2.1 双光束干涉
双光束干涉PPT课件
/ (2n)。
L h sin
h 2n
46
(2)劈尖的等厚干涉条纹
L2nsin (33)
劈角 小,条纹间距大;反之,劈角 大,条纹
间距小。因此,当劈尖上表面绕棱线旋转时, 随着
的增大, 条纹间距变小, 条纹将向棱线方向移动。
47
(2)劈尖的等厚干涉条纹
49
(2)劈尖的等厚干涉条纹 应用:
Δh
b
b'
50
(3)牛顿环 在一块平面玻璃上放置一曲率半径 R 很大的平凸透 镜,在透镜凸表面和玻璃板的平面之间便形成一厚 度由零逐渐增大的空气薄层。
S
R
r
o
h
51
(3)牛顿环 当以单色光垂直照射时,在空气层上会形成一组以 接触点 O 为中心的中央硫、边缘密的圆环条纹,称 为牛顿环。
II12 00..906016 V0.0814
所以,在平行板表面反射率较低的情况下,通常应
用的是反射光的等倾干涉。
35
2)楔形平板产生的干涉——等厚干涉 扩展光源中的某点 S0 发出一束光,经楔形板两表面 反射的两支光相交于 P 点,产生干涉,其光程差为
n ( A B B C ) n 0 ( A P A C )
23
②等倾亮圆环的半径
一般情况下,1N 和 2N 都很小,近似有 nn01N/ 2N
1 c o s2 N 2 2 N /2 n 0 21 2 N /2 n 2 ,因而由上式可得
1Nn10
n N1
h
(23)
2 n h ( 1 c o s2 N ) ( N 1 ) ]
1 c o s2 N 2 2 N /2 n 0 21 2 N /2 n 2
2.1 双光束干涉
波函数
2
在 P 点相遇, E1 与 E2 振动方向间的夹角为 θ ,则在 P 点
处的总光强为
I I1 I 2 2 I1 I 2 cos cos I1 I 2 2 I12
是二光束 式中,I1、I2是二光束的光强,I12为干涉项; 的相位差,且有
注意:对干涉项I12 k2 r k1 r 01 02 t 1.若太小,看不到干
2nh(1 cos2 N ) ( N 1 )
一般情况下,θ1N和θ2N都很小(小角度入射),近似有
2
n11N n2 2 N
1N
1/2/2016
2 2 1 cos2 N 22N / 2 n0 1N / 2n2
1 n0
n N 1 h
30
相应第N条亮纹的半径rN为
6
1/2/2016
(2) 对叠加光束振动方向的要求
当两光束光强相等,则条纹可见度为V=cosθ
若θ=0,两光束的振动方向相同时,V=1,干涉条纹 最清晰; 若θ=π/2,两光束正交振动时,V=0,不发生干涉; 当0<θ<π/2时,0<V<1,干涉条纹清晰度介于 上面两种情况之间。
为了产生明显的干涉现象,要求两叠加光束的 振动方向相同。
因而干涉条纹的强度很弱,实际上难以应用。
③ 当用白光进行干涉实验时,由于干涉条纹的光强极 值条件与波长有关,除了 m=0 的条纹仍是白光以外, 其它级次的干涉条纹均为不同颜色(对应着不同波长) 分离的彩色条纹。
1/2/2016
21
2.分振幅双光束干涉
特点: 可以使用扩展光源; 可以获得清晰的干涉 条纹;- -应用广泛 干涉条纹是定域的.
涡旋光的产生方法
涡旋光的产生方法引言:涡旋光是一种特殊的光束,具有旋转的相位结构。
它在光学领域具有广泛的应用,如光学传输、精密测量等。
本文将介绍涡旋光的产生方法,并详细阐述其中的原理和技术。
一、光学元件产生涡旋光1.1 相位板相位板是最常用的产生涡旋光的光学元件之一。
相位板上的相位延迟分布使得光束具有旋转的相位结构。
其中,涡旋光的旋转方向和旋转速度由相位板上的相位延迟分布决定。
通过采用不同的相位分布设计,可以产生不同的涡旋光束。
1.2 空间光调制器空间光调制器是另一种常用的产生涡旋光的装置。
它通过控制空间光相位和振幅分布来实现涡旋光的产生。
空间光调制器通常由液晶或电光晶体制成,通过外加电场或电压来改变晶体的折射率,从而实现对光束相位和振幅的调控。
二、光干涉产生涡旋光2.1 双光束干涉双光束干涉是一种产生涡旋光的简单方法。
通过将两束光束进行干涉,可以形成一个涡旋状的干涉场。
其中,干涉程度和干涉区域的旋转方向和速度由入射光束的相位和振幅分布决定。
2.2 自旋轨道耦合自旋轨道耦合是一种利用自旋和轨道角动量相互作用产生涡旋光的方法。
通过选择特定的光束传播路径和光束偏振状态,可以使光束的自旋和轨道角动量发生耦合,从而实现涡旋光的产生。
三、非线性光学效应产生涡旋光非线性光学效应是一种利用光学材料的非线性特性产生涡旋光的方法。
其中,最常见的是自旋角动量光束的产生。
通过将高功率激光束传播到非线性光学材料中,可以通过频率转换和非线性相位调制来产生具有涡旋结构的自旋角动量光束。
四、光学共焦显微镜产生涡旋光光学共焦显微镜是一种产生涡旋光的高级技术。
通过在光学共焦显微镜中引入相位板或空间光调制器,可以将涡旋光束聚焦到样品中,实现对样品的高分辨率成像。
同时,通过控制涡旋光的参数,如旋转方向、旋转速度等,可以获得更多关于样品的信息。
结论:涡旋光的产生方法多种多样,包括光学元件、光干涉、非线性光学效应和光学共焦显微镜等。
不同的方法适用于不同的应用场景。
《双光束干涉》课件
对于某些实验需求,可以使用扩 展光源代替激光器,以模拟自然 光或实现更大的干涉条纹可见度 。
分束器
半透半反镜
将一束光分成两束相同的光,一束反 射,一束透射,是常用的分束器。
分束棱镜
利用棱镜的折射特性将一束光分成两 束不同角度的光,常用于产生不同路 径长度的干涉。
反射镜和干涉仪
反射镜
用于改变光路,使两束光在空间上交叠,形成干涉。
干涉条纹的移动与变化
当一束光波的波长或相位发生变化时,干涉条纹的位置 和形状也会随之改变。
当两束光波的振幅(强度)发生变化时,干涉条纹的可 见度和强度也会受到影响。
当一束光波在空间中传播时,遇到不均匀介质或受到外 界扰动时,干涉条纹的位置和形状也会发生变化。
干涉条纹的可见度与强度
01
干涉条纹的可见度与两束光波的 相位差和振幅有关。相位差越小 ,可见度越高;振幅越大,可见 度越高。
双光束干涉的原理
光程差
01
两束光在相遇点产生的光程差会导致相位发生变化,进而影响
干涉结果。
干涉加强
02
当两束光的光程差为半波长的偶数倍时,光强增强,形成明条
纹。
干涉减弱
03
当两束光的光程差为半波长的奇数倍时,光强减弱,形成暗条
纹。
02
双光束干涉实验装置
Chapter
光源
激光器
作为相干性好的光源,激光器能 够产生单色性好的光束,是双光 束干涉实验中的理想选择。
激光器稳定性误差
激光器的输出功率和波长可能会随时间变化,导 致干涉条纹的移动和变化。
探测器响应误差
探测器的响应速度和精度会影响对干涉条纹的记 录和分析。
THANKS
s双光束干涉2.1.2-4(楔形平板)
2nh cos 2 2 2
当光源距平板较远或观察干涉条纹用 的仪器孔径很小时,在整个视场内可视为 入射角为常数,光程差只依赖于反射光处 的平板厚度h,干涉条纹与楔形板的厚度 一一对应,这种干涉称为等厚干涉
2.1 双光束干涉
2.1.2 双光束干涉
3.分振幅法双光束干涉
②楔形平板产生的干涉--等厚干涉 如图所示系统中,平行光垂直入射楔板, θ2=0,若楔板折射率处处均匀,那么干涉条 纹与等h的轨迹相对应。 对应亮纹 : 对应暗纹 :
由该式可见,若通过实验测出第N个暗环的半径为 r,在已知 所用单色光波长的情况下,即可算出透镜的曲率半径。 牛顿环除了用于测量透镜的曲率半径R外,通常用来检验光学 零件的表面质量。
2.1 双光束干涉
2.1.2 双光束干涉
3.分振幅法双光束干涉
②楔形平板产生的干涉--等厚干涉 牛顿环 *牛顿环中心是暗点。愈往边缘,条纹 级别愈高; *可以证明相邻两环的间隔愈往边缘, 条纹愈密; * 复色光入射,彩色圆环; *透射光与之互补; *动态反应:连续增加薄膜的厚度, 视 场中条纹缩入, 反之,冒出。
2.1 双光束干涉
2.1.2 双光束干涉
3.分振幅法双光束干涉 ②楔形平板产生的干涉--等厚干涉 ③相邻亮条纹(或暗条纹)间的距离,即条纹间距: 劈角α↓,条纹间距↑。 α 或 d (连续增厚) ,则ΔL条纹向棱线方向压缩或移动。 λ ΔL ,白光照出彩条。
L
2n sin
R h,
垂直入射
R光束干涉
2.1.2 双光束干涉
3.分振幅法双光束干涉
②楔形平板产生的干涉--等厚干涉 牛顿环 因第N个暗环的干涉级次为(N+1/2),故可由暗环满足的 光程差条件:
双光束干涉实验的实施与分析
光的偏振与干涉效应
偏振性质研 究
对实验结果的影 响
偏振实验展 示
拓展干涉应用领 域
干涉效应分 析
光的偏振行为认 识
偏振片调整
观察到的效应
惠更斯原理在干涉实验中的应 用
惠更斯原理是描述波动现象的重要原理,可以应 用于解释干涉实验中的一些现象。结合惠更斯原 理,可以更深入地理解干涉现象的成因和干涉条 纹的形成规律。
激光干涉仪的精密测量
高精度测量
激光干涉仪能够 实现高精度的长 度、位移等参数
测量
原理优化
利用双光束干涉 实验的原理,可 以改进激光干涉
仪的性能
测量精度提 高
优化激光干涉仪, 可以提高测量的
精度和准确性
广泛应用
激光干涉仪在科 学研究、工业制 造等领域都有重
要应用
光栅测量与光学信号处理
01 精密测量
实验结果的统计与分析
多次实验数据统计
对多次实验数据进行统计 分析,可以得到更加准确 的结果和结论。
误差排除
利用统计方法对实验数据 进行处理,可以排除误差 影响,提高实验结果的可 靠性。
● 04
第四章 双光束干涉实验的进 一步研究
光的相干性与干 涉结果
光的相干性是影响干 涉结果的重要因素, 对光源的相干性进行 研究有助于理解干涉 现象的本质。通过改 变光源的相干性,可 以观察到干涉条纹的 变化,从而探究相干 性对干涉实验的影响。
校准精度
仪器校准是确保测量准确 性的重要环节 利用双光束干涉实验,可 以提高校准的精度,保证 测量结果的可信度
性能稳定
校准后的光学仪器性能更 为稳定,能够长时间保持 高精度工作 为各种应用提供可靠的测 量支持
可靠性提升
双光束干涉的基本条件
双光束干涉的基本条件《双光束干涉的基本条件》有一次啊,我和我的实验室小伙伴在做光学实验,那场景简直是“鸡飞狗跳”。
小伙伴大喊着:“这双光束干涉到底需要啥条件啊,怎么就是出不来效果呢?”这就引出了我们今天要好好讨论的双光束干涉的基本条件。
那到底啥是双光束干涉呢?简单来说,就是两束光相互叠加后产生的一种光学现象,有的地方加强了,有的地方减弱了。
这就像是两个人在拔河,如果力都往一块儿使就加强了,如果方向相反那就相互抵消减弱了,不过光可比这拔河复杂多了。
首先啊,光源得是相干光源。
啥叫相干光源呢?就好比两个双胞胎,得非常相似。
光是一种电磁波,相干光源发出的光它的频率得相同,要是频率不一样,就像两个人唱歌不在一个调上,肯定没法很好地产生干涉现象。
比如说,我们常见的普通灯泡发出的光就不是相干光,因为里面各种频率的光都有混在一起,乱哄哄的。
但是像激光就很容易满足这个条件,激光的频率那是相当单一的,就像训练有素的士兵一样整齐。
而且啊,相干光源的相位差还得保持恒定。
这相位就像是两个人出发的起始位置,定好了就不能乱变,如果一会儿超前一会儿落后,那也没法玩干涉了。
其次呢,这两束光还得满足振动方向相同或者有平行的振动分量。
这就好比两个人跳舞,得朝向一个方向扭,要是一个横着扭一个竖着扭,那肯定乱套了,光也同理。
如果振动方向完全垂直,那是不可能形成干涉现象的。
不过要是有平行的分量,那至少还能部分地干涉一下。
再就是两束光在相遇的区域里,它们的光程差还得在相干长度之内。
啥叫光程差呢?就是两束光走过的路程不一样产生的差值。
比如说一束光抄近道了,另一束光绕路了。
但是这个差值得在一个合理的范围内,要是超出了相干长度,就像两个人走散得太远了,那也就没法干涉了。
打个比方啊,你和朋友约好了在一个广场碰面一起做点啥,但是他离得太远,你们的“波”(就类比着资源或者联系之类的东西)完全到不了一起,那还咋相互作用呢。
从实际操作来说啊,我觉得对于那些想做好双光束干涉实验的人,在选择光源的时候就要特别小心了。
平行平板的多光束干涉
从平板反射出的各个光束的复振幅
根据菲涅耳公式,可以证明 r r' tt' 1 r 2
E01r rE0i E02r r'tt' E0iei E03r tt' r'3 E0iei2
E0lr
tt' r'(2l3)
E ei(l1) 0i
由平板表面反射系数、透射系数与 反射率、透射率的关系
r 2 r'2 R
双光束干涉的不足与多光束干涉
平行平板双光束干涉,仅是在 表面反射率较小情况下的一种 近似处理。
实际上光束在平板内会不断地 反射和折射,如图所示
4/12/2020
平行平板多次反射、折射 对反射光、透射光在无穷 远处或透镜焦平面上的干 涉均有贡献;
反射率较高的平板,需考 虑多光束干涉;
2.2.1 平行平板多光束的光场分布
若用条纹的半峰值全宽度
(简称半值宽度)ε=Δ表征
干涉条纹的锐度,则当
时 2m
2
It
1
1
Ii 1 F sin 2 m 2
4
F sin2 F sin2 1
4
4
若F很大(即R较大),ε必定很小,有sinε/4≈ε/4,F(ε/4)
2=1, 因而可得
4 2(1 R)
F
R
ε是单色光照射下多光束干涉条纹的 半值宽度,称为”仪器宽度“。
tt' 1 R T
4/12/2020
所有反射光在P点叠加,其合成场复振幅
E0r E01r
E 0 lr
l2
E01r tt' r'(2l3) E0i ei(l1) l2
令n l -2
揭示光的干涉现象的双光束干涉实验
揭示光的干涉现象的双光束干涉实验引言:光的干涉现象是物理学中一个重要的现象,它可以用于分析和理解光的性质。
双光束干涉实验是一种常见的实验方法,通过它可以直观地观察到光的干涉效应。
本文将详细介绍这个实验的背景、原理、实验过程以及实验的应用和其他相关的专业性角度。
一、背景介绍:光的干涉现象是指两束或多束光相互叠加时产生的互相增强或抵消的现象。
这种现象说明了光既可以表现出波动性,又可以表现出粒子性。
二、双光束干涉实验原理:双光束干涉实验是通过将单色光分为两束光,并使它们在某一空间区域内相遇,进而产生干涉现象。
其核心原理是叠加原理和相干性原理。
1. 叠加原理:光的叠加原理是指当两束或多束光相遇时,它们的振幅将叠加在一起。
在双光束干涉实验中,单色光通过分光镜分成两束光,然后经过不同的光程传播,再次汇聚到一起。
这时,两束光会发生干涉现象,根据光程差的不同,干涉会有增强或抵消的效果。
2. 相干性原理:相干性是指两束或多束光波的波形之间存在一定关系,可以通过相位差来描述。
两束光在叠加的时候,它们的相位差决定了干涉的结果。
当相位差为整数倍的2π时,叠加效果增强;当相位差为奇数倍的π时,叠加效果抵消。
因此,控制相位差是双光束干涉实验中的关键。
三、实验准备:进行双光束干涉实验前,我们需要准备一些实验装置。
以下是一些基本的实验装置和材料:1. 光源:单色光是必需的,如使用激光器或单色滤光片。
2. 分束器:通常使用半透镜或分光镜来将光分成两束。
3. 光路调节装置:如平行平板或反射镜,用于调节两束光的光程差。
4. 探测器:如光电二极管或底片,用于通过观察干涉条纹来检测干涉现象。
四、实验过程:下面将详细介绍双光束干涉实验的实验过程:1. 确定光源:选择一种适合的单色光源,如激光器。
2. 分束器设置:将光通过分束器分成两束光。
可以使用半透镜或分光镜来实现分束。
3. 光路调节:通过调整平行平板或反射镜的位置,控制两束光的光程差。
《双光束干涉》课件
在双光束干涉实验中,测量仪器通常 包括显微镜、测微器和光电探测器等。
03
双光束干涉的实验操作
实验准备
01
02
03
实验器材
包括分束器、反射镜、光 屏、激光器、测量尺等。
实验环境
确保实验室环境安静、无 风,避免外界因素干扰实 验结果。
安全措施
确保实验人员佩戴护目镜, 避免激光直接照射眼睛。
实验步骤
安装调试
按照实验要求,正确安 装和调试实验器材,确
保光路正确。
开启激光器
调整激光器输出功率, 使光束稳定。
观察干涉现象
观察双光束在光屏上的 干涉现象,记录干涉条
纹。
改变实验条件
可改变光束角度、光束 间距等条件,观察干涉
现象的变化。
数据处理与分析
数据记录
详细记录不同实验条件下 干涉条纹的数量、宽度和 分布。
改进方法一
使用更稳定的光源,如激光, 以减小光波相位差的不稳定性
。
改进方法二
使用高精度测量设备,确保双 缝宽度和间距的准确性。
THANKS
感谢观看
干涉现象
干涉现象是指两束或多束相干波在空 间某些区域相遇时,相互叠加而形成 的稳定强度分布现象。
干涉现象是波动性的重要特征之一, 是双光束干涉的基础。
双光束干涉的形成原理
双光束干涉是指两束相干光在空间相遇并相互叠加,形成稳 定的干涉现象。
双光束干涉的形成原理基于光的波动性和相干性,当两束相 干光波的相位差恒定时,它们在空间某些区域形成稳定的干 涉图案。
数据处理
对记录的数据进行计算和 处理,求出干涉条纹的间 距和角度。
结果分析
根据数据处理结果,分析 双光束干涉的规律和特点, 得出结论。
双光束干涉用于波长测定matlab程序
双光束干涉是一种常用的光学方法,用于测量光的波长。
利用双光束干涉技术,可以精确地测定光的波长,这在许多光学应用中都是非常重要的。
本文将介绍如何使用Matlab程序进行双光束干涉的波长测定。
一、双光束干涉原理1. 双光束干涉原理双光束干涉是指将来自同一光源的两束光进行干涉,通过光的干涉条纹来测定光的性质。
当两束光相遇后,会形成干涉条纹,通过测量条纹的间距或角度,可以计算出光的波长。
2. 干涉仪双光束干涉实验通常需要使用一个干涉仪,例如迈克尔逊干涉仪或弗兰赫-珀罗干涉仪。
这些干涉仪能够有效地产生干涉条纹,并且可以通过调节干涉仪的参数来改变条纹的特性。
二、Matlab程序设计1. 程序原理利用Matlab编程进行双光束干涉的波长测定,通常需要使用光学原理的相关公式,结合实际干涉仪的参数进行计算。
使用Matlab编程可以高效地进行数据处理和结果分析。
2. 编程步骤(1) 定义干涉仪参数:首先需要定义干涉仪的相关参数,包括光程差、入射角、干涉条纹的形式等。
(2) 计算干涉条纹:利用相关公式计算出干涉条纹的间距或角度。
(3) 波长计算:根据实验数据和干涉条纹的特性,计算光的波长。
三、程序实现与结果分析1. 编程实现在Matlab中,可以利用相关函数和计算方法实现双光束干涉的波长测定。
通过输入实验数据和干涉仪参数,可以得到波长结果。
2. 结果分析对于双光束干涉的波长测定结果,可以进行数据分析和结果验证。
通过与其他方法进行对比,可以验证波长测定的准确性和可靠性。
四、应用与展望1. 应用领域双光束干涉用于波长测定,在光学领域具有广泛的应用,包括光谱分析、光学元件表征等。
利用Matlab程序进行波长测定,可以提高实验效率和数据处理能力。
2. 发展前景随着光学技术的发展和Matlab程序的不断完善,双光束干涉的波长测定方法将会得到更加精确和可靠。
未来还可以结合其他光学方法和数据处理技术,进一步提高波长测定的精度和应用范围。
双光束干涉的实验观察与分析
双光束干涉的实验观察与分析双光束干涉是一种常见的光学现象,它是由两束光线交叠产生的干涉现象。
在双光束干涉实验中,我们通过调整两束光线的相位差和角度来观察干涉条纹的变化,并通过分析实验结果来了解干涉现象的原理。
在实验前,我们首先准备一束光线,可以使用激光器或者光源加透镜来获得平行的光线。
然后,我们将这束光线分为两束,分别被称为光路1和光路2。
在光路1和光路2的交点处放置一块半透明的玻璃板,玻璃板可以将光线分成反射光和透射光。
当两束光线汇聚到一起时,它们会在焦点附近产生干涉现象。
我们可以通过观察在屏幕上形成的干涉条纹来观察干涉现象。
在观察中,我们首先调整光路1和光路2之间的相位差。
当两束光线的相位差为一个波长的整数倍时,它们在焦点附近会产生明亮的条纹。
而当相位差为半波长的整数倍时,它们在焦点附近会产生暗条纹。
这是因为两束光线的相位差决定了它们的叠加效果,当相位差为整数倍时会产生叠加增强的效果,而当相位差为半波长的整数倍时会产生叠加抵消的效果。
接下来,我们可以通过调整光路1和光路2之间的角度来改变干涉条纹的间距。
当两束光线的角度发生变化时,干涉条纹的间距也会随之改变。
根据干涉条纹的间距可以计算出两束光线之间的角度差。
通过对双光束干涉实验进行观察和分析,我们可以了解光线的波动性质。
干涉现象表明,光线是按波动理论传播的。
另外,我们还可以通过干涉实验来测量光源的波长和光线的相位差。
在实际应用中,干涉现象在测量和检测领域具有重要的应用价值。
总的来说,双光束干涉实验展示了光线的干涉现象,通过观察干涉条纹的变化可以了解光线的波动性质。
这种实验方法简单易行,适用于教学和研究领域,对深入理解光学现象具有重要意义。
双光束干涉实验不仅可以用来观察干涉条纹的变化,还可以用来研究光的相干性及光的干涉现象的性质。
相干性是衡量光强波动的规律性和有序性的度量。
如果两束光的相位相同或者相差为整数倍的波长,那么它们会产生明亮的干涉条纹,这是由于两束光的振幅相加叠加而成。
光的干涉 知识点总结
干涉相消
亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。在平面接收屏上为一组双曲线,明暗交
错分布。干涉条纹为非定域的,空间各处均可见到。
(5)干涉条纹间距公式
由 I(x ,y ) 条纹间距:
I 0(1
cos(k
d D
x )),k d D
x
2
d D
x
2j
得 x j
e
j
D d
(j 1)
D d
j
(1)光程差:
L0(P)
n(
AB
BP)
CP
2nh cos i
1 sin2 i
L0(P) 2nh cosi
一般采用垂直入射:
L0(P ) 2nh
(2)等厚干涉条纹主要特点: i、表面条纹形状与楔形板或薄膜的等厚线是一致的。
ii、相邻两个亮条纹对应点处的楔形板厚度差值。 由
2nh
j0
h
0 2n
(3) 等厚干涉条纹的应用 1) 测量细丝直径 2) 测量机械零件表面粗糙度
2nh k
被选中的谱线半值宽度
k
2k 2 nh
(1 R) R
(nm)
调节 FP 腔的谱线间隔,使只有一条 FP 的透射谱落在激光增益普之内,这样就刚起就只有一
( 2.1.4 干涉场的衬比度
( 1.两束平行光的干涉场(学会推导)
12( (1)两束平行光的干涉场
) )3 ) 干涉场强分布:
I x, y U1(x, y) U2 (x, y)
*
U1(x, y) U2 (x, y)
I1 I2 2 I1I2 cos
亮度U最1 (大xx值,,yy处) :Ak1esiiknsin11xs1i0n 2U2xx, y20A21e0iksin2x20
双光束干涉仪的原理和应用
应用场景:研究光学材 料的光学性能,优化光 学系统设计
优势:高精度、高灵敏 度,可测量各种光学材 料的色散特性
未来发展:随着光学技 术和干涉技术的发展, 双光束干涉仪在光学材 料色散特性测量方面将 会有更广泛的应用
THANKS
汇报人:XX
干涉图样:干涉条纹的形状和分布取决于 光波的波长、双光束的角度和两束光波的 相位差
干涉条纹的分析
干涉现象:两束光波在空间相遇时,产生明暗相间的干涉条纹 干涉条件:光波的频率、振动方向、传播方向相同,相位差恒定 干涉图样:等间距、等宽度的条纹,呈现特定的色彩和亮度 应用领域:光学测量、光学仪器、量子光学等领域
应用范围:适用于各种光学材料的折射率测量,尤其适用于高精度、高稳定性的光学材料
优势:精度高、稳定性好、可重复性好
未来发展:随着光学材料和光学技术的不断发展,双光束干涉仪在光学材料折射率测量方面的 应用将更加广泛和重要
测量光学材料的色散特性
测量原理:利用双光束 干涉仪产生干涉图样, 通过分析干涉图样变化 来测量光学材料的色散 特性
反射镜:改变光束 的方向
干涉仪:观察干涉 现象并测量干涉条 纹的位置和移动
干涉条纹的形成
光的波动性:光波在传播过程中遇到障碍 物时会产生衍射和干涉现象
干涉条件:两束光波的频率相同、相位差 恒定、振动方向相同
双光束干涉:两束相干光波在空间相遇 后,在某些区域发生干涉加强,形成明 亮的干涉条纹,而在另一些区域发生干 涉相消,形成暗的干涉条纹
双光束干涉仪的原理和 应用
XX,a click to unlimited possibilities
汇报人:XX
目录
01 添 加 目 录 项 标 题
02 双 光 束 干 涉 仪 的 原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当干涉光强的极小值Imin=0时,V=1,二光束
完全相干,条纹最清晰;
当Imax=Imin时,V=0,二光束完全不相干,无
干涉条纹;
当Imax≠Imin≠0时,0<V<1,二光束部分相
干,条纹清晰度介于上面两种情况之间。
4/2/2021
5
2)产生干涉的条件
双光束叠加在P点处的光强分布为
I I1 I2 2 I1I2 cos cos
0
2nh
2
m0
m0
0
2nh
1 2
通常,m0不一定是整数,即中心未必是最亮点,故经
常把m0写成 m0 m1
其中,m1是靠中心最近的亮条纹的级数(整数), 0<ε<1。
4/2/2021
29
等倾干涉条纹的特性②
② 等倾亮圆环的半径
由中心向外计算,第N个亮环的干涉级数为[m1-(N1)],该亮环的张角为θ1N,它可由
稳定:用肉眼或记录仪器能观察到
或记录到条纹分布,即在一定时间 内存在着相对稳定的条纹分布。
讨论,图2-1所示的两列单色
线偏振光的叠加
E1
E01
c os (1t
k1
r
01 )
E2 E02 cos(2t k2 r 02 )
波函数
4/2/2021
2
在P点相遇,E1与E2振动方向间的夹角为θ,则在P点
肉眼或探测仪器就将观察不到稳定的条纹分布。 因此,为了产生干涉现象,要求两叠加光束的频率尽量相等。
4/2/2021
6
(2) 对叠加光束振动方向的要求
当两光束光强相等,则条纹可见度为V=cosθ
若θ=0,两光束的振动方向相同时,V=1,干涉条
纹最清晰; 若θ=π/2,两光束正交振动时,V=0,不发生干涉; 当0<θ<π/2时,0<V<1,干涉条纹清晰度介于上
影响光强条纹稳定分布的主要因素是:1)两光束频率; 2)两光束振动方向夹角和3)两光束的相位差。
(1) 对叠加光束的频率要求
当两光束频率相等,Δω=0时,干涉光强不随时间变化,可以
得到稳定的干涉条纹分布。
当两光束的频率不相等,Δω≠0时,干涉条纹将随着时间产生 移动,且Δω愈大,条纹移动速度愈快,当Δω大到一定程度时,
32
(3) 透射光的等倾干涉
由光源S发出、透过平板和透镜
到达焦平面上P点的两支光,没 有附加半波光程差的贡献,光程 差为
2nh cos2
它们在透镜焦平面上同样可以产生 等倾干涉条纹。
• 对应于光源S发出的同一入射角的光束,经平板产生的两束透射
光和两束反射光的光程差恰好相差λ/2,相位差相差π;
式中f为透镜焦距,所以
rN
f
1 n0
n
h
N 1
•由此可见,较厚的平行平板产生的等倾干涉圆环,其
半径要比较薄的平板产生的圆环半径小。
条纹特性③ 等倾圆环相邻条纹的间距为
eN
rN 1 rN
f 2n0
n h(N 1 )
可见,愈向边缘(N愈大), 条纹愈密。
4/2/2021
31
等倾干涉条纹
4/2/2021
2.若随时间变化(即 随时间变化)太快,也
看不到干涉现象。
4/2/2021
3
在能观察到稳定的光强分布的情况下
1.出现光强极大的条件 2m , m 0,1,2...
光强极大值Imax为 Imax I1 I2 2 I1I2 cos 2.出现光强极小的条件 (2m 1) , m 0,1,2...
一时刻。 激光:受激辐射 - -相干光源
获得相干光的方法
两独立光源不可能相干;将一波列的光分成两束或多 束,然后再令其重叠,在相遇区域有可能发生干涉。
分波面法- -杨氏干涉
分振幅法- -薄膜干涉(迈克尔逊干涉)
分振动面- -偏振光干涉
4/2/2021
9
1.分波面法双光束干涉
4/2/2021
N是由C点向AD所引垂线的垂足,自N点和C点到透镜 焦平面P点的光程相等。
4/2/2021
23
利用几何关系,折射定律可得光程差为
2nh cos2 2h n2 n02 sin 2 1
考虑从平板两表面反射的两束光间,产生“附加光程差”。 所以,上面得到的光程差还应加上附加光程差λ/2,故
2nh cos2
w
即干涉图样相对于ΔR=0的情况,沿着y方向发生
了平移。
• 除杨氏干涉实验外,菲涅耳双棱镜、菲涅耳双面 镜和洛埃镜都属于分波面法双光束干涉。
• 这些实验的共同点
4/2/2021
17
菲涅耳双棱镜装置示意图
4/2/2021
返回
18
菲涅耳双面镜装置示意图
P
s
P1
M1
L
s1
d
s2
C
M2
P2
r0
4/2/2021
①两束光波的频率相同;
②两束光波在相遇处的振动方向相同;
③两束光波在相遇处应有固定不变的相位差。
这三个条件就是两束光波发生干涉的必要条件,
通常称为相干条件。
4/2/2021
8
3.实现光束干涉的基本方法
原子的发光特点
普通光源:自发辐射- -非相干光源 时间:持续时间有限(10-8s)- -波列; 相位:彼此无关- -同一原子不同时刻,不同原子同
2nh cos2N
2
[m1
(N
1)]
2nh(1 cos2N ) (N 1 )
一般情况下,θ1N和θ2N都很小(小角度入射),近似有
n11N n2 2N
1 cos2N
2 2N
/ 2 n0212N
/ 2n2
1N
1 n0
n
h
N 1
4/2/2021
30
相应第N条亮纹的半径rN为
rN f tan1N f1N
4/2/2021
25
从点光源发出的单条光线的光路
4/2/2021
26
等倾干涉 从点光源发出的锥面上光线的光路
4/2/2021
27
(2) 等倾干涉条纹的特性
一等倾干涉条纹的 形状与观察透镜放 置的方位有关。
当如图2-8所示, 透镜光轴与平行平 板G垂直时,等倾 干涉条纹是一组同 心圆环,其中心对
返回
19
劳埃德镜示意图
P'
P
s1
d
ML
P0
s2
d'
狭缝S1被强单色光照射,作为单色线状光源;
S1经M所成的虚像S2与S1构成相干光源;
入射角i1接近90o-掠射,可使很小。
注意
•当屏与M接触时,P0点出现暗纹,原因是光在 M上反射时出现“半波损失”。
4/2/2021
返回
20
常见几种分波面干涉实验的共同点
10
杨氏双缝干涉实验
实验原理图
S1、S2从来自S 的光波波面上分 割出很小的两部 分作为相干光源, 它们发出的光相 遇形成干涉条纹。
狭缝S和双缝S1、S2都很窄,均可视为次级线光源。 从线光源S发出的光波经SS1P和SS2P两条不同路径,
在观察屏P点上相交,其光程差为
Δ=(R2-R1)+(r2-r1)=ΔR+Δr
其它级次的干涉条纹均为不同颜色(对应着不同波长) 分离的彩色条纹。
4/2/2021
21
2.分振幅双光束干涉
特点:
1
可以使用扩展光源;
2 3
可以获得清晰的干涉 条纹;- -应用广泛
M1
n1
A
C
干涉条纹是定域的.
n2
1) 平行平板产生的干涉— —等倾干涉
M2 n1
B
E
45
P
d
平行平板产生干涉的装置如图2-7所示,由扩展光源 发出的每一簇平行光线经平行平板反射后,都会聚在 无穷远处,或者通过图示的透镜会聚在焦平面上,产 生等倾干涉。
• 透射光与反射光的等倾干涉条纹是互补的,即对应反射光干涉条 纹的亮条纹,在透射光干涉条纹中恰是暗条纹, 反之亦然。
• 对反射率很低的平板,透射光干涉条纹可见度很低,反射光的干 涉条纹可见度较高。
4/2/2021
33
2) 楔形平板产生的干涉- -等厚干涉
楔形平板产生干涉的原理,如图 2-11所示。
13
对波长一定的单色光,间距的y大小与 D成正比,而与d(缝间距)成反比;
y D
d
4/2/2021
返回
14
当D(d’)、d一定时,间距y的大小与光 的波长成正比
y D
d
4/2/2021
15
用白光作为光源时,出现彩色条纹
由
ym
m
D d
, m
0,1,2......
可知
m=0的中央明纹为白色;
4/2/2021
22
(1) 等倾干涉的强度分布
光由平行平板通过透镜在焦 平面F上所产生的干涉强度 分布(图样),与无透镜时在 无穷远处形成的干涉强度分 布(图样)相同。
其规律主要取决于光经平板 反射后所产生的两束光,到
达焦平面F上P点的光程差。
由图示光路可见,该光程差为
n( AB BC) n0 AN
① 在两束光的叠加区内,到处都可以观察到干涉条纹, 只是不同地方条纹的间距、形状不同而已。称为非定 域干涉。对应的是定域干涉,2.5节中讨论。
② 在这些干涉装置中,都有限制光束的狭缝或小孔,因 而干涉条纹的强度很弱,实际上难以应用。
③ 当用白光进行干涉实验时,由于干涉条纹的光强极值
条件与波长有关,除了m=0的条纹仍是白光以外,
面两种情况之间。