积分表127个公式的推导
基本积分公式大全
![基本积分公式大全](https://img.taocdn.com/s3/m/85c1b01cbf23482fb4daa58da0116c175f0e1e0e.png)
基本积分公式大全1.常数函数公式:∫kdx = kx + C,其中k是常数,C是常数项。
2.幂函数公式:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1 3.指数函数公式:∫e^x dx = e^x + C。
4.对数函数公式:∫(1/x) dx = ln,x, + C。
5.三角函数公式:∫sin(x) dx = -cos(x) + C。
∫cos(x) dx = sin(x) + C。
∫sec^2(x) dx = tan(x) + C。
∫cosec^2(x) dx = -cot(x) + C。
6.反三角函数公式:∫(1/√(1-x^2)) dx = arcsin(x) + C。
∫(1/√(1+x^2)) dx = arctan(x) + C。
7.分式函数公式:∫(1/(x ± a)) dx = ln,x ± a, + C。
8.双曲函数公式:∫sinh(x) dx = cosh(x) + C。
∫cosh(x) dx = sinh(x) + C。
9.换元法公式:如果∫f(g(x)) * g'(x) dx = F(g(x)) + C,那么∫f(u) du = F(u) + C,其中u=g(x)。
10.分部积分公式:∫u dv = uv - ∫v du,其中u和v是可导函数。
11.分部积分法的多次应用:∫u1u2...un dx = u1∫u2u3...un dx - ∫(u1'∫u2u3...un dx) dx + ∫∫(u1''∫u2u3...un dx) dx + ...12.被积函数呈奇偶性时的简化公式:a) 如果被积函数f(x)是奇函数(即f(-x) = -f(x)),那么∫[-a,a] f(x) dx = 0。
b) 如果被积函数f(x)是偶函数(即f(-x) = f(x)),那么∫[-a,a] f(x) dx = 2∫[0,a] f(x) dx。
高等数学积分公式大全
![高等数学积分公式大全](https://img.taocdn.com/s3/m/f8a47a527dd184254b35eefdc8d376eeafaa175e.png)
高等数学积分公式大全在高等数学的学习中,积分是一个非常重要的概念和工具。
积分公式如同数学世界中的宝库,为我们解决各种问题提供了有力的武器。
下面就为大家详细介绍一下高等数学中常见的积分公式。
一、基本积分公式1、常数积分公式∫k dx = kx + C (k 为常数)这意味着对一个常数进行积分,结果是这个常数乘以自变量 x 再加上一个常数 C。
2、幂函数积分公式∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)当 n 为正整数时,这个公式很好理解。
比如∫x² dx =(1/3)x³+ C 。
3、指数函数积分公式∫e^x dx = e^x + C指数函数 e^x 的积分还是它本身。
4、对数函数积分公式∫(1/x) dx = ln|x| + C这是对数函数积分的基本形式。
二、三角函数积分公式1、正弦函数积分公式∫sin x dx = cos x + C2、余弦函数积分公式∫cos x dx = sin x + C3、正切函数积分公式∫tan x dx = ln|cos x| + C4、余切函数积分公式∫cot x dx = ln|sin x| + C三、反三角函数积分公式1、反正弦函数积分公式∫arcsin x dx = x arcsin x +√(1 x²) + C2、反余弦函数积分公式∫arccos x dx =x arccos x √(1 x²) + C3、反正切函数积分公式∫arctan x dx = x arctan x (1/2)ln(1 + x²) + C四、有理函数积分有理函数是指两个多项式的商。
对于形如 P(x)/Q(x) 的有理函数积分,通常需要先将其分解为部分分式,然后再利用上述基本积分公式进行积分。
五、定积分的基本性质1、线性性质∫kf(x) + lg(x) dx =k∫f(x) dx +l∫g(x) dx (k,l 为常数)2、区间可加性∫a,b f(x) dx =∫a,c f(x) dx +∫c,b f(x) dx (a < c < b)六、换元积分法换元积分法是积分计算中的一种重要方法。
基本积分公式表
![基本积分公式表](https://img.taocdn.com/s3/m/0c1fc91755270722192ef71e.png)
u ( x)
F (u) C
F [ ( x )] C
例1
解1
sin 2 xdx
1 2
求 sin 2 xdx .
1 sin2 x d (2 x ) 2
sin2 x d (2 x )
令u 2 x 1
2
sinu du
1 ( cos u) C 2 1 [ cos(2 x )] C 2 1 cos(2 x ) C 2
6 4 2
1 2 5 1 7 sec x sec x sec3 x C 7 5 3
例19
cos 3 x cos 2 xdx
1 (cos 5 x cos x ) dx 2
1 (cos 5 x cos x)dx 2 1 ( cos 5 xdx cos xdx ) 2 1 1 [ cos 5 xd (5 x ) cos xdx ] 2 5 1 1 ( sin5 x sin x ) C 2 5 1 1 sin5 x sin x C 2 10
1 1 1 2 ln x 2 d (1 2 ln x)
1 1 d (1 2 ln x ) 2 1 2 ln x
1 ln | 1 2 ln x | C 2
例10
e
3 x
x
dx
e
2 3
3 x
2 d (3 x ) 3
x
e3
x
d (3 x )
2 3 e 3
cos 4 xdx
例15
cscxdx
1 dx sin x
1 x x dx 2 sin cos 2 2
积分公式
![积分公式](https://img.taocdn.com/s3/m/49911521e45c3b3566ec8b6f.png)
2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是非零常数.现在可利用这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成一个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分子次数不低于分母次数的分式,称为有理假分式.先将其分出一个整式x2-1,余下的分式为有理真分式,其分子次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利用三角函数公式将被积函数化简成简单函数以便使用基本积分公式.例2.5.8求.解.原式==+C .为了得到进一步的不定积分计算方法,我们先用微分的链锁法则导出不定积分的重要计算方法−−换元法.思考题.被积函数是有理假分式时,积分之前应先分出一个整式,再加上一个有理真分式,一般情形怎样实施这一步骤?4.第一换元法(凑微分法)我们先看一个例子:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分子只差常数倍数2,如果将分子补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).一般地在F'(u)=f(u),u=ϕ(x)可导,且ϕ' (x)连续的条件下,我们有第一换元公式(凑微分):u=ϕ (x) 积分代回u=ϕ (x)∫f[ϕ(x)]ϕ' (x)d x=∫f[ϕ(x)]dϕ(x)=∫f(u)d u=F(u)+C=F[ϕ(x)]+C其中函数ϕ(x)是可导的,且F(u)是f(u)的一个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元ϕ' (x)d x=dϕ(x) u=ϕ(x) 得F(u)+C得F[ϕ(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[ϕ(x)]+C]' =F '[ϕ(x)]ϕ' (x)=f[ϕ(x)]ϕ' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=ϕ(x)可省略不写,显得计算过程更简练,但要做到心中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第一种形式,其另一种形式是下面的第二换元法.5.第二换元法不定积分第一换元法的公式中核心部分是∫f[ϕ(x)]ϕ'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=ϕ(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另一种形式,称为第二换元法.即若f(u),u=ϕ(x),ϕ'(x)均连续,u=ϕ(x)的反函数x=ϕ-1(u)存在且可导,F(x)是f[ϕ(x)]ϕ'(x)的一个原函数,则有∫f(u)d u=∫f[ϕ(x)]ϕ'(x)d x=F(x)+C=F[ϕ-1(u)]+C .第二换元法常用于被积函数含有根式的情况.例2.5.18求解.令(此处ϕ(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的目的在于将被积函数中的无理式转换成有理式,然后积分.第二换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,用到反函数t=arcsec,但这种做法较繁.下面介绍一种直观的便于实施的图解法:作直角三角形,其一锐角为t及三边a,x,满足:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有一个重要的积分公式,即分部积分公式.思考题.在第二换元法公式中,请你注意加了一个条件“u=ϕ(x)的反函数x=ϕ1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下面通过例子说明公式的用法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (用分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第二次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第二次用分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(用分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第二次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第二次用分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第二次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第二次凑微分时,必须与第一次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产生恶性循环,你可试试.(2)积分常数C可写在积分号∫一旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (用分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .小结.(1)分部积分公式常用于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在用分部积分公式计算不定积分时,将哪类函数凑成微分d v,一般应选择容易凑的那个.例如arctan x d,ln x d222x我们已学习了不定积分的几种常用方法,除了熟练运用这些方法外,在许多数学手册中往往列举了几百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之用,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使用的规律,特别是第一步凑微分时如何选择微分.7.积分表的使用除了基本积分公式之外,在许多数学手册中往往列举了几百个补充的积分公式,构成了积分表.下面列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利用积分表中的公式,可使积分计算大大简化.积分表的使用方法比较简单,现举一例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代入上式并添上积分常数C即得解答:=.。
积分公式大全范文
![积分公式大全范文](https://img.taocdn.com/s3/m/26f3b55c2379168884868762caaedd3383c4b521.png)
积分公式大全范文积分是微积分的重要概念之一,它在数学、物理学、工程学以及其他领域中都有广泛的应用。
在本文中,将介绍一些常见的积分公式,以帮助读者更好地理解和应用积分。
一、基本积分公式1. ∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数,n为实数,n≠-1这是最基本的积分公式之一,也被称为幂函数积分公式。
基于这个公式,可以计算出许多简单函数的积分。
2. ∫1/x dx = ln,x, + C。
这是最基本的倒数函数积分公式,其中ln表示自然对数。
3. ∫e^x dx = e^x + C。
这是指数函数积分公式,其中e为自然对数的底数。
4. ∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C。
这是三角函数积分公式之一,其中sin和cos分别表示正弦和余弦函数。
5. ∫sec^2(x) dx = tan(x) + C,∫csc^2(x) dx = -cot(x) + C。
这是三角函数的导函数与反函数之间的关系推导出的三角函数积分公式之一二、换元积分公式1. ∫f(g(x))g'(x) dx = ∫f(u) du,其中u=g(x)。
这是换元积分法的基本公式,通过将函数中的u替换为g(x),然后对g(x)进行微分,可以将原函数转化为一个更容易积分的形式。
2. ∫f(g(x))g'(x) dx = ∫f(t) dt,其中t=g(x),再通过t的积分求解,最后再将t换回x得到答案。
三、分部积分公式1. ∫u dv = uv - ∫v du。
这是分部积分法的基本公式,通过选择合适的u和dv,可以将原函数转化为一个更容易积分或微分的形式。
2. ∫f(x)g'(x) dx = f(x)g(x) - ∫f'(x)g(x) d x。
这是分部积分法的一个具体应用。
通过选择f(x)和g'(x),将原函数转化为一个更容易求解的形式。
定积分公式表
![定积分公式表](https://img.taocdn.com/s3/m/a6b495eac5da50e2534d7fd2.png)
⑴JOrfx = t (c 为常数)J-^ = ln|x| + c陛=丄屮* (fl > 0,(3 1)J h aJsin xdx= -cosx + cJcos sin x + c(8)dx ■ arcsiri x + c=-arccosi + c(9)Jsec 3 igx +(11)=-arcctgx + c对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数o的积分,等于积分常数:.公式(2)、(3)为幕函数丨一的积分,应分为八I与7 --.当二一时,」-.积分后的函数仍是幕函数,而且幕次升高一次特别当小时,有J」「r 「当旷7时,J J尹11公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为二f,故二二「' O 11,厂母,不在分子,应记清y=e是一个较特殊的函数,其导数与积分均不变应注意区分幕函数与指数函数的形式,幕函数是底为变量,幕为常数;指数函数是底为常数,幕为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.将被积函数化为可利用基本积分 公式(10)是一个关于无理函数的积分必=arc sin x = -arccos x + c公式(11)是一个关于有理函数的积分P dx卩1,------ r = --------- r ax = arctgx = -arcctgn + c Jl + x 3 Jl + i 3 _ _ 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积 分公式求不定积分.例1求不定积分「=第 分析:该不定积分应利用幕函数的积分公式 解: $2-石)皿訂(2x-X )必3J-'/壬必 | + 1 (-为任意常数分析:先利用恒等变换“加一减一”, 公式求积分的形式.例2求不定积分解:由于】 — 1 +二 --厂,所以解:例3求不定积分.!■■■■—1 ■■丁分析:将厂 '「按三次方公式展开,再利用幕函数求积公式(-为任意常数)(cos 3 -dx例4求不定积分」 一分析:用三角函数半角公式将二次三角函数降为一次 解:」—-x + arctgx. + c (为任意常4 2 2 4R Jdx -莎卩匕+ 3屋J 忌-p 3dr解:例5求不定积分」「’"°.分析:基本积分公式表中只有 」• ''但我们知道有三角恒等式:■-■■■ ' 1(-为任意常数)同理我们有:(-为任意常数)(-为任意常数) 1 1 . =-x + —sin x + t: 2 2Jfg* 必=i + c to2-l。
高等数学积分表公式推导
![高等数学积分表公式推导](https://img.taocdn.com/s3/m/3731392efe4733687e21aa95.png)
(十一)含有三角函数的积分(83~112)···········································55 (十二)含有反三角函数的积分(其中 a > 0)(113~121)·······················68 (十三)含有指数函数的积分(122~131)··········································73 (十四)含有对数函数的积分(132~136)··········································78 (十五)含有双曲函数的积分(137~141)··········································80 (十六)定积分(142~147)····························································81
ax +
dx b
=
1 a3
⎡1 ⎢⎣ 2
(ax +
b) 2
−
2b (ax
+
b)
+
b2
⋅ ln
ax +
b
⎤ ⎥⎦
+C
5.
dx
1
∫ x (ax + b) = − b ⋅ ln
ax + b x
+C
证明:被积函数 f ( x ) = 1 的定义域为{x | x ≠ − b}
x ⋅ (ax+ b)
∴
∫
dx ax +
b
=
1 a
∫
1dt t
= 1 ⋅ ln t + C a
积分基本公式
![积分基本公式](https://img.taocdn.com/s3/m/77da864f5f0e7cd185253621.png)
2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下面我们要学习不定积分的计算方法,首先是四则运算.6. 复合函数的导数与微分大量初等函数含有复合函数的成分,它们的导数与微分计算法则具有特别重要的意义.定理.(链锁法则)设z=f(y),y=ϕ(x)分别在点y0=ϕ(x0)与x0可导,则复合函数z=f[ϕ(x)]在x0可导,且或(f oϕ)' (x0)=f '(y0)⋅ϕ'(x0).证.对应于自变量x0处的改变量∆x,有中间变量y在y0=ϕ(x0)处的改变量∆y及因变量z在z0=f(y0)处的改变量∆z,(注意∆y可能为0).现∆z=f'(y0)∆⋅y+v,∆y='ϕ(x0)∆x+u,且令,则v=∆αy,(注意,当∆y=0时,v=∆αy仍成立).y在x 0可导又蕴含y在x0连续,即∆y=0.于是=f '(y0)⋅ϕ '(x0)+0⋅ϕ'(x0)=f'(y0)⋅ϕ'(x0)为理解与记忆链锁法则,我们作几点说明:(1) 略去法则中的x=x0与y=y0,法则成为公式,其右端似乎约去d y后即得左端,事实上,由前面定理的证明可知,这里并不是一个简单的约分过程.(2) 计算复合函数的过程:x→−y →−z复合函数求导的过程:z→−y →−x:各导数相乘例2.3.15求y=sin5x的导数.解.令u=5x,则y=sin u.于是y' ==cos u⋅5=5cos5x.例2.3.16求y=lncos x的导数.解.令u=cos x,则y=ln u.于是.y'=例2.3.17求幂函数y=x m的导数,m为任意实数.解.因y=,令u=m ln x,则y=e u.y' ==e u⋅m⋅m是正整数n时,即例2.3.2.(3) 链锁法则可以推广到多层次中间变量的复合函数:复合函数的求值:x→−y→−z→−u…v→−w复合函数的求导:w→−v…u→−z→−y→−x:各导数相乘(4) 在熟练掌握链锁法则以后,为简便写法,中间变量v,u,z,y等可不必写出,只要做到心中有数.例2.3.18求的导数解.=.(5) 链锁法则的微分形式是:d f(ϕ(x))=f'(ϕ(x))dϕ(x)例2.3.19求函数y=的微分解.d y =dsin2x=⋅2sin x dsin x=⋅2sin x cos x d x=⋅sin2x d x.思考题.请你仔细研究例2.3.18的解题过程,函数的构成除由基本初等函数复合之外还包含四则运算,因此求导的过程也应遵循四则运算与链锁法则,两个方面必须同时考虑.5. 导数与微分的四则运算设u=u(x),v=v(x)为可导函数,c是常数,则有公式(1) (u±v)' = u'±v',d(u±v) = d u±d v.公式(2) (uv)' = u' v+uv',d(uv) = v d u+u d v.公式(3) (cu)' = cu',d(cu) = c d u.公式(4),(v≠0).点击此处看公式(1)-(4)的证明.例2.3.11求y=tan x的导数解.(tan x)' ===sec2x.同理可得(cot x)' =-csc2x.例2.3.12求y=sec x的导数.解.(sec x)' ==sec x tan x.同理可得(csc x)' =-csc x cot x.例2.3.13求y=(1+4x)(2x2-3x3)的导数.解一.y' =(1+4x)'(2x2-3x3)+(1+4x)(2x2-3x3)'=4(2x2-3x3)+(1+4x)(2⋅2x-3⋅3x2)=8x2-12x3+4x-9x2+16x2-36x3=4x+15x2-48x3解二.因y =2x2+5x3-12x4,故y' =2⋅2x+5⋅3x2-12⋅4x3=4x+15x2-48x3.例2.3.14求函数y=(x+sin x)ln x的微分.解.d y=ln x d(x+sin x)+(x+sin x)dln x=ln x(d x+dsin x)+(x+sin x)d x=ln x⋅(d x+cos x d x)+d x=d x.2. 导数的定义从曲线的切线斜率以及其他有关函数变化速度问题,我们抽象出函数的导数概念.定义.设函数y=f(x)在包含点x0的一个开区间X(这样的开区间称为x0的邻域)内有定义,y0=f(x0).如果x∈X-x0,我们称∆x=x-x00(∆读作delta)为自变量的改变量,∆y=f(x)-f(x0)为函数的(对应)改变量,比值为函数的差商或平均变化率.如果极限存在,则称函数y=f(x)在点x0可导(或可微),该极限称为函数y=f(x)在x0点关于自变量x的导数(或微商).记作.因∆x=x-x0,x=x0+∆x,故还有.此时,曲线y=f(x)在点(x0,f(x0))的切线方程是.注意.∆x可正可负,依x大于或小于x0而定.根据定义求已知函数y=f(x)在给定点x0的导数的步骤是:(1)计算函数在自变量x0+∆x处的函数值f(x0+∆x);(2)计算函数的改变量∆y=f(x0+∆x)-f(x0);(3)写出函数的差商;(4)计算极限,即导数值.例2.3.1求常数函数y=c的导数.解.因∆y=y(x+∆x)-y(x)=c-c=0,差商=0,故=0.此处x可为任意实数,即常数函数y=c在任意点x处的导数为0.例2.3.2设n是正整数,求幂函数y=x n在点x处的导数.解.因y(x+∆x)=(x+∆x)n=x n+,∆y=y(x+∆x)-y(x)=,故=.特别,当n=1时,函数y=x在任意点x处的导数为1.例2.3.3求曲线y=x3在点(2,8) 处的切线方程.解.在上例中取n=3可知函数y=x3在点x处的导数为3x2,于是在点(2,8)处的切线斜率是:y'(2)=3⋅22=12,故曲线y=x3在(2,8)处的切线方程是y-8=12⋅(x-2) ⇔ 12x-y-16=0.注.(1)从上述例子我们看到,一般情况下,给定函数y=f(x)在某个区间X内每一点都可导,这样可求出X内每一点的导数y'(x),x∈X .于是y'(x)成为X内有定义的一个新函数,我们称它为给定函数y=f(x)的导函数,且常常省略定义中的字样“在x点处关于自变量的”,甚至简称f(x)的导数.例如我们说常数函数y=c的导数是0,y=x的导数是1,y=x n的导数是等等,分别记作c' =0,x' =1,(x n)' =等等.(2)关于改变量的记号∆,应把它与其后面的变量x或y看作一个整体量,就象sin x 中的sin一样,绝不能把∆x看成∆与x的乘积,特别,为避免误解,我们用(∆x)2来表示∆x的平方而不写∆x2 .从导数的定义我们还可以导出其它一些初等函数的导数公式:(点击此处看例2.3.4,例2.3.5,例2.3.6证明)例2.3.4y=sin x的导数是(sin x)' =cos x,y=cos x的导数是(cos x)' =-sin x .例2.3.5 y=log a x(0<a≠1)的导数是(log a x)' =.特别,(ln x)' =1/x.例2.3.6指数函数y=a x(0<a≠1)的导数是(a x)' =a x ln a .特别,(e x)' =e x.8. 导数的导数--二阶导数一般来说,函数y=f(x)的导数还是以x为自变量的函数:y' =f '(x),如果它还可导,我们又可得f '(x)的导数:(y' )' =[f '(x)]' ,称为y=f(x)的二阶导数,记作y'' =f '' (x),或=.如果它还可导,我们就可继续逐次求三阶,四阶,…的导数,对任意正整数n,n阶导数被定义为y(n)=(y(n-1))' ,n=2,3,…统称为函数y的高阶导数.例2.3.22求y=sin x的n阶导数.解.y' =cos x =sin,用归纳法不难求出y(n)=sin.例2.3.23若s =s(t)为质点运动的路程函数,则s' (t)=v(t)是运动速度.又,二阶导数s''(t)=v' (t)=a(t)则是运动的加速度.例2.3.24求y =arc tan x的二阶导数y'' .解.y' =,y'' =-(1+x2)-2(1+x2)' =.思考题.对于可导函数y=f(x)来说,导数f ' (x)表示曲线的切线斜率,请你考虑,如果f ' (x)还可导,那么f '' (x)的正或负,反映函数y=f(x)的图像的什么性态.实验题.选择不同的函数,使二阶导数取正或负值,然后作出函数的图像,观察二阶导数对函数图像的影响.7. 基本初等函数的导数与微分公式=' =-' =-x=x=x=例2.3.20 求y=arcsin 的微分.解..例2.3.21求y=+arctan e x的导数.解..12.二元函数的导数与微分(选学)设z=f(x,y)是两个自变量x与y的函数,x与y的变化都会引起函数z的变化,实际问题中有时需考虑单个自变量的变化引起的函数变化,即将另一自变量固定不变,看作常数,此时函数就像一元函数了.函数z关于一个变量x的导数就称为z关于x的偏导数.记作,事实上,按导数定义,应该是=,同理,z关于变量y的偏导数是=.我们也记.若z=f(x,y)有连续的偏导数f'x(x,y),f'y(x,y),则自变量x与y的改变量∆x与∆y 的线性表达式f'x(x,y)∆x+f'y(x,y)∆y称为z=f(x,y)在(x,y)处对应于∆x,∆y的全微分,记作d z=f'x(x,y)∆x+f'y(x,y)∆y.由于自变量的微分等于自变量的改变量:d x=∆x,d y=∆y,于是二元函数的微分公式是d z=.例2.3.30设f(x,y)=xy+x2-2 y3,求.解.=y+2x (把y看作常数,对x求导数).=x-6y2(把x看作常数,对y求导数).例2.3.31求z=e x sin y的全微分.解.d z=sin y d e x+e x dsin y=sin y e x d x+e x cos y d y=e x(sin y d x+cos y d y).例2.3.32设x+2y+2z-2=0确定二元函数z=z(x,y),求.解.对方程x+2y+2z-2=0两边求微分,则左端得d x+2d y+2d z-2d右端的微分是0,于是解得d z =,由此得,.13.分段函数的导数(选学)我们通过分段函数在衔接点处导数的研究,了解函数的可导性与连续性的关系.函数y=f(x)在点x0的导数被定义为极限,这等价于=0 ,记,则=0,由此f(x0+∆x)-f(x0)=[u(∆x)+f’(x0)]∆x,于是[f(x0+∆x)-f(x0)]=[u(∆x)+f’(x0)]∆x=0 ,即f(x0+∆x) = f(x0).如果记x=x0+∆x,则得f(x)= f(x0) .这表明函数f(x)在x0连续.因此有定理.若函数y=f(x)在x0可导,则f(x)在x0连续.因此,连续性是函数可导性的必要条件.但上述命题的逆是不正确的.请看下例.例2.3.33 讨论函数在点x=0的连续性与可导性.解.因,,故,且f(0)=e0=1.由此可见f(x)在x=0连续.其次,为讨论f '(0),我们需计算极限.为方便计,用x代替 x,为此我们研究极限.现在,,.由此可见,极限不存在,即f(x)在x=0不可导.你能看到,在函数y =f(x)的图像上点(1,0)处没有切线,因为在其左边有一条“半切线”,斜率是1,但在其右边有一条“半切线”,斜率是0定义.设函数y =f(x)定义在区间(a,b)内,x0(a,b),如果极限存在,则称此极限为f(x)在点x0处的右导数,记作f+'(x0)=.类似地,f(x)在点x0的左导数是f-'(x0)=.只有f+'(x0)与f-'(x0)都存在且相等时,f(x)在点x0才可导,且f '(x0)=f+'(x0)=f-'(x0).即有定理.设函数f(x)在区间(a,b)内有定义,x0(a,b).则f '( x)存在f-'( x0)与f+'( x0)都存在且相等.左导数与右导数统称为单侧导数.例2.3.34讨论函数在x=0的可导性.解.首先讨论f(x)在x=0 的连续性.因,,f(0)=0,故f(x)在x=0连续.其次,因,,故f(x)在x=0可导,且f'(0)=-1.注.上例中求左右导数或讨论分段函数衔接点处可导性的方法,必须首先研究函数在该点的连续性,在连续的前提下才可使用此方法,否则会出现错误.例如考虑函数此时g(x)在x=0不连续,更不可导.如果你用上例方法求左右导数:g'+(0)=-1,g'-(0)=-1,得出g'(0)=-1,那就大错特错了.事实上, 上图中的原点并不属于函数g(x)的图像,因此,原点右侧的“半切线”是不存在的,也就是说,原点处的右导数是不存在的.1. 曲线的切线斜率我们知道,圆的切线定义为与圆相交于唯一点的直线.但对于一般曲线,切线是不能这样定义的.例如右下图中曲线在P点处的切线, 除P点外还交曲线于Q点.为确切表达切线的含义,需应用极限的思想.请看下面的动画.说明:点P(x0,f(x0))=P(x0,y0)是曲线y=f(x)上的给定点.点Q(x,y)=Q(x,f(x))是曲线上的动点, 可在P的两侧:在右侧时x>x0;在左侧时x<x0.动直线PQ是曲线的割线.如果动点Q无限地逼近定点P时, 动直线PQ有一个极限位置T, 即极限则称PT为曲线在P点的切线.为确定切线PT的位置, 或建立PT的方程, 只需确定其斜率.由于PT是PQ的极限, 从而PT的斜率是PQ斜率的极限, 极限过程是由Q→P产生的.而Q→P即x→x0.设PT对于x轴的倾角(即x轴正向逆时针旋转至PT经过的角)为α, PT的斜率为k=tanα.现在割线PQ的斜率为:.而切线PT的斜率为:(PQ的斜率)=,由此得切线PT的方程是:y-f(x0)=k( x-x0).。
积分表147个公式的推导(修正版)
![积分表147个公式的推导(修正版)](https://img.taocdn.com/s3/m/e582d064c5da50e2534d7f4a.png)
目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)········································14 (六)含有)0( 22>+a a x 的积分(31~44).........................................15 (七)含有)0( 22>-a a x 的积分(45~58).........................................24 (八)含有)0( 22>-a x a 的积分(59~72).........................................37 (九)含有)0( 2>++±a c bx a 的积分(73~78) (48)(十)含有 或))((x b a x --的积分(79~82)...........................51 (十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)附录:常数和基本初等函数导数公式 (85)bx a x --±- 1 -(一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dtt a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:- 2 -Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxbax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:- 3 -C x b ax ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ++⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:C b ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa x B Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f C b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+=+⎪⎭⎫ ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11 )(111)( 1A 01 )(AB )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:- 4 -()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t aC t ln a b t a t a b dt t a b dt a dt t a b dt t a bt t b dx b ax x t a btt b t a t b b ax x dt adx ,b t a x ,t t b ax a b x |x b ax x )x (f C b ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫ ⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(121 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x b ax x )x (f C|xbax |ln b b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠+=++-+=+⎰⎰⎰⎰⎰2222222222221)(11111)(1111)( 1 )()( )()( )()(1 }{)(1 ·1)(1)( 9于是有则设:的定义域为证明:被积函数- 5 -(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax a dx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1 )(32 .10证明:C b ax b ax a C b ax b b ax a dx b ax x b ax t C b t a t C t a b t a dt a b dt a dtbt t a dt a t t a b t dx b ax x t abt b ax x dt a t dx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-⋅=++⋅-+=++=+-=+⋅-⋅=-=-=⋅⋅-=+∴⋅-=+=-=≥=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰⎰32322233252325224222232)()23(152 )(]5)(3[152 )53(152 ******** )(22 , 2 , , )0()()23(152 .11代入上式得:将则令证明:[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dt t a b dt t a b dt t a dtbt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C b ax b abx x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰+++3222322223322243353332731432132163432326332532232522222322232)()81215(1052 )(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( )()81215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t C t a b t a C t a b t a bdt a dt t a dt a t at b t dx b ax xdt a t dx abt x t t b ax C b ax b ax a dx b ax x++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32)(2)()(3223222112222, 2 , , )0( )()2(32.132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a dt a tt a b t dx bax x dt a t dx a b t x t t b ax C b ax b abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅⋅-=+∴=-=>=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152)()(1015)2(3)(152)10153(152 )3251(2 422 )2(221)(, 2 , , )0( )()843(152 .142223222232224332532323432243222222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-+⋅-=++=+-⋅-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12t2 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .15222222222b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan bb ax x dx b ax t Cb arctan b dt b t dt b t b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx b ax x b a b ax d x b bx b ax dx b ax x b a xd b ax b dx b ax x b a dx x b ax b dx bax x b a b ax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111 111 11111 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+bax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxt ab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt b t b dt dt bt b b t dtbt t dt a t b t at dx x b ax dt atdx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 112.182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax 证明:C a x arctan a a x dx a x arctan t a xarctant tant a x C t adt at dt sec a tsec a a x dx t sec a t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222222+⋅=+==∴⋅=+⋅==⋅⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 1)1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)( .20n n n n n n n n n 2n n n n n n n n n n n nn n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dx a x a x a ax dx C a x ax ln a ax dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:- 11 -(四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 121 )(11 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1 )( )0( 21)0( 1 .222222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-=+-+--⋅⋅-=--=+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰⎰b C b x a bx a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab C a bx ab x ln a a b dx a bx a b ax dx a a b x a a b x b ax b C x b aarctan abx b aarctan b a a dxa b x a b ax dx a ab x a a b x b ax 0a b C b x a b x a ln ab b C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:C b ax ln a b ax d b ax a dx b ax dx bax x a C b ax ln a dx bax x 22++⋅=++=+=+>++⋅=+⎰⎰⎰⎰21 )(121 121)0( 21 .23222222证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:C 21 2121 )(12112112121])(1[21)( 11 )()(1 )(1)(121 )()( )( C 21)( .25222222222222222222++=++-=++-=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=++=+=+>++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰bax x ln ·b Cb ax ln ·b x ln ·b b ax d bax b dx x b dxb ax b a dx x b dxb ax b a bx b ax x dx b aB bA Ab 0B Aa AbB Aa x Bx b ax A bax Bx A b ax x dxb ax x dx b ax x xb ax x dx 0a bax x lnbb ax x dx 22222222222222于是有则设:证明:- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+b ax dx b a bx dx b ax b a dx x b dx b ax b a bx b ax x dx b aB b A Ab 0B Aa Ab B Aa x Bx b ax A b ax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:C bxx b ax ln baC b ax ln ·ba bx x ln ·ba dx bax b a dx x b dx x b a b ax x dx b a C b a A b B Bb Ba Ab C Aa Bb x Ba Ab x C Aa Cx b ax B b ax Ax bax C x B x A b ax x dx b ax x dx b ax x xb ax x dx 0a C bx x b ax ln b a b ax x dx 222222222222+-+=+++--=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧==+=+∴++++=++++=+++=++=+=+>+-+=+⎰⎰⎰⎰⎰⎰⎰⎰22222222222224222322244244244322223212221 2 1212112 )( 1100 )()( )()(1 )(1 )(121 )()( )( 212)( .27于是有则设:证明:- 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[]⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴-++=++>⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 )()(41 )0( )4( 44 41)4( 42 .292222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx b 4ac b 2ax ac bx ax a ac b C ac b b 2ax ac b b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a a x dx :公式21)(2 )(2121)(2)(212121)(21 )(2121121)(21 )(2121()(21 211102 2 2)(1 2)(21 21 1121 21 1121 121)( )( 21)(2)( 2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Abx )Ba Aa (Bax b ax A b ax B ax A b ax ax dxax b ax b ax ax ax d b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b ax dx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dx a b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 21 12)(121 21221 221 )0( 2 21 .30证明:C )( , 1 |AB | , |AC | B Rt 1 , 01, 22 || , ) )22(}{1 )0( C )( 31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx 0x a x C x a x ln C lna x a x ln C a xa x ln C tant sect ln a x dx a xtant a a x cost sect a x x ,a |BC |,t ABC ΔC tant sect ln dt sect dt t sec a sect a a x dx secta a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x ax )x (f a a x x ln C a x arsh ax dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt 1cos 1 11 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x xa x x a BC t ABC ΔC sint a tdt a dt sect a dt t sec a t sec a a x dx t sec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C ax a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dtat t t a t dx a x x dta t t tdt a t dx a t x t t a x a C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21 , )0( )0( .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C)( )( 22 31)( C )( 1 39)( C )( 22 1)0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d ax a x x ln a a x x dx a x x d a x a dx a x dx a x a a x dx a x x a a x x ln a a x x dx ax x 公式公式证明:C )( )()( 1, |AB | , |AC |, || , B Rt cos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()( )0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna ax x x a x ln C a x xa x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant a x x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sectdt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x t sec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln ax x dx a x x 1111222323233222则中,设在,则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21 )( 21 )( 21 21 1 1 2)(21 , )0( )0( 1.3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a a x x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式bnlog b log a na = 提示: 1 11)1(211121)1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t C t a aC t a a t a d t a a dtt a ta a dt ta t dt a tx d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x x dx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |aa x x |ln 2a a x 2x |tant sect |ln a tant sect a a x tant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt t cos t cos dt t cos t sin tantdt sect tant tantdsect tantdsect a tant sect a dtant sect a tant a sectd a dx a x sect a a x tcos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1· Rt 11 87 )·(1 1111 )·(· · , 01·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 t sec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+Ca x x ln a a x a x x dx a x C x a x ln 83aa x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x aa x a x a tant d t sec a a a x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x tsec a a x cost sect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(4 4 cos 1 |AB | , |AC |, || , B Rt 41 21 21 21 21 )1( ) 3 (41 3 3 )1(3 3 3 3 ) ( )( )( , 01 , 22 ||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x costsect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1 |AB | , |AC |, || , B Rt 48821 21 2121)1( 4 4 ) (41 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0( )( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 23 -)( )( 2 )( 2 21 1 2)(21 , )0( }0|{)( )0(.4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t C a t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dt a t t dt a t t a t t dx x a x dt at t tdt a t dx a t x a t t t a x x x x a x x f a C x aa x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 01 |AB | , |AC |, || , B Rt 1 1 1 )1( , 01 , 20 , ) ( ,)20( , 0 1. }0|{)( )0(C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln xa x dx x a x x a x ln xa x dx x a x x x a x ln x a x dx x a x x a x C lna x a x ln x a x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,ax x sint a x x a BC t ABC ΔC sinttant sect ln dsint t sin dt sect dt t sin cost dt sect dt t sin t cos cost dt sect dt t tan sect dt sect dt t tan t tan sect tdt sec a t tan a sect dx x a x t tan a sect x a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x x a x x f a a x x ln x a x dx x a x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1 . 21 Rt 2)20( . 1}{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πt tant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 || || ||1)( || 1 . 2 || . 1 }{ 1 2 )0( 45 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C a a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .221225224222422422422222232222122222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔCt sin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 )(211121 )()(21 )(21 )0( .47211222221221C a x C a x a x d a x dx a x dx a x x a C a x dx ax x 222222222222+-=+--⨯=--=-=->+-=----⎰⎰⎰⎰:证明- 27 -1)( 2 1 1)( 1)( 1 )()(. 2 11)( Rt 11 11 1)( )( 20 )( )20( . 1 }{ )()0( 1)( 48333333222232332333333 C ax dx a x x , C a x dx a x x x μCaμμd a μμμd a μμdx a x x μx ,x μa x ,a x Cax C a x a a dx a x x a x at cot a x |AC |,x |AB |a |BC |,t B ABC ΔC t cot a tdt csc a dt t sin a dt t tan t sec a dt tant sect a t tan a sect dx a x x t tan a sect a x x πt t tan a sect a a x x tantdt sect a dx πt sect a x ,a x a x a x |x a x xf(x)a C ax dx a x x .22222222222222222222222222222222222222+--=-+--=--=+--=--=-∴-=-=>--<+--=+-⋅-=-∴-=∴-====∠+⋅-=--===⋅⋅⋅⋅=-∴⋅=-<<⋅⋅=-⋅⋅=<<⋅=>-<>-=>+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 C a x x ln a a x x dx ax x C a x x ln a a x dxa C a x x ln a a x x dx a x dxax a dx a x dx ax aa x dxax a a x dx a x x a C a x x ln a a x x dx a x x .22222222222222222222222222222222+-+⋅+-=-+∴+-+⋅=-+-+⋅--⋅=--+-=-+-=-+-=->+-+⋅+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰22 45)( 53)( 221)( )0( 22 49222222222222222②得:由①公式②公式①证明:。
高等数学积分表127个公式的推导
![高等数学积分表127个公式的推导](https://img.taocdn.com/s3/m/7ece41a41a37f111f1855bba.png)
dx
1
1 A Aa B 0 b 有 Ab 1 B a b dx 1 a 1 1 a 1 于是 [ ]dx dx dx x (ax b) bx b ( ax b ) b x b ax b 1 1 1 1 dx d ( ax b ) b x b ax b 1 1 ln x ln ax b C b b 1 x ln C 提示: log a b 1 log a b b ax b 1 ax b ln C b x
μ 将t ax b代入上式得: (ax b) dx
3.
x 1 ax b dx a ax b b ln
2
ax b
C
证明: 被积函数 f ( x )
x b 的定义域为{x | x } ax b a 1 1 令 ax b t (t 0) , 则 x t b , dx dt a a 1 t b 1 x 1 b dx a · dt 2 1 dt ax b t a t a 1 1 b 2 dt 2 dt t a a t b 2 2 ln t C a a 1 2 t b ln t C a x 1 将 t ax b 代入上式得: ax b dx a 2 ax b b ln ax b
高等数学
积 分 表 公 式 推 导
目
录
(一)含有 ax b 的积分(1~9) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 (二)含有 ax b 的积分(10~18) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 (三)含有 x 2 a 2 的积分(19~21) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·9
13个基本积分公式推导
![13个基本积分公式推导](https://img.taocdn.com/s3/m/dfba7131b94ae45c3b3567ec102de2bd9705de5d.png)
13个基本积分公式推导积分公式在数学学习中可是相当重要的家伙们!就像我们手中的秘密武器,能帮我们解决好多难题。
今天咱们就来好好聊聊这 13 个基本积分公式是怎么推导出来的。
先来说说∫x^n dx = (1/(n + 1))x^(n + 1) + C 这个公式。
想象一下,我们在一个长长的跑道上跑步,每次跑的距离都不一样。
假设跑的距离可以用 x 的 n 次方来表示,那我们怎么算总共跑了多远呢?这就用到这个公式啦!比如说,我们要算∫x² dx。
就好像我们在一个平面上,每次向前移动的距离是 x²。
那我们累计移动的总距离就是 (1/3)x³ + C 。
再看∫1/x dx = ln|x| + C 这个公式。
这就好比我们在分糖果,一堆糖果 x 个,每次只能拿走 1/x 个。
那我们要算算到底能拿多少次,结果就是 ln|x| + C 。
有一次我给学生讲这个公式的时候,有个调皮的小家伙一脸迷茫地问我:“老师,这到底有啥用啊?”我笑着跟他说:“你想想啊,假如你有一堆零花钱,每天花掉固定比例,那你想知道多少天后会花完,就得靠这个公式帮忙啦!”那孩子眨眨眼,好像有点明白了。
接着是∫e^x dx = e^x + C 。
e^x 就像一个永远充满活力的小兔子,不管怎么积分,它还是它自己。
还有∫sin x dx = -cos x + C 和∫cos x dx = sin x + C 。
这两个就像是一对欢喜冤家,你追我赶。
想象一下正弦和余弦在跳着欢快的舞蹈,它们的积分就是彼此的变化。
∫sec² x dx = tan x + C 呢,就像是在一个斜坡上往上爬,每次前进的难度是 sec² x ,最后算出来总共爬了多远就是 tan x + C 。
∫csc² x dx = -cot x + C ,这就好像是在逆风中行走,阻力是 csc² x ,算出来走的路程就是 -cot x + C 。
高等数学积分公式推导
![高等数学积分公式推导](https://img.taocdn.com/s3/m/2ba46bfb76a20029bd642d4b.png)
-4-
(二)含有 ax + b 的积分(10~18)
10.
∫
ax + b dx =
2 ⋅ ( ax + b) 3 + C 3a
1 1
+1 1 1 1 2 2 证明: ax + b dx = ( ax + b ) d ( ax + b ) = ⋅ ⋅ ( ax + b ) +C ∫ 1 a∫ a 1+ 2 2 = ⋅ ( ax + b) 3 + C 3a
7.
∫
x 1 ⎛ b ⎞ dx = 2 ⎜ ln ax + b + ⎟+C 2 ax + b ⎠ ( ax + b) a ⎝ x b 证明:被积函数 f ( x ) = 的定义域为 { x | x ≠ − } 2 a ( ax + b ) x A B 设 = + , 则 x = A( ax + b ) + B 2 ax + b ( ax + b ) 2 ( ax + b) 即 x ⋅ Aa + ( Ab + B) = x
-2-
6.
dx 1 a ax + b = − + 2 ⋅ ln +C bx b x ( ax + b ) 1 b 证明: 被积函数 f ( x ) = 2 的定义域为 { x | x ≠ − } a x ⋅ (ax + b) 1 A B C 设 2 = + 2 + , 则 1 = Ax ( ax + b) + B( ax + b) + Cx 2 ax + b x ⋅ (ax + b) x x
积分的推导公式
![积分的推导公式](https://img.taocdn.com/s3/m/c8937611b5daa58da0116c175f0e7cd1842518bf.png)
积分的推导公式积分是微积分中的重要概念,它描述了函数在一定区间上的累积效应。
在微积分中,有两个与积分相关的概念,即不定积分和定积分。
不定积分是对函数进行积分,得到的结果是一个包含常数的表达式。
而定积分是对函数在一个区间上进行积分,得到的结果是一个具体的数值。
积分的推导公式是通过对函数进行积分,应用一些基本的积分规则和性质,得到的一系列公式。
这些公式在计算积分时非常有用,可以简化计算过程,提高效率。
常见的积分推导公式有以下几种:一、基本积分公式:1. 常数函数的积分公式:∫kdx=kx+C,其中k为常数,C为常数项。
2. 幂函数的积分公式:∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为常数项。
3. 指数函数的积分公式:∫e^x dx = e^x + C,其中C为常数项。
4. 对数函数的积分公式:∫(1/x)dx = ln|x| + C,其中C为常数项。
二、常用积分公式:1. 三角函数的积分公式:- 正弦函数的积分公式:∫sin(x)dx = -cos(x) + C,其中C为常数项。
- 余弦函数的积分公式:∫cos(x)dx = sin(x) + C,其中C为常数项。
- 正切函数的积分公式:∫tan(x)dx = -ln|cos(x)| + C,其中C为常数项。
2. 反三角函数的积分公式:- 反正弦函数的积分公式:∫arcsin(x)dx = x·arcsin(x) + sqrt(1-x^2) + C,其中C为常数项。
- 反余弦函数的积分公式:∫arccos(x)dx = x·arccos(x) - sqrt(1-x^2) + C,其中C为常数项。
- 反正切函数的积分公式:∫arctan(x)dx = x·arctan(x) - ln|1+x^2| + C,其中C为常数项。
三、积分运算的性质:1. 积分的线性性质:∫(f(x) ± g(x))dx = ∫f(x)dx ± ∫g(x)dx。
积分表公式推导(修改版2)
![积分表公式推导(修改版2)](https://img.taocdn.com/s3/m/b7e5cfdcc1c708a1284a448b.png)
高等数学积分表公式推导目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)........................................14 (六)含有)0( 22>+a a x 的积分(31~44).. (15)(七)含有)0( 22>-a a x 的积分(45~58) (24)(八)含有)0( 22>-a x a 的积分(59~72) (37)(九)含有)0( 2>++±a c bx a 的积分(73~78)····································48 (十)含有 或))((x b a x --的积分(79~82) (51)(十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)附录:常数和基本初等函数导数公式 (85)说明 (86)bx a x --±团队人员 (87)(一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dt t a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxbax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:C x b ax ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ++⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:Cb ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa xB Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f C b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+=+⎪⎭⎫ ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11 )(111)( 1A 01 )(A B )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t a Ct ln a b t a t a b dt ta b dt a dt t a b dt t a bt t b dx b ax x t a bt t b t a t b b ax x dt a dx ,b t a x ,t t b ax a b x |x b ax x )x (f C b ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(1 21 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x b ax x )x (f C |xb ax |ln b b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠+=++-+=+⎰⎰⎰⎰⎰2222222222221)(11111)(1111)( 1 )()( )()( )()(1 }{)(1 ·1)(1)( 9于是有则设:的定义域为证明:被积函数(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax adx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1 )(32 .10证明:32222422211. (32)()152 (0) , , , 22() x ax b dx ax b ax b C a t b t t bax b t t x dx dt x ax b t a a at b t x ax b dx t dt t bt dta a a+=⋅-⋅++--+=≥==+=⋅-∴+=⋅⋅=-⎰⎰⎰⎰证明:令则53532222322322222 ()()53532 (35)152 [3()5]()15 b b d t d t t t C a a a a t t b Ca t axb x ax b dx ax b b ax b Ca =-=⋅-⋅+=-+=++=+-⋅++⎰⎰⎰将代入上式得:322 (32)()15ax b ax b C a =⋅-⋅++[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dtt a b dt t a b dt t a dt bt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C b ax b abx x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰+++3222322223322243353332731432132163432326332532232522222322232)()81215(1052 )(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( )()81215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t Ct a b t a Ct a b t a bdta dt t a dt a tat b t dx b ax x dt atdx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32 )(2)()(32 232 22112 22 2, 2 , , )0( )()2(32 .132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a dt a tt a b t dx bax x dt a t dx a b t x t t b ax C b ax b abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅⋅-=+∴=-=>=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152)()(1015)2(3)(152)10153(152 )3251(2 422 )2(221)(, 2 , , )0( )()843(152 .142223222232224332532323432243222222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-+⋅-=++=+-⋅-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12t2 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .152********b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan bb ax x dx b ax t Cb arctan b dt b t dt bt b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx bax x b a b ax d x b bx b ax dx bax x b a xd b ax b dx b ax x b a dx x b ax b dx bax x b a b ax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111111 111 11 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+b ax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxtab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt b t b dt dt bt b b t dtbt t dt a t b t at dx x b ax dt at dx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 112 .182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax 证明:C a xarctan a a x dx a x arctan t a xarctant tant a x C t adt at dt sec a tsec a a x dx t sec a t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222222+⋅=+==∴⋅=+⋅==⋅⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 1)1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)( .20n n n n n n n n n 2n n n n n n n n n n n n n n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dx a x a x a ax dx C a x ax ln a ax dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:-11 - (四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 121 )(11 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1)( )0(21)0( 1.222222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-=+-+--⋅⋅-=--=+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰⎰b C b x a b x a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab C a bx ab x ln a a b dx a bx a b ax dx a a b x a a b x b ax b C x b aarctan abx b a arctan b a a dx a b x a b ax dx a ab x a a b x b ax 0a b C bx a b x a ln abb C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:222222123. (0)211 ()211()21 222x dx ln ax b C a ax b ax dx d x ax b ax bd ax b a ax b ln ax b C a =⋅++>+=++=++=⋅++⎰⎰⎰⎰证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:222222125. C ()()2 ()()11 ()2()1 () 1()222222222dx x lna 0x axb bax bdx xdx x ax b x ax b d x x ax b A Bx ax b x ax b A ax b Bx =⋅+>++=++=+=+++=++⎰⎰⎰⎰证明:设:则22222()1 111 []()()2()111()222222 x Aa B Ab A Aa B 0bAb aB b dx a d x x ax b bx b ax b a dx d x b x b ax b=++⎧=⎪+=⎧⎪∴⇒⎨⎨=⎩⎪=-⎪⎩=-++=-+⎰⎰⎰⎰有于是22222221111()2211 221 C22 dx d ax b b x b ax b·ln x b b x ·ln b ax b=-++=-++=++⎰⎰- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+b ax dxb a bx dx bax b a dx x b dx b ax b a bx b ax x dx b a B bA Ab 0B Aa Ab B Aa x Bx b ax A bax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:23222342444127. ()()22 ()()11 ()2()1 () 2222222ax b dx a ln C a 0x ax b b x bx dx x dx x ax b x ax b d x x ax b A B C x ax b x x ax b +=-+>+=++=+=++++⎰⎰⎰⎰证明:设:2442223 1()() ()()10 01 ()2222Ax ax b B ax b Cx Aa C x Ab Ba x Bb B b Aa C a Ab Ba A b Bb a C b dx x ax b =++++=++++⎧=⎪+=⎧⎪⎪⎪∴+=⇒=-⎨⎨⎪⎪=⎩⎪=⎪⎩+⎰则有于是222222422222222221111 ()()()2221 2221222a a d x d x d x b x b x bax b a a ·ln x b bx b ax b a ln C b x bx=-+++=--++++=-+⎰⎰⎰- 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[]⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴-++=++>⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 )()(41 )0( )4( 44 41)4( 42 .292222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx b 4ac b 2ax a c bx ax a ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a ax dx :公式 21)(2 )(2121)(2)(212121)(21 )(2121121)(21 ))(2121()(21 211102 2 2)(1 2)(21 211121 211121 121)( )( 21)(2)(2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Ab x )Ba Aa (Bax b ax A bax B ax A b ax ax dx axb ax b ax ax axd b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b axdx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dx a b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 21 12)(121 21221 221 )0( 2 21 .30证明:C)( , 1 |AB | , |AC | B Rt 1 , 01 , 22 || , ) )22( }{1 )0( C )(31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx0x a x C x a x ln C lna x a x ln C a x a x ln C tant sect ln ax dx a x tant a a x cost sect a x x ,a |BC |,t ABC ΔCtant sect ln dtsect dt t sec a sect a a x dx sect a a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x a x )x (f a a x x ln C a xarsh a x dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt 1cos 1 11 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x x ax x a BC t ABC ΔCsint atdt a dt sect a dt t sec a t sec a a x dx tsec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C a x a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dt a t t t a t dx a x x dta t t tdt a t dx a t x t t a x a C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21 , )0( )0( .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C )( )( 22 31)( C )( 1 39)( C )( 22 1)0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d a x a x x ln a a x x dx a x x d a x a dx a x dx ax a a x dx a x x a a x x ln a a x x dx a x x 公式公式证明:C )( )( )( 1, |AB | , |AC |, || , B Rt cos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()( )0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna a x xx a x ln C a x x a x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant ax x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sect dt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x tsec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln a x x dx a x x 1111222323233222则中,设在,则可令的定义域为被积函数证明:Ctant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21 )( 21 )( 21 21 1 1 2)(21 , )0( )0( 1 .3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a ax x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式b nlog b log a na = 提示: 1 11 )1(211121 )1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t Ct a aC t a a t a d t a a dt t a t a a dt t a t dt a t x d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x xdx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |a a x x |ln 2a a x 2x |tant sect |ln a tant sect a axtant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt tcos t cos dt tcos tsin tantdt sect tant tantdsect tantdsect atant sect a dtant sect a tant a sectd a dx a x sect a a x tcos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1· Rt 11 87 )·(11111 )·(· · , 01 ·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 t sec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+C a x x ln a a x a x x dx a x Cx a x ln 83a a x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x a a x a x a tant d t sec a aa x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x t sec a a x costsect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(44 cos 1 |AB | , |AC |, || , B Rt 41 2121 21 21 )1( ) 3 (413 3 )1(3 3 3 3 ) ( )( )( , 01, 22 ||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x cost sect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1|AB | , |AC |, || , B Rt 488 21 21 21 21 )1(4 4 ) (413 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0( )( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 23 -)( )( 2 )( 2 21 12)(21 , )0( }0|{)( )0(.4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t Ca t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dta t t dt a t t a t t dx x a x dt at t tdt a t dx a t x a t t t a x x x xa x x f a C x aa x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 0 1 |AB | , |AC |, || , B Rt 1 11 )1( , 01 , 20, ) ( ,)20( , 01. }0|{)( )0( C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln x a x dx x a x x a x ln x a x dx xa x x x a x ln x a x dx x a x x a x C lna x a x ln xa x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,a x x sint a x x a BC t ABC ΔC sint tant sect ln dsint t sin dt sect dt tsin cost dt sect dt t sin tcos cost dt sect dt ttan sect dt sect dt t tan t tan sect tdt sec a t tan a sect dx x a x ttan a sect x a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x xa x x f a a x x ln x a x dx xa x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1. 2 1 Rt 20 )20( . 1 }{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πttant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x a x dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 Ct tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 || || ||1)( || 1. 2 || . 1 }{ 12 )0( 45 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x a x dx .221225224222422422422222232222122222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔC tsin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 12212221122247. (0)1 ()()21 ()()211 ()12122222222222x dx x a C a x a x dx x a d x x a x a d x a x a ---=-+>-=--=--=⨯-+-⎰⎰⎰⎰证明: 22C x a C =-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分表 公式推导
目录
(一)含有 ax b 的积分(1~9)·······················································1 (二)含有 ax b 的积分(10~18)···················································5 (三)含有 x 2 a 2 的积分(19~21)····················································9 (四)含有 ax2 b (a 0) 的积分(22~28)············································11 (五)含有 ax2 bx c (a 0) 的积分(29~30)········································14 (六)含有 x 2 a 2 (a 0) 的积分(31~44)·········································15 (七)含有 x 2 a 2 (a 0) 的积分(45~58)·········································24 (八)含有 a 2 x 2 (a 0) 的积分(59~72)·········································37 (九)含有 a 2 bx c (a 0) 的积分(73~78)····································48 (十)含有 x a 或 ( x a )( b x ) 的积分(79~82)···························51
1 dt
a
a
x ax
b
dx
1 a
t
t
b 1
· a
dt
1 a2
1
b t
dt
1 a2
dt
1 a2
b t
dt
t b ln t C a2 a2
1 t b ln t C a2
将t
ax
b 代入上式得:
x ax
b
dx
1 a2
ax
b
b ln
ax b
C
-1-
4.
x2 ax
dx b
1 2a 3
(ax
b) 2
C1
1 a2
2abx dx ax b
2b a3
ax b bd (ax) ax b
2b dx 2b2 1 d (ax b)
a3
a3 ax b
2b x 2b2 ln
a3
a3
ax b
C2
1
a2
b2 dx b2 ax b a3
1 d (ax b) b2 ln
ax b
a3
ax b
C3
由以上各式整理得:
x2 ax
dx b
1 a3
1 2
(ax
b) 2
2b
( ax
b)
b2
ln
ax b
C
5.
x
dx (ax
b)
1 b
ln
ax b x
C
证明:被积函数 f ( x ) 1 的定义域为{x | x b}
x (ax b)
a
设 1 A B , 则 1 A(ax b) Bx (Aa B)x Ab x (ax b) x ax b
有
Aa B 0
Ab
1
A B
1 b
a b
于是
x
dx (ax
b)
[
1 bx
b
(
a ax
b
]dx )
1 b
1 x
dx
a b
1 ax
dx b
1 b
1 x
dx
1 b
1 ax
d b
(
ax
b
)
1 ln x 1 ln ax b C
b
b
1 ln x C b ax b
提示:log a b1 log a b
将t ax b代入上式得:(ax b) μ dx 1 (ax b) μ1 C
a (μ 1)
3.
x ax
b
dx
1 a2
ax
b
b
ln
ax b
C
证明:被积函数 f ( x ) x 的定义域为 {x | x b}
ax b
a
令 ax b t
(t
0), 则x
1 t b
,
dx
1 ln ax b C
b
ax b C
xb
(十一)含有三角函数的积分(83~112)···········································55 (十二)含有反三角函数的积分(其中 a 0)(113~121)·······················68 (十三)含有指数函数的积分(122~131)··········································73 (十四)含有对数函数的积分(132~136)··········································78 (十五)含有双曲函数的积分(137~141)··········································80 (十六)定积分(142~147)····························································81
1 a3
1 2
(ax
b) 2
2b
( ax
b)
b2
ln
ax b
C
证明: x2 dx 1
(ax b)2 2abx b2 ) dx
ax b a 2
ax b
1 (ax b)dx 1 2abx dx 1
b2 dx
a2
a 2 ax b a 2 ax b
1
a2
(ax
b)dx
t
ax
b
代入上式得:
dx ax
b
1 a
ln
ax b
C
2. (ax b) μ dx 1 (ax b) μ1 C (μ 1)
a (μ 1)
证明:令 ax b t ,则dt adx , dx 1 dt a
(ax
b) μ dx
1 a
t μdt
1 t μ1 C a (μ 1)
(一)含有 ax b 的积分(1~9)
1.
dx ax
b
1 a
ln
ax b
C
证明:被积函数 f ( x ) 1 的定义域为{x | x b}
ax b
a
令 ax b t (t 0),则dt adx , dx 1 dt a
dx ax
b
1 a
1dt t
1 ln t C a
将