华东师大版七年级下册数学期中测试卷

合集下载

最新华东师大版七年级数学下册期中考试试题

最新华东师大版七年级数学下册期中考试试题

华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.下列由等式的性质进行的变形,错误的是()A.如果a=b,那么a+2=b+2 B.如果a=b,那么a﹣2=b﹣2C.如果a=2,那么a2=2a D.如果a2=2a,那么a=22.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A.B.4 C.12 D.23.关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<4.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣36.不等式4﹣x≤2(3﹣x)的正整数解有()A.1个B.2个C.3个D.无数个7.不等式组的解集在数轴上表示为()A.B.C.D.8.如果不等式组有解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤8 9.若﹣2a m b4与5a n+2b2m+n是同类项,则mn的值是()A.2 B.0 C.﹣1 D.110.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196二、填空题(每小题3分,共15分)11.将方程4x+3y=6变形成用y的代数式表示x,则x=.12.关于x的方程(k﹣4)x|k|﹣3+1=0是一元一次方程,则k的值是.13.若x≥﹣5的最小值为a,x≤5的最大值是b,则a+b=.14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为.15.某人在解方程=﹣1去分母时,方程右边的﹣1忘记乘以6,算得方程的解为x=2,则a的值为.三、解答题(55分)16.(5分)解方程:3(2x﹣1)﹣2(1﹣x)=0.17.(5分)解不等式﹣1<,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18.(6分)用加减消元法解方程组:.19.(6分)已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20.(7分)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21.(8分)小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22.(8分)阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x =;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣.所以原方程的解是x=或x=﹣.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23.(10分)某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)华东师大版七年级数学下册期中试题一、选择题(每小题3分,共30分)1.方程3x﹣1=5的解是()A.x=B.x=C.x=18 D.x=2 2.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=0 3.由,可以得到用x表示y的式子是()A.y=B.y=C.y=﹣2 D.y=2﹣4.解方程2x=3x时,两边都除以x,得2=3,其错误原因是()A.方程本身是错的B.方程无解C.两边都除以了0 D.2x小于3x5.下列说法正确的是()A.方程4+x=8和不等式4+x>8的解是一样的B.x=2不是不等式4x>5的解C.x=2是不等式4x>15的一个解D.不等式x﹣2<6的两边都减去3,则此不等式仍成立6.把方程的分母化成整数后,可得方程()A.﹣1=B.﹣1=C.﹣10=D.﹣1=7.不等式≤﹣1的解集表示在数轴上是()A.B.C.D.8.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x﹣1)=139.如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的2倍多10度.设∠AOC和∠BOC的度数分别为x,y,则下列正确的方程组为()A.B.C.D.10.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.二、填空题(每小题3分,共15分)11.若2x﹣3与1互为相反数,则x=.12.在公式S=n(a+b)中,已知S=5,n=2,a=3,那么b的值是.13.一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是.14.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.15.如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是.三、解答题(本大题共8小题,共75分)16.(10分)解下列方程:(1)3x ﹣2(x﹣1)=4 (2).17.(10分)按要求解下列方程组:(1)用代入法解方程组:;(2)用加减法解方程组:.18.(7分)解下列不等式,并把解集在数轴上表示出来:<﹣1.19.(8分)把一些图书分给某班学生阅读,如果每人分3本则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?20.(10分)已知关于x,y的方程组与有相同的解,求a,b 的值.21.(10分)求不等式组的整数解.22.(10分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?23.(10分)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.。

华东师大版七年级数学下册期中测试卷及答案【完整版】

华东师大版七年级数学下册期中测试卷及答案【完整版】

华东师大版七年级数学下册期中测试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.若320,a b -+=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c,则图c中的∠CFE的度数是__________°.3.分解因式:32x2x x-+=_________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组(1)532321x yx y+=⎧⎨+=⎩(2)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩(3)2311632x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩2.化简求值:()1已知a是13的整数部分,3b=,求54ab+的平方根.()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b++---.3.如图是一块长方形的空地,长为x米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为 ;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、C7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、105°3、()2x x 1-.4、-405、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)23x y =⎧⎨=⎩;(3)123x y z ⎧⎪⎨⎪⎩===.2、(1)±3;(2)2a +b ﹣1.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、(1)60°;(2)50°;(3)18021n α︒--或18021n α︒-+ 5、(1)40;(2)72;(3)280.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

华东师大版2023-2024学年七年级下学期期中数学试题

华东师大版2023-2024学年七年级下学期期中数学试题

华东师大版2023-2024学年七年级下学期期中数学试题一、单选题1.下列方程中,属于一元一次方程的是( )A .2x-1=0.B .1-x=y.C .34x =.D .1-x 2=0 2.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 3.23a a 等于( )A .23aB .5aC .6aD .8a4.已知方程31ax y x +=-是关于x ,y 的二元一次方程,则a 满足的条件是( ) A .0a ≠ B .1a ≠- C .3a ≠ D .3a ≠- 5.如图,点A 在反比例函数4(0)y x x=>的图象上,过点A 作AB x ⊥轴,垂x 足为点B ,点C 在y 轴上,则ABC V 的面积为( )A .3B .2C .1.5D .16.如图,在平行四边形ABCD 中,AB =6cm ,AD =8cm ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( ).A .12cmB .14cmC .16cmD .28cm 7.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系如图所示.下列四种说法:其中正确的个数是( )①每分钟的进水量为5升.②每分钟的出水量为3.75升.③从计时开始8分钟时,容器内的水量为25升.④容器从进水开始到水全部放完的时间是20分钟.A .1个B .2个C .3个D .4个8.已知方程组5354x y ax y +=⎧⎨+=⎩与5125x by x y +=⎧⎨-=⎩有相同的解,则a ,b 的值为( ) A .12a b =⎧⎨=⎩ B .46a b =-⎧⎨=-⎩ C .62a b =-⎧⎨=⎩ D .142a b =⎧⎨=⎩9.我国明代数学读本《算法统宗》中有一道题,其题意为客人一起分银子,若每人分7两,则还剩4两;若每人分9两,则还差8两.问客人有几人?设客人共有x 人,则可列方程为( )A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+= 10.我国古代数学著作《算法统宗》中有这样一道题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长,井深各几何?意思是:用绳子测水井的深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成4等份,井外余绳1尺,问绳长、井深各是多少尺?设井深x 尺,绳长y 尺,则所列方程组正确的是( )A .143114y x y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .143114y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩C .3441y x y x +=⎧⎨+=⎩D .3441y x y x-=⎧⎨+=⎩二、填空题11.将方程41x y -=变形成用含y 的代数式表示x ,则x =.12.已知方程185x y -=,用含y 的代数式表示x ,那么. 13.若210x y -++=,则2x y -的值为.14.如果4m 、m 、6-2m 这三个数在数轴上所对应的点从左到右依次排列,那么 m 的取值范围.三、解答题15.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-=(4)8423x y xy +=⎧⎪⎨+=⎪⎩(5)1225224x y z x y z x y++=⎧⎪++=⎨⎪=⎩16.解方程组:(1)6210x y x y +=⎧⎨+=⎩(2)23846x y x y +=⎧⎨-=-⎩17.解下列不等式(组). (1)2132134x x +-≤+; (2)267924152x x x x +>-⎧⎪⎨+-≤⎪⎩①②.18.m 等于什么数时,式子13m -与35m +的值相等?19.用“※”定义一种新运算:规定22a b ab ab b =+-※,如:2313213312=?创-=1※.(1)若21(4)0m n ++-=,求m n ※的值;(2)若()1312x -=※,求x 的值.20.学校准备购进一批甲、乙两种办公桌若干张.若学校购进20张甲种办公桌和15张乙种办公桌共花费17000元,购买10张甲种办公桌比购买5张乙种办公桌多花费1000元.(1)求甲、乙两种办公桌每张各多少元;(2)若学校购买甲、乙两种办公桌共40张,甲种办公桌数量不多于乙种办公桌数量的3倍,且总费用不超过18400元,那么有几种购买方案?21.已知m 是一个非零常数,且关于x ,y 的方程组2524x m y x y m-=⎧⎨+=⎩有解,求x y 的值. 22.随着某中学的规模逐渐扩大,学生人数越来越多,学校打算购买校车20辆,现有A 和B 两种型号校车,如果购买A 型号校车6辆,B 型号14辆,需要资金580万元;如果购买A 型号校车12辆,B 型号校车8辆,需要资金760万元.已知每种型号校车的座位数如表所示:经预算,学校准备购买设备的资金不高于500万元.(每种型号至少购买1辆)(1)每辆A 型校车和B 型校车各多少万元?(2)请问学校有几种购买方案?且哪种方案的座位数最多,是多少?23.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买1个篮球和5个足球共需费用570元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球和足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?。

华师大版七年级下学期数学《期中测试题》含答案解析

华师大版七年级下学期数学《期中测试题》含答案解析

华东师大版七年级下学期期中测试卷一、选择题(每小题3分,共18分)1.下列运动属于平移的是()A. 小朋友荡秋千B. 自行车在行进中车轮的运动C. 地球绕着太阳转D. 小华乘手扶电梯从一楼到二楼2.二元一次方程组524x yx y+=⎧⎨-=⎩的解为( )A.14xy=⎧⎨=⎩B.23xy=⎧⎨=⎩C.32xy=⎧⎨=⎩D.41xy=⎧⎨=⎩3.如图,直线a、b被直线c所截,a∥b,∠2=48°,则∠1的度数为()A. 48°B. 58°C. 132°D. 122°4.下列各式从左到右的变形,是因式分解的是()A.296(3)(3)6x x x x-+=+-+xB. 2(5)(2)310x x x x+-=+-C. 22816(4)x x x-+=-D. 221(2)1x x x x++=++5.已知三角形的两边分别为3和6,则此三角形的第三条边的长可能是()A. 3 B. 5 C. 9 D. 10 6.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A. 130元B. 100元C. 120元D. 110元二、填空题(每空3分,共30分)7.计算:23-=____________.8.计算:3(43)x x - =____.9.将0.0000007用科学记数法表示为____.10.一个凸多边形的内角和为720°,则这个多边形的边数是__________________11.若 21x y =⎧⎨=⎩ 是关于x ,y 的二元一次方程 310x my +=的解,则m =____. 12.若多项式29x mx ++是一个完全平方式,则m =______.13.计算:451()33-⨯ =____.14.若代数式224x x --的值为0,则代数式2241x x -+的值为______.15.如图,在△ABC 中,∠B =80°,∠C =40°,AD ⊥BC 于点D ,AE 平分∠BAC ,则∠DAE =____°16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.三、解答题(本大题共102分)17.计算或化简:(1)20162011()(2)2π---+- (2) (3)(31)x x +-18.因式分解:(1)249a - (2)3222x x y xy -+19.解方程组:(1) 5211x y x y +=⎧⎨+=⎩ (2)211342x y y x -=⎧⎪⎨+-=⎪⎩20.(1)已知314748232m m m +++⋅÷=,求m 得值.(2)先化简再求值:()()()222222x y x y x y y ---+-,其中2x =,1y =-.21.已知关于x ,y 的二元一次方程组 3421x y k x y +=⎧⎨+=-⎩ 的解互为相反数,求k 的值. 22.如图,CE AF ⊥,垂足为E ,CE 与BF 交于点D ,50F ∠=︒,30C ∠=︒,求EDF ∠和DBA ∠的度数.23.用二元一次方程组解决问题:某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为5元/辆,现在停车场内停有50辆中、小型汽车,这些车共缴纳停车费390元,中、小型汽车各有多少辆?24.如图,在△ABC 中,已知∠BDC=∠EFD ,∠AED =∠ACB .(1)试判断∠DEF 与∠B 的大小关系,并说明理由;(2)若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S △DEF =4,求S △ABC .25.如图,四边形ABCD 内角∠DCB 与外角∠ABE 的平分线相交于点F.(1)若BF ∥CD ,∠ABC=80°,求∠DCB 的度数;(2)已知四边形ABCD 中,∠A=105º,∠D=125º,求∠F 的度数;(3)猜想∠F 、∠A 、∠D 之间的数量关系,并说明理由.26.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求a 与b 的值;(2)如图(1),若长方形ABCD 的面积为35,其中阴影部分的面积为20,求长方形ABCD 的周长;图(1)(3)如图(2),若AD的长度为5,AB的长度为n.图(2)①当m=________,n=_________时,a,b的值有无数组;②当m________,n_________时,a,b的值不存在.答案与解析一、选择题(每小题3分,共18分)1.下列运动属于平移的是()A. 小朋友荡秋千B. 自行车在行进中车轮的运动C. 地球绕着太阳转D. 小华乘手扶电梯从一楼到二楼【答案】D【解析】【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A、荡秋千不符合平移的性质,不属于平移,故本选项错误;B、自行车在行进中车轮的运动不符合平移的性质,不属于平移,故本选项错误;C、地球绕着太阳转不符合平移的性质,不属于平移,故本选项错误;D、小华乘手扶电梯从一楼到二楼符合平移的性质,属于平移,故本选项正确.故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.2.二元一次方程组524x yx y+=⎧⎨-=⎩的解为( )A.14xy=⎧⎨=⎩B.23xy=⎧⎨=⎩C.32xy=⎧⎨=⎩D.41xy=⎧⎨=⎩【答案】C 【解析】解:524x yx y+=⎧⎨-=⎩①②,两式相加得:3x=9,解得:x=3.把x=3代入①得:y=2.故选C.3.如图,直线a、b被直线c所截,a∥b,∠2=48°,则∠1度数为()A. 48°B. 58°C. 132°D. 122°【答案】C【解析】【分析】 由a ∥b ,∠2=48°,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠1的度数.【详解】解:∵a ∥b ,∠2=48°,∴∠3=∠2=48°,∵∠1+∠3=180°,∴∠1=132°.故选C .【点睛】此题考查了平行线的性质与邻补角的定义.此题难度不大,解题的关键是注意掌握两直线平行,同位角相等定理的应用.4.下列各式从左到右的变形,是因式分解的是( )A. 296(3)(3)6x x x x -+=+-+xB. 2(5)(2)310x x x x +-=+-C. 22816(4)x x x -+=-D. 221(2)1x x x x ++=++【答案】C【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A 、(x +3)(x -3)+6x 不是几个因式积的形式,故不是因式分解,故本选项错误;B 、x 2+3x -10不是几个因式积的形式,故不是因式分解,故本选项错误;C、方程右边是几个因式积的形式,故是因式分解,故本选项正确;D、x(x+2)+1不是几个因式积的形式,故不是因式分解,故本选项错误.故选C.【点睛】本题考查的是分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5.已知三角形的两边分别为3和6,则此三角形的第三条边的长可能是()A. 3B. 5C. 9D. 10【答案】B【解析】【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【详解】解:根据三角形的三边关系,得第三边大于:6-3=3,小于:3+6=9.则此三角形的第三边可能是:5.故选B.【点睛】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.6.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A. 130元B. 100元C. 120元D. 110元【答案】D【解析】【分析】设甲商品为x元/件,乙商品为y元/件,根据总价=单价×数量依据题意,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设甲商品为x元/件,乙商品为y元/件,根据题意得:2130 2200 x yx y+⎧⎨+⎩==,解得:9020 xy=⎧⎨=⎩,甲、乙两种商品各一件共需20+90=110元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(每空3分,共30分)7.计算:23-=____________. 【答案】19; 【解析】 试题解析:22113=39-= 故答案为19. 8.计算:3(43)x x - =____.【答案】12x 2-9x【解析】【分析】单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【详解】解:原式=12x 2-9x .故答案为12x 2-9x .【点睛】本题考查了单项式乘多项式.单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.9.将0.0000007用科学记数法表示为____.【答案】7×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000007=7×10-7, 故答案为7×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.一个凸多边形的内角和为720°,则这个多边形的边数是__________________【解析】【分析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可.【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯=解得n 6=.故答案为:6.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键. 11.若 21x y =⎧⎨=⎩ 是关于x ,y 的二元一次方程 310x my +=的解,则m =____. 【答案】4【解析】【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m 的一元一次方程,可以求出m 的值.【详解】解:把x =2,y =1代入二元一次方程 310x my +=得2×3+m =10, 解得m =4,故答案为4.【点睛】解题关键是把方程解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值. 12.若多项式29x mx ++是一个完全平方式,则m =______.【答案】-6或6【解析】【分析】首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3积的2倍.【详解】解:∵x 2+mx+9=x 2+mx+32,∴mx=±2×3×x , 解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.计算:451()33-⨯ =____.【答案】3【解析】【分析】根据同底数幂的运算法则和积的乘方的运算法则计算可得. 【详解】解:原式=441333⎛⎫-⨯ ⎪⎝⎭⨯ =41333⎛⎫-⨯ ⎪⎭⨯⎝ =1×3=3,故答案为3.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握同底数幂的乘法和幂的乘方与积的乘方的运算法则.14.若代数式224x x --的值为0,则代数式2241x x -+的值为______.【答案】9.【解析】【分析】根据题意求出x 2-2x 的值,原式变形后代入计算即可求出值.【详解】解:∵x 2-2x-4=0,∴x 2-2x=4.∴2x 2-4x=2(x 2-2x )=8.∴原式=8+1=9.故答案为9.【点睛】本题考查代数式求值,熟练掌握运算法则是解题的关键.15.如图,在△ABC 中,∠B =80°,∠C =40°,AD ⊥BC 于点D ,AE 平分∠BAC ,则∠DAE =____°【答案】20【解析】【分析】根据∠B =60°,∠C =40°可得∠BAC 的度数,AE 平分∠BAC ,得到∠BAE 和∠CAE 的度数,利用外角的性质可得∠AED 的度数,再根据垂直定义,得到直角三角形,在直角△ABD 中,可以求得∠DAE 的度数.【详解】解:∵∠C =40°,∠B =80°,∴∠BAC =180°-40°-80°=60°,∵AE 平分∠BAC ,∴∠BAE =∠CAE =30°,∴∠AED =∠EAC +∠C =70°,∵AD ⊥BC 于D ,∴∠ADC =90°,∴∠DAE =90°-∠AED =90°-70°=20°,故答案为20.【点睛】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____. 【答案】14或19【解析】【分析】 由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4,∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.三、解答题(本大题共102分)17.计算或化简:(1)20162011()(2)2π---+- (2) (3)(31)x x +-【答案】(1)4- ;(2)2383x x +-.【解析】【分析】(1)先计算1的整数指数幂、负整数指数幂、零指数幂,再计算加减可得;(2)首先去括号,合并同类项,将代数式化为最简式.【详解】解:(1)原式=-1-4+1=-4; (2)原式=2393x x x -+-=2383x x +-【点睛】此题主要考查了整式的乘法、有理数的混合运算,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简.18.因式分解:(1)249a - (2)3222x x y xy -+【答案】(1).(2a+3)(2a-3);(2).x(x-y)2.【解析】【分析】 (1)根据平方差公式分解因式,可得答案;(2)有公因式先提公因式,然后套用完全平方公式分解因式,可得答案.【详解】解:(1)原式=(2a+3)(2a-3);(2)原式=x(x2-2xy+y2)=x(x-y)2.【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.19.解方程组:(1)5211x yx y+=⎧⎨+=⎩(2)211342x yyx-=⎧⎪⎨+-=⎪⎩【答案】(1)61xy=⎧⎨=-⎩;(2)23xy=⎧⎨=⎩;【解析】【分析】(1)通过观察发现y的系数相同,所以考虑加减消元,首先②-①即可消去未知数y,求出x的值,再把x 的值代入①或②均可得到y的值;(2)首先把方程组化简,得到2x-3y=6与3x-y=2,观察发现y的系数成倍数关系,所以考虑加减消元,把3x-y=2乘以3变为9x-3y=6,再与2x-3y=6相减即可消去未知数y,求出x的值,再把x的值代入3x-y=2可得到y的值.【详解】解:(1)5211x yx y+=⎧⎨+=⎩①②,由②-①得x=6,把x=6代入①得y=-1,故原方程组的解为:61 xy=⎧⎨=-⎩.(2)211342x yyx-=⎧⎪⎨+-=⎪⎩,整理得:21 69x yx y-=⎧⎨-=⎩①②由由②-①得4x=8,解得:x=2,把x=2代入①解得:y=3,故原方程组的解为:23x y =⎧⎨=⎩【点睛】此题主要考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.当系数成倍数关系式一般用加减法消元,系数为1时,一般用代入法消元. 20.(1)已知314748232m m m +++⋅÷=,求m 得值.(2)先化简再求值:()()()222222x y x y x y y ---+-,其中2x =,1y =-.【答案】(1)3;(2)-4xy+6y 2,14.【解析】【分析】(1)已知等式左边逆用幂的乘方运算法则,以及同底数幂的乘除法则变形,右边利用幂的乘方运算法则变形,根据幂相等且底数相等,得到指数相等求出m 的值即可;(2)原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:(1)314748232m m m +++⋅÷=∵32642m m ++= ,13382m m ++= ,∴2633314747224822m m m m m m ++++++⋅÷=÷⋅ 263347222m m m m +++--+==已知等式整理得:252322m +== ,即m+2=5,解得:m=3;(2)()()()222222x y x y x y y ---+-=x 2-4xy+4y 2-x 2+4y 2-2y 2= -4xy+6y 2,当x=2,y=-1时,原式=8+6=14.故答案为(1)3;(2)-4xy+6y 2,14.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.21.已知关于x ,y 的二元一次方程组 3421x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值. 【答案】1k =-【解析】【分析】先把两方程相减即可用k 表示出x +y 的值,再根据相反数的定义即可得出关于k 的方程,求出k 的值即可;【详解】解:3421x y k x y +=⎧⎨+=-⎩①②, 由①-②得2x +2y =k +1,∴x +y =12k +, ∵x ,y 互为相反数,∴102k +=,解得k =-1 【点睛】本题考查的是解二元一次方程组及二元一次方程组的整数解,先把k 当作已知表示出x +y 的值是解答此题的关键.22.如图,CE AF ⊥,垂足为E ,CE 与BF 交于点D ,50F ∠=︒,30C ∠=︒,求EDF ∠和DBA ∠的度数.【答案】∠EDF=40°,∠DBA=70°.【解析】【分析】根据垂直得出∠FED=90°,根据直角三角形的性质求出∠EDF 即可;求出∠CDB ,根据三角形外角性质求出∠DBA 即可.【详解】解:∵CE ⊥AF ,∴∠FED=90°,∵∠F=50°,∴∠EDF=90°-∠F=90°-50°=40°,∴∠CDB=∠EDF=40°,∵∠C=30°,∴∠DBA=∠C+∠CDB=30°+40°=70°.故答案为∠EDF=40°,∠DBA=70°.【点睛】本题考查直角三角形的性质,垂直定义,三角形外角性质,主要利用了直角三角形两锐角互余的性质,三角形的外角性质,熟记性质并准确识图是解题的关键.23.用二元一次方程组解决问题:某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为5元/辆,现在停车场内停有50辆中、小型汽车,这些车共缴纳停车费390元,中、小型汽车各有多少辆?【答案】中型汽车20辆,小型汽车30辆.【解析】【分析】先设中型车有x 辆,小型车有y 辆,再根据题中两个等量关系,列出二元一次方程组进行求解.【详解】解:设中型车有x 辆,小型车有y 辆,根据题意得:50125390x y x y +=⎧⎨+=⎩, 解得2030x y =⎧⎨=⎩ 答:中型车有20辆,小型车有30辆.【点睛】本题主要考查了二元一次方程组,解决问题的关键是找出等量关系列出方程.本题也可以运用一元一次方程进行解答.24.如图,在△ABC 中,已知∠BDC=∠EFD ,∠AED =∠ACB .(1)试判断∠DEF 与∠B 的大小关系,并说明理由;(2)若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S △DEF =4,求S △ABC .【答案】(1)∠DEF=∠B ; (2)S △ABC =32.【解析】【分析】(1)由∠BDC =∠DFE ,根据平行线判定得AB ∥EF ,则∠ADE =∠DEF ,而∠DEF =∠B ,所以∠ADE =∠B ,由∠AED =∠ACB 可判断DE ∥BC ,然后根据平行线的性质得到∠ADE =∠B ;故∠DEF =∠B(2)D 、E 、F 分别是AB 、AC 、CD 边上的中点,根据三角形面积公式得到S △EDC =2S △DEF ,S △ADC =2S △DEC ,S △ABC =2S △ADC ,可得S △ABC =8S △DEF 进行计算即可.【详解】(1)结论:∠DEF =∠B证明:∵∠BDC=∠DFE,∴AB∥EF,∴∠ADE=∠DEF,∵∠DEF=∠B,∴∠AED=∠C,∴DE∥BC,∴∠ADE=∠B,∴∠DEF=∠B;(2)解:∵F为CD的中点,∴S△DEC =2S△DEF,同理可得:S△ADC =2S△DEC,S△ABC =2S△ADC,∵S△DEF=4∴S△ABC=8S△DEF=8×4=32,【点睛】本题考查了行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系;应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.也考查了三角形面积公式.25.如图,四边形ABCD的内角∠DCB与外角∠ABE的平分线相交于点F.(1)若BF∥CD,∠ABC=80°,求∠DCB的度数;(2)已知四边形ABCD中,∠A=105º,∠D=125º,求∠F的度数;(3)猜想∠F、∠A、∠D之间的数量关系,并说明理由.【答案】(1)50°;(2)25°;(3)∠F=12(∠A+∠D-180)°.【解析】【分析】(1)由∠ABC=80°,可知∠ABE=100°,根据BF平分∠ABE,BF∥CD可得∠BCD=50°.(2)由三角形外角性质可知∠F=∠FBE-∠FCE,而BF平分∠ABE、CF平分∠BCD,故∠F=1 2(∠ABE-∠FCE),由补角性质和四边形内角和可得∠ABE=360°-∠A-∠B-∠BCD,将已知代入即可求解;(3)同(2)可得∠F=12(∠A+∠D-180°)【详解】解:(1)∵∠ABC=80°,∴∠ABE=180°-∠ABC=100°,∵BF平分∠ABE,∴∠EBF=12∠ABE=50°,∵BF∥CD∴∠BCD=∠EBF=50°;(2)∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF=12∠ABE=,∠ECF=12∠BCD,∵∠ABE=180°-∠ABC,∴∠F=12(180°-∠ABC)-12∠BCD=12[180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F=12[180°-(360°-∠A-∠D)],∴∠F=12(∠A+∠D-180°),∵∠A=105º,∠D=125º,∴∠F=12(105º +125º -180°)=25°,(3)结论:∠F=12(∠A+∠D-180°)理由如下:∵∠FBE是△EBC的外角,∴∠F=∠EBF-∠ECF∵BF平分∠ABE、CF平分∠BCD,∴∠EBF=12∠ABE=,∠ECF=12∠BCD,∵∠ABE=180°-∠ABC,∴∠F=12(180°-∠ABC)-12∠BCD=12[180°-(∠ABC+∠BCD)],∵在四边形ABCD中,∠ABC+∠BCD=360°-∠A-∠D,∴∠F=12[180°-(360°-∠A-∠D)],∴∠F=12(∠A+∠D-180°),【点睛】本题考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.(3)中得出∠F=12(180°-∠ABC)-12∠BCD是解题的关键.26.用若干块如左图所示的正方形或长方形纸片拼成图(1)和图(2)(1)如图(1),若AD=7,AB=8,求a与b的值;(2)如图(1),若长方形ABCD的面积为35,其中阴影部分的面积为20,求长方形ABCD的周长;图(1)(3)如图(2),若AD的长度为5,AB的长度为n.图(2)①当m=________,n=_________时,a,b的值有无数组;②当m________,n_________时,a,b的值不存在.【答案】(1) a=3,b=2;(2) C=24;(3)① m=4,n=10;② m=4,n≠10.【解析】【分析】(1)根据图(1)长方形ABCD的边长组成列方程即可解答;(2)由图(1)中空白部分面积=大长方形面积-阴影部分面积=5个小长方形面积,可得ab=3,再结合完全平方公式可得(a+b)2=16,即可得a+b=4,而长方形ABCD的周长=2(3a+3b),由此即可解答;(3)由长方形的长和宽可列出关于a、b的方程组,解关于a、b即可解答.【详解】解:(1)由图得2728a b a b +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, (2)由图可得:5个小长方形面积=长方形ABCD 的面积-阴影部分的面积,∴53520ab =-,∴ab =3,∵阴影部分的面积为20,∴()22220a b+=, ∴()216a b +=,∴a +b =4,方形ABCD 的周长=2[(2a +b )+(2b +a )]=6(a +b )=6×4=24. (3)由图(2)得:252a b a mb n +=⎧⎨+=⎩,①,②, 由①得a=5-2b ,③将③代入②得2(5-2b )+mb=n ,∴(m-4)b=n-10,∴当40100m n -=⎧⎨-=⎩ 时,a ,b 的解有无数组; 即m=4,n=10时,a ,b 的值有无数组;当40100m n -=⎧⎨-≠⎩时,方程组无解, 即m=4,n≠10时,a ,b 的值不存在.故答案为①m=4,n=10;②m=4,n≠10【点睛】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找到合适的等量关系,列出方程组.解决本题需仔细观察图形,发现大长方形的边长与a 、b 之间的关系是关键.讨论方程组的解情况是本题的难点.。

数学七年级下华东师大版期中考试试卷

数学七年级下华东师大版期中考试试卷

数学七年级下华东师大版期中考试试卷注意事项:本试卷满分100分,考试时刻为90分钟.一、细心填一填(请把结果直截了当填在题中横线上.本大题共有12小题,15个空,每空2分,共30分)1.运算:2x ·3x = ; ()()2332a a -+-= .2.某细菌长为0.00000000529厘米,用科学记数法表示为 厘米. 3. 分解因式:224m n -= . 4.若2(+3)(25)2+15x x x bx -=-,则b 等于 .5.若2||2a b ++()=0,则a b +的值为 ______. 6.已知三角形的两边长是3和4,则那个三角形的第三边c 的取值范畴是 . 7.已知ma =6,n a =8,那么nm a+=_______;315·292.0=______.8.如图,已知AB ∥CD ,BC ∥DE ,则D B ∠+∠=_________°.9.图中一共有 个三角形;从大小判定,图中青蛙能够落在n 个三角形内,则n= .10.把一副常用的三角板如图所示拼在一起,那么图中=∠ABC °.11. 已知210,t t +-=则322t t ++2008= .12.若点P 是面积为4的△ABC 边上一动点,则满足△ABP 面积等于1的点P 有 _________个.二、精心选一选(每小题给出的四个选项中只有一项是正确的请你把正确的选项前的字母填在题后括号内.本大题共有6小题,每小题3分,共18分.)13.下列各式中,正确的是 ( ) A .36+36=212 B .32·33=36 C .22·25=210 D .26+26=27 14.平移图形,能得到下列哪一个图案 ( )A.B.C.D.15.下列各角能成为一个多边形内角和的只有 ( ) A .270° B .560° C .1900° D .1980°16.若一个三角形的3个外角的度数之比2∶3∶4,则与之对应的3个内角之比是( )A .3∶2∶4B .4∶3∶2C .5∶3∶1D .3∶1∶5 17.已知a =69,b =143,c =527,则a 、b 、c 的大小关系是 ( )A .a >b >cB .a >c >bC .c>b>aD .b >c >a第9题ABC DE第8题ABCDE F第10题18.如图,把△ABC 纸片沿DE 折叠,当A 落在四边形BCDE 内时, 则A ∠与21∠+∠之间有始终不变的关系是( )A .21∠+∠=∠A B .212∠+∠=∠A C .213∠+∠=∠A D .)21(23∠+∠=∠A 三、认真答一答(本大题共有8小题,共52分,请写出必要的演算或推理过程.)19.(本题满分8分,每小题4分)运算或化简:(1)0131(2009)()(2)2--++-; (2))2)(2(282-+-x x x —820.(本题满分16分,每小题4分)因式分解:(1)12a 2bc -24ab 2c +18abc 2 ; (2)26+5x x -;(3)(+2)(+4)y y +1; (4)4422+816a b a b --.21.(本题满分5分)有一道题:“化简求值:2(21)(21)(2)a a a +-+-4(1)a -+(2)a -,其中2=a ”.小明在解题时错错误地把“2=a ”抄成了“2-=a ”,但显示运算的结果是正确的,你能说明一下,这是如何回事吗?22.(本题满分5分)人人争当小小设计师.一个工程队为建设一项重点工程,要在一块长方形荒地上建筑几套简易住房,每一套简易住房的平面是由长y 4、宽x 4构成,要求建成:两室、一厅、一厨、一卫.其中客厅面积为xy 6;两个卧房的面积和为xy 8;厨房面积为xy ;卫生间面积为xy .请你依照所学知识,在所给图中设计其中一套住房的平面结构示意图.EDABC12 4x4y用这种方法不仅可比大小,也能解运算23.(本题满分6分)如图,在△ABC中,BCAD⊥,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠BAE的度数;(2)求∠DAE的度数;(3)探究:小明认为假如只明白∠B-∠C=40°,也能得出∠DAE的度数?你认为能够吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题满分6分)阅读解答题:在数学中,有些大数值问题能够通过用字母代替数转化成整式问题来解决.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x =()()2212———aaaa=+,y=()aaaa——21=∵∴x<y.()()222=2<0x y a a a a-=-----D CEB看完后,你学到了这种方法吗?不妨尝试一下,相信你准行! 问题:运算 3.456 2.456 5.456⨯⨯—33.456—21.456.25.(本题满分6分)好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC 中,∠BAC = 50°,点I 是两角B 、C 平分线的交点. 问题(1):填空:∠BIC = °.问题(2):若点D 是两条外角平分线的交点;填空:∠BDC = °.问题(3):若点E 是内角∠ABC 、外角∠ACG 的平分线的交点,试探究:∠BEC 与∠BAC 的数量关系,并说明理由.问题(4):在问题(3)的条件下,当∠ACB 等于多少度时,CE ∥AB .华东师大版2009年春学期期中考试初一数学参考答案及评分标准一、细心填一填 (每空2分,共30分)1.5x , 0 2.5.29⨯10-9 3.2+m n ()2m n -() 4. 1 5. —2 6.17c << 7. 48, 25 8.180 9.6 ,4 10. 75 °11.2009 12.2个 二、精心选一选 (每小题3分,共18分)13. D 14. B 15. C 16. A 17. C 18. B 三、认真答一答19.运算:(1)=1+2—8 3分 (2)=22824x x --()—8 2分=—5 4分 =26x 4分IA BCDEG厨房卫生间卧室卧室客厅3x x 2yyy20.(1) =6abc (3a -4b+2c) 4分 (2)= (x —1)( x —5) 4分 (3)=x 2+6 x +9 2分 (4) =—( a 4b 4—8 a 2b 2+16) 1分=( x +3)2 4分 =—(a 2b 2—4)2 3分=—(ab +2)2(ab —2)2 4分21. =a 2+11 4分 当x =—2时a 2+11=15; 当x =2时a 2+11=15.因此运算结果是准确的. 5分22. 5分23.(1)40度. 2分 (2)20度.2分 (3)能够.20度. 2分. 24. 设a =3.456,原式=42)2()2()1(23-=---+⨯-⨯a a a a a a 4分 原式=2.912 6分 25.(1)∠BIC =115° 1分 (2)∠BDC =65° 1分 (3)∠BEC =21∠BAC 证明略.2分 (4)∠ACB 等于80度.2分。

华师大版七年级下学期数学《期中考试试题》含答案

华师大版七年级下学期数学《期中考试试题》含答案
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
A.98B.99C.100D.101
[答案]B
[解析]
[分析]
设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.
[详解]设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,
[详解]根据题意得:
,
解得: ,
则2m﹣n2=20﹣100=﹣80.
故答案为﹣80 .
[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
15.若方程组 的解也是x+y=1的一个解,则a=_____.
[答案]-
[解析]
[分析]
利用二元一次方程组的解的定义得到方程组 的解也是方程组 的解,然后解方程组 后把x、y的值代入9﹣2a=10中可求出a的值,
华 东 师 大 版 数 学七年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的
1.下列方程中,不是一元一次方程的是()
A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D. +1=0
[答案]A
[解析]
[分析]
等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的为( )A .3x+2y =6B .x 2+2x ﹣1=0C .2x ﹣1=5D .3132x -=2.方程3x+1=m+4的解是x =2,则m 值是( )A .2B .5C .3D .13.当x =﹣2时,下列不等式成立的是( )A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x 4.解方程21101136x x ++-=,“去分母”后变形正确的是( )A .21(101)1x x +-+=B .411016x x +-+=C .421016x x +--=D .2(21)(101)1x x +-+=5.不等式311x x ->+的解集在数轴上表示为( )A .B .C .D .6.解方程组323211x y x y -=⎧⎨+=⎩①②的最好解法是( )A .由①,得y =3x -2,再代入①B .由①,得3x =11-2y ,再代入①C .由①-①消去xD .由①×2+①消去y7.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A .8.31.2x y =⎧⎨=⎩ B .10.32.2x y =⎧⎨=⎩ C . 6.32.2x y =⎧⎨=⎩ D .10.30.2x y =⎧⎨=⎩8.若关于x 的方程(k ﹣2)||1k x - +3y =6是二元一次方程,则k 的值是( ) A .2 B .﹣2 C .2或﹣2 D .39.二元一次方程2x+y=7的正整数解有多少组( )A.2B.3C.5D.410.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.362x yy x+=⎧⎨=⎩B.3625240x yx y+=⎧⎨=⨯⎩C.3640y252x yx+=⎧⎪⎨=⎪⎩D.362x y2540x y+=⎧⎪⎨=⎪⎩二、填空题11.请写出一个以2,1xy=⎧⎨=-⎩为解的二元一次方程:__________________.12.已知a>b,则﹣4a+5_____﹣4b+5.(填>、=或<)13.已知﹣2xn﹣3my3与3x7ym+n是同类项,则mn的值是_____.14.若式子x-1的值不大于2x + 1的值,则所有满足条件的负整数x的和是___________. 15.如果买5支钢笔、2个文具盒和3把直尺需要91元;买1支钢笔、4个文具盒和3把直尺需要59元;那么买1支钢笔、1个文具盒和1把直尺需要_____元.16.若关于x的不等式组1321x mx->⎧⎨-≥⎩的所有整数解的和是15,则m的取值范围是_____.17.已知a,b为定值,关于x的方程2136kx a x bk++=-,无论k为何值,它的解总是1,则a+b=__.三、解答题18.解方程(方程组)(1)131124 x x+--=(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩(3)20 21 32 x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩19.解不等式3(x﹣1)>4(x﹣12)﹣4,把它的解集在数轴上表示出来,并求出它的非负整数解.20.一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.21.一件服装标价200元,若以6折销售,仍可获利20%,求这件服装的进价.22.如图,点A,B在数轴上,它们所对应的数分别是-4和213352x x--+,且点A,B到原点的距离相等,请你求出x的值.23.阅读理解:我们把acbd称作二阶行列式,规定它的运算法则为acbd=ad﹣bc,例如1234=1×4﹣2×3=﹣2,如果433xx->0,求x的取值范围.24.已知方程455x yax by+=⎧⎨-=-⎩和方程组325+1x yax by+=⎧⎨=⎩有相同的解,求a2﹣b2的值.25.已知关于x,y的方程组325x y ax y a-=+⎧⎨+=⎩的解满足x<y,试求a的取值范围.26.为了鼓励节能降耗,某市规定如下用电收费标准:用户每月的用电量不超过120度时,电价为x元/度;超过120度时,不超过部分仍为x元/度,超过部分为y元/度.已知某用户5月份用电115度,交电费69元,6月份用电140度,付电费94元.(1)求x、y的值;(2)若该用户计划7月份所付电费不超过83元,问该用户7月份最多可用电多少度?27.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.参考答案1.C【分析】根据一元一次方程的定义进行分析即可.【详解】A、不是一元一次方程,故此选项不合题意;B、不是一元一次方程,故此选项不合题意;C、是一元一次方程,故此选项符合题意;D、不是一元一次方程,故此选项不合题意;故选:C.【点睛】此题考查一元一次方程定义,解题关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.2.C【分析】直接把x的值代入方程3x+1=m+4,再解即可.【详解】把x=2代入3x+1=m+4得:6+1=m+4,解得:m=3,故选:C.【点睛】此题考查了一元一次方程的解,解题关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A、将x=﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B、将x=﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C、将x=﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D、将x=﹣2代入得:﹣6<﹣4,故此选项错误,故选:B.【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.4.C【解析】由题意利用去分母的方法是方程两边同时乘以各分母的最小公倍数6,进行计算即可判断选项.【详解】解:方程两边同时乘以6得:4x+2-(10x+1)=6,去括号得:4x+2-10x-1=6.故选:C.【点睛】本题考查解带分母的一元一次方程,注意掌握去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.C【解析】【详解】试题解析:由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选C.点睛:首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.6.C【解析】【详解】①-①得:3y=9,即y=3,将y=3代入①得:x=53,则方程组最好的解法是由①-①,消去x,故选C.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,根据方程组的特点选择合适的消元方法是解题的关键.7.C【解析】【分析】由二元一次方程组的解的定义得出28.31 1.2xy+=⎧⎨-=⎩,求解即可.【详解】由题意知,28.31 1.2xy+=⎧⎨-=⎩,解得,6.32.2xy=⎧⎨=⎩,故选:C.【点睛】本题考查二元一次方程组的解,解题的关键是掌握换元法,体现了整体思想.8.B【解析】【分析】利用二元一次方程的定义判断即可.【详解】①关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,①|k|﹣1=1且k﹣2≠0,解得:k=﹣2,故选:B.【点睛】此题考查二元一次方程的定义,以及绝对值,熟练掌握二元一次方程的定义是解题的关键.9.B【解析】【分析】把x看做已知数表示出y,即可确定出正整数解.【详解】解:方程2x+y=7,解得:y=−2x+7,当x=1时,y=5;x=2时,y=3;x=3时,y=1,则方程的正整数解有3组,故选B.【点睛】本题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.C【解析】【详解】设用x张制作盒身,y张制作盒底,根据题意得:3640 252 x yyx+⎧⎪⎨⎪⎩==故选C.【点睛】此题考查二元一次方程组问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.11.x+y=1(答案不唯一)【解析】【详解】解:写出的二元一次方程的解为21xy=⎧⎨=-⎩即可,如x+y=1.故答案为:x+y=1(答案不唯一).12.<【解析】【分析】根据不等式的基本性质即可解决问题.【详解】解:①a>b,①﹣4a<﹣4b,①﹣4a+5<﹣4b+5,故答案为<.【点睛】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.13.1.【解析】【分析】利用同类项的定义列出方程组,求出方程组的解得到m与n的值,代入原式计算即可求出值.【详解】①﹣2xn﹣3my3与3x7ym+n是同类项,①3=7=3n mm n-⎧⎨+⎩①,②①﹣①得:4m=﹣4,解得:m=﹣1,把m=﹣1代入①得:n=4,则mn=(﹣1)4=1,故答案为:1.【点睛】此题考查解二元一次方程组,解题关键在于利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.-3【解析】【分析】本题根据题意列出不等式,解出解集,找出解集中的负整数解,再求和即可.【详解】解:根据题意得,121,2,12x x x-≤+≥-∴--∴负整数解有:,;负整数x的和是-3.故答案为-3.15.25.【解析】【分析】设钢笔的单价为x元,文具盒的单价为y元,直尺的单价为z元,根据“买5支钢笔、2个文具盒和3把直尺需要91元;买1支钢笔、4个文具盒和3把直尺需要59元”,即可得出关于x,y,z的三元一次方程组,再利用(①+①)÷6即可求出结论.【详解】设钢笔的单价为x元,文具盒的单价为y元,直尺的单价为z元,依题意,得:523=9143=59x y zx y z++⎧⎨++⎩①②,(①+①)÷6,得:x+y+z=25.故答案为:25.【点睛】此题考查三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.16.3≤m<4或﹣4≤m<-3【解析】【分析】解不等式组得出解集,根据整数解的和为15,可以确定整数解必含6,5,4这三个数,再根据解集确定m 的取值范围.【详解】解:解不等式组01321x m x ->⎧⎨-≥⎩,得:m <x≤6, ①所有整数解的和是15,15=6+5+4①不等式组的整数解为①6,5,4,或①6,5,4,3,2,1,0,-1,-2,-3①3≤m <4或-4≤m <-3;故答案为: 3≤m <4或﹣4≤m <-3.【点睛】考查一元一次不等式组的解集、整数解,根据整数解和解集确定待定字母的取值范围,在确定的过程中,不等号的选择应认真细心,切实选择正确.17.0【解析】【分析】先把方程化简,然后把x=1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】 解:2136kx a x bk ++=- ()()262kx a x bk +=-+当x=1时,()242b k a +=-无论k 为何值对方程无影响,所以20,2b b +==-所以420,2a a -==所以0a b +=【点睛】本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.18.(1)x =﹣1;(2)22x y =⎧⎨=⎩;(3)123x y z =⎧⎪=-⎨⎪=⎩.【解析】【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组利用加减消元法求出解即可.【详解】(1)去分母得:2(x+1)﹣4=3x ﹣1,去括号得:2x+2﹣4=3x ﹣1,移项合并得:﹣x =1,解得:x =﹣1;(2)方程组整理得:43=234=2x y x y -⎧⎨--⎩①② ,①×4-①×3得:7x=14,解得:x=2,把x=2代入①得:y=2,则方程组的解为=2=2x y ⎧⎨⎩ ;(3)2=02=13=2x y z x y z x y z ++⎧⎪--⎨⎪--⎩①②③,①+①得:3x+y =1①,①+①得:4x+y =2①,①﹣①得:x =1,把x =1代入①得:y =﹣2,把x =1,y =﹣2代入①得:z =3,则方程组的解为=1=2=3xy z ⎧⎪-⎨⎪⎩ .【点睛】此题考查解三元一次方程组,解一元一次方程,以及解二元一次方程,熟练掌握各自的解法是解题的关键.19.在数轴上表示见解析;非负整数解有0,1,2.【解析】【分析】不等式去括号,移项合并,把x系数化为1,即可求出解集;【详解】去括号得:3x﹣3>4x﹣2﹣4移项合并得:﹣x>﹣3,解得:x<3,在数轴上表示为:非负整数解有0,1,2.【点睛】此题考查一元一次不等式的整数解,在数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.20.原两位数为48.【解析】【分析】设个位上的数字为x,十位上的数字为12﹣x.根据等量关系“交换个位与十位数字,则所得新数比原数大36”列出方程并求解.【详解】设个位上的数字为x,十位上的数字为12﹣x,列方程得10(12﹣x)+x+36=10x+(12﹣x),解得:x=8,12﹣8=4.答:原两位数为48.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21.这件服装的进价是100元.【解析】【分析】设这件服装的进价为x 元,找出相等关系为:进价×(1+20%)=200×60%,列方程即可求解.【详解】设这件服装的进价为x 元,依题意得:(1+20%)x =200×60%,解得:x =100.故这件服装的进价是100元.【点睛】此题考查一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=200×60%.22.x=3.【解析】【详解】试题分析:由点A 、B 到原点的距离相等且A ,B 是数轴上不同的两点,可得 21334,52x x --+= 解方程即可.试题解析:由题意得点B 表示的数是4,则有21334,52x x --+=去分母,得()()22153340.x x -+-=去括号,得42151540,x x -+-=移项,得41540152,x x +=++合并同类项,得1957.x =两边都除以19,得 3.x =23.x >97.【解析】【分析】根据新定义列出关于x 的一元一次不等式,解之可得.【详解】根据题意知4x ﹣3(3﹣x )>0,则4x ﹣9+3x >0,7x >9,解得x >97. 【点睛】此题考查解一元一次不等式,严格遵循解不等式的基本步骤是解题关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.﹣5.【解析】【分析】根据题意得出方程4=532=5x y x y +⎧⎨+⎩,解之求出x 、y 的值,继而代入得到 =5=1a b a b --⎧⎨+⎩,据此可得原式=(a+b )(a-b )的值. 【详解】根据题意,得:4=532=5x y x y +⎧⎨+⎩, 解得=1=1x y ⎧⎨⎩, 则=5=1a b a b --⎧⎨+⎩, 所以原式=(a+b )(a-b )=-5×1=-5.【点睛】此题考查二元一次方程组的解,解题关键在于掌握一般情况下二元一次方程组的解是唯一的.当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.25.a <﹣3.【解析】【分析】先把a 当作已知条件求出x 、y 的值,再根据x <y 即可得出关于a 的不等式,求出a 的取值范围即可.【详解】解方程组325x y a x y a -=+⎧⎨+=⎩得212x a y a =+⎧⎨=-⎩, ①x <y ,①2a+1<a ﹣2,解得a <﹣3.故a 的取值范围是a <﹣3.【点睛】本题考查的是解二元一次方程组及一元一次不等式,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.26.(1)0.61.1x y =⎧⎨=⎩;(2)若该用户计划7月份所付电费不超过83元,问该用户7月份最多可用电130度.【解析】【分析】(1)根据5、6月份的用电量及所交电费可得出二元一次方程组,解出即可; (2)先判断出是否超过120度,然后列方程计算即可.【详解】(1)由题意得,115=6912020=94x x y ⎧⎨+⎩, 解得:=0.6=1.1x y ⎧⎨⎩. (2)用电量为120度时需要交电费72元,设该用户7月份最多可用电x 度,由题意得,120×0.6+1.1(x ﹣120)=83,解得:x=130,答:若该用户计划7月份所付电费不超过83元,该用户7月份最多可用电130度.【点睛】此题考查元一次方程组的应用,解题的关键是仔细审题,根据等量关系得出方程组,难度一般.27.(1)150;240;(2)11根.【解析】【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.【详解】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为150;240.(2)设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得:x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【点睛】本题考查一元一次方程的应用,解答的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程进行解答即可.。

最新华东师大版七年级数学下册期中试卷 含答案

最新华东师大版七年级数学下册期中试卷 含答案

华东师大版七年级下册期中试卷一、选择题(每小题3分,共30分)1.已知关于x 的方程2x -a -5=0的解是x =-2,则a 的值为( )A .1B .-1C .9D .-92.小亮在解方程5b -2x =16时,把-2x 错看成+2x ,结果解得x =-2,则原方程的解是( )A .x =-3B .x =0C .x =1D .x =23.要使多项式x 2-2kxy -3y 2+12xy -5x +70不含x ,y 的乘积项,则k 的值为( )A .-14B .-1 C.14D .1 4.若关于x ,y 的二元一次方程组⎩⎨⎧ax +y =0,x +by =1的解是⎩⎨⎧x =1,y =-1,那么b -a 的值是( )A .0B .1C .-2D .-15.不等式组⎩⎨⎧2x +1<3,3x +1≥-2的解集在数轴上表示正确的是( )6.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.⎩⎨⎧x -y =320x +10y =36B.⎩⎨⎧x +y =320x +10y =36C.⎩⎨⎧y -x =320x +10y =36D.⎩⎨⎧x +y =310x +20y =367.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为( )A .■,●,▲B .▲,■,●C .■,▲,●D .●,▲,■8.已知关于x 的方程x +2k =4(x +k )+1有负数解,则k 的取值范围是( )A .k >-12B .k <-12C .k >-13D .k <-139.关于x 的不等式⎩⎨⎧2(x -1)>4,a -x <0的解集为x >3,那么a 的取值范围为( )A .a >3B .a <3C .a ≥3D .a ≤310.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A .至少20户B .至多20户C .至少21户D .至多21户二、填空题(每小题3分,共15分)11.当x =____时,代数式x -14与2-x 3的差为1. 12.不等式组⎩⎨⎧x -2≤0,x -12<x的解集是____. 13.已知⎩⎨⎧x =2,y =1是关于x ,y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a +b =____.14.小亮妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果少买了2 kg ,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x kg ,乙种水果y kg ,可列出方程组为___.15.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7·为例进行说明:设0.7·=x ,由0.7·=0.7777…可知,10x =7.7777…,所以10x -x =7,解方程,得x =79,于是.得0.7·=79.将0.3·6·写成分数的形式是___.三、解答题(共75分)16.(8分)解下列方程(组): (1)x -30.5-x +40.2=1.6; (2)⎩⎨⎧3(x +y )+2(x -3y )=20,30%x +6%y =10%×60.17.(9分)解不等式组:⎩⎨⎧2x +1>x ,x +52-x ≥1,并把解集在数轴上表示出来.18.(9分)求满足不等式组⎩⎨⎧x -3(x -2)≤8,12x -1<3-32x 的所有整数解.19.(9分)m 为何值时,方程组⎩⎨⎧5x +6y =2m -3,7x -4y =m -2的解满足x <0,y <0.。

(整理)华东师大版七级数学下册期中考试试题

(整理)华东师大版七级数学下册期中考试试题

华东师大版七年级数学下册期中考试试题(满分:100分 时间:120分钟)班级 姓名 成绩1.填空题 (每小题3分,共18分)(1)方程2|x-3|=0的解是x= .(2)当x= 时,1157x x +-与互为相反数. (3)当x= 时,x-2的4倍等于x-2的相反数.(4)已知有理数x 、y 满足条件:4|2|(8)0,x y x y --++-=则2xy= . (5)若522363212334m n m n x y x y ++---与的和仍是单项式,则m= ,n= . (6)已知121x y ⎧=⎪⎨⎪=-⎩是方程组3521ax y x by -=⎧⎨+=⎩的解,则a-b= . 2.选择题(每小题4分,共20分)(7)方程3x+a=2的解是5,则a 的值是 ( )A.-13B.- 17C.13D.17(8)第二十届电视剧飞天奖有a 部作品参赛,比上一届增加40﹪还多2部,设上一届参赛的作品有b 部,则b 是 ( )2.140%a A ++ C.a(1+40%)+2 2.140%a C -+ D.a(1+40%)-2 (9)方程|2x+3|=9的解是 ( )A.3B.-6C.3或-6D.-3或6(10)解是12x y =⎧⎨=⎩的方程组是 ( ) 1.328x y A x y --=⎧⎨+=⎩ 1.327x y B x y -=-⎧⎨+=-⎩ 3.20x y C x y =-⎧⎨-=⎩ 23.57x y D x y -=-⎧⎨+=⎩ (11)某商店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店 ( )A.不赔不赚B.赚了8元C.赔了8元D.赚了32元3.解方程组(每小题8分,共32分)5(12)532x x --= 0.50.1(13)10.6y y --=431(14)7632x y x y +=⎧⎨-=-⎩3(1)4(4)(15)5(1)3(5)x y y x -=-⎧⎨-=+⎩4.解答题(每小题10分,共30分)(16)22|23|(35)0,().x x y x y -+-+=+已知求的值(17)国家规定个人发表文章,出版图书获得稿费的纳税办法是:①稿费不高于800元的不纳税 ②稿费高于800元又不高于4000元的应缴超过800元那一部份稿费的14%的税③稿费高于4000元的应缴纳全部稿费的11%的税.现在知道王老师获得一笔稿费,并缴纳个人所得税420元,问王老师这笔稿费有多少元?(18)中学生足球赛共赛15轮,每队均赛15场,胜一场计2分,平一场计1分,负一场计0分,某中学足球队所胜场数是所负场数的2倍,结果共得19分,问这个足球队共平几场?答案1.(1)3 (2)-6 (3)2(4)30 (5)1;-12(6)4 2.(7)A (8)C (9)C(10)D (11)B3.(12)x=9. (13)y=5(14)⎧=-⎨=⎩23x y (15)⎧=⎨=⎩57x y4.(16) ⎧=+=⎨=⎩21.5,()1219.5x x y y .(17)3800元. (18)3场.。

华师大版七年级下册数学期中考试试题附答案

华师大版七年级下册数学期中考试试题附答案

华师大版七年级下册数学期中考试试卷一、单选题1.已知x =2是关于x 的方程3x+a =0的一个解,则a 的值是( )A .﹣6B .﹣3C .﹣4D .﹣5 2.把方程2263x x -=-移项,得( )A .2362x x +=+B .2362x x -=+C .2362x x +=-D .2362x x -=- 3.下列方程组中,不是二元一次方程组的是( )A .123x y =⎧⎨+=⎩B .10x y x y +=⎧⎨-=⎩C .10x y xy +=⎧⎨=⎩D .21y x x y =⎧⎨-=⎩4.同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩5.若关于x ,y 的二元一次方程组25245x y k x y k +=+⎧⎨-=-⎩的解满足x +y =9,则k 的值是( ) A .1 B .2 C .3 D .46.已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .﹣2 B .2 C .﹣4 D .47.如图,10块形状、大小相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意可列方程组为( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩8.下列各式中,不是不等式的是( )A .2x≠1B .3x 2﹣2x+1C .﹣3<0D .3x ﹣2≥19.下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac > bcD .若ac 2>bc 2,则a >b10.不等式组22314x x x -≥-⎧⎨->-⎩的最小整数解是( ) A .-1 B .0 C .1 D .211.不等式组26{20x x -<-≤的解集,在数轴上表示正确的是( ) A . B . C . D .12.关于x 的不等式组1x a x ⎧⎨⎩>>的解集为x >1,则a 的取值范围是( ) A .a≥1 B .a >1 C .a≤1 D .a <113.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤- 14.若规定:[a]表示小于a 的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是( )A .7x =B .7x =-C .172x =-D .172x = 二、填空题15.已知方程(m ﹣2)x |m |﹣1+3=0是关于x 的一元一次方程,则m 的值是_____. 16.由方程459x y +=,可以用含x 的代数式表示y ,则y =_______. 17.方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于_______. 18.若单项式3x 4yn 与﹣2x 2m +3y 3的和仍是单项式,则(4m ﹣n )n=_____.19.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x 、y 满足x+y >0,则m 的取值范围是_______.20.若方程组142kx y x my -=⎧⎨+=⎩ 有无数解,则k ﹣m 的值是_____. 三、解答题21.(1)解方程53(2)8x x +-=(2)解方程组21538x y x y +=⎧⎨-=⎩22.解不等式:232126x x +-->.并把它们的解集在数轴上表示出来;23.当m 取什么整数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?24.在解方程组107ax y x by +=⎧⎨+=⎩时,由于粗心,甲看错了方程组中的a ,而得到方程组的解为16x y =⎧⎨=⎩ ,乙看错了方程组中的b ,而得到方程组的解为112x y =-⎧⎨=⎩, (1)甲把a 看成了什么?乙把b 看成了什么?(2)求出原方程组的正确解.25.已知代数式2y ax bx c =++,当1x =-时,4y =;当0x =时,1y =;当2x =时,25y =;①求a 、b 、c 的值;①求3x =时,y 的值.26.已知关于x的不等式组20x a bx a b-->⎧⎨-+<⎩的解集为119x-<<,求a,b的值.27.一家商场将某种商品按成本价提高50%后标价出售,元旦期间,为答谢新老顾客对商场的光顾,打八折销售,每件商品仍可获利40元,请问这件商品的成本价是多少元?(列一元一次方程求解)28.为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两种型号的污水处理设备共20台,对邛海湿地周边污水进行处理.每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640t,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080t.(1)求A,B两种型号的污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500t,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少。

华师大版七年级下学期数学《期中考试题》及答案

华师大版七年级下学期数学《期中考试题》及答案
8.下列叙述不正确的是( )
A 若x<0,则x2>xB. 如果a<-1,则a>-a
C. 若 ,则a>0D. 如果b>a>0,则
[答案]B
[解析]
若x<0,则x2>0,x2>x,故A选项正确;
如果a<-1,则-a>1,a<-a,故B选项错误;
∵ < ,∴要使 ,则a>0,故C选项正确;
∵b>a>0,∴ > ,∴- <- ,故D选项正确.
(2)方程整理后,去括号,去分母,移项合并,把x系数化为1,即可求出解.
[详解]解:(1)3(x+8)﹣5=6(2x﹣1),
3x+24﹣5=12x﹣6,
3x﹣12x=﹣6﹣24+5,
﹣9x=﹣25,
x= ;
(2) ,
5(18﹣80x)﹣3(13﹣30x)﹣20(50x﹣4)=0,
解得a=2.
故选:B.
[点睛]本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.
2.在数轴上表示不等式x≥-2的解集正确的是( )
A. B.
C. D.
[答案]D
[解析]
[分析]
根据在数轴上表示不等式解集的方法利用排除法进行解答.
[详解]∵不等式x⩾−2中包含等于号,
∴必须用实心圆点,
三、解答题
16.解方程:
(1)3(x+8)﹣5=6(2x﹣1 );
(2) ﹣ ﹣ =0
17.解下列方程组:
(1) ;
(2) ;
18.解下列不等式:
(1)5(x+2)≥1﹣2(x﹣1);
(2) ﹣(x﹣1)<1
19.在做解方程练习时,学习卷中有一个方程“2y– = y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?

华东师大版七年级数学下册期中考试卷及答案【完整版】

华东师大版七年级数学下册期中考试卷及答案【完整版】

华东师大版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x +--≥- (2)()328134x x x x ⎧+>+⎪⎨-≤⎪⎩①②2.(1)若a 2=16,|b |=3,且ab<0,求a +b 的值.(2)已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,m 的绝对值是3,且m 位于原点左侧,求22015(1)()2016m a b cd --++-的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N∠=∠.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2b-2a2、40°3、(3,7)或(3,-3)4、205、40°6、48三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、(1)1±;(2)9.3、(1)35°;(2)36°.4、(1)略;(2)略.5、(1)20%;(2)6006、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。

【华师大版】七年级下学期数学《期中检测题》含答案解析

【华师大版】七年级下学期数学《期中检测题》含答案解析

华东师大版七年级下学期期中考试数学试题一、选择题(每小题4分,共40分)(答案须填在答题卷上).1. 在平面直角坐标系中,点M (-1,1)在( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 将下图所示的图案通过平移后可以得到的是( )A.B. C. D.3. 已知a b ,则下列四个不等式中,不正确的是( )A. 22a b -- B. 22ab -- C. 22a b D. 22a b ++4. 在-1.732,2 ,π, 3, 2+3,3.212212221…,3.14这些数中,无理数的个数为( ) A. 5B. 2C. 3D. 45. 下列调查方式,你认为最合适的是( )A. 日光灯管厂要检测一批灯管的使用寿命,采用普查方式B. 了解衢州市每天的流动人口数,采用抽查方式 C .了解衢州市居民日平均用水量,采用普查方式 D. 旅客上飞机前的安检,采用抽样调查方式6. 如下图,海平面上的两艘军舰的位置在A 和B ,则由B 测得A 的方向应该是( )A. 南偏东30°B. 南偏东60°C. 北偏西30°D. 北偏西60°7. 不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示为( ).A.B.C.D.8. 某商店举办促销活动,将原价x 元的商品以0. 6(10 )x -元出售,则下列说法中,能正确表达该商店促销方法的是( ) A. 原价减去10元后再打6折 B. 原价打6折后再减去10元 C. 原价减去10元后再打4折 D. 原价打4折后再减去10元9. 根据下表回答:x1 1.1 1.2 1.3 1.4 2x11.211.441.691.96下列结论正确的是() A. 31 1.12<< B. 31.1 1.22<< C. 31.2 1.32<< D. 31.3 1.42<< 10. 在平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B=(12x x +,12y y +);②A ⊗B=1212x x y y +;③当12x x =且12y y =时,A=B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B=(3,1),A ⊗B=0; (2)若A ⊕B=B ⊕C ,则A=C ; (3)若A ⊗B=B ⊗C ,则A=C ; (4)对任意点A 、B 、C ,均有(A ⊕B )⊕C=A ⊕(B ⊕C )成立,其中正确命题的个数为( ) A. 1个B. 2个C. 3个D. 4个二、填空题(本大题有6小题,第11题8分,其余各小题每题4分,共28分)(答案须填在答题卷上) 11. (1)22-=________; (2)25的算术平方根是_____;(3)3278=______; (4)命题“对顶角相等”的题设是__________________,结论是__________________. 12. 用不等式表示“x 的2倍与3的和不大于2”为________________ . 13. 已知方程23x y -=,用含x 的式子表示y ,则y =__________,当时,y =________.14. 如图,已知如图,40C ∠=,ADB ∠︰BDC ∠=1︰3,ADB ∠=35°,则AD 与BC 的关系是________°.15. 若x ,y 是方程组3210023220y x ay x +=-⎧⎨-=⎩ 的解,且x,y ,a 都是正整数.当6a ≤时,方程组的解是_______________. 16. 如图,已知AB‖CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________三、解答题(本大题有9小题,共82分)17.(1)计算:3984+-- (2)解方程组148x y x y +=⎧⎨+=-⎩18. 解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩19. 完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3,求证:AD 是∠BAC 平分线.证明:∵AD ⊥BC ,EG ⊥BC (已知) ∴∠4=∠5=90°( ) ∴AD ∥EG ( )∴∠1=∠E ( ) ∠2=∠3( ) ∵∠E=∠3(已知) ∴( )=( )∴AD 是∠BAC 的平分线( )20. (本题8分) 某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数分布表中a = ,b = ; (2)补全频数分布直方图;21. 某电脑公司有A 型、B 型两种型号的电脑,其中A 型电脑每台5000元,B 型电脑每台3000元.我校购买10台电脑共花费34000元.问我校购买A 型、B 型电脑分别多少台?22. 在图中,A (﹣1,4)、B (﹣4,﹣1)、C (1,1),△ABC 内任意一点P (x 0,y 0)经过平移后对应点为P 1(x 0+5,y 0+3),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,请回答下列问题.(1)画出平移后△A 1B 1C 1; (2)求△ABC 的面积; 23. 当a ,b 都是实数,且满足26a b -=,就称点P (1,1)2ba -+为完美点. (1)判断点A (2,3)是否为完美点.(2)已知关于,的方程组42x y x y m+=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (,)x y 是完美点,请说明理由.24. 在平面直角坐标系中,点A 的坐标为(0,4)m +,点B 的坐标为(3,)m m +,且m 是方程39212m m ++=的解. (1)请求出A 、B 两点坐标(2)点C 在第一象限内,//AC x 轴,将线段AB 进行适当的平移得到线段DC ,点A 的对应点为D ,点B 的对应点为C ,连接AD ,若ACD △的面积为12,连接OD ,P 为y 轴上一动点,若使PAB AOD S S ∆∆=,求此时点P 的坐标.25. 已知AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B.(1)如图1,直接写出∠A 和∠C 之间的数量关系___; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD=∠C ;(3)如图3,在(2)问的条件下,点E. F 在DM 上,连接BE 、BF 、CF,BF 平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE ,求∠EBC 的度数.答案与解析一、选择题(每小题4分,共40分)(答案须填在答题卷上).1. 在平面直角坐标系中,点M (-1,1)在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】根据各象限内点的坐标特征解答. 【详解】解:点M (-1,1)在第二象限. 故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2. 将下图所示的图案通过平移后可以得到的是( )A. B. C. D.【答案】C 【解析】分析:平移不会改变图形的大小、形状和方向,根据性质即可得出答案. 详解:根据平移的性质可得本题选C .点睛:本题主要考查的是平移图形的性质,属于基础题型.记住平移图形的性质是解决这个题目的关键. 3. 已知a b ,则下列四个不等式中,不正确的是( ) A. 22a b --B. 22ab -- C. 22a b D. 22a b ++【答案】B 【解析】 【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2a>-2b,故选B.【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.4. 在-1.732,2,π, 3, 2+3,3.212212221…,3.14这些数中,无理数的个数为( )A. 5B. 2C. 3D. 4【答案】D【解析】分析:无理数是指无线不循环小数,初中阶段主要有以下几种形式:构造数,如0.12122122212222...(相邻两个1之间依次多一个2)等;有特殊意义的数,如圆周率π;部分带根号的数,如23、等.详解:根据无理数的定义可知无理数有:2,π,2+3,3.212212221…共四个,故选D.点睛:本题主要考查的是无理数的定义,属于基础题型.理解无理数的定义是解决这个问题的关键.5. 下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用普查方式B. 了解衢州市每天的流动人口数,采用抽查方式C. 了解衢州市居民日平均用水量,采用普查方式D. 旅客上飞机前的安检,采用抽样调查方式【答案】B【解析】【分析】根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案:【详解】A.日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查方式,故此选项错误;B.了解衢州市每天的流动人口数,采用抽查方式;故此选项正确;C.了解衢州市居民日平均用水量,应采用抽样调查方式;故此选项错误;D.旅客上飞机前的安检,应采用全面调查方式;故此选项错误.故选B.6. 如下图,海平面上的两艘军舰的位置在A和B,则由B测得A的方向应该是()A. 南偏东30°B. 南偏东60°C. 北偏西30°D. 北偏西60°【答案】D【解析】分析:根据方位的判定方法即可得出答案.详解:根据图示可得:A的方向为:北偏西60°方向上,故选D.点睛:本题主要考查的是方位角的问题,属于基础题型.解决这个问题的关键就是找出观测点.7. 不等式组21xx≥-⎧⎨<⎩的解集在数轴上表示为().A. B. C. D.【答案】B【解析】【分析】根据不等式在数轴上的表示方法就可以得出答案.含有等号的要用实心点,不含等号的要用空心点.【详解】解:x≥-2表示从-2向右,用实心点;x<1表示从1向左,用空心点,故选B.【点睛】本题主要考查的是不等式的解集在数轴上的表示方法,属于基础题型.是用实心点还是空心点是解决这个问题的关键.8. 某商店举办促销活动,将原价x元的商品以0. 6(10 )x-元出售,则下列说法中,能正确表达该商店促销方法的是()A. 原价减去10元后再打6折B. 原价打6折后再减去10元C. 原价减去10元后再打4折D. 原价打4折后再减去10元【答案】A【解析】【分析】首先根据括号内的减法可知原价减去10元,然后得到的价格再按照6折出售,据此判断即可.【详解】解:(x-10)表示原价减去10元,0. 6(10 )x-表示原价减去10元后,再打6折;故选择:A.【点睛】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义. 9. 根据下表回答:下列结论正确的是()A. 1 1.1<B. 1.1 1.2<< C. 1.2 1.3<< D. 1.3 1.4<< 【答案】C 【解析】 分析:根据32的取值范围,然后根据表格得出答案.详解:∵1.44<1.5<1.69, ∴1.2 1.3, 故选C . 点睛:本题主要考查的是无理数的估算问题,属于中等难度题型.解决这个问题的关键就是得出被开方数的取值范围,从而得出答案. 10.平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B=(12x x +,12y y +);②A ⊗B=1212x x y y +;③当12x x =且12y y =时,A=B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B=(3,1),A ⊗B=0; (2)若A ⊕B=B ⊕C ,则A=C ; (3)若A ⊗B=B ⊗C ,则A=C ; (4)对任意点A 、B 、C ,均有(A ⊕B )⊕C=A ⊕(B ⊕C )成立,其中正确命题的个数为( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】试题分析:(1)A ⊕B=(1+2,2﹣1)=(3,1),A ⊗B=1×2+2×(﹣1)=0,所以(1)正确;(2)设C (3x ,3y ),A ⊕B=(12x x +,12y y +),B ⊕C=(23x x +,23y y +),而A ⊕B=B ⊕C ,所以12x x +=23x x +,12y y +=23y y +,则13x x =,13y y =,所以A=C ,所以(2)正确;(3)A ⊗B=1212x x y y +,B ⊗C=2323x x y y +,而A ⊗B=B ⊗C ,则1212x x y y +=2323x x y y +,不能得到13x x =,13y y =,所以A≠C ,所以(3)不正确;(4)因为(A ⊕B )⊕C=(123x x x ++,123y y y ++),A ⊕(B ⊕C )=(123x x x ++,123y y y ++),所以(A ⊕B )⊕C=A ⊕(B ⊕C ),所以(4)正确. 故选C .考点:1.命题与定理;2.点的坐标.二、填空题(本大题有6小题,第11题8分,其余各小题每题4分,共28分)(答案须填在答题卷上)11. (12=________; (2)25的算术平方根是_____;(3; (4)命题“对顶角相等”的题设是__________________,结论是__________________.【答案】 (1). 2 (2). 5; (3). 1.5; (4). 两个角互为对顶角, (5). 这两个角相等. 【解析】 【分析】【详解】分析:(1)、根据绝对值的计算法则即可得出答案;(2)、根据算术平方根的计算法则得出答案;(3)、根据立方根的计算法则得出答案;(4)、根据命题的构成得出答案.详解:(12=2- (2)25的算术平方根是5;(3; (4)命题“对顶角相等”的题设是两个角互为对顶角,结论是这两个角相等.点睛:本题主要考查的是绝对值的计算、算术平方根、立方根以及命题,属于基础题型.理解定义是解题的关键.12. 用不等式表示“x 的2倍与3的和不大于2”为________________ . 【答案】2x+3≤2 【解析】 【分析】不大于用“≤”的符号来表示. 【详解】解:根据题意得:2x+3≤2.【点睛】本题主要考查的是代数式表示不等量关系,属于基础题型.理解不等符号的概念是解题的关键. 13. 已知方程23x y -=,用含x 的式子表示y ,则y =__________,当时,y =________.【答案】 (1). 2x-3, (2). -3. 【解析】 【分析】【详解】分析:首先根据等式的性质将y 保留在等号的左边,其余的放在等号的右边,从而得出答案. 详解:y=2x -3;当x=0时,y=2×0-3=-3. 点睛:本题主要考查的是代数式的表示方法以及代数式的计算,属于基础题型.了解等式的性质是解题的关键.14. 如图,已知如图,40C ∠=,ADB ∠︰BDC ∠=1︰3,ADB ∠=35°,则AD 与BC 的关系是________°.【答案】AD BC 【解析】分析:首先根据角度之间的关系得出∠ADC 的度数,然后根据同旁内角互补得出直线的关系. 详解:∵∠ADB=35°,ADB ∠︰BDC ∠=1︰3, ∴∠BDC=35°×3=105°, ∴∠ADC=140°, ∵∠C=40°, ∴∠ADC+∠C=180°, ∴AD ∥BC .点睛:本题主要考查的是平行线的判定定理,属于基础题型.利用角度之间的关系得出∠ADC 的度数是解题的关键.15. 若x ,y 是方程组3210023220y x ay x +=-⎧⎨-=⎩ 的解,且x,y ,a 都是正整数.当6a ≤时,方程组的解是_______________. 【答案】1718x y =⎧⎨=⎩【解析】分析:首先用含a 的代数式表示出x 和y ,然后根据整数以及a 的取值范围得出答案.详解:解方程可得:12021203x ay a⎧=-⎪⎪⎨⎪=-⎪⎩,∵a≤6,x、y、a为正整数,∴a=6,∴方程组的解为:1718 xy=⎧⎨=⎩点睛:本题主要考查的是二元一次方程组的解法,属于基础题型.解决这个问题的关键就是用含a的代数式表示x和y.16. 如图,已知AB‖CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________【答案】4∠AFC=3∠AEC【解析】分析:连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,然后根据平行线的性质得出∠AEC=4(x°+y°),∠AFC=3(x°+y°),从而得出答案.详解:连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°)∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴4∠AFC=3∠AEC.点睛:主要考查你对平行线的性质,平行线的公理等考点的理解,属于基础题型.解决本题的关键就是根据平行线的性质以及三角形内角和定理得出答案.三、解答题(本大题有9小题,共82分)17. (1)计算3984-(2)解方程组1 48 x yx y+=⎧⎨+=-⎩【答案】(1)-1;(2)34 xy=-⎧⎨=⎩【解析】分析:(1)、首先根据算术平方根和立方根的性质求出各式的值,然后进行求和得出答案;(2)、利用②-①求出x的值,然后将x的值代入求出y的值,从而得出方程组的解.详解:(1)、原式=3-2-2=-1(2)、②-①,得3x=-9 ,解得x=-3,将x=-3代入①,得y=4,∴该方程组的解为34xy=-⎧⎨=⎩.点睛:本题主要考查的是立方根、算术平方根的计算以及二元一次方程组的解法,属于基础题型.理解计算法则是解题的关键.18. 解不等式组2(1)31132x xx x+≤-⎧⎪+⎨<⎪⎩【答案】x≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集.详解:解不等式①:2x+2≤3x-1 即x≥3;解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.19. 完成下面的证明(在下面的括号内填上相应的结论或推理的依据):如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,求证:AD是∠BAC的平分线.证明:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°()∴AD∥EG()∴∠1=∠E()∠2=∠3()∵∠E=∠3(已知)∴()=()∴AD是∠BAC的平分线()【答案】详见解析.【解析】分析:根据平行线的性质以及判定定理即可进行填空得出答案.详解:证明:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG(同位角相等,两直线平行)∴∠1=∠E(两直线平行,同位角相等)∠2=∠3(两直线平行,内错角相等)∵∠E=∠3(已知)∴(∠1 )=(∠2 )∴AD是∠BAC的平分线(角平分线的定义)点睛:本题主要考查的是平行线的判定及性质,属于基础题型.理解平行线的判定与性质是解题的关键.20. (本题8分)某校数学兴趣小组的成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)频数分布表中a= ,b= ;(2)补全频数分布直方图;【答案】(1)8,0.08;(2)详见解析.【解析】分析:(1)、根据频数、频率、样本容量之间的关系即可得出答案;(2)、根据题意得出60—70分的频数,从而得出答案.详解:请你根据图表提供的信息,解答下列问题: (1)频数分布表中a = 8 ,b = 0.08 ; (2)补全频数分布直方图; 如图所示.点睛:本题主要考查的频数、频率以及样本容量之间的关系,属于基础题型.理解三者之间的关系是解题的关键.21. 某电脑公司有A 型、B 型两种型号的电脑,其中A 型电脑每台5000元,B 型电脑每台3000元.我校购买10台电脑共花费34000元.问我校购买A 型、B 型电脑分别多少台? 【答案】购买A 型电脑2台,B 型8台.【解析】分析:首先设我校购买A 型电脑x 台,B 型电脑y 台,根据题意列出二元一次方程组,从而得出答案.详解:设我校购买A 型电脑x 台,B 型电脑y 台,依题意得:500030003400010x y x y +=⎧⎨+=⎩, 解得28x y =⎧⎨=⎩.答:购买A 型电脑2台,B 型8台.点睛:本题主要考查的是二元一次方程组的应用,属于基础题型.找出题目中的等量关系是解题的关键. 22. 在图中,A (﹣1,4)、B (﹣4,﹣1)、C (1,1),△ABC 内任意一点P (x 0,y 0)经过平移后对应点为P 1(x 0+5,y 0+3),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,请回答下列问题.(1)画出平移后△A 1B 1C 1; (2)求△ABC 的面积; 【答案】(1)详见解析;(2)192. 【解析】分析:(1)、根据△ABC 中任意一点P 的平移法则可知△ABC 应向右平移5个单位,向上平移3个单位,由此作出△A 1B 1C 1即可;(2)、利用正方形的面积减去三个直角三角形的面积得出答案. 详解:(1)、如图所示:(2)、S=5×5-5×2÷2-2×3÷2-5×3÷2=25-5-3-7.5=192. 点睛:本题考查的是作图-平移变换,属于基础题型.熟知图形平移不变性的性质是解答此题的关键. 23. 当a ,b 都是实数,且满足26a b -=,就称点P (1,1)2ba -+为完美点. (1)判断点A (2,3)是否为完美点. (2)已知关于,的方程组42x y x y m+=⎧⎨-=⎩,当m 为何值时,以方程组的解为坐标的点B (,)x y 是完美点,请说明理由.【答案】(1)A 不是完美点;(2)1.2m = 【解析】分析:(1)、根据完美点的概念求出a 和b 的值,看是否满足2a -b=6,从而得出答案;(2)、首先求出方程组的解,然后根据完美点的概念求出a和b的值,最后根据2a-b=6求出m的值.详解:(1)若A为完美点,则1213 2ab-=⎧⎪⎨+=⎪⎩,解得34ab=⎧⎨=⎩26426,.a bA∴-=-=≠∴不是完美点(2)、解方程组3l,得22x my m=+⎧⎨=-⎩21212Bm abm+=-⎧⎪∴⎨-=+⎪⎩点是完美点,,解得:322a mb m=+⎧⎨=-⎩,()()22322446a b m m m∴-=+--=+=,解得12m=.点睛:本题主要考查的是同学们对新定义的题目的理解和应用,属于中等难度题型.理解“完美点”的概念是解题的关键.24. 在平面直角坐标系中,点A的坐标为(0,4)m+,点B的坐标为(3,)m m+,且m是方程39212mm++=的解.(1)请求出A、B两点坐标(2)点C在第一象限内,//AC x轴,将线段AB进行适当的平移得到线段DC,点A的对应点为D,点B 的对应点为C,连接AD,若ACD△的面积为12,连接OD,P为y轴上一动点,若使PAB AODS S∆∆=,求此时点P的坐标.【答案】(1)A(0,3),B(2,-1);(2)P(0,-3)或(0,9).【解析】分析:(1)、根据一元一次方程求出m的值,从而得出点A和点B的坐标;(2)、首先根据平移的法则得出点D到AC的距离,然后根据面积求出AC的长度,从而得出△AOD的面积,最后根据面积求出点P的坐标.详解:(1)、解方程39212mm++=得:m=-1,所以点A坐标为(0,3),点B坐标为(2,-1);(2)、∵AC∥x轴,∴C点的纵坐标为3,∵点B的对应点为点C,而B(2,-1),∴点B向上平移了4个单位,∴点A向上平移了4个单位,∴点D到AC的距离为4,∵12×4×AC=12,∴AC=6;∵AC∥x轴,∴C点坐标为(6,3),∴点B向上平移4个单位,再向右平移4个单位得到点C,∴点A向上平移4个单位,再向右平移4个单位得到点D,即D(4,7),∴S△AOD=12×3×4=6,设P点坐标为(0,t),则12•|t-3|•2=6,解得t=-3或t=9,∴点P的坐标为(0,-3)或(0,9).点睛:本题主要考查的是点的平移的法则,属于中等难度的题型.解决这个问题的关键就是根据已知条件得出点的平移法则.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

华东师大版七年级数学下册期中考试及答案【审定版】

华东师大版七年级数学下册期中考试及答案【审定版】

华东师大版七年级数学下册期中考试及答案【审定版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 直线AB∥CD, ∠C=44°, ∠E为直角, 则∠1等于()A. 132°B. 134°C. 136°D. 138°3.按如图所示的运算程序, 能使输出y值为1的是()A. B. C. D.4.已知5x=3, 5y=2, 则52x﹣3y=()A. B. 1 C. D.5.如图, AB∥CD, ∠1=58°, FG平分∠EFD, 则∠FGB的度数等于()A. 122°B. 151°C. 116°D. 97°6. 下列运算正确的是()A. B. C. D.7.如图, 下列各组角中, 互为对顶角的是()A. ∠1和∠2B. ∠1和∠3C. ∠2和∠4D. ∠2和∠58.用图象法解某二元一次方程组时, 在同一直角坐标系中作出相应的两个一次函数的图象(如图所示), 则所解的二元一次方程组是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10.若x﹣m与x+3的乘积中不含x的一次项, 则m的值为()A. 3B. 1C. 0D. ﹣3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 三角形三边长分别为3, , 则a的取值范围是________.2.如图, AB∥CD, FE⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 分解因式: _________.4. 已知直线AB∥x轴, 点A的坐标为(1, 2), 并且线段AB=3, 则点B的坐标为________.5. A.B两地相距450千米, 甲、乙两车分别从A.B两地同时出发, 相向而行. 已知甲车的速度为120千米/时, 乙车的速度为80千米/时, t时后两车相距50千米, 则t的值为____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1.解下列不等式(组), 并把它们的解集在数轴上表示出来:(1)9221163x x+--≥-(2)()328134x xx x⎧+>+⎪⎨-≤⎪⎩①②2. 解不等式组: , 把它的解集在数轴上表示出来, 并写出其整数解.3. 如图, 在△ABC中, ∠B=40°, ∠C=80°, AD是BC边上的高, AE平分∠BAC,(1)求∠BAE的度数;(2)求∠DAE的度数.4. 如图, 四边形ABCD中, ∠A=∠C=90°, BE, DF分别是∠ABC, ∠ADC的平分线.(1)∠1与∠2有什么关系, 为什么?(2)BE与DF有什么关系?请说明理由.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车, 其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张, 投入购车的资金不超过 5.86万元, 但购进这批自行年的总数不变, 那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、D4、D5、B6、C7、A8、D9、D10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、1a4<<2.40°3、()2 x x1-.4.(4, 2)或(﹣2, 2).5.2或2.56、5三、解答题(本大题共6小题, 共72分)1.(1), 画图见解析;(2), 画图见解析2、, x的整数解为﹣2, ﹣1, 0, 1, 2.3.(1) ∠BAE=30 °;(2) ∠EAD=20°.4.(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)A型自行车的单价为260元/辆, B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。

华东师大版七年级(下)期中测试数学试卷含答案解析

华东师大版七年级(下)期中测试数学试卷含答案解析

华东师大版七年级(下)期中测试数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.下列方程中,是一元一次方程的是()A.x+1=0B.x+2y=5C.=1D.x2+1=x2.下列解方程过程中,变形正确的是()A.由5x﹣1=3,得5x=3﹣1B.由+1=+12,得+1=+12C.由3﹣=0,得6﹣x+1=0D.由﹣=1,得2x﹣3x=13.利用代入消元法解方程组,下列做法正确的是()A.由①得x=B.由①得y=C.由②得y=D.由②得y=4.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.5.若方程组的解x,y相等,则k的值为()A.1B.0C.2D.﹣26.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.207.对于任意有理数a,b,c,d,规定=ad﹣bc,如果<8,那么x的取值范围是()A.x>﹣3B.x<﹣3C.x<5D.x>﹣58.若不等式组的解集是x>2,则m的取值范围是()A.m<2B.m>2C.m≤2D.m≥2二.选择题(每题3分,共24分)9.已知2x﹣6=0,则4x=.10.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=.11.已知a>b,则﹣4a+5﹣4b+5.(填>、=或<)12.已知已知是方程组的解,则(m﹣n)2=.13.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=.14.不等式组的最大整数解是.15.在方程y=kx+b中,当x=﹣2时,y=3,当x=1时,y=0,那么k=,b=.16.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).三.解答题(共8道小题,共72分)17.(20分)解方程(组)(1)5x﹣2=3x+8(2)(3)(4)18.(10分)解不等式(组),并将每道题的解集都在数轴上表示出来(1)5x﹣3≥13﹣3x(2)19.(6分)当x取何值时,代数式3x﹣5与﹣4x+6的值互为相反数.20.(6分)当整数a为何值时,关于x的方程的解是正整数.21.(6分)一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.22.(6分)已知关于x,y的方程组的解满足x<y,试求a的取值范围.23.(9分)机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?24.(9分)在解不等式|x+1|>2时,我们可以采用下面的解答方法:①当x+1≥0时,|x+1|=x+1.∴由原不等式得x+1>2.∴可得不等式组∴解得不等式组的解集为x>1.②当x+1<0时,|x+1|=﹣(x+1).∴由原不等式得﹣(x+1)>2.∴可得不等式组∴解得不等式组的解集为x<﹣3.综上所述,原不等式的解集为x>1或x<﹣3.请你仿照上述方法,尝试解不等式|x﹣2|≤1.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效)1.下列方程中,是一元一次方程的是()A.x+1=0B.x+2y=5C.=1D.x2+1=x【分析】直接利用一元一次方程的定义进而分析得出答案.【解答】解:A、x+1=0,是一元一次方程,故此选项正确;B、x+2y=5,是二元一次方程,故此选项错误;C、=1,是分式方程,故此选项错误;D、x2+1=x,是一元二次方程,故此选项错误;故选:A .【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键. 2.下列解方程过程中,变形正确的是( ) A .由5x ﹣1=3,得5x =3﹣1B .由+1=+12,得+1=+12C .由3﹣=0,得6﹣x +1=0D .由﹣=1,得2x ﹣3x =1【分析】各方程变形得到结果,即可作出判断.【解答】解:A 、由5x ﹣1=3,得到5x =3+1,不符合题意;B 、由+1=+12,得+1=+12,不符合题意;C 、由3﹣=0,得6﹣x +1=0,符合题意;D 、由﹣=1,得2x ﹣3x =6,不符合题意, 故选:C .【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.利用代入消元法解方程组,下列做法正确的是( )A .由①得x =B .由①得y =C .由②得y =D .由②得y =【分析】根据一元一次方程的解法分别表示出两个方程的x 、y ,然后选择即可. 【解答】解:由①得,2x =6﹣3y ,x =;3y =6﹣2x ,y =;由②得,5x =2+3y ,x =,3y =5x ﹣2,y=.故选:B.【点评】本题考查了解二元一次方程组,主要是代入消元法y=kx+b形式的转化,是基础题.4.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.【分析】求出不等式的解集,在数轴上表示出不等式的解集,即可选出答案.【解答】解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集的应用,注意:在数轴上,右边表示的数总比左边表示的数大,不包括该点时,用“圆圈”,包括时用“黑点”.5.若方程组的解x,y相等,则k的值为()A.1B.0C.2D.﹣2【分析】根据方程组的解满足方程,可得方程的解,根据方程的解满足方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由的解x,y相等,得4x+3x=7,解得x=1,x=y=1,由方程的解满足方程,得k+(k﹣1)=3,解得k=2,故选:C.【点评】本题考查了二元一次方程的解,利用方程的解满足方程的关于k的方程是解题关键.6.一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17B.18C.19D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.7.对于任意有理数a,b,c,d,规定=ad﹣bc,如果<8,那么x的取值范围是()A.x>﹣3B.x<﹣3C.x<5D.x>﹣5【分析】根据规定运算,将不等式左边转化为多项式,再解不等式.【解答】解:根据规定运算,不等式<8化为﹣2x+2<8,解得x>﹣3.故选A.【点评】本题考查了学生对规定运算的适应能力,解不等式的方法.8.若不等式组的解集是x>2,则m的取值范围是()A.m<2B.m>2C.m≤2D.m≥2【分析】先求出不等式②的解集,再根据已知得出选项即可.【解答】解:∵解不等式②得:x>2,又∵不等式组的解集是x>2,∴m≤2,故选:C.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m的范围是解此题的关键.二.选择题(每题3分,共24分)9.已知2x﹣6=0,则4x=12.【分析】方程变形后,代入原式计算即可求出值.【解答】解:由2x﹣6=0,得到2x=6,则4x=12,故答案为:12【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=﹣2.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:根据题意得:,解得:k=﹣2.故答案为:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.已知a>b,则﹣4a+5<﹣4b+5.(填>、=或<)【分析】根据不等式的基本性质即可解决问题.【解答】解:∵a>b,∴﹣4a<﹣4b,∴﹣4a+5<﹣4b+5,故答案为<.【点评】本题考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.12.已知已知是方程组的解,则(m﹣n)2=4.【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【解答】解:把代入方程组得:,解得:,则原式=4,故答案为:4【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=6.【分析】由题意|x﹣2y+1|+|x+y﹣5|=0,根据非负数的性质可以得到方程组,解方程组求出x和y的值,然后代入xy求解.【解答】解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,解得:,∴xy=3×2=6,故答案为:6.【点评】此题主要考查了非负数的性质以及二元一次方程组的解法,具有非负性的数有:①偶次方②算术平方根③绝对值.14.不等式组的最大整数解是3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式x+2>1,得:x>﹣1,解不等式2x﹣1≤8﹣x,得:x≤3,则不等式组的解集为:﹣1<x≤3,则不等式组的最大整数解为3,故答案为:3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.在方程y=kx+b中,当x=﹣2时,y=3,当x=1时,y=0,那么k=﹣1,b=1.【分析】由题目中给出的条件,可得到关于k,b的方程组为:,解方程组即可.【解答】解:将x=﹣2,y=3和x=1,y=0分别代入方程y=kx+b中得方程组:,∴k=﹣1,b=1.故答案为:﹣1;1.【点评】此题考查二元一次方程组的解,先将x,y的值代入方程中得到关于k,b的方程组,然后便可求出k,b的值.16.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有①③④(填写所有正确的序号).【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(1.493)=1,正确;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②错误;③若()=4,则4﹣≤x﹣1<4+,解得:9≤x<11,故③正确;④m为整数,故(m+2013x)=m+(2013x),故④正确;⑤(x+y)≠(x)+(y),例如x=0.3,y=0.4时,(x+y)=1,(x)+(y)=0,故⑤错误;综上可得①③正确.故答案为:①③④.【点评】本题考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.三.解答题(共8道小题,共72分)17.(20分)解方程(组)(1)5x﹣2=3x+8(2)(3)(4)【分析】(1)根据解一元一次方程的步骤求解即可;(2)先去分母,根据解一元一次方程的步骤求解即可;(3)用加减法解方程组即可;(4)先去括号化简方程组,再利用加减法解方程组即可.【解答】解:(1)5x﹣2=3x+8,移项得:5x﹣3x=8+2,合并同类项得:2x=10,系数化为1得:x=5;(2),去分母,方程的两边同时乘以6得:2(2x+1)﹣6=5x﹣1,去括号得:4x+2﹣6=5x﹣1,移项得:4x﹣5x=﹣1+6﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(3),②﹣①×3得:y=1,把y=1代入①得:x+1=2,x=1,∴方程组的解为:;(4),整理得:,②﹣①得:32y=﹣64,y=﹣2,把y=﹣2代入①得:x=5,∴方程组的解为:.【点评】本题考查了解一元一次方程,二元一次方程组,解题的关键是把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.18.(10分)解不等式(组),并将每道题的解集都在数轴上表示出来(1)5x﹣3≥13﹣3x(2)【分析】(1通过移项、合并同类项、系数化为1,求出其解;(2)把不等式组中的两个不等式分别通过移项、合并同类项、系数化为1,求出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解,并把它表示在数轴上.【解答】解:(1)5x﹣3≥13﹣3x,5x+3x≥13+3,8x≥16,x≥2,解集在数轴上如下图:(2),解不等式①得:x>﹣1,解不等式②得:x<2,故原不等式组的解集为﹣1<x<2.解集在数轴上如下图:【点评】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求不等式组的解;另外还考查了不等式的解集在数轴上表示出来的方法(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.19.(6分)当x取何值时,代数式3x﹣5与﹣4x+6的值互为相反数.【分析】先根据相反数的性质列出关于x的方程,再根据解一元一次方程的步骤依次计算可得.【解答】解:根据题意,得:3x﹣5+(﹣4x+6)=0,去括号,得:3x﹣5﹣4x+6=0,移项,得:3x﹣4x=5﹣6,合并同类项,得:﹣x=﹣1,系数化为1,得:x=1.【点评】本题主要考查了解一元一次方程和相反数的性质,解题的关键是掌握相反数的两数的和为0及解一元一次方程的步骤.20.(6分)当整数a为何值时,关于x的方程的解是正整数.【分析】解关于x的方程可得x=,要使方程的解为正整数,即必须使为正整数,(5a﹣8)应是6的正约数,分析可得:a=2.【解答】解:解关于x的方程,解为x=,要使方程的解为正整数,即必须使为正整数,则(5a﹣8)应是6的正约数,则5a﹣8=1,2,3,6,且a是整数,则a=2.【点评】本题考查解一元一次方程的整数解问题,先解方程,把方程的解用未知数表示出来,分析其为整数的情况,可得出答案.21.(6分)一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,求原两位数.【分析】设个位上的数字为x,十位上的数字为12﹣x.根据等量关系“交换个位与十位数字,则所得新数比原数大36”列出方程并求解.【解答】解:设个位上的数字为x,十位上的数字为12﹣x,列方程得10(12﹣x)+x+36=10x+(12﹣x),解得:x=8,12﹣8=4.答:原两位数为48.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.(6分)已知关于x,y的方程组的解满足x<y,试求a的取值范围.【分析】先把a当作已知条件求出x、y的值,再根据x<y即可求出a的不等式,求出a的取值范围即可.【解答】解:解方程组得,∵x<y,∴2a+1<a﹣2,解得a<﹣3.故a的取值范围是a<﹣3.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.23.(9分)机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,根据“平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套”可列成方程求解.【解答】解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12,则27﹣x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.24.(9分)在解不等式|x+1|>2时,我们可以采用下面的解答方法:①当x+1≥0时,|x+1|=x+1.∴由原不等式得x+1>2.∴可得不等式组∴解得不等式组的解集为x>1.②当x+1<0时,|x+1|=﹣(x+1).∴由原不等式得﹣(x+1)>2.∴可得不等式组∴解得不等式组的解集为x<﹣3.综上所述,原不等式的解集为x>1或x<﹣3.请你仿照上述方法,尝试解不等式|x﹣2|≤1.【分析】分两种情况:①当x﹣2≥0时,|x﹣2|=x﹣2.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).讨论即可求解.【解答】解:①当x﹣2≥0时,|x﹣2|=x﹣2.∴由原不等式得x﹣2≤1.∴可得不等式组.∴解得不等式组的解集为2≤x≤3.②当x﹣2<0时,|x﹣2|=﹣(x﹣2).∴由原不等式得﹣(x﹣2)≤1.∴可得不等式组.∴解得不等式组的解集为1≤x<2.综上所述,原不等式的解集为1≤x≤3.【点评】考查了含绝对值的一元一次不等式组,注意读懂题目的解答,以及分类思想的运用.。

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案华师大版七年级下册数学期中考试试卷一、单选题1.下列各项中,是一元一次方程的是()A。

x-2y=4 B。

xy=4 C。

3y-1=4 D。

x-42.已知x>y,则下列不等式成立的是()C。

-x<-y3.用“加减法”将方程组x+2y=13x-4y=4中的x消去后得到的方程是()B。

7y=84.不等式组1≤x<2的解集在数轴上可表示为()B。

5.不等式组的解集是x>4,那么m的取值范围()B。

m≥46.方程组的解为,被遮盖的前后两个数分别为()D。

2、47.下列变形正确的是()C。

若m>b,bc8.不等式组的整数解的个数为()C。

3个9.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元。

若设这件羽绒服的成本是x元,根据题意,可得到的方程是B。

x(1+50%)×80%=x+250二、填空题11.把二元一次方程2x+y-3=0化成用x表示y的形式,则y=3-2x。

12.x的3倍与5的和大于8,用不等式表示为3x+5>8.13.不等式1-2x<6的负整数解是-4.14.若是方程2x+y=0的解,则6a+3b+2=-4a。

15.如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是1.三、解答题16.解下列方程:1)2(x+3)=5(x-3)2x+6=5x-153x=21x=7A选项中的解法有误,应该是将不等式两边乘以7,得到2-7x≤2+7x,化简后得到14x≥0,再除以14得到x≥0,所以应该选C;B选项中的解法有误,应该是将不等式两边乘以3,得到6-x≤6+3x,化简后得到-4x≤0,再除以-4得到x≥0,所以应该选C;C选项中的解法有误,应该是将不等式两边乘以3,得到9(x-2)≥3(x-4),化简后得到6x≥15,再除以6得到x≥2.5,所以应该选A;D选项中的解法有误,应该是将不等式两边乘以3,得到6x+3>3x-3,化简后得到3x。

华东师大版七年级数学下册期中试卷及答案【完整】

华东师大版七年级数学下册期中试卷及答案【完整】

华东师大版七年级数学下册期中试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15(2)212 32x x-+-=-2.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x一2y=0的解,则k的值是多少?3.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.4.某学校要对如图所示的一块地进行绿化,已知4mAD=,3mCD=,AD DC⊥,13mAB=,12mBC=,求这块地的面积.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分0.65超过300千瓦时的部分0.9(1)上表中,a=________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、B2、C3、D4、C5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、60°3、70.4、a ≤2.5、±46、±3三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、5k =-3、略4、224cm .5、(1)30;(2)①补图见解析;②120;③70人.6、(1)0.6;122.5;(2)(0.9x -82.5)元;(3)250千瓦.。

华师大版数学七年级下学期《期中考试试卷》附答案

华师大版数学七年级下学期《期中考试试卷》附答案
6.已知 ,下列不等式中错误的是().
A. B. C. D.
[答案]B
[解析]
[分析]
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
14.不等式 的解集是_______________.
15.方程组 的解是__________________.
16.数轴上100个点所表示的数分别为 、 、 …、 ,且当 为奇数时, ,当 为偶数时, ,① ______;②若 ,则 ______.
三、解答题:本题共9小题,共86分.解答应写出文字说明或演算步骤.
A 1组B.2组C.3组D.4组
[答案]C
[解析]
[分析]
先变形得出x=10-3y,再取正整数解即可.
[详解]x+3y=10,
x=10-3y,
当y=1时,x=7;
当y=2时,x=4,
当y=3时,x=1;
所以共有3组解.
故选C.
[点睛]考查了解二元一次方程,能求出符合的所有正整数解是解此题的关键.
10.定义:对于任意数 ,符号 表示不大于 的最大整数,例如: , , .若 ,则 的取值范围是().
A. 8、2B. 8、-2C. 2、2D. 2、-2
6.已知 ,下列不等式中错误的是().
A. B. C. D.
7.在解方程 过程中,变形正确的是().
A. B.
C. D.
8.方程组 的解是 ,则方程组 的解是()
A. B. C. D.

华师大版七年级下册数学《期中测试题》含答案

华师大版七年级下册数学《期中测试题》含答案

华东师大版七年级下学期数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2. 下列是二元一次方程的是A. 3x-6=xB. 3x=2yC. x-2y=0D. 2x-3y=xy3. 若m>n,下列不等式不一定成立的是()A. m+2>n+2B. 2m>2nC. >D. m2>n24. 如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.5. 关于x、y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值是().A.34k=- B. 34k= C.43k= D.43k=-6. 不等式组5511x xx m+<+⎧⎨->⎩的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤07. 如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A. 6B. 7C. 8D. 98. 如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 42B. 96C. 84D. 489. 小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说: “至多12元.”丙说: “至多10元.”小明说: “你们三个人都说错了”.则这本书的价格x (元)所在的范围为( )A. 1012x <<B. 1215x <<C. 1015x <<D. 1114x << 10. 如图,∠AOB =45°,点M 、N 分别在射线OA 、OB 上,MN =6,△OMN 的面积为12,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为( )A. 6B. 8C. 12D. 18二.填空题(共6小题)11. 若x a y b =⎧⎨=⎩是方程2x+y=0的解,则6a+3b+2=______________. 12. 若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 13. 如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.14. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.15. 新定义: 对非负数x”四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣12≤x<n+12,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(12x﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);其中正确的结论有_____(填写所有正确的序号).16. 如图,长方形ABCD中,AB=CD=6,BC=AD=10,E在CD边上,且CD=3CE,点P、Q为BC边上两个动点,且线段PQ=2,当BP=_____时,四边形APQE的周长最小.三.解答题(共9小题)17. 用指定的方法解下列方程组:(1)34194x yx y+=⎧⎨-=⎩(代入法);(2)8524310y xy x+=⎧⎨-=-⎩(加减法).18. 解不等式组513(1)2151132x xx x-<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上.19. 如图1,每个小正方形边长均为1的网格内有一个△ABC,数轴x⊥数轴y,垂足为原点O.(1)画出△ABC 向下平移5个单位后的△A 1B 1C 1;(2)画出△A 1B 1C 1绕原点O 顺时针旋转90°得到的△A 2B 2C 2;(3)连结BA 2、BB 2,在图中存在格点P (不同于B 点),且△PA 2B 2与△BA 2B 2面积相等,请在图2中标出所有符合条件的格点P .20. 如图是一个运算程序:例如: 根据所给的运算程序可知,当5x =时,5522737⨯+=<,再把27x =代入,得527213737⨯+=>,则输出的结果为137.(1)当10x =时,输出的结果为_________;当2x =时,输出结果为_________;(2)若需要经过两次运算才能输出结果,x 的取值范围.21. 阅读: 在同一个三角形中,相等的边所对的角相等,简称为”等边对等角”.例如,在△ABC 中,如果AB =AC ,依据”等边对等角”可得∠B =∠C .请运用上述知识,解决问题:已知: 如图,△ABC 中,AD ⊥BC 于D ,BE 是三角形的角平分线,交AD 于F .(1)若∠ABC =40°,求∠AFE 的度数.(2)若AE =AF ,试判断△ABC 形状,并写出证明过程.22. 已知方程组137x y a x y a -=+⎧⎨+=--⎩中x 为负数,y 为非正数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式2323ax x a +>+的解集为1x <23. 如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC 、∠NCB 的平分线交于点Q ,试探索∠Q 、∠A 之间的数量关系. (3)如图③,延长线段BP 、QC 交于点E ,△BQE 中,存在一个内角等于另一个内角的3倍,请直接写出∠A 的度数.24. 某电器经营业主计划购进一批同种型号的空调和电风扇,若购进8台空调和20台电风扇,需要资金23600元;若购进10台空调和30台电风扇,需要资金31000元.(1)空调和电风扇每台的采购价各是多少元? (2)由于国家大力推行家电下乡政策,每台空调可以比采购价下调15%,每台电风扇可以比采购价打七折.该业主计划用29930元购进两种电器共20台,其中空调不少于13台,该业主能否实现购买计划?如能实现,请帮他列出购买计划;如不能,请说明理由. (3)该业主计划增加购买单价为每台600元的空调扇,且三种电器的总数量共50台,空调扇总数10至20台之间(不包含10、20),恰好投入55000元.若最终实际利润为,每台空调300元,每台电扇30元,每台空调扇100元.该业主决定将本次购买计划的全部利润对口捐给某医院,助益抵抗新冠肺炎疫情,现医院有7500元资金缺口.该业主能否实现日标?如果能,请直接写出进货方案和获得的利润总额. 25. 如图,△ABC 的点C 与C '关于AB 对称,点B 与B '关于AC 对称,连结BB '、CC ',交于点O .(1)如图(1),若∠BAC =30°,①求B AC ''∠的度数;②观察并描述: ABC '∆可以由AB C '∆通过什么变换得来?求出BOC '∠的角度;(2)如图(2),若∠BAC =α,点D 、E 分别在AB 、AC 上,且////C D BC B E '',BE 、CD 交于点F ,设∠BFD =β,试探索α与β之间的数量关系,并说明理由.答案与解析一.选择题(共10小题)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2. 下列是二元一次方程的是A. 3x-6=xB. 3x=2yC. x-2y=0D. 2x-3y=xy【答案】B【解析】【分析】二元一次方程的概念: 含有两个未知数,并且未知数的项的最高次数是1的整式方程,进行判断.【详解】A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点睛】考查了二元一次方程的条件: ①只含有两个未知数;②未知数的项的次数都是1;③整式方程. 3. 若m >n ,下列不等式不一定成立的是( )A. m+2>n+2B. 2m >2nC. >D. m 2>n 2【答案】D【解析】试题分析: A 、不等式的两边都加2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 正确;C 、不等式的两条边都除以2,不等号的方向不变,故C 正确;D 、当0>m >n 时,不等式的两边都乘以负数,不等号的方向改变,故D 错误;故选D .【考点】不等式的性质.4. 如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( ) A. B.C. D.【答案】A【解析】【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高.故选A.考点: 三角形高线的作法5. 关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是(). A. 34k =- B. 34k = C. 43k = D. 43k =-【答案】B 【解析】【分析】将k 看出已知数去解方程组,然后代入二元一次方程236x y +=中解出k 的值即可.【详解】解: 59①②+=⎧⎨-=⎩x y k x y k , ①+②得: 2=14x k ,即=7x k ,把=7x k 代入①得: 75k y k +=,解得: 2y k =-,则方程组的解为: =72⎧⎨=-⎩x k y k , 把=72⎧⎨=-⎩x k y k 代入二元一次方程236x y +=中得: ()27326⨯+⨯-=k k ,解得: 34k =, 故选B.【点睛】此题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法是解决本题的关键.6. 不等式组5511x x x m +<+⎧⎨->⎩的解集是x >1,则m 的取值范围是( ) A. m ≥1B. m ≤1C. m ≥0D. m ≤0 【答案】D【解析】【分析】 表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.【详解】解: 不等式整理得: 11x x m >⎧⎨>+⎩,由不等式组的解集为x >1,得到m+1≤1,解得: m≤0. 故选D.【点睛】本题考查了不等式组的解集的确定.7. 如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需( )个五边形完成这一圆环.A. 6B. 7C. 8D. 9【答案】B【解析】【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【详解】解: 延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为: 180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选: B.【点睛】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.8. 如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A. 42B. 96C. 84D. 48【答案】D【解析】【分析】【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=12(AB+OE)•BE=12(10+6)×6=48.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.9. 小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说: “至多12元.”丙说: “至多10元.”小明说: “你们三个人都说错了”.则这本书的价格x (元)所在的范围为( )A. 1012x <<B. 1215x <<C. 1015x <<D. 1114x <<【答案】B【解析】【分析】根据三人说法都错了得出不等式组解答即可. 【详解】根据题意可得: 15{1210x x x <>>, 可得: 1215x <<,∴1215x <<故选B .【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.10. 如图,∠AOB =45°,点M 、N 分别在射线OA 、OB 上,MN =6,△OMN 的面积为12,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为( )A. 6B. 8C. 12D. 18【答案】B【解析】【分析】 连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【详解】解: 连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S△OMN=12•MN•OH=12,MN=6,∴OH=4,∵点P关于OA对称的点为P1,点P关于OB对称点为P2,∴∠AOP=∠AOP1,∠POB=∠P2OB,OP=OP1=OP2∵∠AOB=45°,∴∠P1OP2=2(∠POA+∠POB)=90°,∴△OP1P2是等腰直角三角形,∴OP=OP1最小时,△OP1P2的面积最小,根据垂线段最短可知,OP的最小值为4,∴△OP1P2的面积的最小值=12×4×4=8,故选: B.【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP1P2是等腰直角三角形,属于中考常考题型.二.填空题(共6小题)11. 若x ay b=⎧⎨=⎩是方程2x+y=0的解,则6a+3b+2=______________.【答案】2【解析】【分析】由二元一次方程解的定义结合已知条件易得2a+b=0,再将6a+3b+2变形为3(2a+b)+2,并将2a+b=0整体代入进行计算即可.【详解】∵x ay b=⎧⎨=⎩是方程20x y+=的一个解,∴2a+b=0,∴6a+3b+2=3(2a+b)+2=0+2=2.故答案为: 2.【点睛】本题考查了二元一次方程的解和求代数式的值,”由已知条件求出2a+b=0,把6a+3b+2变形为3(2a+b)+2”是解答本题的关键.12. 若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 【答案】a >﹣1【解析】分析: ∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1.∴x a 0{12x x 2+≥-->解集为﹣a≤x <1. ∴﹣a <1,即a >﹣1.∴a 的取值范围是a >﹣1.13. 如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.【答案】70.【解析】【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC +∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解: 如图,∵∠B =40°,∴∠1+∠2=180°-∠B =140°,∴∠DAC +∠ACF =360°-∠1-∠2=220°,∵AE 和CE 分别是DAC ∠和ACF ∠的角平分线, ∴113,422DAC ACF ∠=∠∠=∠, ∴()113422011022DAC ACF ∠+∠=∠+∠=⨯=,∴()1803418011070E ∠=-∠+∠=-=.故答案为: 70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.14. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.【答案】1.6【解析】【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可得: AD=AB ,∵∠B=60°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.【点睛】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.15. 新定义: 对非负数x ”四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣12≤x <n +12,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(12x﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);其中正确的结论有_____(填写所有正确的序号).【答案】①③④【解析】【分析】对于①、④可直接判断,②可用举反例法判断,③我们可以根据题意所述利用不等式判断.【详解】解: ①∵﹣12≤1.493<1+12,∴(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(12x﹣1)=4,则4﹣12≤12x﹣1<4+12,解得: 9≤x<11,故③符合题意;④m为非负整数,故(m+2013x)=m+(2013x),故④符合题意;综上可得①③④正确.故答案为: ①③④.【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.16. 如图,长方形ABCD中,AB=CD=6,BC=AD=10,E在CD边上,且CD=3CE,点P、Q为BC边上两个动点,且线段PQ=2,当BP=_____时,四边形APQE的周长最小.【答案】6【解析】【分析】四边形APQE的周长中AE和PQ是定值,要使四边形APQE的周长最小,只要AP+QE最小即可;在AD 上截取AF=PQ=2,作点F关于BC的对称点G连接GE与BC交于点Q,过点A作AP∥FQ,过G作GH∥BC交DC延长线于点H,根据题意可得EHGH=ECCQ,即可求出CQ,则BP=BC﹣PQ﹣CQ即可求解;【详解】解: ∵四边形APQE的周长中AE和PQ是定值,∴要使四边形APQE的周长最小,只要AP+QE最小即可;在AD上截取AF=PQ=2,作点F关于BC的对称点G连接GE与BC交于点Q,过点A作AP∥FQ,过G 作GH∥BC交CD于点H,∴GQ=FQ=AP,∵AB=6,BC=10,PQ=2,CD=3CE,∴EC=2,CH=6,GH=8,∴EH=8,∴EHGH=ECCQ,∴88=2CQ,∴CQ=2,∴BP=10﹣2﹣2=6;故答案为: 6.【点睛】本题考查矩形的性质,轴对称求最短距离,直角三角形的性质;能够将四边形的周长最小转化为线段AP+QE的最小,通过构造平行四边形和轴对称找到AP+QE的最短时的P和Q点位置是解题的关键.三.解答题(共9小题)17. 用指定的方法解下列方程组:(1)34194x yx y+=⎧⎨-=⎩(代入法);(2)8524310y xy x+=⎧⎨-=-⎩(加减法).【答案】(1)方程组的解为:51xy=⎧⎨=⎩;(2)方程组的解为:21xy=⎧⎨=-⎩.【解析】【分析】(1)②式变形后,代入①式即可求得y的值,再将y的值代入③即可求得x;(2)①-②×2即可消去y,解得x,代入①中即可求出y;【详解】解: (1)34194x yx y+=⎧⎨-=⎩①②由②得: x=y+4③代入①得3(y+4)+4y=19解得y=1代入③得x=5∴=5{=1xy;(2)852 4310y xy x+=⎧⎨-=-⎩①②①-②×2得11x=22 解得x=2代入①中得y=-1∴2{1 xy==-.【点睛】本题考查解二元一次方程组.熟练掌握代入消元法和加减消元法解二元一次方程组是解决此题的关键.18. 解不等式组513(1)2151132x xx x-<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上.【答案】﹣1≤x<2【解析】分析: 分别解不等式,找出解集的公共部分即可.详解:() 5131 21511,32x xx x⎧-<+⎪⎨-+-≤⎪⎩①②解不等式①,得2x<;解不等式②,得1x≥-;把不等式①和②的解集在数轴上表示出来;原不等式组的解集为12x.-≤<点睛: 考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.19. 如图1,每个小正方形边长均为1的网格内有一个△ABC,数轴x⊥数轴y,垂足为原点O.(1)画出△ABC向下平移5个单位后的△A1B1C1;(2)画出△A1B1C1绕原点O顺时针旋转90°得到的△A2B2C2;(3)连结BA2、BB2,在图中存在格点P(不同于B点),且△PA2B2与△BA2B2面积相等,请在图2中标出所有符合条件的格点P.【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据平移的性质画出△ABC向下平移5个单位后的△A1B1C1即可;(2)根据旋转的性质即可画出△A1B1C1绕原点O顺时针旋转90°得到的△A2B2C2;(3)根据网格即可在图2中标出所有符合条件的格点P.【详解】解: (1)如图,△A1B1C1即为平移后的图形;(2)如图,△A 2B 2C 2即为旋转后的图形;(3)因为△PA 2B 2与△BA 2B 2面积相等,所以图2中符合条件的格点有4个,分别为P 1、P 2、P 3、P 4.【点睛】本题考查了作图-平移变换、作图-旋转变换、坐标与图形的性质,解决本题的关键是掌握旋转和平移的性质.20. 如图是一个运算程序:例如: 根据所给的运算程序可知,当5x =时,5522737⨯+=<,再把27x =代入,得527213737⨯+=>,则输出的结果为137.(1)当10x =时,输出的结果为_________;当2x =时,输出结果为_________;(2)若需要经过两次运算才能输出结果,x 的取值范围.【答案】(1)52;62;(2)17x ≤<.【解析】【分析】(1)根据运算流程分别代入x=10、x=2,求出输出的值即可得出结论;(2)由题意可知第一次运算的结果满足5x+2<37,第二次运算的结果满足5(5x+2)+2≥37,组成方程组求解即可.【详解】(1)当x=10时,5×10+2=52>37,所以输出52; 当x=2时,5×2+2=12<37,把x=12代入, 得5×12+2=62>37,所以输出62. 故答案为: 52;62;(2)由题意得52375(52)237x x +<⎧⎨++≥⎩, 解得17x ≤<.【点睛】本题考查了一元一次不等式组的应用以及有理数的混合运算,解题的关键是: (1)根据运算流程代入数据求值;(2)根据运算流程得出关于x 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式组的解法是关键.21. 阅读: 在同一个三角形中,相等的边所对的角相等,简称为”等边对等角”.例如,在△ABC 中,如果AB =AC ,依据”等边对等角”可得∠B =∠C .请运用上述知识,解决问题:已知: 如图,△ABC 中,AD ⊥BC 于D ,BE 是三角形的角平分线,交AD 于F .(1)若∠ABC =40°,求∠AFE 的度数.(2)若AE =AF ,试判断△ABC 的形状,并写出证明过程.【答案】(1)70°; (2)△ABC 是直角三角形,理由见解析.【解析】【分析】(1)根据角平分线的定义求出∠DBF ,再根据AD ⊥BC 和三角形内角和定理求出∠BFD ,再由对顶角相等即可解决问题.(2)根据等腰三角形的性质可得到∠AEF =∠AFE ,再由三角形的内角和定理证明∠BAE =∠BDF 即可得到结论.【详解】解: (1)∵AD ⊥BC∴∠ADB =90︒∵∠ABC =40︒,BE 平分∠ABC∴∠DBF =12∠ABC =20︒ ∴∠BFD =902070︒-︒=︒∴∠AFE =∠BFD =70︒(2)∵AE =AF∴∠AEF =∠AFE∵∠ABE =∠DBE ,∠AFE =∠BFD∴∠BAE =180°﹣∠ABE ﹣∠AEB ,∠BDF =180°﹣∠DBF ﹣∠BFD∴∠BAE =∠BDF =90︒∴△ABC 是直角三角形.【点睛】本题主要考查了角平分线的性质、垂直的性质、对顶角相等、三角形的内角和等知识点,利用三角形内角和定理等量代换出角的关系是解题的关键.22. 已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为负数,y 为非正数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式2323ax x a +>+的解集为1x <【答案】(1)23a -≤<;(2)-2【解析】【分析】(1)将a 当作常数,解二元一次方程组,用a 表示x 、y ,根据x 为负数,y 为非正数可以列出不等式组,从而求出a 的范围.(2)将不等式2323ax x a +>+进行求解,要得到解集为1x <,则必须使230a +<,可以求出a 的范围,结合(1)中a 的范围,知道a 的整数.【详解】解: (1)解方程组137x y a x y a -=+⎧⎨+=--⎩得: 324x a y a =-⎧⎨=--⎩∵x 为负数,y 为非正数∴30240a a -<⎧⎨--≤⎩,解得: 23a -≤< (2)2323ax x a +>+()2323a x a +>+∵要使不等式2323ax x a +>+的解集为1x <必须230a +<解得: 32a <- ∵23a -≤<,a 为整数∴2a =-所以当a =﹣2时,不等式2323ax x a +>+的解集为1x <【点睛】本题考查了解二元一次方程组,解一元一次不等式或解一元一次不等式组等知识点,利用同时除以一个负数不等号要改变方向,求出a 的取值范围是解此题的关键.23. 如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =80°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC 、∠NCB 的平分线交于点Q ,试探索∠Q 、∠A 之间的数量关系. (3)如图③,延长线段BP 、QC 交于点E ,△BQE 中,存在一个内角等于另一个内角的3倍,请直接写出∠A 的度数.【答案】(1)130°;(2)1902Q A ∠=︒-∠;(3)60°或120°或45°或135° 【解析】【分析】 (1)运用三角形的内角和定理及角平分线的定义,首先求出∠ABC +∠ACB ,进而求出∠BPC 即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC 与∠BCN ,再根据角平分线的性质可求得∠CBQ +∠BCQ ,最后根据三角形内角和定理即可求解;(3)在△BQE 中,由于∠Q =90°﹣12∠A ,求出∠E =12∠A ,∠EBQ =90°,所以如果△BQE 中,存在一个内角等于另一个内角的3倍,那么分四种情况进行讨论: ①∠EBQ =3∠E =90°;②∠EBQ =3∠Q =90°;③∠Q =3∠E ;④∠E =3∠Q ;分别列出方程,求解即可.【详解】(1)解: ∵∠A =80°.∴∠ABC +∠ACB =100°,∵点P 是∠ABC 和∠ACB 的平分线的交点,∴∠P =180°﹣12(∠ABC +∠ACB )=180°﹣12×100°=130°, (2)∵外角∠MBC ,∠NCB 的角平分线交于点Q , ∴∠QBC +∠QCB =12(∠MBC +∠NCB )=12(360°﹣∠ABC﹣∠ACB)=12(180°+∠A)=90°+12∠A∴∠Q=180°﹣(90°+12∠A)=90°﹣12∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A;∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC=12(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的3倍,那么分四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q=90°,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,解得∠A=45°;④∠E=3∠Q,则∠E=67.5°,解得∠A=135°.综上所述,∠A的度数是60°或120°或45°或135°.【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.24. 某电器经营业主计划购进一批同种型号的空调和电风扇,若购进8台空调和20台电风扇,需要资金23600元;若购进10台空调和30台电风扇,需要资金31000元.(1)空调和电风扇每台的采购价各是多少元?(2)由于国家大力推行家电下乡政策,每台空调可以比采购价下调15%,每台电风扇可以比采购价打七折.该业主计划用29930元购进两种电器共20台,其中空调不少于13台,该业主能否实现购买计划?如能实现,请帮他列出购买计划;如不能,请说明理由.(3)该业主计划增加购买单价为每台600元的空调扇,且三种电器的总数量共50台,空调扇总数10至20台之间(不包含10、20),恰好投入55000元.若最终实际利润为,每台空调300元,每台电扇30元,每台空调扇100元.该业主决定将本次购买计划的全部利润对口捐给某医院,助益抵抗新冠肺炎疫情,现医院有7500元资金缺口.该业主能否实现日标?如果能,请直接写出进货方案和获得的利润总额.【答案】(1)2200元;300元;(2)见解析;(3)能;购买空调19台,电风扇18台,空调扇13台;7540元【解析】【分析】(1)设空调每台的采购价是x元,电风扇每台的采购价是y元,根据若购进8台空调和20台电风扇,需要资金23600元;若购进10台空调和30台电风扇,需要资金31000元,列出方程组,求解即可;(2)首先根据每台空调可以比采购价下调15%,每台电风扇可以比采购价打七折,求出每台空调与每台电风扇的实际购买价,再设该业主购买空调a台,则购买电风扇(20﹣a)台,根据该业主计划用29930元购进两种电器,其中空调不少于13台,列出不等式组,求解即可;(3)设该业主购买空调m台,电风扇n台,空调扇p台,则10<p<20,根据三种电器的总数量共50台,恰好投入55000元列出方程组,求出m、n,根据m、n均为正整数,10<p<20,得出p=13,m=19,n=18,再计算出此时总利润,与7500元比较即可.【详解】解: (1)设空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意得:82023600 103031000 x yx y+=⎧⎨+=⎩,解得:2200300xy=⎧⎨=⎩.答: 空调每台的采购价是2200元,电风扇每台的采购价是300元;(2)由题意得,每台空调的采购价为2200×(1﹣15%)=1870(元),每台电风扇的采购价为300×0.7=210(元).设该业主购买空调a台,则购买电风扇(20﹣a)台,根据题意得:1870210(20)29930 13a aa+-⎧⎨⎩,解得: 13≤a≤15.5,∵a是整数,∴a=13,14,15.故该业主能实现购买计划,购买计划有三种:①购买空调13台,电风扇7台;②购买空调14台,电风扇6台;③购买空调15台,电风扇5台;(3)设该业主购买空调m台,电风扇n台,空调扇p台,则10<p<20,根据题意得:50 22003006005500 m n pm n p++=⎧⎨++=⎩,解得:4003195501619pmpn-⎧=⎪⎪⎨-⎪=⎪⎩,∵m、n均为正整数,10<p<20,∴p=13时,m=19,n=18符合题意,此时总利润为: 300×19+30×18+100×13=7540(元),∵7540>7500,∴该业主能实现目标,进货方案是: 购买空调19台,电风扇18台,空调扇13台,此时获得的利润总额是7540元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,三元一次方程组的应用,找准数量关系,正确列出方程组或不等式组是解题的关键.25. 如图,△ABC 的点C 与C '关于AB 对称,点B 与B '关于AC 对称,连结BB '、CC ',交于点O .(1)如图(1),若∠BAC =30°,①求B AC ''∠的度数;②观察并描述: ABC '∆可以由AB C '∆通过什么变换得来?求出BOC '∠的角度;(2)如图(2),若∠BAC =α,点D 、E 分别在AB 、AC 上,且////C D BC B E '',BE 、CD 交于点F ,设∠BFD =β,试探索α与β之间的数量关系,并说明理由.【答案】(1)①90° ②绕点A 顺时针旋转60°;30° (2)见解析【解析】【分析】(1)①利用轴对称的性质求解即可.②如图(1)中,设AC 交BB′于J .利用”8字型”证明∠B′OC =∠BAJ 即可.(2)如图(2)中,结论: β=2α.首先证明四边形BCDC′是菱形,推出CD ∥BC′,同法可证,BE ∥CB′,推出∠FCB+∠CBC′=180°,即∠FCB+2∠ABC =180°,同法可得,∠FBC+2∠ACB =180°,再根据∠BFD =∠FBC+∠FCB 转化可得结论.【详解】解: (1)①∵C ,C′关于AB 对称,B ,B′关于AC 对称,∴∠CAB =∠BAC′=∠CAB′=30°,∴∠B′AC′=90°.②如图(1)中,设AC 交BB′于J .△ABC'可以由△AB'C 绕点A 顺时针旋转60°得到.∵AC=AC′,AB=AB′,∠CAC′=∠BAB′=60°,∴∠AB′A=∠ACO=60°,∵∠AJB′=∠OJC,∴∠B′OC=∠B′AJ=30°.(2)如图(2)中,结论: β=2α.理由: 由对称的性质可知: BC=BC′,DC′=DC,∠ABC′=∠ABC,∵DC′∥BC,∴∠C′DB=∠ABC=∠C′BD,∴C′D=C′B,∴BC=BC′=C′D=DC,∴四边形BCDC′是菱形,∴CD∥BC′,同法可证,BE∥CB′,∴∠FCB+∠CBC′=180°,即∠FCB+2∠ABC=180°,同法可得,∠FBC+2∠ACB=180°,∵∠BFD=∠FBC+∠FCB,∴∠DFB=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB)=360°﹣2(180°﹣∠BAC)=2∠BAC,∴β=2α.【点睛】本题考查轴对称的性质,菱形的判定和性质,等腰三角形的判定和性质,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册数学期中检测题
(时间120分钟,满分150分)
班级: 姓名: 得分:
一、选择题(每小题3分,共36分)
1.已知下列方程:①x x 1
2=-②12.0=x ③33-=x x
④x x 342=-⑤x=0 ⑥
6=y -x .其中一元一次方程有( )
个 个 个 D. 5个
2.若代数式x +2的值为1,则x 等于( )
A .1
B .-1
C .3
D .-3
3.若n m >,则下列不等式中成立的是( )
A.n a m a -<-
B.bn am <
C. 22nb ma >
D. b n a m +<+
4.不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0
的所有整数解是( ) A .-1,0 B .-2,-1 C .0,1 D .-2,-1,0
5.不等式组⎩⎪⎨⎪⎧-x <3,2x -1≤3
的解集在数轴上表示正确的是( )
6.已知⎩⎪⎨⎪⎧x =1,y =2和⎩
⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( ) A .a =6,b =-2 B .a =-6,b =-2
C .a =6,b =2
D .a =-6,b =2
7.若关于x ,y 的方程组⎩
⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( ) A .-2 B .2 C .-1 D .1
8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )
A .-10=90
B .-10=90
C .90-=10
D .x --10=90
9.已知a 2+3a =1,则代数式2a 2+6a -1的值为( )
A .0
B .1
C .2
D .3
10.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( )
A .5块
B .4块
C .3块
D .2块
11.一元一次方程
可化为( ) A .
B .
C .
D .
12. 已知方程组的解x 为正数,y 为非负数,给出下列结论: ①; ②当时,x=y ; ③当时,方程组的解也是方程x+y=5+a 的解; ④若x≤1,则y≥2. 其中正确的是( )
A .①②
B .②③
C .③④
D .②③④
二、填空题(每小题3分,共30分)
13.若关于x 、y 的方程x m-1-2y 3+n
=5是二元一次方程,则m = ,n =
14.方程732=-y x 用含x 的代数式表示y 为 .
15.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__ __.
16.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为__ __. 17.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是 __ _.
18.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩⎪⎨⎪⎧x =3,y =b ,
则关于x 的不等式bx +2a ≥0的非负整数解是__ _.
19.幼儿园分给“豆豆班”小朋友们零食,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则老师准备了零食__ __袋.
20.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_ .
21.定义运算“*”,规定x*y=ax 2+by ,其中a 、b 为常数,且1*2=5,2*1=6,则2*3= .
22.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边__ __上.
三、解答题(共68分)
23.(10分)解下列方程(组):
(1) x 6-30-x 4=5; (2)⎩
⎪⎨⎪⎧2x +3y =1,3x +2y =4.
24.(10分)解下列不等式(组),并把解集在数轴上表示出来:
(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.
25.(8分)方程组⎩
⎪⎨⎪⎧3x -2y =7,5x +2y =1的解满足方程2x -ky =10,求k 的值.
26. (8分)若不等式组⎩
⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,求m 的取值范围.
26.(8分)4月23日是世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元
27.(8分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩
⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x 的解,求m 的取值范围.
28.(10分) 阅读下列材料:求不等式的解集。

解:根据“同号两数相乘,积为正”可得
①,或②.
解①,得. 解②,得,
∴不等式的解集为。

请你仿照上述方法解决下列问题:
(1)求不等式的解集;
(2)求不等式的解集。

29.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场
....地.内建造由两个大棚组成的植物养殖区(如图①),要求两个大棚之间有间隔4米的路,设计方案如图②,已知每个大棚的周长为44米.
(1)求每个大棚
....的长和宽各是多少
(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠
30.(12分)为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A,B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A,B两型污水处理设备每周每台分别可以处理污水多少吨
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨.请你列举出所有购买方案,并指出哪种方案所需资金最少最少是多少。

相关文档
最新文档