浙江省2015年高职考试数学(A卷)

合集下载

最新浙江省高职考试数学试卷汇总(2011-2016年)汇编

最新浙江省高职考试数学试卷汇总(2011-2016年)汇编

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B = ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x=,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞ 的不等式(组)是 ( )A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D .2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B .p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M={}230x xx ++=,则下列结论正确的是( )A . 集合M 中共有2个元素B . 集合M 中共有2个相同元素C . 集合M 中共有1个元素D .集合M 为空集 (15浙江高职考)2.命题甲""ab <是命题乙"0"a b -<成立的( )A . 充分不必要条件B . 必要不充分条件C .充分且必要条件D . 既不充分也不必要条件 (15浙江高职考)16.已知2(2)(2)0x x y -++=,则3xy 的最小值为( )A .2- B . 2 C . 6- D . 62-(15浙江高职考)19.不等式277x ->的解集为 (用区间表示).(16浙江高职考)1..已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B,则A B =A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}(16浙江高职考)2.不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)- (16浙江高职考)3.命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件(16浙江高职考)若1x>,则91x x +-的最小值为 第三章函数(11浙江高职考)2.若2410(2)log 3x f x +=,则(1)f = ( )A .2B .12 C . 1 D . 214log 3(11浙江高职考)3.计算3234(7)⎡⎤-⎣⎦的结果为 ( )A . 7B . -7C . 7D . 7-(11浙江高职考)5. 函数1y x=-的图像在 ( ) A . 第一、二象限 B . 第一、三象限 C . 第三、四象限 D . 第二、四象限 (11浙江高职考)9.下列函数中,定义域为{,x x R ∈且0}x ≠的函数是 ( )A .2y x = B . 2x y = C . lg y x = D . 1y x -=(11浙江高职考)13.函数2y x =+的单调递增区间是( )A .[)0,+∞ B . (),0-∞ C . (),-∞+∞ D . [)2,+∞(11浙江高职考)17.设15x a +=,15y b -=,则5x y += ( )A .a b + B . ab C . a b - D .ab(11浙江高职考)34. (本小题满分11分) (如图所示)计划用12m 长的塑刚材料构建一个窗框. 求:(1)窗框面积y 与窗框长度x 之间的函数关系式(4分); (2)窗框长取多少时,能使窗框的采光面积最大(4分); (3)窗框的最大采光面积(3分). (12浙江高职考)2.函数()3f x kx =- 在其定义域上为增函数,则此函数的图像所经过的象限为 ( )A .一、二、三象限B . 一、二、四象限C . 一、三、四象限D . 二、三、四象限 (12浙江高职考)4.若函数(f x )满足(1)23f x x +=+,则(0)f = ( )A . 3B . 1C . 5D .32-(12浙江高职考)12. 某商品原价200元,若连续两次涨价10%后出售,则新售价为 ( ) A . 222元 B . 240元 C . 242元 D . 484元(12浙江高职考)17.若2log 4x =,则12x = ( )A . 4B . 4±C . 8D . 16(12浙江高职考)19. 函数2()log (3)7f x x x =-+-的定义域为(用区间表示). (12浙江高职考)34. (本小题满分10分)有400米长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一个矩形菜地,如图,设矩形菜地的宽为x 米. (1)求矩形菜地面积y 与矩形菜地宽x 之间的函数关系式(4分);x(第34题图)(2)当矩形菜地宽为多少时,矩形菜地面积取得最大值? 菜地的最大面积为多少?(6分); (13浙江高职考)2.已知()2223f x x =-,则(0)f = ( ) A . 0 B .3- C .23- D . 1- (13浙江高职考)4.对于二次函数223y x x =--,下述结论中不正确的是( )A . 开口向上B . 对称轴为1x =C . 与x 轴有两交点D . 在区间(),1-∞上单调递增(13浙江高职考)5.函数()24f x x =-的定义域为( )A .()2,+∞ B . [)2,+∞ C .(),2][2,-∞-+∞ D .实数集 R(13浙江高职考)19.已知log 162a =,28b=,则b a -= .(13浙江高职考)34. (10分)有60()m 长的钢材,要制作一个如图所示的窗框. (1)求窗框面积2()y m 与窗框宽()x m 的函数关系式;(2)求窗框宽()x m 为多少时,窗框面积2()y m 有最大值;(3 ) 求窗框的最大面积.(14浙江高职考)2.已知函数12)1(-=+xx f ,则=)2(f ( )A . -1B . 1C . 2D . 3(14浙江高职考)5.下列函数在区间),0(+∞上为减函数的是( )A .13-=x y B . x x f 2log )(= C . x x g )21()(= D . x x h sin )(=(14浙江高职考)21.计算:=8log 4 . (14浙江高职考)23.函数352)(2++-=x x x f 图象的顶点坐标是 .(14浙江高职考)33.(8分)已知函数⎩⎨⎧>+-≤≤=)1(,3)1()10(,5)(x x f x x f . (1)求)5(),2(f f 的值;(4分)(2)当*∈N x 时,)4(),3(),2(),1(f f f f …构成一数列,求其通项公式.(4分)(14浙江高职考)34.(10分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,如图所示.现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上. (1)根据所给条件,求出椭圆的标准方程;(3分) (2)求长方形面积S 与边长x 的函数关系式;(3分)(3)求当边长x 为多少时,面积S 有最大值,并求其最大值.(4分)(15浙江高职考)3.函数lg(2)()x f x x-=的定义域是( )A .[)3,+∞ B .(3,)+∞ C .(2,)+∞ D .[)2,+∞(15浙江高职考)4.下列函数在定义域上为单调递减的函数是( )A .3()()2x f x = B .()ln f x x = C .()2f x x =- D .()sin f x x =(15浙江高职考)13.二次函数2()43f x ax x =+-的最大值为5,则(3)f =( )A .2 B . 2- C .92D .92-(15浙江高职考)28.( 本题满分7分)已知函数21,0()32,0x x f x x x ⎧-≥=⎨-<⎩,求值: (1)1()2f -;(2分)(2)0.5(2)f -;(2分) (3)(1)f t -.(3分)A BDC(16浙江高职考)4.下列函数在其定义域上单调递增的是A .()2f x x =+B .2()23f x x x =-++ C .12()log f x x = D .()3xf x -=(16浙江高职考)5.若函数2()6f x x x =-,则A .(6)(8)(10)f f f +=B . (6)(8)2(7)f f f +=C . (6)(8)(14)f f f +=D . (6)(8)(2)f f f +=-(16浙江高职考)19.函数21()2155f x x x x =--+-的定义域为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 .(16浙江高职考)21.已知二次函数的图象通过点17(0,1),(1,),(1,),22---则该函数图象的对称轴方程为 . (16浙江高职考)32. 某城市住房公积金2016年初的账户余额为2亿元人民币,当年全年支出3500万元,收入3000万元.假设以后每年的资金支出额比上一年多200万元,收入金额比上一年增加10%.试解决如下问题:(1)2018年,该城市的公积金应支出多少万元?收入多少万元?(2)到2025年底,该城市的公积金账户余额为多少万元?(可能有用的数据:21.1 1.21=,31.1 1.331=,41.1 1.464=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.12.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)第四章平面向量(11浙江高职考)25. 若向量(3,4)m =- ,(1,2)n =-,则||m n = ___________.(12浙江高职考)10.已知平面向量(2,3)(,),2(1,7)a b x y b a ==-=, ,则,x y 的值分别是 ( )A . 31x y =-⎧⎨=⎩B . 122x y ⎧=⎪⎨⎪=-⎩ C . 325x y ⎧=⎪⎨⎪=⎩ D . 513x y =⎧⎨=⎩ (13浙江高职考)7.AB AC BC --= ( )A .2BCB .2CBC .0D . 0(14浙江高职考)7.已知向量)1,2(-=a ,)3,0(=b ,则=-|2|b a( ) A .)7,2(- B . 53 C . 7 D . 29(15浙江高职考)21.已知(0,7)AB =-,则3AB BA -= .(16浙江高职考)6.如图,ABCD 是边长为1的正方形,则AB BC AC ++=A.2 B . 22 C.22+ D.0第五章数列(11浙江高职考)8.在等比数列{}n a 中,若355a a ⋅=,则17a a ⋅的值等于 ( )A .5B .10C .15D .25 (11浙江高职考)30. (本小题满分7分) 在等差数列{}n a 中,113a =,254a a +=,33n a =,求n 的值.(12浙江高职考)5. 在等差数列{}n a 中,若25413a a ==,,则6a = ( )A .14B . 15C .16D .17 (12浙江高职考)32. (本题满分8分)在等比数列{}n a 中,已知11,a =3216a=,(1)求通项公式n a ;(4分)(2)若n nb a =,求{}n b 的前10项和.(4分)(13浙江高职考)10.根据数列2,5,9,19,37,75……的前六项找出规律,可得7a = ( ) A . 140 B . 142 C . 146 D . 149 (13浙江高职考)22.已知等比数列的前n 项和公式为112nnS =-,则公比q = .(13浙江高职考)29. (7分) 在等差数列{}n a 中,已知271,20.a a ==(1)求12a 的值. (2)求和123456.a a a a a a +++++(14浙江高职考)8.在等比数列}{n a 中,若27,342==a a ,则=5a ( )A .81- B . 81 C . 81或81- D . 3或3-(14浙江高职考)22.在等差数列}{n a 中,已知35,271==S a ,则等差数列}{n a 的公差=d.(15浙江高职考)10.在等比数列{}n a 中,若1221n n a a a +++=- ,则2212a a ++……2na += ( ) A .2(21)n - B .21(21)3n - C .41n - D . 1(41)3n - (15浙江高职考)22.当且仅当x ∈ 时,三个数4,1,9x -成等比数列. (15浙江高职考)30.(9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列.求:(1),,a b c 的值;(3分)(2)按要求填满其余各空格中的数;(3分) (3)表格中各数之和.(3分)(16浙江高职考)7.数列{}n a 满足:*111,,()n n a a n a n N +==-+∈,则5a =A.9B. 10C.11D.12(16浙江高职考)22.等比数列{}n a 满足1234a a a ++=,45612a a a ++=,则其前9项的和9S = .第六章排列、组合与二项式定理(11浙江高职考)11.王英计划在一周五天内安排三天进行技能操作训练,其中周一、周四两天中至少要安排一天,则不同的安排方法共有 ( )A . 9种B . 12种C . 16种D . 20种(11浙江高职考)32. (本小题满分8分) 求91()x x-展开式中含3x 的系数. (12浙江高职考)13.从6名候选人中选出4人担任人大代表,则不同选举结果的种数为 ( ) A . 15 B . 24 C . 30 D . 360(12浙江高职考)33. (本小题满分8分) 求613x x ⎛⎫- ⎪⎝⎭展开式的常数项.(13浙江高职考)17.用1,2,3,4,5五个数字组成五位数,共有不同的奇数 ( ) A . 36个 B . 48个 C . 72个 D . 120个(13浙江高职考)33. (8分) 若展开式(1)nx +中第六项的系数最大,求展开式的第二项. (14浙江高职考)20. 从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法.(14浙江高职考)29.(7分)化简:55)1()1(++-x x .(15浙江高职考)11.下列计算结果不正确的是( ) A .4431099CC C-=B .1091010P P =C . 0!=1D .66888!P C =cba121 12(15浙江高职考)24.二项式212332()x x +展开式的中间一项为 .(15浙江高职考)29.(本题满分7分)课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数. (1)要求组长必须参加;(2分)(2)要求选出的3人中至少有1名女生;(2分)(3)要求选出的3人中至少有1名女生和1名男生.(3分)(16浙江高职考)8.一个班级有40人,从中选取2人担任学校卫生纠察队员,选法种数共有A. 780 B . 1560 C. 1600D. 80(16浙江高职考)29.(本题满分7分)2()n x x-二项展开式的二项式系数之和为64,求展开式的常数项.第七章概率(14浙江高职考)9. 抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于( ) A . 0.5 B . 0.6 C . 0.7 D . 0.8(14浙江高职考)23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P = .(16浙江高职考)23.一个盒子里原来有30颗黑色的围棋子,现在往盒子里再投入10颗白色围棋子并充分搅拌,现从中任取1颗棋子,则取到白色棋子的概率为 .第八章三角函数(11浙江高职考)14.已知α是第二象限角,则有3sin 2α=可推知cos α= ( )A .32-B . 12-C . 12D .32(11浙江高职考)16.如果角β的终边过点(5,12)P -,则sin cos tan βββ++的值为 ( )A .4713 B . 12165- C . 4713- D . 12165(11浙江高职考)20.22sin15cos 15︒-︒的值等于 .(11浙江高职考)24. 化简:cos78cos33sin 78sin 33︒︒+︒︒=______________. (11浙江高职考)27.(本小题满分6分)在ABC ∆中,若三边之比为1:1:3,求ABC∆最大角的度数.(11浙江高职考)33. (本小题满分8分)已知数列11()sin 3cos 122f x x x =++,求:(1)函数()f x 的最小正周期(4分); (2)函数()f x 的值域(4分).(12浙江高职考)6.在0~360︒范围内,与390︒- 终边相同的角是 ( )A . 300°B . 600°C . 2100°D . 3300° (12浙江高职考)11.已知(,)2παπ∈, 且3cos 5α=-,则sin α= ( ) A .45-B . 45C . 34D . 34- (12浙江高职考)21.化简sin()cos()2ππαα-++= .(12浙江高职考)24. 函数38sin ()y x x R =-∈的最大值为____________.(12浙江高职考)28. (本题满分7分)在ABC ∆中,已知6,4,60ab C ︒===,求c 和sin B .(12浙江高职考)30.已知函数2()2sin cos 2cos 13f x x x x =-++.求:(1)()4f π;(3分) (2)函数()f x 的最小正周期及最大值.(4分) (13浙江高职考)6.在0~360︒︒范围内,与1050︒终边相同的角是 ( )A .330︒B .60︒C .210︒D .300︒(13浙江高职考)8.若sin α=45-,α为第四象限角,则cos α= ( )A .45-B . 45C . 35D . 35- (13浙江高职考)13.乘积sin(110)cos(320)tan(700)-︒⋅︒⋅-︒的最后结果为 ( )A . 正数B . 负数C . 正数或负数D . 零 (13浙江高职考)14.函数sin cos y x x =+的最大值和最小正周期分别为( )A .2,2πB .2,2πC .2,πD .2,π(13浙江高职考)16.在ABC ∆ 中,若::1:2:3A B C ∠∠∠=,则三边之比::a b c = ( )A .1:2:3 B . 1:2:3 C . 1:4:9 D . 1:3:2(13浙江高职考)21.求值:tan75tan15︒︒+= .(13浙江高职考)26.给出120,α︒=-在所给的直角坐标系中画出角α的图象 .(13浙江高职考)30. (8分) 若角α的终边是一次函数2(0)y x x =≥所表示的曲线,求sin 2.α(13浙江高职考)31. (8分) 在直角坐标系中,若(1,1,),(2,0),(0,1)A B C --,求ABC∆的面积ABC S ∆.(14浙江高职考) 6.若α是第二象限角,则πα7-是( )A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角(14浙江高职考)10.已知角β终边上一点)3,4(-P ,则=βcos ( )A .53- B . 54C .43- D . 45(14浙江高职考)11.=︒⋅︒+︒⋅︒102sin 18sin 18cos 78cos ( )A .23-B .23C . 21-D .21(14浙江高职考)14.函数x x y 2cos sin 2+=的最小值和最小正周期分别为( )A . 1和π2B . 0和π2C . 1和πD . 0和π (14浙江高职考)26.在闭区间]2,0[π上,满足等式1cos sin =x ,则=x .(14浙江高职考)27.(6分)在△ABC 中,已知5,4==c b ,A 为钝角,且54sin =A ,求a .(14浙江高职考)30.(8分)已知52tan ,73tan ==βα,且βα,为锐角,求βα+.(15浙江高职考)5.已知角4πα=,将其终边按顺时针方向旋转2周得角β,则β=( )A .94πB .174π C .154π-D .174π-(15浙江高职考)9.若2cos()cos()446ππθθ-+=,则cos 2θ=( ) A.23B .73C . 76D .346(15浙江高职考)14.已知3sin 5α=,且(,),2παπ∈则tan()4πα+=( ) A .7- B . 7 C . 17-D . 17 (15浙江高职考)15.在ABC ∆中,若三角之比::1:1:4A B C =,则sin :sin :sin A B C =( )A .1:1:4 B . 1:1:3 C . 1:1:2 D . 1:1:3Oxy(15浙江高职考)20.若tan (0),ba aα=≠则cos2sin 2a b αα+= .(15浙江高职考)31.( 本题满分6分) 已知()3sin()4cos(3)2f x ax ax ππ=-+-+(0a ≠)的最小正周期为23(1)求a 的值;(4分) (2)()f x 的值域.(2分)(15浙江高职考)32.在ABC ∆中,若31,,32ABCBC B S π∆=∠==,求角C . (16浙江高职考)10.下列各角中,与23π终边相同的是 A.23π- B.43π C.43π- D.73π(16浙江高职考)12.在ABC ∆中,若tan tan 1A B = ,则ABC ∆的形状是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形(16浙江高职考)17.已知[]0,x π∈,则2sin 2x >的解集为 A.(0,)2π B. 3(,)44ππ C.(,]4ππ D.(,]42ππ(16浙江高职考)24.函数2()6sin()cos(2)8sin 5f x x x x ππ=-+-+的最小值为 .(16浙江高职考)28. 已知α是第二象限角,4sin 5α=, (1)求tan α;(2)锐角β满足5sin()13αβ+=,求sin .β(16浙江高职考)31.在ABC ∆中,6,23,30a b B ︒==∠=,求C ∠的大小.第九章立体几何 (11浙江高职考)10.在空间,两两相交的三条直线可以确定平面的个数为 ( )A . 1个B . 3个C . 1个 或3个D . 4个(11浙江高职考)22.如果圆柱高为4cm ,底面周长为10cm π,那么圆柱的体积等于_____. (11浙江高职考)31. (本小题满分7分)(如图所示)在正三棱锥V ABC -中,底面边长等于6,侧面与底面所成的二面角为60︒,求:(1)正三棱锥V ABC -的体积(4分);(2)侧棱VA 的长(3分);(提示:取BC 的中点D ,连接AD 、VD ,作三棱锥的高VO .)(12浙江高职考)18.如图,正方体1111ABCD A B C D -中,两异面直线AC 与1BC 所成角的大小为 ( )A . 30°B . 45°C . 60°D . 90°(12浙江高职考)26. 已知圆锥的侧面展开图是一个半径为4cm 的半圆,则此圆锥的体积是______________cm 3.(12浙江高职考)31. (本题满分7分)如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==. 求:(1)二面角P CD A --的大小;(4分)(2)三棱锥P ABD -的体积.(3分)(13浙江高职考)9.直线a 平行于平面β,点A β∈,则过点A 且平行于a 的直线( )A .只有一条,且一定在平面β内B .只有一条,但不一定在平面β内C .有无数条,但不都是平面β内D .有无数条,都在平面β内(13浙江高职考)25.用平面截半径R = 5的球,所得小圆的半径r = 4,则截面与球心的距离等于 .(13浙江高职考)32. (7分) 如图在棱长为2的正方形ABCD A B C D ''''-中,求:(1)两面角B A D D ''--的平面角的正切值;(2)三棱锥A BCC '-的体积.D'C' A'C DABB'OD CBAVD 1C 1B 1A 1ADC BB AC DP(14浙江高职考)18. 在空间中,下列结论正确的是( ) A . 空间三点确定一个平面B . 过直线外一点有且仅有一条直线与已知直线垂直C . 如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D . 三个平面最多可将空间分成八块 (14浙江高职考)24.已知圆柱的底面半径2=r,高3=h ,则其轴截面的面积为 . (14浙江高职考)32.(7分)(1)画出底面边长为cm 4,高为cm 2的正四棱锥ABCDP -的示意图;(3分)(2)由所作的正四棱锥ABCD P -,求二面角C AB P --的度数.(4分)(14浙江高职考)8.在下列命题中,真命题的个数是( ) ①//,a b a b αα⊥⇒⊥②//,////a b a b αα⇒③,//ab a b αα⊥⊥⇒ ④,a b b a αα⊥⊂⇒⊥A . 0个B . 1个C . 2个D . 3个 (15浙江高职考)25.体对角线为3cm 的正方体,其体积V= .(15浙江高职考)33. (本题满分7分)如图所示, 在棱长为a 正方体1111ABCD A B C D -中,平面1AD C 把正方体分成两部分, 求:(1)直线1C B 与平面1AD C 所成的角;(2分)(2)平面1C D 与平面1AD C 所成二面角的平面角的余弦值; (3分)(3)两部分中体积大的部分的体积. (2分)(16浙江高职考)25.圆柱的底面面积为π2cm ,体积为4π3cm ,球的直径和圆柱的高相等,则球的体积=V 3cm .(16浙江高职考)33. (本题满分7分)如图(1)所示, 已知菱形,60ABCD BAD ︒∠=中,2AB =,把菱形ABCD 沿对角线BD 折为60︒的二面角,连接AC ,如图(2)所示,求:(1)折叠后AC 的距离; (2)二面角D AC B --的平面角的余弦值.图(1) 图(2)第十章平面解析几何(11浙江高职考)6.下列各点不在曲线C :22680xy x y ++-=上的是 ( )A . (0,0)B . (-3,-1)C . (2,4)D . (3,3) (11浙江高职考)7.要使直线1:340l x y +-=与2:230l x y λ-+=平行,则λ的值必须等于 ( )A . 0B . -6C . 4D . 6(11浙江高职考)12. 根据曲线方程22cos 1,(,)2xy πββπ+=∈,可确定该曲线是( ) A . 焦点在x 轴上的椭圆 B . 焦点在y 轴上的椭圆 C . 焦点在x 轴上的双曲线 D . 焦点在y 轴上的双曲线(11浙江高职考)15. 两圆221:2C x y +=与222:210C x y x +--=的位置关系DABCB 1A1 D 1C 1 DBACDBCA是 ( )A . 相外切B . 相内切C . 相交D . 外离 (11浙江高职考)21.已知两点(1,8),(3,4)A B --,则两点间的距离AB = .(11浙江高职考)23.设α是直线4y x =-+的倾斜角,则α= 弧度.(11浙江高职考)26. 抛物线216y x =-上一点P 到y 轴的距离为12,则点P 到抛物线焦点F 的距离是______________.(11浙江高职考)28. (本小题满分6分)求中心在原点,对称轴为坐标轴,焦点在y 轴上,离心率35e =,焦距等于6的椭圆的标准方程.(11浙江高职考)29. (本小题满分7分)过点(2,3)P 作圆222210x y x y +--+=的切线,求切线的一般式方程.(12浙江高职考)7.已知两点(1,5),(3,9)A B -,则线段AB 的中点坐标为 ( )A . (1,7)B . (2,2)C . (-2,-2)D . (2,14)(12浙江高职考)14.双曲线221169x y -=的离心率为 ( ) A .74B .53C . 43D . 54(12浙江高职考)15.已知圆的方程为224230x y x y ++-+=,则圆心坐标与半径为 ( )A . 圆心坐标(2,1),半径为2B . 圆心坐标(-2,1),半径为2C . 圆心坐标(-2,1),半径为1D . 圆心坐标(-2,1),半径为2(12浙江高职考)16.已知直线210ax y ++=与直线46110x y ++=垂直,则a的值是 ( )A . -5B . -1C . -3D . 1(12浙江高职考)20.椭圆2219x y +=的焦距为 . (12浙江高职考)22.已知点(3,4)到直线340x y c ++=的距离为4,则c =_______.(12浙江高职考)25. 直线10x y ++=与圆22(1)(1)2x y -++=的位置关系是________________.(12浙江高职考)27.(本题满分6分)已知抛物线方程为212.y x =(1)求抛物线焦点F 的坐标;(3分) (2)若直线l 过焦点F ,且其倾斜角为4π,求直线l 的一般式方程.(3分)(12浙江高职考)29. (本题满分7分)已知点(4,15)在双曲线2215x y m -=上, 直线l 过双曲线的左焦点1F ,且与x 轴垂直,并交双曲线于,A B 两点,求: (1)m 的值;(3分) (2)AB .(4分)(13浙江高职考)3.下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线的方程是 ( ) A .210x y -+= B .121x y+=- C .21y x =+ D . 12(0)y x -=-(13浙江高职考)11.已知点A (1,-2)、B (3,0),则下列各点在线段AB 垂直平分线上的是 ( ) A .(1,4) B .(2,1) C .(3,0) D . (0,1) (13浙江高职考)12.条件“ab =”是结论“221ax by +=所表示曲线为圆”的 ( )A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件 (13浙江高职考)15.若直线1:260l x y ++=与直线2:310l x kx +-=互相垂直,则k = ( )A .32- B . 32 C . 23- D . 23(13浙江高职考)18.直线4320x y -+=与圆()()224116x y -+-= 的位置关系是( )A . 相切B . 相交C . 相离D . 不确定 (13浙江高职考)20.双曲线2214xy -=的焦距为 . (13浙江高职考)24.经过点(2,1)P -,且斜率为0的直线方程一般式为 . (13浙江高职考)28. (6分) 已知椭圆的中心在原点,有一个焦点与抛物线28y x =-的焦点重合,且椭圆的离心率23e =,求椭圆的标准方程.(14浙江高职考)12.已知两点)1,4(),5,2(--N M ,则直线MN 的斜率=k ( )A . 1B .1- C .21 D .21-(14浙江高职考)13.倾斜角为2π,x 轴上截距为3-的直线方程为 ( )A .3-=xB .3-=yC .3-=+y xD .3-=-y x(14浙江高职考)15.直线032:=-+y x l 与圆042:22=-++y x y x C 的位置关系是 ( )A . 相交切不过圆心B . 相切C . 相离D . 相交且过圆心(14浙江高职考)16.双曲线19422=-y x 的离心率=e ( ) A .32B .23 C .213 D . 313 (14浙江高职考)17.将抛物线x y 42-=绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A .x y 42= B . x y 42-= C . y x 42= D . y x 42-=(14浙江高职考)25.直线012=-+y x 与两坐标轴所围成的三角形面积=S .(14浙江高职考)28.(6分)求过点)5,0(P ,且与直线023:=+-y x l 平行的直线方程.(14浙江高职考)31.(8分)已知圆0464:22=++-+y x y xC 和直线05:=+-y x l ,求直线l 上到圆C 距离最小的点的坐标,并求最小距离.(15浙江高职考)6.已知直线40x y +-=与圆22(2)(4)17,x y -++=则直线和圆的位置关系是( )A . 相切B . 相离C . 相交且不过圆心D . 相交且过圆心 (15浙江高职考)7.若(0,),βπ∈则方程22sin 1x y β+=所表示的曲线是( )A . 圆B . 椭圆C . 双曲线D . 椭圆或圆 (15浙江高职考)12.直线320150x y ++=的倾斜角为( )A .6π B .3πC .23π D .56π(15浙江高职考)17.下列各点中与点(1,0)M - 关于点(2,3)H 中心对称的是( )A .(0,1) B . (5,6) C . (1,1)- D . (5,6)-(15浙江高职考)18.焦点在x 轴上,焦距为8的双曲线,其离心率2e =,则双曲线的标准方程为 ( ) A .221412x y -= B . 221124x y -= C . 221412y x -= D . 221124y x-= (15浙江高职考)26. 如图所示,在所给的直角坐标系中,半径为2, 且与两坐标轴相切的圆的标准方为 .(15浙江高职考)27.(本题满分7分)平面内,过点(1,),(,6)A n B n -的直线与直线210x y +-=垂直,求n 的值.(15浙江高职考)34.( 本题满分10分)已知抛物线24xy =,斜率为k 的直线l 过其焦点F 且与抛物线相交于点112,2(,),()A x y B x y .(1)求直线l 的一般式方程;(3分)(2)求AOB ∆的面积S ;(4分)(3)由(2)判断:当直线斜率k 为何值时AOB ∆的面积S 有最大值;当直线斜率k 为何值时AOB ∆的面积S 有最小值.(3分)(16浙江高职考)9.椭圆22116x y m+= 的离心率34e =,则m 的值为A.7 B 7 C. 7或25 D. 7或2567(16浙江高职考)11. 抛物线的焦点坐标为(0,2)F -,则其标准方程为A .24y x =-B . 28y x =-C . 24x y =-D .28x y =-(16浙江高职考)13.下列结论正确的是 A. 直线a 平行于平面α,则a 平行于平面α内的所有直线 B.过直线a 外一点可以作无数条直线与a 异面C.若直线a 、b 与平面α所成角相等,则a 平行于bD.两条不平行直线确定一个平面(16浙江高职考)14.如图,直线32120x y +-=与两坐标轴分别交于,A B 两点,则下面各点中,在OAB ∆内部的是A.(1,2)-B. (1,5)C. (2,4)D. (3,1)(16浙江高职考)15.点(2,)a 到直线10x y ++=的距离为2,则a 的值为A.1-或5B.1-或5-C. 1 或5- D .5-(16浙江高职考)16.点1(3,4)P ,2(,6)P a ,P 为1P2P 的中点,O 为原点,且52OP =,则a 的值为A.7B. 13-C. 7或13D. 7 或13-y xOyB(16浙江高职考)18. 若我们把三边长为,,a b c 的三角形记为(),,a b c ∆,则四个三角形()6,8,8∆,()6,8,9∆,()6,8,10∆,()6,8,11∆中,面积最大的是A. ()6,8,8∆ B . ()6,8,9∆ C.()6,8,10∆ D. ()6,8,11∆(16浙江高职考)26.直线1212:(1)(2)0,:(3)(1)10,l a x a y a l a x a y l l -++-=-+-+=⊥,则a = .(16浙江高职考)30.( 本题满分8分)设直线2380x y +-=与20x y +-=交于点M ,(1)求以点M 为圆心,半径为3的圆的方程;(2)动点P 在圆M 上,O 为坐标原点,求PO 的最大值.(16浙江高职考)34.( 本题满分9分)已知双曲线22221x y a b -=的离心率52e =,实轴长为4,直线l 过双曲线的左焦点1F 且与双曲线交于,A B 两点,83AB =. (1)求双曲线的方程;(2)求直线l 的方程.。

2015浙江省高职考数学A卷

2015浙江省高职考数学A卷

2015浙江省高职考数学A卷2015年浙江省高等职业技术教育招生考试数学试卷A 卷姓名准考证号一、单项选择题(本大题共18小题,每小题2分,共36分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

)1.已知集合M={}032=++x x x ,则下列结论正确的是A .集合M 中共有2个元素B .集合M 中共有2个相同元素C .集合M 中共有1个元素D.集合M 为空集2.命题甲""b a <是命题乙"0"<-b a 成立的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件3.函数xx x f )2lg()(-=的定义域是 A .[)+∞,3 B .),3(+∞ C .),2(+∞D .[)+∞,24.下列函数在定义域上为单调递减的函数是A .x x f )23()(=B .x x f ln )(=C .x x f -=2)(D .x x f sin )(=5.已知角4πα=,将其终边按顺时针方向旋转2周得角β,则β=A .49πB .417πC .415π-D .417π- 6.已知直线04=-+y x 与圆,17)4()2(22=++-y x 则直线和圆的位置关系是A .相切B .相离C .相交且不过圆心D . 相交且过圆心7.若),,0(πβ∈则方程1sin 22=+βy x 所表示的曲线是A.圆 B .椭圆 C.双曲线 D.椭圆或圆8.在下列命题中,真命题的个数是①b a b a ⊥?⊥αα,// ② b a b a ////,//?αα③b a b a //,?⊥⊥αα ④αα⊥??⊥a b b a ,A.0个 B .1个 C.2个 D.3个9.若62)4cos()4cos(=+-θπθπ,则=θ2cos A .32 . B 37 C .67 D .634 10.在等比数列{}n a 中,若,1221-=+++n n a a a ΛΛ则++2221a a ……=+2n aA.2)12(-nB.2)12(31-n C.14-n D.)14(31-n 11.下列计算结果不正确的是A.3949410C C C =- B. 9101010P P = C.0!=1 D.!86868P C = 12.直线020153=++y x 的倾斜角为A.6π B.3π C.32π D.65π 13.二次函数34)(2-+=x ax x f 的最大值为5,则=)3(fA. 2B.2-C.29 D.29- 14.已知53sin =α,且),,2(ππα∈则=+)4tan(πα A.7- B.7 C.71- D.71 15.在ABC ?中,若三角之比,4:1:1::=C B A 则=C B A sin :sin :sinA.4:1:1B.3:1:1C. 2:1:1 D .3:1:116.已知0)2)(2(2=++-y x x ,则3xy 的最小值为A.2-B.2C.6-D.26- 17.下列各点中与点)0,1(-M 关于点)3,2(H 中心对称的是A.)1,0( B )6,5( C. )1,1(- D. )6,5(-18.焦点在x 轴上,焦距为8的双曲线,其离心率e=2.则双曲线的标准方程为 A. 112422=-y x B.141222=-y x C.112422=-x y D.14122 2=-x y。

2015年普通高等学校招生全国统一考试理科数学(浙江卷)

2015年普通高等学校招生全国统一考试理科数学(浙江卷)

2015年普通高等学校招生全国统一考试浙江理科数学本试题卷分选择题和非选择题两部分,全部共4页,选择题部分第1页至第2页,非选择题部分第3至第4页.全卷满分150分,考试时间120分钟.考生注意: 1. 2.参考公式:选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015浙江,理1)已知集合P={x|x 2-2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A .[0,1) B .(0,2] C .(1,2) D .[1,2] 答案:C解析:∵P={x|x (x-2)≥0}={x|x ≥2或x ≤0},∴∁R P=(0,2).又∵Q=(1,2],∴(∁R P )∩Q=(1,2),故选C .2.(2015浙江,理2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323 cm 3 D .403cm 3 答案:C解析:由三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm,正四棱锥的高为2 cm,则该几何体的体积V=2×2×2+13×2×2×2=323(cm 3),故选C .3.(2015浙江,理3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d>0,dS 4>0 B .a 1d<0,dS 4<0 C .a 1d>0,dS 4<0 D .a 1d<0,dS 4>0 答案:B解析:设{a n }的首项为a 1,公差为d ,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d.∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),即3a 1d+5d 2=0.∵d ≠0,∴a 1d=-53d 2<0,且a 1=-53d. ∵dS 4=4d(a 1+a 4)2=2d (2a 1+3d )=-23d 2<0,故选B .4.(2015浙江,理4)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案:D解析:命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定为“∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0”,故选D .5.(2015浙江,理5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是 ( )A .|BF|−1|AF|−1B .|BF|2−1|AF|2−1C .|BF|+1|AF|+1D .|BF|2+1|AF|2+1答案:A解析:设A (x 1,y 1),B (x 2,y 2),由抛物线定义,得|AF|=x 1+1,|BF|=x 2+1,则S △BCF S △ACF=BC AC=x 2x 1=|BF|−1|AF|−1,故选A .6.(2015浙江,理6)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数. 命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ). A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立 答案:A7.(2015浙江,理7)存在函数f (x )满足:对于任意x ∈R 都有 ( )A .f (sin 2x )=sin xB .f (sin 2x )=x 2+xC .f (x 2+1)=|x+1| D .f (x 2+2x )=|x+1| 答案:D解析:∵|x+1|=√(x +1)2=√x 2+2x +1,∴存在函数f (x )=√x +1,使f (x 2+2x )=|x+1|对∀x ∈R 成立,故选D .8.(2015浙江,理8)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A'CD ,所成二面角A'-CD-B 的平面角为α,则( )A .∠A'DB ≤α B .∠A'DB ≥αC .∠A'CB ≤αD .∠A'CB ≥α答案:B 解析:设∠ADC=θ,设AB=2,则由题意AD=BD=1.在空间图形中,设A'B=t. 在△A'BD 中,cos ∠A'DB=A′D 2+DB 2−AB 22A′D×DB=12+12−t 22×1×1=2−t 22. 在空间图形中,过A'作A'N ⊥DC ,过B 作BM ⊥DC ,垂足分别为N ,M. 过N 作NP MB ,连结A'P ,所以NP ⊥DC. 则∠A'NP 就是二面角A'-CD-B 的平面角, 所以∠A'NP=α.在Rt △A'ND 中,DN=A'D cos ∠A'DC=cos θ,A'N=A'D sin ∠A'DC=sin θ. 同理,BM=PN=sin θ,DM=cos θ.故BP=MN=2cos θ. 显然BP ⊥面A'NP ,故BP ⊥A'P.在Rt △A'BP 中,A'P 2=A'B 2-BP 2=t 2-(2cos θ)2=t 2-4cos 2θ.在△A'NP 中,cos α=cos ∠A'NP=A′N 2+NP 2−A′P 22A′N×NP=sin 2θ+sin 2θ−(t 2−4cos 2θ)2sinθ×sinθ=2+2cos 2θ−t 22sin 2θ=2−t 22sin 2θ+cos 2θsin 2θ=1sin 2θcos ∠A'DB+cos 2θsin 2θ.因为1sin 2θ≥1,cos 2θsin 2θ≥0,所以cos α≥cos ∠A'DB (当θ=π2时取等号),因为α,∠A'DB ∈[0,π],而y=cos x 在[0,π]上为递减函数, 所以α≤∠A'DB.故选B .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(2015浙江,理9)双曲线x 22-y 2=1的焦距是 ,渐近线方程是 . 答案:2√3 y=±√22x解析:由双曲线的方程x 22-y 2=1可知,a=√2,b=1.所以c=√a 2+b 2=√3.故双曲线的焦距为2c=2√3;双曲线的渐近线方程为y=±b ax=±√2x ,即y=±√22x. 10.(2015浙江,理10)已知函数f (x )={x +2x−3,x ≥1,lg(x 2+1),x <1,则f (f (-3))= ,f (x )的最小值是 .答案:0 2√2-3解析:f (-3)=lg[(-3)2+1]=lg 10=1,f (f (-3))=f (1)=1+21-3=0.当x ≥1时,f (x )=x+2x-3≥2√2-3,当且仅当x=2x,即x=√2时取得最小值,当x<1时,x 2+1≥1,lg(x 2+1)≥0,综上所述,f (x )的最小值为2√2-3.11.(2015浙江,理11)函数f (x )=sin 2x+sin x cos x+1的最小正周期是 ,单调递减区间是 . 答案:π [3π8+kπ,7π8+kπ],k ∈Z 解析:f (x )=sin 2x+sin x cos x+1=1−cos2x 2+12sin 2x+1 =12(sin 2x-cos 2x )+32 =√22sin (2x −π4)+32. 故T=2π2=π.令2k π+π2≤2x-π4≤2k π+3π2,k ∈Z ,解得k π+3π8≤x ≤k π+7π8,k ∈Z ,故f (x )的单调递减区间为[3π8+kπ,7π8+kπ],k ∈Z .12.(2015浙江,理12)若a=log 43,则2a +2-a = . 答案:4√33解析:由a=log 43,知2a +2-a =2log 43+2−log 43=2log 2√3+2log 2√33=√3+√33=4√33. 13.(2015浙江,理13)如图,在三棱锥A-BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .答案:78解析:连结DN ,取DN 的中点P ,连结PM ,CP ,因为M 是AD 的中点,故PM ∥AN ,则∠CMP 即为异面直线AN ,CM 所成的角,∵AB=AC=BD=CD=3,AD=BC=2,可得AN=CM=DN=2√2,故MP=PN=√2.在Rt △PCN 中,CP=√PN 2+CN 2=√2+1=√3,由余弦定理可得,cos ∠CMP=CM 2+MP 2−CP 22·CM·MP=2×2√2×√2=78,故异面直线AN ,CM 所成的角的余弦值为78. 14.(2015浙江,理14)若实数x ,y 满足x 2+y 2≤1,则|2x+y-2|+|6-x-3y|的最小值是 . 答案:3解析:画出直线2x+y-2=0和x+3y-6=0以及圆x 2+y 2=1的图形,如图.(1)如图,当点(x ,y )在区域Ⅰ(阴影部分)时,{2x +y −2≥0,x +3y −6<0,所以|2x+y-2|+|6-x-3y|=2x+y-2+6-x-3y=x-2y+4.令t=x-2y+4,则y=12x+2-t 2,画出直线l 1:y=12x ,平移l 1经过点B 时,t 取得最小值. 由{2x +y −2=0,x 2+y 2=1得{x =1,y =0或{x =35,y =45,即A (1,0),B (35,45).所以t min =35-2×45+4=3.(2)如图,当点(x ,y )在区域Ⅱ时,{2x +y −2≤0,x +3y −6<0,所以|2x+y-2|+|6-x-3y|=-2x-y+2+6-x-3y=-3x-4y+8. 令S=-3x-4y+8,则y=-34x+2-S 4,画出直线l 2:y=-34x ,平移l 2经过点B 时,S 取得最小值, 所以,S min =-3×35-4×45+8=3.综上,|2x+y-2|+|6-x-3y|的最小值为3.15.(2015浙江,理15)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= ,|b |= . 答案:1 2 2√2解析:设e 3为空间单位向量,且满足e 3⊥e 2,e 3⊥e 1,∵|b -(x 0e 1+y 0e 2)|=1,故设b =x 0e 1+y 0e 2+e 3, ∵b ·e 1=2,即(x 0e 1+y 0e 2+e 3)·e 1=2,得x 0+12y 0=2,又∵b ·e 2=52,即(x 0e 1+y 0e 2+e 3)·e 2=52,得12x 0+y 0=52,解{2x 0+y 0=4,x 0+2y 0=5得x 0=1,y 0=2,此时,b =e 1+2e 2+e 3,|b |=√e 12+4e 22+e 32+4e 1·e 2+2e 1·e 3+4e 2·e 3=√1+4+1+4×12+0+0=√8=2√2.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)(2015浙江,理16)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A=π4,b 2-a 2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.满分14分. 解:(1)由b 2-a 2=12c 2及正弦定理得sin 2B-12=12sin 2C ,所以-cos 2B=sin 2C. 又由A=π4,即B+C=34π,得-cos 2B=sin 2C=2sin C cos C , 解得tan C=2.(2)由tan C=2,C ∈(0,π)得sin C=2√55,cos C=√55. 又因为sin B=sin(A+C )=sin (π4+C), 所以sin B=3√1010. 由正弦定理得c=2√23b , 又因为A=π4,12bc sin A=3,所以bc=6√2,故b=3. 17.(本题满分15分)(2015浙江,理17)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD-B 1的平面角的余弦值.本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力.满分15分. (1)证明:设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC. 故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A , 所以A 1AED 为平行四边形. 故A 1D ∥AE.又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC. (2)解:方法一:作A 1F ⊥BD 且A 1F ∩BD=F ,连结B 1F. 由AE=EB=√2,∠A 1EA=∠A 1EB=90°,得A 1B=A 1A=4. 由A 1D=B 1D ,A 1B=B 1B ,得△A 1DB 与△B 1DB 全等.由A 1F ⊥BD ,得B 1F ⊥BD ,因此∠A 1FB 1为二面角A 1-BD-B 1的平面角.由A 1D=√2,A 1B=4,∠DA 1B=90°,得BD=3√2,A 1F=B 1F=43, 由余弦定理得cos ∠A 1FB 1=-18. 方法二:以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E-xyz ,如图所示. 由题意知各点坐标如下:A 1(0,0,√14),B (0,√2,0),D (-√2,0,√14),B 1(-√2,√2,√14).因此A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√14),BD ⃗⃗⃗⃗⃗⃗ =(-√2,-√2,√14),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,√2,0).设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由{m ·A 1B ⃗⃗⃗⃗⃗⃗⃗ =0,m ·BD ⃗⃗⃗⃗⃗⃗ =0,即{√2y 1−√14z 1=0,−√2x 1−√2y 1+√14z 1=0,可取m =(0,√7,1).由{n ·DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0,即{√2y 2=0,−√2x 2−√2y 2+√14z 2=0,可取n =(√7,0,1). 于是|cos <m ,n >|=|m·n||m|·|n|=18.由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD-B 1的平面角的余弦值为-18.18.(本题满分15分)(2015浙江,理18)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[-1,1]上的最大值. (1)证明:当|a|≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值.本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力,分析问题和解决问题的能力.满分15分.(1)证明:由f (x )=(x +a 2)2+b-a 24,得对称轴为直线x=-a 2.由|a|≥2,得|−a 2|≥1,故f (x )在[-1,1]上单调,所以M (a ,b )=max{|f (1)|,|f (-1)|}.当a ≥2时,由f (1)-f (-1)=2a ≥4,得max{f (1),-f (-1)}≥2,即M (a ,b )≥2.当a ≤-2时,由f (-1)-f (1)=-2a ≥4, 得max{f (-1),-f (1)}≥2,即M (a ,b )≥2. 综上,当|a|≥2时,M (a ,b )≥2.(2)解:由M (a ,b )≤2得|1+a+b|=|f (1)|≤2,|1-a+b|=|f (-1)|≤2,故|a+b|≤3,|a-b|≤3,由|a|+|b|={|a +b|,ab ≥0,|a −b|,ab <0,得|a|+|b|≤3.当a=2,b=-1时,|a|+|b|=3,且|x 2+2x-1|在[-1,1]上的最大值为2,即M (2,-1)=2. 所以|a|+|b|的最大值为3.19.(本题满分15分)(2015浙江,理19)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y=mx+12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).本题主要考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.满分15分.解:(1)由题意知m ≠0,可设直线AB 的方程为y=-1mx+b.由{x 22+y 2=1,y =−1m x +b,消去y ,得(12+1m 2)x 2-2bmx+b 2-1=0.因为直线y=-1m x+b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,① 将AB 中点M (2mb m 2+2,m 2b m 2+2)代入直线方程y=mx+12,解得b=-m 2+22m 2.②由①②得m<-√63或m>√63.(2)令t=1m∈(−√62,0)∪(0,√62),则|AB|=√t 2+1·√−2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d=t 2+12√t +1.设△AOB 的面积为S (t ),所以S (t )=12|AB|·d=12√−2(t 2−12)2+2≤√22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为√22.20.(本题满分15分)(2015浙江,理20)已知数列{a n }满足a 1=12且a n+1=a n -a n 2(n ∈N *).(1)证明:1≤a na n+1≤2(n ∈N *); (2)设数列{a n 2}的前n 项和为S n ,证明:12(n+2)≤S n n≤12(n+1)(n ∈N *). 本题主要考查数列的递推公式与单调性、不等式性质等基础知识,同时考查推理论证能力,分析问题和解决问题的能力.满分15分.证明:(1)由题意得a n+1-a n =-a n 2≤0,即a n+1≤a n ,故a n ≤12.由a n =(1-a n-1)a n-1得a n =(1-a n-1)(1-a n-2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n+1=a n a n −a n2=11−a n∈[1,2], 即1≤a na n+1≤2. (2)由题意得a n 2=a n -a n+1, 所以S n =a 1-a n+1.①由1a n+1−1a n =a n a n+1和1≤a n a n+1≤2得1≤1a n+1−1a n≤2, 所以n ≤1a n+1−1a 1≤2n ,因此12(n+1)≤a n+1≤1n+2(n ∈N *).②由①②得12(n+2)≤S n n ≤12(n+1)(n ∈N *).。

2015年浙江职业技术学院自主招生文化考试笔试数学试卷及答案

2015年浙江职业技术学院自主招生文化考试笔试数学试卷及答案

2015年浙江省职业技术学院自主招生文化考试数学试卷(含答案)(满分100分)注意事项:1.所有试题均需在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效。

2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。

一、单项选择题(本大题共18小题,每小题2分,共36分)1.已知集合M ={a ,b ,c ,d },则含有元素a 的所有真子集个数有( ) A.5个 B.6个 C.7个 D.8个2.已知函数f (x +1)=2x-1,则f (2)=( )A.-1B.1C.2D.33.“a +b =0”是“a ·b =0”的( ) A .充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件4.下列不等式(组)解集为{}0x x <的是( )A.2x -3<3x-3B.20231x x ⎧⎨⎩-<->C.2x -2x >0D.12x -<5.下列函数在区间(0,+∞)上为减函数的是( ) A.y =3x -1B.f (x )=2log xC.1()()2xg x =D.()sin h x x =6.若α是第二象限角,则α-7π是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知向量(2,1)=-a ,(0,3)=b ,则2-=a b ( )A.(2,7)- C.78.在等比数列{}n a 中,若243,27a a ==,则5a =( ) A.81- B.81 C.81或81- D.3或3-9.抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于( ) A.0.5 B.0.6 C.0.7 D.0.810.已知角β终边上一点(4,3)P -,则cos β=( ) A.35-B.45C.34-D.5411.cos78cos18sin18sin102⋅+⋅=( )A.2-B.2C.12-D.1212.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =( ) A.1 B.1- C.12 D.12- 13.倾斜角为2π,x 轴上截距为3-的直线方程为( ) A.3x =- B.3y =- C.3x y +=- D.3x y -=- 14.函数2sin cos2y x x =+的最小值和最小正周期分别为( ) A.1和2π B. 0和2π C. 1和π D. 0和π15.直线l :230x y +-=与圆C :22240x y x y ++-=的位置关系是( ) A.相交切不过圆心 B.相切 C.相离 D.相交且过圆心16.双曲线22149x y -=的离心率e =( )A.23 B.32 C.2 D.317.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =- 18.在空间中,下列结论正确的是( )A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块二、填空题(本大题共8小题,每小题3分,共24分)19.若04x <<,则当且仅当x = 时,(4)x x -的最大值为 20.从8位女生和5位男生中,选3位女生和2位男生参加学校舞蹈队,共有 种不同选法.21.计算:4log 8= .22.在等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d = . 23.函数2()253f x x x =-++图象的顶点坐标是 .24.已知圆柱的底面半径2r =,高3h =,则其轴截面的面积为 . 25.直线210x y +-=与两坐标轴所围成的三角形面积S = . 26.在闭区间[0,2]π上,满足等式sin cos1x =,则x = . 三、解答题(本大题共8小题,共60分) 解得应写出文字说明及演算步骤.27.(6分)在△ABC 中,已知4,5b c ==,A 为钝角,且4sin 5A =,求a .【解】A为钝角,cos 0A <,3cos 5A ==-,由余弦定理2222cos a b c bc A =+-,可得a =28.(6分)求过点(0,5)P ,且与直线:320l x y -+=平行的直线方程.【解】设所求直线方程为30x y C -+=,将P 点坐标代入可得5C =,所以所求直线方程为350x y -+=29.(7分)化简:55(1)(1)x x -++. 【解】555555(1)(1)[C ()](C )k kk kk k x x x x ==-++=-+∑∑02244425552(C C C )10202x x x x =++=++.30.(8分)已知32tan ,tan 75αβ==,且,αβ为锐角,求αβ+.【解】tan tan tan()11tan tan αβαβαβ++==-,,αβ为锐角,所以4αβπ+=.31.(8分)已知圆C :224640x y x y +-++=和直线l :50x y -+=,求直线l 上到圆C 距离最小的点的坐标,并求最小距离.【解】圆C :222(2)(3)3x y -++=,过圆心(2,3)-垂直于直线l 的直线方程为1y x =--, 联立方程组150y x x y =--⎧⎨-+=⎩,可得直线l 上到圆C 距离最小的点的坐标为(3,2)-.圆心到直线l的距离d ==,最小距离为3d r -=.32.(7分)(1)画出底面边长为4cm ,高为2cm 的正四棱锥P ABCD -的示意图;(3分) (2)由所作的正四棱锥P ABCD -,求二面角P AB C --的度数.(4分)【解】(1)如图所示:第32题(1)图 MZJ1(2)如图所示,取AB 中点M ,底面中心O ,,,PM AB BC OM OM AB ⊥⊥∥,PMO ∠即为二面角P AB C --的平面角,由题意可得2tan 12PMO ∠==,即二面角P AB C --的度数为45°.第32题(2)图 MZJ233.(8分)已知函数5,(01)()(1)3,1x f x f x x ⎧=⎨-+>⎩≤≤().(1)求(2),(5)f f 的值;(4分)(2)当*x ∈N 时,(1),(2),(3),(4),f f f f …构成一数列,求其通项公式.(4分) (1)(2)8,(5)(2)3317f f f ==+⨯=.(2)(1)5,()(1)3f f x f x =--=,()f x 构成的数列为首项为5,公差为3的等差数列.()53(1)32f x x x =+-=+(*x ∈N ).34.(10分)两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,如图所示.现要设计一个长方形花坛,要求其不靠墙的顶点正好落在椭圆的轨迹上. (1)根据所给条件,求出椭圆的标准方程;(3分) (2)求长方形面积S 与边长x 的函数关系式;(3分)(3)求当边长x 为多少时,面积S 有最大值,并求其最大值.(4分)第34题图 MZJ3【解】(1)由图形可知椭圆焦点在x 轴,2,1a b ==,标准方程为2214x y +=.(2)不妨设长方形的长为x ,则长方形的宽y =长方形面积2)S x =<<(3)S ==令2t x =,22()4(2)4f t t t t =-+=--+,2t =时,()f t取最大值,即当22,0,x x x =>=max 1S ==.2015年浙江省高职自主招生文化考试笔试数学试卷答案一、单项选择题1.C2.B3.D4. A5.C6.D7.B8.C9.A10.B11.D12.B13.A14.D15.D16.C 17.A 18.D二、填空题19.2 20.560 21.3 222.123.549 (,) 4824.1225.1426.12π+或。

2015年最新浙江省单招单考模拟数学卷

2015年最新浙江省单招单考模拟数学卷

2015年高等职业技术教育招生考试模拟试卷《数学》本试题卷共三大题。

满分120分,考试时间120分钟。

一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

1.设全集U R =,{240},A x x =->则U A =ð ( ) A. {2}x x > B .{2}x x ≥ C.{2}x x < D.{2}x x ≤ 2.已知函数32)2(+=x x f ,则=)1(f ( ) A.1 B.2 C. 3 D.43.“3<x ”是“22<<-x ”的 ( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件4.下列不等式(组)的解集为{}21x x -≤≤的是 ( )A.220x x --≤ B.2010x x +≤⎧⎨-≥⎩C.220x x +-≤ D.12x +≤5. 函数2()1f x x =-的单调递减区间为 ( ) A. [)0,+∞ B. (],0-∞ C.[)1,-+∞ D.(],1-∞-6. 若α是第三象限角,则πα3+是 ( ) A.第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角7. 在平面直角坐标系中,若(1,3),(2,3),(,5),3A B C x AB BC x ---==且,则 ( ) A.5- B.4- C.3- D.58. 等差数列{}n a 中,若728342==a a ,,则=51a ( )A.104B.106C.108D.1109.抛掷一枚骰子,落地后面朝上的点数大于4的概率等于 ( ) A.61 B. 31 C. 21 D. 32 10.已知角β终边上一点P )3,4(-,则=βtan ( ) A. 53-B. 54C. 43- D. 4511.若cos()cos(),2446ππθθθ-+==则cos ( )12. 过原点且与直线0123=+-y x 平行的直线是 ( ) A.0223=+-y x B.0123=++y x C.023=-y x D.032=-y x13. 已知点(P a 在曲线221x y -=上,那么a = ( ) A.1 B. 1或4- C.4-或1- D.4-14. 化简:=⋅--αααα2222sin tan sin tan ( ) A. α2cos B.1 C.0 D.-115.已知圆22:60C x y ax by +++-=的圆心为(3,4),则圆的半径是 ( )5 D. 7216. 已知221,10ax y a +=-<<当时,方程所表示的曲线为 ( ) A.焦点在y 轴上的椭圆 B.焦点在x 轴上的椭圆 C.焦点在x 轴上的双曲线 D.焦点在y 轴上的双曲线17. 若抛物线的顶点为原点,对称轴为 x 轴,焦点在直线34120x y --=上,则抛物线的方程式 ( ) A.216y x =- B. 216y x = C.212y x =- D. 212y x =18. 若,αβ是两个不重合的平面,在下列条件中可判断两平面平行的条件是 ( ) A.,αβγ都垂直于平面B. αβ内不共线的三点到的距离相等C. ,,l m l m αββ是平面内的直线,且D. ,,,,l m lm l m ααβα⊥是两条异面直线,且二、填空题(本大题共8小题,每小题3分,共24分)19.设+∈R x 则当且仅当=x 时,224x x +的最小值为4.20.箱子里有6本不同的文艺书和4本不同的科技书,现从中取2本文艺书和3本科技书,则共有 种不同取法. 21.计算:5log 233= .22.公比2-=q 的等比数列}{n a 中,已知32,43=-=n a a ,则=n . 23.在闭区间[0,]π上,满足等式0cos 3sin =-x x 的x =.24.表面积为8π的球,其大圆的面积为 . 25.直线01=--y x 关于x 轴对称的直线方程是 . 26.抛物线241x y -=的焦点坐标为 . 三、解答题(本大题共8小题,共60分) 解答应写出文字说明及演算步骤.27. (6分) 在ABC ∆中,已知,60︒=∠A 2b =,ABC S ∆=,求a 的长.28. (6分) 在直角坐标系中,已知两点(3,4)A -和(5,4)B -, 求以A B 为直径的圆的标准方程.29. (7分)已知二项式21()nx x+展开后的第7项为常数项,求此常数项.30. (8分)若函数()sin(2)cos 26f x x x π=++,求:(1) 函数()f x 的最小正周期; (2)函数()f x 的值域.31. (8分) 已知椭圆221169144x y +=与双曲线1922=-y m x 有共同的焦点,求双曲线的离心率.32. (7分) 在棱长为1的正方体1111ABCD A BC D -中(1)求三棱锥111C A B B -的体积;(3分) (2)求二面角1A BC D --平面角的度数.(4分)B 1C 1D 1A 1DCBA33. (8分) 已知函数⎩⎨⎧>-≤≤=1),1(510,3)(x x f x x f ,(1)求(2),(5)f f 的值;(4分)(2)当*x N ∈ 时, ),4(),3(),2(),1(f f f f 构成一数列,求其通项公式.(4分)34. (10分) 如图所示,有长为22米的篱笆,一面利用墙(墙的最大可用长度为20米)围成中间隔有一道篱笆的长方形花圃.为了方便出入,在建造篱笆花圃时,在BD 上用其他材料造了宽为1米的两个小门,(1)求花圃面积S 与花圃宽x 的函数解析式;(4分)(2)当x 为何值时,花圃面积S 最大,并求出最大值.(6分)ABCDx 1米1米。

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3-【答案】A 【解析】试题分析:由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.考点:1.一元二次不等式的解法;2.集合的交集运算.2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C考点:1.三视图;2.空间几何体的体积.3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D中,//αβ时,,l m也可以异面.故选A.考点:直线、平面的位置关系.5、函数()1cosf x x xx⎛⎫=-⎪⎝⎭(xππ-≤≤且0x≠)的图象可能为()A. B. C. D.【答案】D【解析】试题分析:因为11()()cos()cos()f x x x x x f xx x-=-+=--=-,故函数是奇函数,所以排除A, B;取xπ=,则11()()cos()0fππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m)分别为x,y,z,且x y z<<,三种颜色涂料的粉刷费用(单位:元/2m)分别为a,b,c,且a b c<<.在不同的方案中,最低的总费用(单位:元)是()A.ax by cz++ B.az by cx++ C.ay bz cx++ D.ay bx cz++【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C 【解析】试题分析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C. 考点:1.圆锥曲线的定义;2.线面位置关系. 8、设实数a ,b ,t 满足1sin a b t+==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin2b唯一确定 D .若t 确定,则2a a +唯一确定【答案】B 【解析】试题解析:因为1sin a b t+==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B.考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:22log 2=,24log 3log 32+= .【答案】1,332-考点:对数运算10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d = .【答案】2,13-【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.考点:1.等差数列的定义和通项公式; 2.等比中项.11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .【答案】32,2π-【解析】试题分析:()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+23sin(2)242x π=-+,所以22T ππ==;min 32()22f x =-. 考点:1.三角函数的图象与性质;2.三角恒等变换.12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】1;2662--考点:1.分段函数求值;2.分段函数求最值.13、已知1e,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.【答案】23【解析】试题分析:由题可知,不妨1(1,0)e =,213(,)22e =,设(,)b x y =,则11b e x ⋅==,213122b e x y ⋅=+=,所以3(1,)3b =,所以123133b =+=. 考点:1.平面向量数量积运算;2.向量的模.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析:22,2224631034,22x y y xz x y x y x y y x +-≥-⎧=+-+--=⎨--<-⎩ 由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线b y xc =的对称点Q 在椭圆上,则椭圆的离心率是 .【答案】22考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16. (本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A 的值;(2)若B ,34a π==,求ABC ∆的面积.【答案】(1)25;(2)9考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17. (本题满分15分)已知数列na 和nb 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n +++++=-∈.(1)求na 与nb ;(2)记数列n n a b 的前n 项和为nT ,求nT .【答案】(1)2;n n n a b n ==;(2)1*(1)22()n n T n n N +=-+∈【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和.18. (本题满分15分)如图,在三棱锥111ABCA B C 中,011ABC=90=AC 2,AA 4,A ,AB 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明: 11D A BC A 平面; (2)求直线1A B和平面11B C B C 所成的角的正弦值.【答案】(1)略;(2)7(2)作1A F DE⊥,垂足为F,连结BF.因为AE⊥平面1A BC,所以1BC A E⊥.因为BC AE⊥,所以BC⊥平面1AA DE.所以11,BC A F A F⊥⊥平面11BB C C.所以1A BF∠为直线1A B与平面11BB C C所成角的平面角.由2,90AB AC CAB==∠=,得2EA EB==.由AE ⊥平面1A BC,得1114,14A A A B A E ===.由1114,2,90DE BB DA EA DA E ====∠=,得172A F =.所以17sin 8A BF ∠=考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角.19. (本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x :,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点, 且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.【答案】(1)222222(2,),(,)11t t A t t B t t ++;(2)32t因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点2(2,)A t t . 设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t ++. (2)由(1)知,21AP t =+,直线AP 的方程为20tx y t --=, 所以点B 到直线PA 的距离为221d t =+.所以PAB ∆的面积为3122t S AP d =⋅=. 考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.20. (本题满分15分)设函数2(),(,)f x x ax b a b R =++∈. (1)当214a b时,求函数()f x 在[1,1]上的最小值()g a 的表达式;(2)已知函数()f x在[1,1]上存在零点,021b a≤-≤,求b的取值范围.【答案】(1)222,2,4()1,22,2,24aa ag a aaa a⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,945]--考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.。

浙江2015单考单招数学试卷(优选.)

浙江2015单考单招数学试卷(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。

2015年浙江省高等职业技术教育招生考试数学试卷一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分.1.已知集合M ={}x |x 2+x +3=0,则下列结论正确的是( )A .集合M 中共有2个元素B .集合M 中共有2个相同元素C .集合M 中共有1个元素D .集合M 为空集2.命题甲“a <b ”是命题乙“a -b <0”成立的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件3.函数f (x )=lg (x -2)x 的定义域是( ) A.[)3,+∞ B.()3,+∞C.()2,+∞D.[)2,+∞4.下列函数在定义域上为单调递减的函数是( )A .f (x )=(32)x B .f (x )=ln x C .f (x )=2-x D .f (x )=sin x5.已知角α=π4,将其终边绕着端点按顺时针方向旋转2周得到角β,则β=( )A.9π4B.17π4C .-15π4D .-17π46.已知直线x +y -4=0与圆(x -2)2+(y +4)2=17,则直线与圆的位置关系是( )A .相切B .相离C .相交且不过圆心D .相交且过圆心7.若β∈(0,π),则方程x 2+y 2sin β=1所表示的曲线是( )A .圆B .椭圆C .双曲线D .椭圆或圆8.在下列命题中,真命题的个数是( )①a ∥α,b ⊥α⇒a ⊥b ②a ∥α,b ∥α⇒a ∥b③a ⊥α,b ⊥α⇒a ∥b ④a ⊥b ,b ⊂α⇒a ⊥αA .0个B .1个C .2个D .3个9.若cos(π4-θ)cos(π4+θ)=26,则cos2θ=( ) A.23 B.73 C.76 D.34610.在等比数列{}a n 中,若a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n =() A .(2n -1)2 B.13()2n -12C .4n -1 D.13()4n -111.下列计算结果不正确的....是( )A .C 410-C 49=C 39B .P 1010=P 910C .0!=1D .C 58=P 588!12.直线3x +y +2015=0的倾斜角为( )A.π6B.π3C.2π3D.5π613.二次函数f (x )=ax 2+4x -3的最大值为5,则f (3)=( )A .2B .-2 C.92 D .-9214.已知sin α=35,且α∈(π2,π),则tan(α+π4)=( )A .-7B .7C .-17 D.1715.在△ABC 中,若三角之比A ∶B ∶C =1∶1∶4,则sin A ∶sin B ∶sin C =( )A .1∶1∶4B .1∶1∶ 3C .1∶1∶2D .1∶1∶316.已知(x -2)(x +2)+y 2=0,则3xy 的最小值为( )A .-2B .2C .-6 D. -6 217.下列各点中与点M (-1,0)关于点H (2,3)中心对称的是( )A .(0,1)B .(5,6)C .(-1,1)D .(-5,6)18.焦点在x 轴上,焦距为8的双曲线,其离心率e =2.则双曲线的标准方程为() A.x 24-y 212=1 B.x 212-y 24=1C.y 24-x 212=1D.y 212-x 24=1二、填空题(本大题共8小题,每小题3分,共24分)19.不等式||2x -7>7的解集为________.(用区间表示)20.若tan α=b a (a ≠0),则a cos2α+b sin2α=________.21.已知AB=(0,-7),则3AB BA=________.22.当且仅当x∈________时,三个数4,x-1,9成等比数列.23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率P=________.24.二项式(3x2+2x3)12展开式的中间一项为________.25.体对角线为3cm的正方体,其体积V=________.26.如图所示,在所给的直角坐标系中,半径为2,且与两坐标轴相切的圆的标准方程为________.第26题图三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤27.(本题满分7分)平面内,过点A (-1,n ), B (n ,6)的直线与直线x +2y -1=0垂直,求n 的值.28.(本题满分7分)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1, x ≥03-2x , x <0,求值: (1)f (-12); (2分) (2)f (2-0.5); (3分)(3)f (t -1); (2分)29.(本题满分7分)某班数学课外兴趣小组共有15人,9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数.(1)要求组长必须参加; (2分)(2)要求选出的3人中至少有1名女生; (2分)(3)要求选出的3人中至少有1名女生和1名男生. (3分)30.(本题满分9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列. 求:(1)a, b, c的值; (3分)(2)按要求填满其余各空格中的数; (3分)(3)表格中各数之和.(3分)第30题图31.(本题满分6分)已知f (x )=3sin(ax -π)+4cos(ax -3π)+2(a ≠0)的最小正周期为23. (1)求a 的值; (4分)(2)求f (x )的值域. (2分)32.(本题满分7分)在△ABC 中,若BC =1,∠B =π3,S △ABC =32,求角C .33.(本题满分7分)如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,平面AD1C把正方体分成两部分. 求:(1)直线C1B与平面AD1C所成的角; (2分)(2)平面C1D与平面AD1C所成二面角的平面角的余弦值; (3分)(3)两部分中体积大的部分的体积.(2分)第33题图34.(本题满分10分)已知抛物线x2=4y,斜率为k的直线L, 过其焦点F且与抛物线相交于点A(x1,y1),B(x2,y2).(1)求直线L的一般式方程; (3分)(2)求△AOB的面积S;(4分)(3)由(2)判断,当直线斜率k为何值时△AOB的面积S有最大值;当直线斜率k为何值时△AOB的面积S有最小值.(3分)第34题图2015年浙江省高等职业技术教育招生考试数学试卷参考答案及评分标准一、单项选择题(本大题共18小题,每小题2分,共36分)1.【答案】 D 【解析】 x 2+x +3=0,其中Δ=1-4×1×3=-11<0从而方程无解,即集合M 为空集.∴答案选D.2.【答案】 C 【解析】 一方面,由a <b 得a -b <0;另一方面,由a -b <0可得a <b ,故甲是乙的充分且必要条件.∴答案选C.3.【答案】 A 【解析】 由⎩⎪⎨⎪⎧x ≠0,lg (x -2)≥0,x -2>0.得x ≥3,答案选A.4.【答案】 C 【解析】 A ,B 为单调递增函数,D 项中sin x 为周期函数.∴答案选C.5.【答案】 C 【解析】 由题意β=α-2×2π=π4-4π=-154π,答案选C. 6.【答案】 B 【解析】 圆心到直线的距离d =||2-4-412+12=32>17=半径,∴直线与圆相离,故选B.7.【答案】 D 【解析】 ∵β∈(0,π),∴sin β∈(0,1],当sin β=1时,得x 2+y 2=1它表示圆;当sin β≠1时,由sin β>0∴此时它表示的是椭圆.答案选D. 8.【答案】 C 【解析】 ②a ,b 有可能相交,④a 有可能在α内,①③正确.答案选C.9.【答案】 A 【解析】 ∵cos(π4-θ)cos(π4+θ)=(cos π4cos θ+sin π4sin θ)·(cos π4cos θ-sin π4sin θ)=12cos 2θ-12sin 2θ=12(cos 2θ-sin 2θ)=12cos2θ=26,∴cos2θ=23.故答案选A.10.【答案】 D 【解析】 ∵a 1+a 2+…+a n =a 1(1-q n )1-q=2n -1,∴q =2,a 1=1,又a 21+a 22+…+a 2n 是以a 21=1为首项,q 2=4为公比的等比数列,∴a 21+a 22+…+a 2n =13()4n-1,故选D. 11.【答案】 D 【解析】C 58=P 58P 55=P 585!,∴答案选D.12.【答案】 C 【解析】 直线3x +y +2015=0转化为y =-3x -2015,k =tan θ =-3,∴θ=2π3.13.【答案】 C 【解析】 函数f (x )的最大值为4×a ×(-3)-424×a=5,解得a =-12,即f (x )=-12x 2+4x -3∴f (3)=92.答案选C. 14.【答案】 D 【解析】 ∵sin α=35,且α∈(π2,π)∴cos α=-45,tan α=-34,tan(α+π4)=tan α+tanπ41-tan α·tanπ4=17.答案选D. 15.【答案】 B 【解析】 ∵三角之比A ∶B ∶C =1∶1∶4,且A +B +C =π,∴A =B =π6,C =2π3.故sin A ∶sin B ∶sin C =1∶1∶ 3.答案选B.16.【答案】 C 【解析】 ∵4=(x -2)(x +2)+y 2=x 2+y 2≥2||xy ,即2||xy ≤4,3||xy ≤6,得3xy ≤-6或3xy ≥6,故3xy 的最小值为-6,答案选C.17.【答案】 B 【解析】 设P (x ,y )与点M (-1,0)关于点H (2,3)中心对称,则x -12=2,y +02=3.∴x =5,y =6.答案选B.18.【答案】 A 【解析】 ∵双曲线的焦距为8,∴c =4,又离心率为e =ca=2,∴a =2,即得b 2=c 2-a 2=12,故双曲线的标准方程为x 24-y 212=1,答案选A.二、填空题(本大题共8小题,每小题3分,共24分)19.【答案】 (-∞,0)∪(7,+∞) 【解析】 ∵||2x -7>7∴2x -7>7或2x -7<-7,即x <0或x >7,故解集为(-∞,0)∪(7,+∞)20.【答案】 a 【解析】 ∵tan α=b a ,∴sin α=b a 2+b 2,cos α=aa 2+b 2,代入即可解得a cos2α+b sin2α=a (cos 2α-sin 2α)+2b sin αcos α=a .21.【答案】 28 【解析】 ∵BA →=-AB →=(0,7),∴||AB →-3BA →=||(0,-28)=28.22.【答案】{}-5,7【解析】 ∵三个数4,x -1,9成等比数列,∴有(x -1)2=4×9=36,解得x =-5或x =7.23.【答案】29【解析】 两个人分别出“石头”与“剪刀”有两种可能,且各自出“石头”与“剪刀”的概率为13,P =2×13×13=29.24.【答案】 26C 612x -5 【解析】 ∵展开式的中间一项为第7项,∴中间一项为26C 612x -5.25.【答案】 332cm 3 【解析】 设正方体的边长为a ,∵体对角线为3cm ,∴(2a )2+a 2=32,得a =3,∴体积V =332cm 3.26.【答案】 (x +2)2+(y +2)2=4 【解析】 因为圆与第三象限的x ,y 轴相切,所以圆心为(-2,-2),半径为2,故圆的标准方程为(x +2)2+(y +2)2=4.三、解答题(本大题共8小题,共60分)27.【解】因为直线x +2y -1=0的斜率K 1=-12(1分)所以由题意得过点A 、B 的直线斜率为2(2分) 由斜率公式得:2=6-nn -(-1)(2分)解得n =43(2分)28.【解】(1)∵-12<0,f (-12)=3-2×(-12)=4(2分)(2)∵2-0.5=2-12=12=22>0(1分)∴f (2-0.5)=(2-0.5)2-1=2-1-1=12-1=-12(2分)(3)当t -1≥0时,即t ≥1时,f (t -1)=(t -1)2-1=t 2-2t (1分) 当t -1<0时,即t <1时,f (t -1)=3-2(t -1)=5-2t (1分)29.【解】(1)组长必须参加,只要从剩下的14人中任取2人即可完成事件,选法总数为 C 214=14×132×1=91种 (2分) (2)3人中至少有1名女生分为三类选法:1女2男,2女1男,3女0男,选法总数为:C 16C 29+C 26C 19+C 36=216+135+20=371种(2分)(3)3人中至少有1名女生和1名男生分为2类选法:1女2男,2女1男,选法总数为:C 16C 29+C 26C 19=216+135=351 种(3分)30.【解】(1)因为每列的数成等比数列,即 2,1,a 成等比数列,所以a =12(1分)又因为每行的数成等差数列,即可求出第二列第五行的数字为32,同理可求出第二列第四行的数字为34,依次可求得b =516(1分)c =316 (1分)(2)(答全对得3 (3)由(1)(2)可得:第一行各数和为:116+332+18+532+316=2032=58,第二行各数和为:18+316+14+516+38=54,同样的方法可分别求得第三行各数之和为52,第四行各数之和为5,第五行各数之和为10. 所以各数之和为 10+5+52+54+58=1158(3分)31.【解】(1)f (x )=3sin(ax -π)+4cos(ax -3π)+2 =-3sin ax -4cos ax +2 =5sin(ax +β)+2 (2分)由题意有23=⎪⎪⎪⎪⎪⎪2πa (1分)解得:a =±3π(1分)(2)因为sin(ax +β)∈[-1,1](1分) 所以f (x )的值域为:f (x )∈[-3,7](1分)32.【解】∵ S △ABC =12BC ×AB ×sin B ⇒AB =2(1分)由余弦定理:AC 2=AB 2+BC 2-2BC ×AB ×cos B (1分) ∴ AC = 3 (1分) ∵BC 2+AC 2=AB 2(1分) ∴△ABC 是直角三角形 (1分) ∴ ∠C =90°(2分)33.【解】(1)因为直线C 1B ∥AD 1,且AD 1⊂平面AD 1C ,推知直线C 1B ∥平面AD 1C (1分) 所以直线C 1B 与平面AD 1C 所成的角为0°(1分)(2)连接C 1D ,交C 1D 于E, 连接AE, 因为E 是对角线交点,三角形ACD 1是等边三角形,所以DE ⊥CD 1,AE ⊥CD 1,所以∠AED 是平面C 1D 与平面AD 1C 所成二面角的平面角(1分) 在三角形ADE 中,DE =22a ,AE =62a , 所以 cos ∠AED =DE AE =22a62a =33. (2分)(3)设两部分中体积大的部分体积为V 1, 体积小的部分的体积为V 2, 正方体体积为V ,则有V =a 3,V2=VA -D 1DC =a 36(1分) 所以所求部分的体积V 1=V -V 2=a 3-a 36=56a 3(1分)第33题图34.【解】(1)由题意抛物线x 2=4y 的焦点F (0,1),因为直线L 的斜率为k, 所以直线L 的方程为y -1=kx 化为一般式即为:kx -y +1=0(3分)(2)联立方程得:⎩⎪⎨⎪⎧x 2=4y ①kx -y +1=0 ②, 将②代入①得:x 2-4kx -4=0,x 1+x 2=4k , x 1x 2=-4, ||AB =1+k 2||x 1-x 2=1+k 2(x 1+x 2)2-4x 1x 2 =1+k 2(4k )2+16=1+k 216k 2+16=4(1+k 2) (2分)又因为原点(0,0) 到直线kx -y +1=0的距离为:d =11+k 2(1分)所以△AOB 的面积S =12d ||AB =12×11+k 2×4(1+k 2)=21+k 2(1分)(3)由(2)得x 2-4kx -4=0, Δ=16k 2+16>0, ∴k ∈R (1分) 因为S =21+k 2,所以无论k 取何值,面积S 无最大值(1分)k =0时,S =2为最小值 (1分)最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。

浙江专升本高等数学真题试卷及答案解析

浙江专升本高等数学真题试卷及答案解析

浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试高等数学请考生按规定用笔将所有试题的答案涂、写在答题纸上。

1.))A.3.)A.C.1211-2⎩=+32z y 12A.6πB.4π C.3π D.2π5.在下列级数中,发散的是------------------------------------------------()A.)1ln(1)1(11+-∑∞=-n nn B.∑∞=-113nn nC.nn n 31)1(11∑∞=-- D.∑∞=-113nn n非选择题部分注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或6.7.8.9.10.14.函数lnx 在x=1处的幂级数展开式为__________的交点坐标是5z 2y 2x 与平面z 2-3-y 32x 直线.15=++==+_____三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。

计算题必须写出必要的计算过程,只写答案的不给分。

)(f ),0(1)1(f 16.42x x x x x x 求设≠+=+19dx xx x x 121.32⎰+++求dxcosx -sinx 22.20⎰π计算轴所围成的平面图形绕()求曲线(y )0b a y b -x 23.222>>=+a 旋转一周所得的旋转体体积⎰--=xx dt t f t x x x 0)(f )()(sin )(f 26.为连续函数,试求设浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。

1.B2.B3.B4.C5.D6.7.8.9.12814.]2,0(,1)1()1(01∈+--∑∞=+x n x n n n 15.(1,1,1)四、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。

杭州市2015年高职一模数学试卷

杭州市2015年高职一模数学试卷

杭州市2015年高职一模数学试卷本试题卷共三大题。

全卷共4页。

满分120分,考试时间120分钟。

考生须知1.本试卷分问卷和答卷两部分,满分120分。

2.在答题卷密封区内请写明校名、姓名、班级和学籍号。

3.全部答案都请做在答题卷标定的位置上,务必注意试题序号与答题序号相对应,直接做在问卷上无效。

一、单项选择题(本大题共18小题,每小题2分,共36分)1. 已知集合M={x|-2<x<1},则下列关系正确的是( ) A .5∈M B. 0∉M C.1∈M D.21-∈M 2.200是等差数列2,5,8,…的第( )项A .66B . 67C .68D .69 3.()= 120-sin ( ) A .23 B . 21 C .21- D .23-4.已知x x x f 4)2(2-=,则=)2(f ( )A .0B . -1C . -3D .3 5.已知31sin =α,α为第二象限角,则cos α等于( ) A .232 B . 232- C . 32 D .32- 6.a=b=0是ab=0的( )条件A .充分不必要B .必要不充分C . 充要D .既不充分也不必要 7.向量)2,1(--=a ,向量)5,3(=b ,则b a 32-=( )A .()9-4,B .()13-9,C .()9-11,D .()91-11-, 8.过点(3,-4),倾斜角为90的直线方程是( )A .y =-4B .x =3C .y +4=3-xD .不存在 9.点P(1,-1)到直线4--y x =0的距离( )A .22B .2C .2D .22 10.下列函数在(0,+∞)是增函数的是( )A .y=(x-1)2B . y=x 31log C .y=2-xD .y=x11.)3(31>-+x x x 的最小值是( ) A .2 B .5 C . -1 D .1 12.圆心在(1,-2),且与y 轴相切的圆的方程是( ) A .()()12122=++-y x B . ()()22122=++-y xC .()()12122=-++y x D .()()22122=-++y x13.抛出一枚骰子,在下面的几个事件中,哪个事件成功的机会最大( ) A .朝上的点数不大于6 B .朝上的点数为偶数 C .朝上的点数大于3 D .出现6点朝上 14.函数xxy cos 2sin 3=的周期是( )A .4π B .2πC .πD . 2π 15.已知正方体的对角线长为3,则这个正方体的体积为( ) A .33 B .3 C .1 D16.如图所示的椭圆中,是椭圆的左焦点,B F 1451=∠O BF ,则该椭圆的离心率为( )A .21 B .22C . 2D .17.cos100o=sin x ,那么满足条件的x 的最小正角是( ) A .80oB .10oC .190oD .350o18.计算机是将信息转换成十进制数进行处理的,二进制即“逢2进1”。

2015年普通高等学校招生全国统一考试数学理试题精品解析(浙江卷)

2015年普通高等学校招生全国统一考试数学理试题精品解析(浙江卷)

2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的. 1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.3. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4. 命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6. 设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7. 存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8. 如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线2212xy-=的焦距是,渐近线方程是.10. 已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 11. 函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12. 若4log 3a =,则22a a-+= .【答案】334. 【解析】13. 如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13. 若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15. 已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值. (1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.已知椭圆2212xy+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).20.(本题满分15分)已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a的前n项和为n S,证明112(2)2(1)nSn n n≤≤++(n∈*N).。

(完整word版)浙江省高职考试数学试卷汇总(2011-2016年),推荐文档

(完整word版)浙江省高职考试数学试卷汇总(2011-2016年),推荐文档

2011—2016浙江省数学高职考试题分章复习第一章集合不等式第二章不等式(11浙江高职考)1.设集合{23}A x x =-<<,{1}B x x =>,则集合A B =I ( ) A .{2}x x >- B . {23}x x -<< C . {1}x x > D . {13}x x <<(11浙江高职考)4.设甲:6xπ=;乙:1sin 2x =,则命题甲和命题乙的关系正确的是 ( )A . 甲是乙的必要条件,但甲不是乙的充分条件B . 甲是乙的充分条件,但甲不是乙的必要条件C . 甲不是乙的充分条件,且甲也不是乙的必要条件D . 甲是乙的充分条件,且甲也是乙的必要条件(11浙江高职考)18.解集为(,0][1,)-∞+∞U 的不等式(组)是 ( ) A .221x x -≥- B .1011x x -≥⎧⎨+≤⎩ C .211x -≥ D . 2(1)3x x --≤(11浙江高职考)19. 若03x <<,则(3)x x -的最大值是 .(12浙江高职考)1.设集合{}3A x x =≤,则下面式子正确的是 ( )A .2A ∈ B .2A ∉ C .2A ⊆ D . {}2A ⊆(12浙江高职考)3.已知a b c >>,则下面式子一定成立的是 ( )A .ac bc > B . a c b c ->- C .11a b< D . 2a c b += (12浙江高职考)8.设2:3,:230p x q x x =--= ,则下面表述正确的是 ( )A .p 是q 的充分条件,但p 不是q 的必要条件B . p 是q 的必要条件,但p 不是q 的充分条件C . p 是q 的充要条件D .p 既不是q 的充分条件也不是q 的必要条件(12浙江高职考)9.不等式3-21x <的解集为 ( )A . (-2,2)B . (2,3)C . (1,2)D . (3,4) (12浙江高职考)23.已知1x>,则161x x +-的最小值为 . (13浙江高职考)1.全集{,,,,,,,}U a b c d e f g h =,集合{,,,}M a c e h =,则U C M = ( ) A .{,,,}a c e h B .{,,,}b d f g C .{,,,,,,,}a b c d e f g h D . 空集φ(13浙江高职考)23.已知0,0,23xy x y >>+=,则xy 的最大值等于 .(13浙江高职考)27. (6分) 比较(4)x x -与2(2)x -的大小. (14浙江高职考)1. 已知集合},,,{d c b a M =,则含有元素a 的所有真子集个数( )A . 5个B . 6个C . 7个D . 8个(14浙江高职考)3.“0=+b a ”是“0=ab ”的( ) A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分又非必要条件(14浙江高职考)4.下列不等式(组)解集为}0|{<x x 的是( )A .3332-<-x x B .⎩⎨⎧>-<-13202x x C . 022>-x x D .2|1|<-x(14浙江高职考)19.若40<<x ,则当且仅当=x 时,)4(x x -的最大值为4.(15浙江高职考)1.已知集合M=错误!未找到引用源。

2015浙江省高职单考单招模拟试卷(数学)

2015浙江省高职单考单招模拟试卷(数学)

2015届高职单考单招数学测试卷姓名_________ 报考专业________得分_________一、选择题(本大题共18小题每小题2分,共36分)1. 设全集{}0U x x =≥,集合{}3A x x =≥,{}28B x x =≤≤,则U C A ∩B =( ) A .{}23x x ≤≤ B .{}23x x ≤< C .{}03x x ≤< D .{}010x x ≤≤2. 已知函数()25f x x ax =++,的最小值为1,则a =....................( )A . 4±B . 2C . 4-D .2±3.不等式231x -<的解集为.........................................( )A .(,2)-∞B .()1,+∞C .(1,2)D .(,1)(2,)-∞⋃+∞4.sin sin αβ=是αβ=成立的......................................( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件5.若sin tan 0θθ•<,则θ是..........................................( )A .第一,二象限角B .第二,三象限角C .第一,三象限角D .第三、四象限角6.cos 75︒=...........................................................( )A B C D 7.函数3sin()28x y π=-的最大值和周期分别是.............................( ) A . 3,4π B . 3,4π- C . 3,16π D . 3,16π-8.角α的终边上有一点(3,4)P -,则sin cos αα+=的值是.................( )A . 35-B . 45C . 15-D .15 9.圆221x y +=上的点到34250x y ++=的最短距离是....................( ) A . 1 B .5 C .4 D .610.已知点()3,4M -,抛物线24y x =的焦点为F ,则直线FM 的斜率为......( ) A . 2 B . 43- C . 1- D . 411.已知()32log f x =,则()1f -=............................( )A . 1B . 0C .12 D . 3log 7 12. 若53)sin(=+απ,则=-)22cos(απ..........................( ) A 、 257 B 、 257- C 、 2516 D 、2516- 13. 两圆C 1:x 2+y 2=4与C 2:x 2+y 2-2x -1=0的位置关系是..........( )A .相外切B .相内切C .相交D .外离14. 下列关系不成立是.............................................( )A.a >b ⇔a +c >b +cB.a >b 且c >d ⇔a +c >b +dC.a >b 且b >c ⇔a >cD.a >b ⇔ac >bc15. 椭圆116922=+y x 离心率为......................................( ) A .54 B .53 C .47 D .37 16. 若角α的终边经过点(︒-︒30cos ,30sin ),则αsin 的值是............( ) A.2121 C. 23 D. -23 17. 设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF斜率为,那么PF =......................................( )A.18. 化简αααα2cos sin 22sin 32cos 12•+等于.....................................( ) A .αtan B .α2tan C .31α2tan D .α2tan 1 二、填空题(本大题共8小题,每小题3分)19.在等腰ABC ∆中,∠B 为底角且3cos 5B =,则顶角A 的正弦值为 . 20.圆心为直线10x y -+=与直线220x y ++=的交点,半径为2的圆的方程为 .21.直线经过点(3,2)A -和点(4,5)B -,则直线AB 的距离 .22.在ABC ∆中,若sin 3sin 5A C =,则23a c c+= . 23.函数=)(x f 2222{+++-x x x )0()0(≤>x x 的图象和函数x x g 2)(=的图象的交点的个数有 个。

台州市2015年中等职业技术学校高一数学联考A卷试卷及参考答案

台州市2015年中等职业技术学校高一数学联考A卷试卷及参考答案

高一数学联考第2页(共6页)4、不等式()()230x x -+<的解集是( ▲ ).A ()32-, B.(][),23,--∞+∞ C. ()3,2- D.(][),32,--∞+∞5、若()222f x x x =-,则()8f =( ▲ ).A 0 B.2 C.4 D.86、以下指数运算正确的是( ▲ ).A m n m n a a a ++= B.1m m a a a +=⋅ C.m n m n a a a =⋅ D.m n m na a a -=- 7、当1>a 时,在同一坐标系内,函数x a y -=与x y a log =的大致图像是( ▲ )AB C D8、在02π 之间,与103π-同终边的角是( ▲ ) .A 3π B.23π C.43π D.53π9、计算:()()sin sin παπα+--=( ▲ ).A 0 B.2sin α C.2sin α- D.sin 2α10、已知sin 0,tan 0αα<>,则α是第几象限的角( ▲ ).A 第一象限 B.第二象限 C.第三象限 D.第四象限11、在等差数列{}n a 中,首项513a =,公差3d =,那么10a =( ▲ ).A 25 B.28 C.31 D.34 12、根据三角形法则,BD AB AC +-=( ▲ ).A 0 B. DC C.CDD.AD高一数学联考第3页(共6页)13、倾斜角为45︒,且经过点(1,3)的直线方程是( ▲ ).A 20x y -+= B.40x y -+= C.40x y +-= D.20x y +-=14、以()1,2-为圆心,并且经过原点的圆方程为( ▲ ).A 22(1)(2)5x y ++-= B.22(1)(2)9x y ++-=C. 22(1)(2)9x y -++=D.22(1)(2)5x y -++=15、定义新运算2sin2ln x y x y ⊕=-,则14eπ⊕=( ▲ ) .A 2 B.3 C.4 D.5二、填空题(从10个小题中选做8题,每小题3分,共24分。

2015年浙江专升本数学真题及答案解析

2015年浙江专升本数学真题及答案解析

1
为交错项级数,易知
1
单调递减且
n1
ln(n 1)
ln(n 1)
lim 1 0 ,由莱布尼茨判别法可知该级数收敛; n ln(n 1)
n 1
(B)
n1
n 3n1
为正项级数,可直接使用比值判别法
lim
n
3n n
1 1 ,可知级数收敛; 3
3n1
(C)
n1
(1)n1
1 3n
1
为交错项级数,易知
x 1 ,当 x (0,1) , F (x) 0 , F (x) 单调递减,当 x (1, +) , F (x) 0 , F (x) 单调
递增,故其单调递减区间为 (0,1) 。

9.设函数
f
(x)
2x 2x , x a,
升 2 x 0, 在 x 0 处连续,则必有 x 0,
专 a
江m n 6 6
5.在下列级数中,发散的是( ).
2
3
(A) (1)n1
1
n1
ln(n 1)
浙 (C)
n1
(1)n1
1 3n
n
(B) n1 3n1
n
(D)
n1 3n 1
【思路点拨】常数项级数收敛性的判别可采取级数收敛的必要条件和各类比较判别法或者莱
布尼茨判别法。
【答案】(D)。
【 解 析 】( A ) 级 数 (1)n1
江xx0 g(x)
0 1 1 ,故为同阶无穷小。
xx0 g (x) xx0 g (x)
浙 2.设 f (x) 在 x a 处可导,则 lim f (a x) f (a x) ( ).
x0

2015年专升本高数真题答案解析(浙江)

2015年专升本高数真题答案解析(浙江)

浙江省2015年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。

题号12345答案BBBCD1.B 解析:根据题意,0)()(lim0=→x g x f x x ,0)(lim 0=→x f x x ,0)(lim 0=→x g x x ,所以)()()(lim0x g x g x f x x -→11)()(lim 0-=-=→x g x f x x ,故当0x x →时,)()(x g x f -是)(x g 的同阶无穷小,所以选项B 正确。

2.B 解析:根据题意,)(a f '存在,+-+=--+→→x a f x a f x x a f x a f x x )()(lim )()(lim00)(2)()(lim 0a f xx a f a f x '=--→,所以选项B 正确。

3.B 解析:由)()(x f x F ='可知,)(x F 是)(x f 的一个原函数,即:C x F dx x f +=⎰)()(,可见选项B 正确。

4.C 解析:直线1L 方程的方向向量为:)2,1,1(1-=→s ,直线2L 方程的方向向量为:→→→⨯=211n n s →→→→→→→→→+-=+---=-=k j i k j i kj i 2100120112110210101,所以1L 与2L 的夹角可由公式得到:21cos 2121=⋅⋅=→→→→s s s s θ,所以3πθ=,可见选项C 正确。

5.D 解析:A 选项:根据莱布尼茨判别法,可知级数是收敛的,但是通项加绝对值后得到正项级数∑∞=+1)1ln(1n n ,由于)1ln(11+<n n ,根据小散证大散,推得∑∞=+1)1ln(1n n 是发散的,因此级数)1ln(1)1(11+-∑∞=-n n n 为条件收敛。

B 选项:根据比值判别法,131331lim1<=+-∞→n n n n n ,可知级数是收敛的。

2015年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)解析版

2015年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)解析版

2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的.1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =I ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.3. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4. 命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6. 设A ,B 是有限集,定义(,)()()d A B card A B card A B =-U I ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立7. 存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8. 如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线2212xy-=的焦距是,渐近线方程是.10. 已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 .11. 函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12. 若4log 3a =,则22aa-+= .【答案】334. 【解析】13. 如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13. 若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15. 已知12,e e r r 是空间单位向量,1212e e ⋅=r r ,若空间向量b r 满足1252,2b e b e ⋅=⋅=r r r r ,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈r u r u u r r u r u u r u u u u r,则0x = ,0y = ,b =r .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=o,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.18.(本题满分15分)已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.19.(本题满分15分)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).20.(本题满分15分)已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a的前n项和为n S,证明112(2)2(1)nSn n n≤≤++(n∈*N).。

2015年全国普通高等学校招生统一考试理科数学(浙江卷)

2015年全国普通高等学校招生统一考试理科数学(浙江卷)

2015年全国普通高等学校招生统一考试理科数学(浙江卷)一、选择题(题型注释) 1.已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则( )A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.38cmB.312cmC.3323cmD.3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <>4.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A.**,()n N f n N ∀∈∈且()f n n >B.**,()n N f n N ∀∈∈或()f n n >C.**00,()n N f n N ∃∈∈且00()f n n >D.**00,()n N f n N ∃∈∈或00()f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有( )A.(sin 2)sin f x x =B.2(sin 2)f x x x =+ C.2(1)1f x x +=+ D.2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A.A DB α'∠≤B.A DB α'∠≥C.A CB α'∠≤D.A CB α'∠≤第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)9.双曲线2212x y -=的焦距是 ,渐近线方程是 . 10.已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3)f f -= ,()f x 的最小值是 . 11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12.若4log 3a =,则22a a -+= .13.如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15.已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x yR ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题(题型注释)16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为7,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.18.(本题满分15分)已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.19.(本题满分15分)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).20.(本题满分15分)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112n n a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).参考答案1.C.【解析】由题意得,)2,0(=P C R ,∴,故选C.考点:1.解一元二次不等式;2.集合的运算.2.C.【解析】由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,∴体积3322231223=⨯⨯+=V , 故选C.考点:1.三视图;2.空间几何体的体积计算.3.B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a d a d a 35)7)(2()3(11121-=⇒++=+, ∴d d a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.考点:1.等差数列的通项公式及其前n 项和;2.等比数列的概念4.D.【解析】根据全称命题的否定是特称命题,可知选D.考点:命题的否定5.A.【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A. 考点:抛物线的标准方程及其性质6.A.【解析】命题①显然正确,通过如下文氏图亦可知),(C A d 表示的区域不大于),(),(C B d B A d +的区域,故命题②也正确,故选A.考点:集合的性质7.D.【解析】A :取0=x ,可知0sin )0(sin =f ,即0)0(=f ,再取2π=x ,可知2sin )(sin ππ=f ,即1)0(=f ,矛盾,∴A 错误;同理可知B 错误,C :取1=x ,可知2)2(=f ,再取1-=x ,可知0)2(=f ,矛盾,∴C 错误,D :令)0(|1|≥+=t x t , ∴1)()0()1(2+=⇔≥=-x x f t t t f ,符合题意,故选D.考点:函数的概念8.B.【解析】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=, 在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯, 在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=, 同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==,显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222c o s c o s 2A N N P A N P A N N P α''+-'=∠='⨯2222s in si n (4c o s 2s i ns i n t θθθθθ+--=⨯222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号), ∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.考点:立体几何中的动态问题9.32,x y 22±=. 【解析】 由题意得:2=a ,1=b ,31222=+=+=b a c ,∴焦距为322=c , 渐近线方程为x x a b y 22±=±=. 考点:双曲线的标准方程及其性质10.0,3-22.【解析】0)1())3((==-f f f ,当1≥x 时,322)(-≥x f ,当且仅当2=x 时,等号成立,当1<x 时,0)(≥x f ,当且仅当0=x 时,等号成立,故)(x f 最小值为322-. 考点:分段函数11.π,]87,83[ππππk k ++,Z k ∈. 【解析】1cos 2sin 23()1)2242x x f x x π-=++=-+,故最小正周期为π,单调递减区间为 ]87,83[ππππk k ++,Z k ∈. 考点:1.三角恒等变形;2.三角函数的性质12.334. 【解析】∵3log 4=a ,∴3234=⇒=a a ,∴33431322=+=+-a a . 考点:对数的计算13.87. 【解析】如下图,连结DN ,取DN 中点P ,连结PM ,PC ,则可知PMC ∠即为异面直 线AN ,CM 所成角(或其补角)易得221==AN PM , 31222=+=+=CN PN PC ,2222=-=AM AC CM , ∴872222328cos =⨯⨯-+=∠PMC ,即异面直线AN ,CM 所成角的余弦值为87.考点:异面直线的夹角.14.3.【解析】122≤+y x 表示圆122=+y x 及其内部,易得直线y x 36--与圆相离,故 y x y x 36|36|--=--,当022≥-+y x 时,2263=24x y x y x y +-+---+, 如下图所示,可行域为小的弓形内部,目标函数42+-=y x z ,则可知当53=x ,54=y 时, 3min =z ,当022<-+y x 时,2263=834x y x y x y +-+----,可行域为大的弓形 内部,目标函数y x z 438--=,同理可知当53=x ,54=y 时,3min =z ,综上所述, |36||22|y x y x --+-+.考点:1.线性规划的运用;2.分类讨论的数学思想;3.直线与圆的位置关系 15.1,2,22.【解析】问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,两边平方即 xy y x y x |b |+--++5422在0x x =,0y y =时,取到最小值1,2245|b|x y x y xy ++--+22(4)5||x y x y b =+--+22243()(2)7||24y x y b -=++--+,∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧=+-=-=-+22||211||702024002000y x y y x . 考点:1.平面向量的模长;2.函数的最值 16.(1)2;(2)3b =. 【解析】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得co s 2s i n 22s i n c o s B C C C-==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin C =cos C =, 又∵sin sin()sin()4B AC C π=+=+,∴sin B =,由正弦定理得c =, 又∵4A π=,1sin 32bcA =,∴bc =,故3b =.考点:1.三角恒等变形;2.正弦定理. 17.(1)详见解析;(2)18-. 【解析】(1)根据条件首先证得AE ⊥平面1A BC ,再证明1//A D AE ,即可得证;(2) 作1A F BD ⊥,且1A FBD F =,可证明11A FB ∠为二面角11A BD B --的平面角,再由余弦定理即可求得111cos 8A FB ∠=-,从而求解. 试题解析:(1)设E 为BC 的中点,由题意得1A E ⊥平面ABC ,∴1A E A E ⊥,∵AB AC =,∴AE BC ⊥,故AE ⊥平面1A BC ,由D ,E 分别11B C ,BC 的中点,得1//DE B B 且1DE B B =,从而1//DE A A ,∴四边形1A AED 为平行四边形,故1//A D AE ,又∵AE ⊥平面11A BC ,∴1A D ⊥平面11A BC ;(2)作1A F BD ⊥,且1A F BD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=,得114AB A A ==,由11A D B D =, 11A B B B =,得11A DB B DB ∆≅∆,由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1A D =14A B =,190DA B ∠=,得BD =1143A F B F ==,由余弦定理得,111cos 8A FB ∠=-.考点:1.线面垂直的判定与性质;2.二面角的求解 18.(1)详见解析;(2)3. 【解析】(1)分析题意可知()f x 在[1,1]-上单调,从而可知(,)max{|(1)|,|(1)|}M a b f f =-,分类讨论a 的取值范围即可求解.;(2)分析题意可知 ||,0||||||,0a b ab a b a b ab +≥⎧+=⎨-<⎩,再由(,)2M a b ≤可得|1||(1)|2a b f ++=≤, |1||(1)|2a b f -+=-≤,即可得证.试题解析:(1)由22()()24a a f x x b =++-,得对称轴为直线2ax =-,由||2a ≥,得||12a-≥,故()f x 在[1,1]-上单调,∴(,)max{|(1)|,|(1)|}M a b f f =-,当2a ≥时,由 (1)(1)24f f a --=≥,得max{(1),(1)}2f f -≥,即(,)2M a b ≥,当2a ≤-时,由(1)(1)24f f a --=-≥,得m a x {(1),(1)}2f f--≥,即(,)2M ab ≥,综上,当||2a ≥时, (,)2M a b ≥;(2)由(,)2M a b ≤得|1||(1)|2a b f ++=≤,|1||(1)|2a b f -+=-≤,故||3a b +≤,||3a b -≤,由||,0||||||,0a b a b a b a b ab +≥⎧+=⎨-<⎩,得||||3a b +≤,当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[1,1]-上的最大值为2,即(2,1)2M -=,∴||||a b +的最大值为3..考点:1.二次函数的性质;2.分类讨论的数学思想. 19.(1)m <m >(2.【解析】(1)可设直线AB 的方程为1y x b m =-+,从而可知22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩有两个不同的解,再由AB 中点也在直线上,即可得到关于m 的不等式,从而求解;(2)令1t m=,可 将AOB ∆表示为t 的函数,从而将问题等价转化为在给定范围上求函数的最值,从而求解.试题解析:(1)由题意知0m ≠,可设直线AB 的方程为1y x b m =-+,由22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222112()102b x x b m m +-+-=,∵直线1y x b m =-+与椭圆2212x y +=有两 个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m b M m m ++代入直线 方程12y mx =+解得2222m b m +=-,②。

浙江省 2015 年高等职业技术教育招生考试 数 学 试 卷答案

浙江省 2015 年高等职业技术教育招生考试 数 学 试 卷答案

1
16
4
b
3 8
1 4
3 8
a
5 8
3 4
1 2
3 4
1
5 4
3 2
1
3 2
2
5 2
3
(答全对得 3 分,每行或每列答对得 0.5 分) (3)由(1)(2)可得:
1 3 1 5 3 20 5 第一行各数和为:16+32+8+32+16=32=8,
第二行各数和为:18+136+14+156+38=54,
22.【答案】 {-5,7} 【解析】 ∵三个数 4,x-1,9 成等比数列,∴有(x-1)2=4×9
=36,解得 x=-5 23.【答案】
或29x=【7.解析】
两个人分别出“石头”与“剪刀”有两种可能,且各自出“石
头”与“剪刀”的概率为13,P=2×13×13=29. 24.【答案】 26C612x-5 【解析】 ∵展开式的中间一项为第 7 项,∴中间一项为 26C612x-5.
3
25.【答案】 32 cm3 【解析】 设正方体的边长为 a,∵体对角线为 3cm,∴( 2a)2+a2
3
=32,得 a= 3,∴体积 V=32 cm3.
26.【答案】 (x+2)2+(y+2)2=4 【解析】 因为圆与第三象限的 x,y 轴相切,所以圆心 为(-2,-2),半径为 2,故圆的标准方程为(x+2)2+(y+2)2=4.
三、解答题(本大题共 8 小题,共 60 分)
1 27.【解】因为直线 x+2y-1=0 的斜率 K1=-2(1 分)
所以由题意得过点 A、B 的直线斜率为 2(2 分)
淘宝:合智美图 专注中职升学考前教辅
6-n 由斜率公式得:2=n-(-1)(2 分) 解得 n=43 (2 分) 28.【解】(1)∵-12<0,f(-12)=3-2×(-12)=4(2 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年浙江省高等职业技术教育招生考试
数学试卷A 卷
姓名 准考证号
一、单项选择题(本大题共18小题,每小题2分,共36分)
(在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。


1.已知集合M={}
032
=++x x x ,则下列结论正确的是
A .集合M 中共有2个元素
B .集合M 中共有2个相同元素
C .集合M 中共有1个元素 D.集合M 为空集
2.命题甲""b a <是命题乙"0"<-b a 成立的 A .充分不必要条件 B .必要不充分条件
C .充分且必要条件
D .既不充分也不必要条件 3.函数x
x x f )
2lg()(-=
的定义域是 A .[)+∞,3 B .),3(+∞ C .),2(+∞ D .[)+∞,2 4.下列函数在定义域上为单调递减的函数是 A .x
x f )2
3()(= B .x x f ln )(= C .x x f -=2)( D .x x f sin )(= 5.已知角4
π
α=
,将其终边按顺时针方向旋转2周得角β,则β=
A .
4
9π B .
4
17π C .415π-
D .4
17π
- 6.已知直线04=-+y x 与圆,17)4()2(2
2=++-y x 则直线和圆的位置关系是
A .相切
B .相离
C .相交且不过圆心
D . 相交且过圆心
7.若),,0(πβ∈则方程
1sin 2
2=+βy x 所表示的曲线是 A.圆 B .椭圆 C.双曲线 D.椭圆或圆 8.在下列命题中,真命题的个数是 ①
b a b a ⊥⇒⊥αα,// ② b a b a ////,//⇒αα
③b a b a //,⇒⊥⊥αα ④αα⊥⇒⊂⊥a b b a , A.0个 B .1个 C.2个 D.3个
9.若6
2)4cos()4cos(=+-θπθπ,则=θ2cos
A .
32 . B 37 C .67 D .6
34
10.在等比数列{}n a 中,若,1221-=+++n
n a a a 则++2
22
1a a ……=+2
n a
A.2)12(-n
B.2
)12(3
1-n C.14-n
D.)14(3
1-n
11.下列计算结果不正确的是 A.3
949
410
C
C C =- B.
9
101010P
P = C.
0!=1 D.!
86
868
P C =
12.直线020153=++y x 的倾斜角为 A.
6π B.3
π
C.32π
D.65π
13.二次函数34)(2-+=x ax x f 的最大值为5,则=)3(f A. 2 B.2- C.29 D.2
9
- 14.已知53sin =
α,且),,2(ππα∈则=+)4
tan(π
α A.7- B.7 C.7
1- D.71
15.在ABC ∆中,若三角之比,4:1:1::=C B A 则=C B A sin :sin :sin A.4:1:1 B.3:1:1 C. 2:1:1 D .3:1:1 16.已知0)2)(2(2
=++-y x x ,则3xy 的最小值为 A.2- B.2 C.6- D.26-
17.下列各点中与点)0,1(-M 关于点)3,2(H 中心对称的是 A.)1,0( B )6,5( C. )1,1(- D. )6,5(-
18.焦点在x 轴上,焦距为8的双曲线,其离心率e=2.则双曲线的标准方程为
A.
112422=-y x B.141222=-y x C.112422=-x y D.14
122
2=-x y
二.填空题:(本大题共8小题,每小题3分,共24分)
19.不等式772>-x 的解集为 (用区间表示) 20.若),0(tan ≠=
a a
b
α则=+αα2sin 2cos b a
21.已知=()7,0-,=- 22.当且仅当∈x 时,三个数4,9,1-x 成等比数列
23.在“剪刀、石头、布”游戏中,两个人分别出“石头”与“剪刀”的概率=P
24.二项式123
3
2
)2(x x +
25.体对角线为3cm 的正方体,X 26.
三.解答题:(本大题共8小题,共60分) (题26图) (解答题应写出文字说明及演算步骤)
27.(本题满分7分)平面内,过点)6,(),,1(n B n A -的直线与直线012=-+y x 垂直,求n 的值.
28.( 本题满分7分)已知函数{=)(x f 0
,230
,12<-≥-x x x x ,求值:
(1))2
1(-f ;(2分) (2))2
(5
.0-f ;(2分)
(3))1(-t f .(3分)
29 (本题满分7分)课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数. (1)要求组长必须参加;(2分)
(2)要求选出的3人中至少有1名女生;(2)
(3)要求选出的3人中至少有1名女生和1名男生.(3分)
30.(9分)根据表中所给的数字填空格,要求每行的数成等差数列,每列的数成等比数列.
求:(1)c b a ,,的值;(3分)
(2)按要求填满其余各空格中的数;(3分) (3)表格中各数之和.(3分)
(题30表格) 31.( 本题满分6分)已知2)3cos(4)sin(3)(+-+-=ππax ax x f (0≠a )的最小正周
期为
3
2, (1)求a 的值;(4分)
(2))(x f 的值域.(2分)
32.( 本题满分7分)在ABC ∆中,若,2
3
,3
,1=
=∠=∆ABC S B BC π
,求角C .
33. (本题满分7分)如图所示, 在棱长为a 正方体1111D C B A ABCD -中,平面C AD 1把正 方体分成两部分;
求:(1)直线B C 1与平面C AD 1所成的角; (2分)
(2)平面D C 1与平面C AD 1所成二面角的
平面角的余弦值; (3分) (3)两部分中体积大的部分的体积. (2分)
34.( 本题满分10分)已知抛物线y x 42= ,斜率为k 的直线L 过其焦点F 且与抛物线相
交于点)(),,(2,211y x B y x A .
(1)求直线L 的一般式方程;(3分) (2)求AOB ∆的面积S ;(4分)
(3)由(2)判断:当直线斜率k 为何值时AOB ∆的面积S 有最大值;当直线斜率k 为
何值时AOB ∆的面积S 有最小值.(3分)
(题34图)。

相关文档
最新文档