能顺利传播;而一旦小球们的位置稍有偏差,光线就可能会被挡住,形成明暗相间的条纹。
这就是干涉条纹的奥秘所在。
我们来看看这迈克耳孙干涉仪有哪些应用场景。
它在光学领域有着广泛的应用,比如用于测量光速、研究光的波动性等等。
它在量子力学中也扮演着重要角色,比如用于量子纠缠和量子信息传输的研究。
它还在精密测量、天文学等领域发挥着重要作用。
总的来说,迈克耳孙干涉仪是一个既古老又充满魅力的实验装置。
它的调节和使用过程充满了挑战和惊喜,让人不禁感叹物理学的魅力无穷。
希望这篇关于迈克耳孙干涉仪的探讨能给大家带来一些启发和思考。
最新迈克耳孙干涉仪的调节和使用实验报告
![最新迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/542b45007275a417866fb84ae45c3b3567ecdd1a.png)
最新迈克耳孙干涉仪的调节和使用实验报告一、实验目的二、实验原理迈克耳孙干涉仪由分束器、反射镜、合束器、干涉仪和读数器五部分组成。
当光源照射到分束器上时,由于光源的相干性,分束器会将光线分成两束相干光,分别进入反射镜和合束器。
经过反射镜反射后,两束相干光再次汇聚到分束器处,叠加形成干涉图样。
通过调节反射镜的位置和角度,使得两束光线之间的光程差为整数个波长,使干涉图样呈现出稳定明亮的干涉条纹。
三、实验器材和材料迈克耳孙干涉仪、平行光源、读数器、测量卡尺、调节工具四、实验过程1.调节分束器将分束器的两个小孔对准平行光源,调试分束器的位置,使两个小孔的光路长度相等,并确保两个小孔之间的距离大于波长的数量级,避免相干光的交叉。
2.调节反射镜将反射镜安装在反射镜架上,并调整其水平位置。
然后调整反射镜的位置和角度,使反射后的光线能够返回到分束器,并与另一束光线进行干涉。
通过微调反射镜的位置和角度,可以使得干涉条纹更加明亮和稳定。
将合束器放置在干涉仪的另一端,调节合束器的位置和角度,使两束光线能够合并在一起,并形成明亮的干涉条纹。
4.测量光程差使用读数器测量两束光线之间的光程差,通过调节反射镜的位置和角度,使光程差为整数个波长,以获得明亮稳定的干涉条纹。
5.调整测量参数使用测量卡尺测量干涉条纹的条纹间距,并根据实测结果调整干涉仪的参数,以使得干涉条纹更加明亮和清晰。
6.实现干涉调节完干涉仪的各个部分,开启光源,观察和记录干涉条纹的变化和特点。
五、实验注意事项1. 在调节干涉仪时,需要避免强光照射和震动,以免影响干涉条纹的清晰度。
2. 调节反射镜时,需要特别注意反射镜的位置和角度,微调反射镜时应谨慎操作,以避免反射镜损坏。
3. 在实现干涉时,需要注意保持操作人员和其他干涉仪之间的相对位置稳定,避免干涉条纹的变化。
六、实验结果与分析通过调节迈克耳孙干涉仪的各个部分,成功实现了光学干涉实验,并观察并记录了干涉条纹的详细特征和变化规律。
迈克尔逊干涉仪的调节和使用实验报告
![迈克尔逊干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/9955d4a5be1e650e53ea9938.png)
迈克尔逊干涉仪的调节和使用实验报告一、实验目的1.了解迈克尔逊干涉仪的结构,并掌握调节方法;2.使用迈克尔逊干涉仪测量实验中所用激光的波长.二、实验仪器迈克尔逊干涉仪,多光束光纤激光器三、实验原理1.迈克尔逊干涉仪(1)仪器结构结构如下所示:光路如下图所示:(2)仪器原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪.其光路如上图所示,它由反射镜M1,M2,分束镜P1和补偿板P2组成.其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂上;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度的分成两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板.镜M1,M2背面各有三个螺丝,用于调节M1,M2的镜面的倾斜度,M1下端还附有两个互相垂直的微动拉簧螺丝,用于精密的调节M1的倾斜度.M2镜所在的拖板由精密丝杠带动,可沿导轨前后移动.M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮.如图(a)所示,多光束激光器提供的每条光纤的输出端是一个短焦距凸透镜,经会聚后的激光束,可以认为是一个很好的点光源S发出的球面光波.S1′为S经M1及G1反射后所成的像.S2′和S1′为两个相干光源,发出的球面波在其相遇的空间处处相干,为非定域干涉,在相遇处都能产生干涉条纹.空间任一点P的干涉明暗由S2′和S1′到该点的光程差∆=r2−r1决定,其中r2和r1分别为S2′和S1′到P点的光程.P点的光强分布的极大和极小的条件是:∆=kλ (k=0,1,2,⋯)亮条纹∆=(2k+1)λ (k=0,1,2,⋯)暗条纹(2)激光波长的测定当M1,M2平行时,将观察屏放在与S2′ S1′连线相垂直的位置上,可以看到一组同心干涉圆条纹,如图(b)所示:设M1,M2之间距离为d,则S2′和S1′之间距离为2d,S2′和S1′在屏上任一点P的光程差为:∆=2d cosφφ是S2′射到P点的光线与M2的夹角.当改变d,光程差也相应的发生变化,这时在干涉条纹中心会“冒出”和“缩进”的现象.当d 增加λ/2,相应的光程差增加λ,在中心的条纹干涉级次由k变为k+1,这样就会“冒出”一个条纹;当d减少λ/2,相应的光程差减少λ,在中心的条纹干涉级次由k变为k−1,这样就会“缩进”一个条纹.因此,根据“冒出”或“缩进”条纹的个数就可以确定d的改变量,它可以用来进心长度比较,其精度是光波长量级.当“冒出”或“缩进”了N个条纹,d的改变量δd为:δd=N λ2四、实验步骤1.调节干涉仪,观察非定域干涉(1)水平调节.调节干涉仪底脚螺丝,使仪器导轨平面水平,然后锁住锁紧圈;(2)等臂调节.调节粗调手轮,移动M2,让M1,M2和G1大致等距;(3)最亮点重合.打开激光器,调节输出嘴位置,让光束垂直入射M1的中心部位.观察M1,M2中每次反射回来最亮的点,调节M1,M2后的调节螺丝,使两排亮点中最亮的光点严格重合(先调节M1,后调节M2);(4)将条纹移到屏中间;(5)观察非定域干涉;(6)观察并思考条纹特征与d的关系.2.测量激光波长(1)仪器调零.旋转微调手轮时,粗调手轮会随之变化,而旋转粗调手轮时,微调手轮并不发生变化,所以测量前必须调零.方法如下:沿某方向将微调手轮调到零并记住旋转方向(为避免空程差,后面的测量都要沿此方向),沿同一方向旋转粗调手轮使之对准某一刻线(注意,此时之后粗调手轮不可再动).测量过程中若需要反方向旋转微调手轮,则一定需要重新调零.条纹移动数N10 50 100 150 200 250 可移动镜位置d1/mm51.73495 51.75068 51.76651 51.78264 51.79841 51.81420由图中拟合曲线及公式可以计算出:λ=2k=2×0.0003175mm=0.000635mm=6.35×10−4mm=6.35×10−7=635nm五、实验思考1.在实验中会观察到椭圆或马鞍型的条纹,思考成因.当M1,M2镜不相互平行时,就会出现椭圆或马鞍型的干涉条纹.2.改用台灯做光源会有什么现象.台灯的光可以近似看成白光,白光是复色光,在M1,M2非常靠近时,会出现彩色的干涉环.。
迈克耳孙干涉仪的调节和使用实验报告
![迈克耳孙干涉仪的调节和使用实验报告](https://img.taocdn.com/s3/m/2d23b6d4336c1eb91a375de3.png)
实验十四迈克耳孙干涉仪的调节与使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A、A、Michelson)与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长λ=643、84696nm)就是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
她定义1m=1553164、13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然就是许多现代干涉仪的基础。
【实验目的与要求】1、学习迈克耳孙干涉仪的原理与调节方法。
2、观察等倾干涉与等厚干涉图样。
3、用迈克耳孙干涉仪测定He-Ne激光束的波长与钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He-Ne激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪就是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45˚倾斜的分光板G1上,G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)与(2)。
这两束光沿着不同的方向射到两个平面镜M1与M2上,经两平面镜反射至G1后汇合在一起。
仔细调节M1与M2,就可以在E处观察到干涉条纹。
G2为补偿板,其材料与厚度与G1相同,用以补偿光束(2)的光程,使光束(2)与光束(1)在玻璃中走过的光程大致相等。
迈克耳孙干涉仪的结构图如图7-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 5 实验台号实验时间 2009 年 05 月 08 日,第11周,星期五第 5-6 节实验名称迈克尔孙和法珀两用干涉仪的调节和使用教师评语实验目的与要求:1,了解迈克尔孙干涉仪的构造2,非定域条纹观察和调节,以及激光波长的测量3,定域条纹观察和调节,以及钠光波长的测量4,白光干涉条纹的调整5,测空气的折射率6,测量透明介质薄片的折射率7,观察多光束干涉现象主要仪器设备:SGM-2型干涉仪由迈克尔孙和法珀干涉仪一体化组装而成,基本结构如右图所示实验原理和内容:1,迈克尔孙干涉仪的光路迈克尔孙干涉仪是一种分振幅双光束的干涉仪,光路如右图所示。
入射光S到达分光板G1后分为两束,即反射光I和透射光II;如果成绩教师签字入射角为45°时, 光I 和II 相互垂直, 且分别垂直射到反射镜M1和M2上; 经反射后的两束光重新在G1的半反射膜上汇聚成一束光从E 方向射出。
补偿镜G2的作用是保证两束光的光程完全相同。
2, 干涉条纹的图样如上图所示, 可以将M2的像作到M1的平行位置M2’, 那么干涉图样的分析, 就变为基于M1和M2’之间的空气层的干涉分析。
, 点光源照明——非定域干涉条纹激光束射向干涉镜的光可视作点光源, 图中S1和S2’是点光源相对于M1和M2’的虚像, 这两个虚光源发出的球面光波在相遇空间都可以发生干涉, 因而在这个光场中任何位置放置毛玻璃屏都可以接收到干涉条纹, 因而称之为非定域干涉。
当M1和M2’非平行时, 发生的是等厚干涉, 观察到为平行条纹; 平行时, 发生的是等倾干涉, 观察到为同心椭圆或双曲线形干涉条纹。
(光路图如上页所示)非定域同心圆条纹的特性分析如下:两虚光源S1和S2’到接受屏上任意一点P 的光程差均为P S P S L 12'-=∆, 当偏心距r 很小时(如上光路图所示), 可以对一些小量做出忽略, 可以认为光程差)21(222z r d L -=∆。
显然, 当光程差为波长的整数倍时候, 对应的是亮条纹, 此时λk zr d L =-=∆)21(222同时可以得出, 干涉条纹的级次从外向圆心递增。
列出两相关式相见后可以得到, 干涉条纹的间距为dr z r r r k k k 221λ≈-=∆-, 且间距的大小与dr z k ,,,λ四个变量有关。
条纹的吞吐, 根据光程差表达式λk zr d L =-=∆)21(222可见, 当d 增大时, r k 也增大, 此时圆心吐出条纹, 反之的减小时, r k 减小, 中心吞进条纹。
对于最中心的条纹, 根据表达式2d=k λ, 可以得到吞吐条纹数目N 与动镜移动距离d 的关系:2Δd=N λ, 这样便可以根据条纹吞吐的数目和动镜的移动距离来确定入射光的波长。
扩展光源照明——定域干涉条纹(1), 等倾干涉。
如右图所示, 当M1与M2’的位置相平行时, 表现为等倾干涉, 两束反射光的光程差为θcos 2d L =∆, 此时观察到干涉图样为一组同心圆, 每个圆对应一定的倾角θ。
且所有的同心圆中, 以圆心处的干涉条纹级别最高, 此处的光程差为λk d L ==∆2, 因而在改变动镜的位置d 的时候也可以看到中心圆环条纹的吞吐现象。
且每吞吐一个圆环, 说明d 变化了λ/2。
再同样利用光程差的公式, 同过相差级的表达式相减可以得到相邻两条纹之间的角间距为kk k k d θλθθθ21≈-=∆+ (2), 等厚干涉。
当M1与M2’的位置存在很小的一个夹角α, 且M1与M2’所夹出的空气膜很薄时, 用扩展光源照射便可以发生等厚干涉。
其光程差仍可以表示为θcos 2d L =∆, 但是由于存在半波损, 因而使得第一条纹是暗条纹; 如果反射状态不是通过空气面的背反射而是通过镜子上的镀膜来反射则不存在半波损的状况, 因而第一条纹成为亮纹。
当干涉位置较靠近交棱时, 干涉图样为标准的明暗直线间隔条纹, 但在较远离交棱的位置上, 背反射角θ的影响就不能够被忽视,因而可以看到干涉条纹发生了扭曲, 由直线变成了向交棱方向突起的弧形条纹, 且越是远离交棱的地方, 扭曲的现象越是明显。
步骤与操作方法:了解迈克尔孙干涉仪的构造, 非定域条纹观察和调节, 以及激光波长的测量, 测量空气的折射率。
1, 激光非定域干涉现象的观察和He-Ne 激光波长的测量在不加入扩束器的情况下安装好各个部件, 并且调节光路的准直性和相对位置, 以及相对于底平面的水平, 保证经M1和M2反射的光重合在毛玻璃屏上, 之后加入扩束器便可以在毛玻璃屏上观察到干涉图案。
以钠光灯做光源时类似, 只是需要加装针孔屏来对光, 之后移去针孔屏并且在分光器和光源之间加上毛玻璃屏即可观察到干涉图样。
测量时, 往同一个方向先后10次旋转测微螺旋, 使图案中心吞或吐共550各条纹, 其中从50开始, 每隔50个条纹记录一次测微螺旋的读数(含50)。
为了防止空程误差, 测微螺旋不可反转, 中间出错, 则必须从头开始。
2, 测量透明介质薄片的折射率先调整动镜M2的位置, 使屏上出现白光干涉条纹, 并且使中央条纹对准屏上十字叉丝, 记下动镜位置读数l1, 然后在动镜前加入一透明薄片, 此时光路光程差增加)1(2-=n d δ, 再调节动镜位置使中央干涉条纹回到屏中央与叉丝重合, 读取动镜的位置l2, 由两次位置差求出δ, 再用螺旋测微器测出薄片的厚度, 便可以根据以上的公式得出其折射率的值。
3, 测量空气的折射率以小功率激光器作光源, 在干涉仪光路中加入一个长为l 的气室。
调节干涉仪得到适当的干涉条纹后, 向气室里充气, 则干涉条纹发生了变化; 再慢慢将气室内的气体放出, 同时注意干涉图案上干涉环的变化数N (估计到一位小数), 直至放气结束, 气室内外气压相等。
然后根据下式计算出空气的折射率:pp l N n amb∆⨯+=21λ。
重复测量6次, 取平均值。
4,观察多光束干涉现象转动整个干涉仪,使FP干涉仪面向实验者。
将氦氖激光器置于FP干涉仪的光路上,通过旋钮调节两镜子的相互位置,直到镜面之间的反射光点重合为一点时,说明两镜子的位置已经相互平行。
然后在光路中加入扩束器和毛玻璃屏以形成扩展光源,就能够从系统的轴向观察到一系列明亮细锐的多光束干涉圆环。
观察该干涉现象有两种光路设置可选,如图所示,关键是调节两个镜面严格平行。
**注意:光学器件的表面,尤其是透光表面严禁用手触摸, FP干涉仪的两个镜面禁止紧贴,出场时以调整好的光学部件不可以再调整。
转动测微螺旋和调节螺丝时动作要轻,以免损坏仪器。
数据记录与处理:实验中测量的数据如下:1,测量激光的波长(d’为原始位移, d为乘以倍率系数以后的数据)2,测量空气的折射率n airL=80mm, λ=, P amb=结果与分析:1,用作图法计算激光的波长这里并行使用两种作图手段来计算,一方面使用手动绘图并在函数图像上取样以计算斜率,另一方面使用作函数的图像并且使用MLS来得到拟合后的直线方程1.1,手动绘图的图像与结果见下页的坐标图1.2,的处理过程如下:将数据送入程序中,代码如下:>> x=[0 50 100 150 200 250 300 350 400 450 500]x = 0 50 100 150 200 250 300 350 400 450 500>> y=[ ]y = Columns 1 through 9Columns 10 through 11>> cftool程序返回的结果如下Linear model Poly1: f(x) = p1*x + p2 Coefficients (with 95% confidence bounds): p1 = , p2 = ,即是说图像中斜线的斜率为k=p1== 则激光波长λ=2k=2, 计算空气的折射率 首先根据公式iambi i p p l N n ∆⨯+=21λ计算出n1~n6, 结果如下表所示 n则最终结果n =讨论、建议与质疑:1, 在非定域干涉的实验中, 两个点光源的等倾干涉场是以两同轴光源连线为轴的双曲抛物面, 且为多层结构, 因而在假设干涉场能够完整出现在全空间的情况下, 在光屏平面与光轴相平行时, 便可以在光屏上观察到双曲线条纹。
当两个反射镜M1、M2不相平行而存在一个较小的夹角时, 在处于光轴方向并且与之平行的光屏上, 便可以观察到平行的直条纹。
2, 由于在仪器上发生干涉的两束光正是由G1分束产生的反射光L1和透射光L2, 因而为了保证得到的干涉图像亮度统一并且稳定而便于观察, L1和L2的光强应当相同, 如果光强不同, 则可能导致干涉图像亮度不统一, 观察等倾干涉圆环吞吐的时候可能导致图像不稳定而不便于测量, 因而分束板的反射光和折射光的光强应当相同。
3, 由于白光是由多种不同的色光混合而成, 已知补偿板的作用即是使反射光和折射光在最后到达光屏时的光程相同, 如果没有补偿板, 那么两束光便存在一个光程差, 这个光程差的大小和分束板的厚度有关, 因而是一个定量, 而对于白光中的各个单色光而言, 由于波长不同, 那么这个光程差对各色光所造成的影响不同, 有的可能是波长的整数倍, 或者半波长的奇数倍, 也可能介于这两种情况之间, 因而不同色光到达光屏时的干涉状况不同, 故无法形成统一的白光干涉图案。
4, **关于在测量空气折射率的过程中, 有可能观察到干涉圆环吞或吐两种情况的解释: 个人认为, 同一个实验中观察到吞吐两种不同的状况, 与气室的轴线是否与干涉光路的轴线相平行有关, 当实验者将气室与干涉光路摆放为同轴时, 根据公式λk zr d L =-=∆)21(222, 当气室加压, 内部气体的折射率增大, 则相当于光程z 增大, 则为了平衡等式r 也会增大, 因而观察到吐环现象;而当实验者没有将气室摆正而与干涉光路的轴线存在一个夹角时,如右图所示,当气室充气后,内部气体的折射率增大,因而相对两端平板玻璃的折射率差减少,因而折射角减少,从图中看的,气室中的光路相对于没有充气的情况下, l减少,同时n在增大,因而公式中的光程z实际由n和l的乘积所决定,在一定的范围内, l、n都发生变化而整体上l*n在减少,因而光程z减少,从而观察到充气的同时吞环的现象;故充气过程中吞环吐环两种现象都可能出现的现象,得以解释。
5,实验中发现,在用测微螺旋调节动镜的位置时,极易发生震动而导致干涉图样剧烈变化,这样便不知道环数是否有发生了跳跃,有可能导致实验结果产生误差;可以考虑的改进方案为,增大调节手轮的直径,以便于精细地调节而避免一些震动;将测微螺旋独立在测量台之外,通过某些传动机构与干涉仪体系连接起来,亦可以避免震动影响到干涉图样。