岩石卸荷破坏特征与岩爆效应

岩石卸荷破坏特征与岩爆效应
岩石卸荷破坏特征与岩爆效应

山地研究(SHA N DI Y AN JIU)=M O U N T A IN RESEA RCH,1998,16(4):281~285 岩石卸荷破坏特征与岩爆效应

王贤能 黄润秋

(成都理工学院工程地质研究所 成都 610059)

提 要 岩爆是在地下洞室开挖卸荷过程中发生的,岩爆特征与岩石卸荷破坏特征密切

相关.本文设计了模拟洞室开挖过程的三轴卸荷实验,探讨了岩石在不同卸荷速率条件下的

变形破坏特征及其岩爆效应.

关键词 三轴卸荷实验 卸荷速率 岩爆效应

卸荷变形破坏现象在自然界中广泛存在.在岩质边坡中,卸荷将引起临空面附近岩

体内部应力重分布、造成局部应力集中效应,并且在卸荷回弹变形过程中,还会因差异回

弹而在岩体中形成一个被约束的残余应力体系.岩体在卸荷过程中的变形与破坏正是由

这种应力变化引起的.在张应力集中带发展成拉裂面;在平行于临空面的压应力集中带

处发展而成平行于临空面的压致拉裂面或剪切破裂面[1].卸荷回弹同样可以在岩体中形

成残余剪应力,并导致剪切破裂.高地应力区钻进过程中所见到的岩芯饼裂的形成就是

这种机制.我国长江葛洲坝大型机窠开挖过程中所观测到的沿平缓软弱夹层发生的向临

空方向的剪切滑移,就是一种非常典型的差异卸荷回弹现象[1].王兰生教授提出的“浅生

时效构造”,也是一种与卸荷有直接关系的新概念[2].孔德坊教授在研究成都粘土中的裂

隙成因时,认为卸荷作用是产生这种裂隙的根本原因[3].

处在高地应力地区的地下工程开挖过程中发生的岩爆,也是一种典型的卸荷破坏现象.过去对岩爆的岩石力学试验研究一般都采用加荷试验方式,这与岩爆发生时的应力

过程并不吻合,只有采用卸荷试验方式才符合实际.

由于试验条件限制和工程问题的复杂性,卸荷试验的实现比较困难.近十余年来,随

着岩石力学的深入发展和工程实际的需要,我国逐步开展了岩体卸荷试验研究工作[4].

本文选取西(安)(安)康铁路秦岭深埋隧道的混合花岗岩、含绿色矿物混合花岗岩、攀枝花

石灰矿的灰岩,探讨了岩石在两种卸荷速率条件下的变形破坏特征以及与岩爆的关系.

1 模拟硐室开挖卸荷过程的三轴试验设计

地下硐室在开挖过程中,围岩应力发生重分布.径向应力( r)随着向自由表面接近

逐渐减小至洞壁处变为零;而切向应力( )的变化有不同的情况,在一些部位越接近自由

表面切向应力越大,并于洞壁处达到最高值(即产生压应力集中现象),在另一些部位,越

接近自由表面切向应力越小,有时在洞壁处甚至出现拉应力(即产生拉应力集中现象).

由此看来,地下硐室的开挖在围岩中引起强烈的应力分异现象,使围岩应力差越接近自由

*国家杰出青年科学基金(编号49525204)和教育部跨世纪优秀人才计划基金资助研究.

收稿日期:1998-03-15,改回日期:1998-03-29.

表面越大,至洞壁处达最大值,所以,围岩的破坏必将从硐室周边开始.

假定围岩径向应力 r 为最小主应力 3,切向应力 为最大主应力 1,则在硐室开挖卸荷过程中,最小主应力 3一直减小;最大主应力 1的变化有三种情况,可能增大,可能减小,也可能不变.相比之下,当最大应力 1增大,而最小应力 3减小时,其应力差( 1- 3)最容易达到岩体的破坏极限状态.基于此,这里将模拟岩体在这类应力路径下的卸荷破坏特征.本次试验是在成都理工学院地质灾害防治与地质环境保护国家专业试验室M TS 岩石试验机上完成的.试验中选取两种卸荷控制方式:位移控制(LVDT 控制)和荷载控制(FORCE 控制).

位移控制(LV DT 控制)方式的过程是:对岩样称施加静水压力,然后使轴压略微升高(视岩石的强度而定);保持试验系统(由岩样和两端压头组成)的轴向位移不变(即LVDT 控制),逐渐卸除围压,直至破坏.其典型的应力路径如图1所示.图中,S 点为静水压力状态,SU 为加荷阶段;U 点为卸荷开始点,UF 段为卸荷阶段;F 点为卸荷破坏点

.

图1 L V DT 控制方式的应力路径

Fig.1 Stress path of LVDT control type

for un load ing p roces s 图2 F O RCE 控制方式的应力路径Fig.2 Stres s path of FORCE control type for unloading process

荷载控制(FORCE 控制)方式的过程是:对岩样先施加静水压力,然后使轴压略微升高(视岩石的强度而定);保持试验系统的荷载不变(即FORCE 控制),逐渐卸除围压,直至破坏.其典型的应力路径如图2所示.图中,S ′点为静水压力状态,S ′U ′为加荷阶段;U ′点为卸荷开始点,U ′F ′

段为卸荷阶段;F ′点为卸荷破坏点.两种卸荷方式的应力路径很相似,不同之处在于卸荷过程中围压 3的减少量 3与轴压 3的增加量 1的比率不同.位移控制(LVDT 控制)方式的比值 3/ 1为1.13,荷载控制(FORCE 控制)方式的 3/ 1为0.14,即位移控制方式的卸荷速率比荷载控制方式的卸荷速率快.

2 岩石的卸荷过程中的变形破坏特征

本次试验选取以下三种岩石:秦岭隧道工程的混合花岗岩、含绿色矿物混合花岗岩和攀枝花石灰矿的石灰岩.其中秦岭隧道混合花岗岩取自隧道进口端曾经发生过岩爆位置的岩石.为便于对比,每种岩石分别做了加荷试验.试验结果如图3~5和表1所示.图4为位移控制(LVDT 控制)方式卸荷试验曲线,图5为荷载控制(FORCE 控制)方式卸荷试验曲线.

从图3中可以看出,岩石在位移控制(LVDT 控制)方式下卸荷,其加荷段与卸荷段的变形特征明显不同(图中U 点为卸荷开始点).加荷段的斜率明显比卸荷段的斜率大,

282山 地 研 究16卷

(1)灰岩(2)混合花岗岩(3)含绿色矿物混合花岗岩图3 岩石加荷试验曲线Fig.3 The strain-stress cur ves of rock s am ple under loading cond itios

即岩石在加荷过程中的弹性模量比卸荷过程的弹

性模量大(如表1所示).攀矿石灰岩加荷段的弹性

模量为41.63GPa ,而卸荷段的弹性模量为

40.73GPa.与加荷试验相比,位移控制(LVDT 控

制)方式下岩石卸荷破坏时的应力差明显减小(如表1

所示).攀矿石灰岩加荷试验破坏时的应力差为

251.M Pa,而卸荷破坏时的应力差为115.62M Pa;秦

岭隧道混合花岗岩加荷试验破坏时的应力差为

273.87M Pa ,而卸荷破坏时的应力差155.57M Pa .

这说明,岩石在卸荷过程中其强度明显降低.

图3岩石加荷试验曲线与5卸荷试验曲线(荷

载控制)相比,同类岩石在卸荷过程中的变形量增

大,弹性模量降低(如表1所示).秦岭隧道混合花岗岩卸荷弹性模量为44.88GPa(图5a 所示),而相应的加荷弹性模量为53.48GPa.

(a )石灰岩;(b )混合花岗岩;

(c)含绿色矿物混合花岗岩图4 岩石卸荷试验曲线(L V DT 控制)

Fig.4 T est curves of rock sample under u nload ing

condition controlled by L VDT type (a )石灰岩( 1=30.53M Pa , 3=30M Pa ),(b )石灰岩( 1=38.98M Pa, 3=30M Pa),(c)混合花岗岩

图5 岩石卸荷试验曲线(F ORCE 控制)Fig.5 T es t cu rves of rock sample un der unloading con dition con tr olled by FORCE type

从表1可以看出,岩石卸荷速度越快,其强度越低.位移控制(LVDT 控制)方式围压减小量与轴压增加量的比值为1.13,而荷载控制(FORCE 控制)方式围压减小量与轴压增加量的比值仅为0.14,因此,位移控制卸荷方式下岩石的强度将比荷载控制卸荷方式下岩石的强度低.攀矿石灰岩,位移控制方式卸荷破坏时的应力差为115.62M Pa(破坏时的围压为2.43M Pa ),而荷载控制方式卸荷破坏时的应力差为214.40M Pa (破坏时的围压为9.90M Pa )。秦岭隧道混合花岗岩,位移控制方式卸荷破坏时的应力差为155.57M Pa (破坏时的围压为5.41M Pa),而荷载控制方式卸荷破坏时的应力差为214.30M Pa(破坏时的围压为0.63M Pa).这表明,在地下工程的施工开挖过程中,可以通过调整施工速度,控制围岩的位移来减缓或降低岩爆的发生.

2833期王贤能 黄润秋:岩石卸荷破坏特征与岩爆效应

表1 岩石力学试验结果表

T able 1 Res ults of mech anical test of rock sample under loading and unloading conditions

岩 性

应力控制方式卸荷前应力状态

破坏时的应力状态及破坏特征弹性模量轴压围压轴压围压应力差破裂角破坏性质加荷阶段卸荷阶段M Pa M Pa M Pa M Pa 1- 3 (°)GPa GPa 攀矿灰岩加荷实验—

—261.5410251.3418剪切破坏67.05—卸荷LVDT 控制38.97

30118.05 2.43115.626张性破坏41.6336.18卸荷FORCE 控制38.97

30226.6612.26214.4020剪切破坏—46.05卸荷FORCE 控制30.53

30165.419.97155.4415剪切破坏—44.82秦岭隧道混加荷实验—

—283.3710273.8719剪切破坏53.48—合花岗岩卸荷LVDT 控制45.47

30160.98 5.41155.5714剪张复合型42.8540.73卸荷FORCE 控制30.53

30214.930.6324.806剪张复合型—44.88含绿色矿物加荷实验—

—206.7010196.7019剪切破坏51.13—混合花岗岩卸荷LVDT 控制

42.2230148.240.76147.4811张剪复合型49.9042.593 岩石卸荷破坏与岩爆效应

岩石在加荷破坏(具有一定围压)时容易发生剪切破坏,破裂角 (与最大主应力的夹角)较大;而卸荷破坏(若围压较低)时,容易发生剪张复合型破坏,其破裂角 较小(如表1所示

).

a )攀矿灰岩,LVDT 控制卸荷,张性破坏( 1=118.05M Pa , 3=2.43M Pa )

b )秦岭隧道混合花岗岩,LVDT 控制卸荷,剪张性破坏( 1=160.98M Pa, 3=5.41M Pa)c)攀矿灰岩,FORCE 控制卸荷,剪切破坏( 1=226.66M Pa, 3=12.26M Pa)

d )秦岭隧道混合花岗岩,FORCE 控制卸荷,张剪性破坏( 1=214.93M Pa , 3=0.63M Pa )图6 岩石卸荷破坏迹线

Fig.6 Failure characters of rock samples under u nloading conditions 图6为卸荷破坏

迹线素描图.图中(a )

(b)为攀矿石灰岩和秦

岭隧道混合花岗岩在

位移控制(LV DT 控

制)方式下卸荷破坏迹

线;(c)(d)为石灰岩和混合花岗岩在荷载控制(FORCE 控制)下卸荷破坏迹线.从图中可以看出,当卸荷破坏发生时的围压较低时,

则其破坏特征以张性或张剪复合型(图6a 、b 、d ):若卸荷破坏发生时围压较高,则其破坏特征以剪切破坏为主(图6c ).

地下硐室在开挖卸荷过程中,硐室周边围岩的侧压被卸除,应力发生重分布.当调整后的应力状态达到岩体极限状态时,岩体发生破坏.此处发生的岩体破坏应当是张性破坏或剪张复合型破坏.处在高地应力区的地下硐室开挖过程快速卸荷,形成一系列平行于洞壁连通性较差的张裂隙,这些张裂隙将围岩分割成板状、甚至薄板状.这种板状破裂进一步发育,向硐室突然溃决破坏,从而导致岩爆的发生.

谭以安博士对天生桥二级水电站的岩爆断面做了电镜扫描(SEM )分析[5],断面有张性破坏,也有剪切破坏.张性破坏的SEM 形貌特征为沿晶粒拉花、穿晶拉花等;剪切破坏的SEM 形貌特征为沿晶擦花、切晶擦花及擦阶擦花,这说明岩爆属于张性、剪切复合破284山 地 研 究16卷

坏,与岩石卸荷试验结果相符.

4 结 论

岩石在卸荷条件下的变形破坏特征与在加荷条件下的变形破坏特征有很大的差异.在卸荷条件下,岩石的弹性模量比加荷条件下的弹性模量小,破坏时的强度也随卸荷速率增大而明显降低,多呈张性、张剪性破坏,这表明,可以通过调整施工开挖的速度来控制或减缓岩爆的发生.

岩爆是在地下洞室开挖卸荷过程中发生的,其特征与岩石的变形破坏特征密切相关,岩爆的破坏也多呈张性、张剪性.本文在探讨岩石卸荷破坏特征与岩爆效应方面仅做了定性分析,而深入研究岩石卸荷破坏理论及岩爆发生准则并应用于实际工程则是一个重要的研究课题.

参考文献

[1] 张倬元,王士天,王兰生.工程地质分析原理.北京:地质出版社,1981.79~85.

[2] 王兰生,赵其华,李天斌.浅生时效构造与人类工程.北京:地质出版社,1991.3~19.

[3] 孔德坊.裂隙性粘土.北京:地质出版社,1995.1~4.

[4] 吴 刚.岩体在加荷卸荷条件下破坏效应对比分析.岩士力学.1997,18(2).13~16.

[5] 谭以安.岩爆形成机理研究.水文地质与工程地质,1989,16(1),34~38.

ANALYSIS OF DEFORMATION AND FAILURE

FEATURES CHARACTERISTICS OF ROCK UNDER

UNLOALDING CONDITIONS AND THEIR

EFFECTS ON ROCK BURST

Wang Xianneng Huang Runqiu

(Institute of Engineer ing Geology ,Chengdu University o f T echnology ,Chengdu 610059)

Abstract

There exists great difference o f the defor matio n and failure characteristics betw een rock sam ples under loading and unloading conditions.Inthis paper ,the triax ial test is de-signed to sim ulate the excavation of tunnel ,and triax ial tests under loading and unload-ing conditions about thrcc kinds o f rock (mig matitic gr anitc ,m igmatitic g ranitc co ntain-ing g rccn mincral and limcstonc )hav e been done .It show s that the elastic modulus under unlo ading conditio ns is less than that under lo ading conditio ns ,and the strength of rock sam ple descends with the developing of unloading ratio,and the failur e form at o r patter n is tensile type o r tensile-shear com posite ty pe.Ro ck bur st occurs under the unloading co nditions during the ex cav ation of tunnel,its failure fo rmat is also tensile type or ten-sileshear composite type,w hich is prov ed in the field.Key words tr iax ial test under unloading co ndit ions,unloading r atio ,r ock burst effects 2853期王贤能 黄润秋:岩石卸荷破坏特征与岩爆效应

教科版四年级下册科学《认识几种常见的岩石》参考教案

2.认识几种常见的岩石 教学目标: 1.初步认识几种常见岩石的显著特征; 2.观察、描述、记录几种常见岩石的颜色、结构、构造,并能根据岩石的特征对照有关资料识别岩石; 3.认识到认真细致的观察、比较、记录和描述的重要,培养学生科学交流的质疑意识和互动有效性。 教学重点:观察、记录几种岩石的特征。 教学难点:根据岩石的特征对照资料识别岩石。 教学准备: 分组实验:每组6块岩石(为页岩、砂岩、花岗岩、石灰岩、大理岩、砾岩)、滴管、稀盐酸、用于清洗盐酸液的水杯一只、抹布一块、镊子两只、每人放大镜一块。 演示实验:岩石标本、滴管、稀盐酸、相关课件。 教学过程: 课前游戏: 1.我们先来玩一个说猜的游戏,老师描述一个同学的特征,大家猜猜他是谁?我们班有一位同学,长有头发、一双眼睛、一对鼻孔、一张嘴巴、二只耳朵,中等个子,他是谁? 2.只有描述出一位同学的显著特征,并且是独一无二的,才能容易猜得出。对吧? 3.那位同学能够超过老师,描述出一位同学的显著特征让大家猜,注意不能使用缺陷性描述,那样会伤害同学的自尊心,这要注意绝对不能。

4.学生相互描述、猜测。 5.看似简单的说猜游戏,看来也不是很容易,首先描述的同学要准确清晰的抓住显著特征,如果这方面很强,今后很容易成为画家、作家、律师、警察、设计师,当然还容易成为伟大的科学家。棒吧! 一、引入课题 上节课我们学习了《各种各样的岩石》,今天我们继续来研究岩石。(课件出示六块常见岩石:页岩、砂岩、石灰岩、砾岩、大理岩和花岗岩)(板书:认识几种常见的岩石) 二、进一步观察岩石 (一)观察实验指导 1.认识岩石就要讲究科学的观察方法,跟老师说说,大家都学会了哪些观察方法?根据学生回答,板书:看、闻、摸、尝、听……(很多岩石内有一定的毒素,不能尝,下课后还要记得洗手) 2.提问:除了用眼睛看外,还可以借助什么来看?为什么要用放大镜来观察?用放大镜可以观察岩石的什么? 3.今天我们就要用放大镜来观察岩石在构造和结构方面的显著特征,同时学习一个新的观察方法:(课件出示表格)同学们也可以看自己同步探究上的记录表。 岩石观察记录 岩石编号颜色有无层理、气孔、斑点、 条纹、生物痕迹等组成岩石的颗粒 是什么样的敲击听声音滴稀盐酸的反应 颗粒岩石种类 大小

常见的岩石种类有哪些

常见的岩石种类有哪些? 虽然岩石的面貌是千变万化的,但是从它们形成的环境,也就是从成因上来划分,可以把岩石分为三大类:沉积岩、岩浆岩和变质岩。 1、沉积岩 沉积岩是在地表或近地表不太深的地方形成的一种岩石类型。它是由风化产物、火山物质、有机物质等碎屑物质在常温常压下经过搬运、沉积和石化作用,最后形成的岩石。 沉积岩的物质来源主要有几个渠道,风化作用是一个主要渠道,它包括机械风化、化学风化和生物风化。机械风化是以崩解的方式把已经形成的岩石破碎成大小不同的碎屑;化学风化是由于水、氧气、二氧化碳引起的化学作用使岩石分解形成碎屑;细菌、真菌、藻类等生物风化作用也能分解岩石。此外,火山爆发喷射出大量的火山物质也是沉积物质的来源之一;植物和动物有机质在沉积岩中也占有一定比例。 不论那种方式形成的碎屑物质都要经历搬运过程,然后在合适的环境中沉积下来,经过漫长的压实作用,石化成坚硬的沉积岩。 2、岩浆岩 岩浆岩也叫火成岩,是在地壳深处或在上地幔中形成的岩浆,在侵入到地壳上部或者喷出到地表冷却固结并经过结晶作用而形成的岩石。因为它生成的条件与沉积岩差别很大,因此,它的特点也与沉积岩明显不同。在野外观察,沉积岩常具有成层构造,层状构造是沉积岩所独有的特征。而在岩浆岩发育的地区则常常见到节理,而基本上看不到层理;在矿物组合上,在岩浆岩中出现的矿物,如橄榄石、辉石、角闪石等矿物是在高温高压条件下结晶形成的,在常温常压条件下不容易保存. 3、变质岩

在地壳形成和发展过程中,早先形成的岩石,包括沉积岩、岩浆岩,由于后来地质环境和物理化学条件的变化,在固态情况下发生了矿物组成调整、结构构造改变甚至化学成分的变化,而形成一种新的岩石,这种岩石被称为变质岩。变质岩是大陆地壳中最主要的岩石类型之一。 在变质岩的概念中,有两点必须强调,这是变质岩区别于沉 ①火成岩也称岩浆岩。来自地球内部的熔融物质,在不同地质条件下冷凝固结而成的岩石。当熔浆由火山通道喷溢出地表凝固形成的岩石,称喷出岩或称火山岩。常见的火山岩有玄武岩、安山岩和流纹岩等。当熔岩上升未达地表而在地壳一定深度凝结而形成的岩石称侵入岩,按侵入部位不同又分为深成岩和浅成岩。花岗岩、辉长岩、闪长岩是典型的深成岩。花岗斑岩、辉长玢岩和闪长玢岩是常见的浅成岩。根据化学组分又可将火成岩分为超基性岩(SiO2 ,小于45%)、基性岩(SiO2 ,45%~52%)、中性岩(SiO2 ,52%~65%)、酸性岩(SiO 2 ,大于65%)和碱性岩(含有特殊碱性矿物,SiO 2 ,52%~66%)。火成岩占地壳体积的%。 ②沉积岩。在地表常温、常压条件下,由风化物质、火山碎屑、有机物及少量宇宙物质经搬运、沉积和成岩作用形成的层状岩石。按成因可分为碎屑岩、粘土岩和化学岩(包括生物化学岩)。常见的沉积岩有砂岩、凝灰质砂岩、砾岩、粘土岩、页岩、石灰岩、白云岩、硅质岩、铁质岩、磷质岩等。沉积岩占地壳体积的%,但在地壳表层分布则甚广,约占陆地面积的75%,而海底几乎全部为沉积物所覆盖。沉积岩有两个突出特征:一是具有层次,称为层理构造。层与层的界面叫层面,通常下面的岩层比上面的岩层年龄古老。二是许多沉积岩中有“石质化”的古代生物的遗体或生存、活动的痕迹-----化石,它是判定地质年龄和研究古地理环境的珍贵资料,被称作是纪录地球历史的“书页”和“文字"。 ③变质岩。原有岩石经变质作用而形成的岩石。根据变质作用类型的不同,可将变质岩分为5类:动力变质岩、接触变质岩、区域变质岩、混合岩和交代变质岩。常见的变质岩有糜棱岩、碎裂岩、角岩、板岩、千枚岩、片岩、片麻岩、大理岩、石英岩、角闪岩、片粒岩、榴辉岩、混合岩等。变质岩占地壳体积的%。

三大岩石的主要特征以及类型知识分享

三大岩石的主要特征 以及类型

地球科学概论 地球上的岩石千变万化,它是一种或多种矿物的集合体,它是构成地壳的基本部分。按其成因可分为三大类:岩浆岩(火成岩)、沉积岩和变质岩。 一、三大岩石的主要特征以及类型 (一)、岩浆岩 岩浆岩又称火成岩,是由地壳下面的岩浆沿地壳薄弱地带上升侵入地壳或喷出地表后冷凝而成的。岩浆是存在于地壳下面高温、高压的熔融状态的硅酸盐物质(它的主要成分是SiO2,还有其他元素、化合物和挥发成分)。岩浆内部的压力很大,不断向压力低的地方移动,以至冲破地壳深部的岩层,沿着裂缝上升,喷出地表;或者当岩浆内部压力小于上部岩层压力时迫使岩浆停留下,冷凝成岩。 1、岩浆岩的主要特征 ①构造特征:岩浆岩中有一些自己特有的结构和构造特征,比如喷出岩是在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩等; ②冷凝特征:岩浆岩是由岩浆直接冷凝形成的岩石,因此,具有反映岩浆冷凝环境和形成过程所留下的特征和痕迹,与沉积岩和变质岩有明显的区别。 2、岩浆岩的分类 依冷凝成岩时的地质环境的不同,将岩浆岩分为三类: 喷出岩(火山岩):岩浆喷出地表后冷凝形成的岩浆岩称为喷出岩。在地表的条件下,温度下降迅速,矿物来不及结晶或者结晶差,肉眼不易看清楚。如流纹岩、安山岩、玄武岩等; 浅成岩:岩浆沿地壳裂缝上升至距地表较浅处冷凝形成的岩浆岩。由于岩浆压力小,温度下降较快,矿物结晶较细小。如花岗斑岩、正长斑岩、辉绿岩等;

深成岩:岩浆侵入地壳深处(约距地表3公里)冷凝形成的岩浆岩。由于岩浆压力大,温度下降缓慢,矿物结晶良好。如花岗岩、正长岩、辉长岩等。 其中,深成岩和浅成岩又统称侵入岩。 (二)、变质岩 地壳中的原岩(包括岩浆岩、沉积岩和已经生成的变质岩),由于地壳运动、岩浆活动等所造成的物理和化学条件的变化,即在高温、高压和化学性活泼的物质(水气、各种挥发性气体和热水溶液)渗入的作用下,在固体状态下改变了原来岩石的结构、构造甚至矿物成分,形成一种新的岩石称为变质岩。变质岩不仅具有自身独特的特点,而且还保存着原来岩石的某些特征。 1、变质岩的主要特征 ①有的具有片理(片状)构造如片岩; ②有的呈片麻构造(未形成片状),岩石断面上看到各种矿物成带状或条状 等,如花岗片麻岩; ③有的呈板状构造,颗粒极小,肉眼难辨,如板岩。 2、变质岩的分类 大理岩:由方解石或白云石重新经过结晶而成的; 板岩:由页岩和粘土经过变质而形成原解理状的; 片岩:由片状、柱状岩石组成; 片麻岩:多由沉积岩和岩浆岩变质而成; 石英岩:由砂岩变质而成的等。 (三)、沉积岩 沉积岩,又称为水成岩,是由成层堆积于陆地或海洋中的碎屑、胶体和有机物等疏松沉积物团结而成的岩石。同时也是三种组成地球岩石圈的主要岩石之一(另外两种是岩浆岩和变质岩)。在地球地表,有70%的岩石是沉积岩,但如果从地球表面到16公里深的整个岩石圈算,沉积岩只占 5%。沉积岩主要包括有石灰岩、砂岩、页岩等。沉积岩中所含有的矿产,占全部世界矿产蕴藏量的80%。 1、沉积岩的主要特征

岩石破坏机理及节理裂隙分布尺度效应的非线性动力学分析与应用

第24卷第22期岩石力学与工程学报V ol.24 No.22 2005年11月Chinese Journal of Rock Mechanics and Engineering Nov.,2005 岩石破坏机理及节理裂隙分布尺度效应的非线性 动力学分析与应用 刘传孝 (山东科技大学资源与环境工程学院,山东青岛 266510) 博士学位论文摘要:通过MTS系统、扫描电镜和光学电子显微镜等岩石力学实验研究,抽象出砂岩全应力–应变实验曲线的3种典型形态,从断裂损伤角度探讨了岩石节理裂隙微观、细观和宏观破坏的机理联系。提出了圆与正方形相耦合的分形维数计算方法和相空间重构时滞判定的功率谱分析法,将该方法应用于岩石节理裂隙分布尺度效应研究和混沌动力学评价TDS准则的建立;同时,补充了非线性动力学研究的基础理论与方法。运用分形理论分析砂岩跨越尺度界限的微、细、宏观节理裂隙分布特征,得到了砂岩节理裂隙分布的无标度区域,为解决岩石断裂机理的尺度效应问题提供了可行途径。在无标度区域建立了定量描述岩体结构的节理裂隙分布(条数)预测模型,并将该预测模型应用于岩石破坏机理的离散单元法研究。通过岩石力学实验建立了混沌动力学评价岩石节理裂隙系统破坏的TDS准则数学模型,在一定程度上克服了Wolf方法判定混沌动力学指标鲁棒性较差的局限。提出岩石全应力–应变曲线的二分法原则,应用混沌动力学评价TDS准则定性研究了砂岩全应力–应变曲线的分段特征,运用Kolmogorov熵理论实现了岩石节理裂隙贯通与否的定量判别,并尝试应用于岩石强度准则的研究。基于断裂力学理论及能量余法建立坚硬顶板及三维顺层滑坡系统的运动方程,运用混沌动力学评价TDS 准则分析运动方程的稳定性,得到了资源开采活动对坚硬顶板系统稳定性的扰动规律和三维顺层滑坡体阻尼敏感的系统效应。混沌动力学理论与3DEC反演建模相结合,研究坚硬顶板运动的阶段特征,由此可以控制坚硬顶板从冲击性整体运动向周期性分段运动转化,并实现对其运动状态的短时预测。将混沌动力学评价TDS准则应用于现场顺层滑坡的稳定性评价,得到阶段Kolmogorov熵值的升高是滑坡体稳定性状态突变时机及临界状态预测的关键,证明了从能量角度分析与预测滑坡系统运动状态这一方法是可行的。 关键词:岩石力学;破坏机理;节理裂隙;尺度效应;非线性动力学;分形;混沌;3DEC 中图分类号:TU 45 文献标识码:A 文章编号:1000–6915(2005)22–4202–01 ANALYSIS AND APPLICATION OF ROCK DAMAGE MECHANISM AND SCALE EFFECT ON JOINTS DISTRIBUTION WITH NONLINEAR DYNAMICS LIU Chuan-xiao (College of Resources and Environmental Engineering,Shandong University of Science and Technology,Qingdao266510,China) 收稿日期:2005–09–12 作者简介:刘传孝(1970–),男,2005年于山东科技大学资源与环境工程学院获工学博士学位,导师为蒋金泉教授,现为副教授,主要从事非线性动力学、计算力学、岩土力学与工程等方面的教学与研究工作。E-mail:lchuanx@https://www.360docs.net/doc/7012710860.html,。

野外三大类岩石简单识别

野外三大类岩石简单识别 肉眼对岩石进行分类和鉴定,除了在野外要充分考虑其产状特征外,在室内对手标本的观察上,最关键的是要抓住它的结构、构造、矿物组成等特征。具体步骤可为: (1)首先观察岩石的构造。因为构造从外貌上反映了它的成因类型:如具气孔、杏仁、流纹构造形态时,一定属于火成岩的喷出岩类;具有层理构造以及层面构造时,是沉积岩类;具板状、千枚状、片状或片麻状构造时,属于变质岩类。 三大类岩石的构造中,都有“块状构造”。比如火成岩中的石英斑岩,沉积岩中的石英砂岩,变质,岩中的石英岩,表面上似难区分,此时应结合岩石结构特征的观察进行分析:石英斑岩具火成岩的斑状结晶结构,其中的石英斑晶与基质矿物间呈结晶联结;而石英砂岩具有沉积岩的碎屑结构,碎屑之间呈胶结联结;另外,岩石中的石英颗粒本身也有显著差异----石英斑岩中的石英斑晶具有一定的结 晶外形,呈棱柱状或粒状;石英砂岩中的石英颗粒则呈浑圆状,玻璃光泽已经消失,用锤击或小刀刻划岩石中胶结不牢的部位时,可以看到石英颗粒与胶结物分离后在胶结物上留下的小凹坑。经过重结晶变质作用形成的石英岩,则往往呈致密状,肉眼分辨不出石英颗粒,且石质坚硬、性脆。 (2)对岩石结构的深入观察,可以对岩石进一步的分类。如火成岩中的深成侵入岩类多呈全晶质、显晶质、等粒状结构;而浅成侵入岩类则常呈斑状结晶结构。沉积岩中的碎屑岩、粘土岩、生物化学岩(如

砾岩、砂岩、页岩、石灰岩等)的区分,主要是根据组成物质颗粒的大小,成份及其联结方式。 (3)岩石的矿物组成和化学成份的分析,对岩石的命名和分类也是不可缺少的,特别是与火成岩的命名关系尤为密切。如斑岩和玢岩,同属火成岩中的浅成岩类,其主要区别在于矿物成份。斑岩中的斑晶矿物主要是正长石和石英,玢岩中的斑晶矿物主要是斜长石和黑色矿物。沉积岩中的次生矿物如方解石、白云石、高岭石、石膏、褐铁矿等不可能存在于新鲜的火成岩中。变质矿物如绿泥石、滑石、石棉、石榴子石、红柱石等,则为变质岩所特有。因此,根据某些矿物成分的分析,也可以初步判定岩石的类别。 (4)在岩石命名方面,如果由多种矿物成分组成,则以含量最多的矿物与岩石的基本名称紧紧相连,其他较次要的矿物,按含量多少依次向左排列,如“角闪斜长片麻岩”,说明其矿物组成是以斜长石为主,并有相当数量的角闪石,其他火成岩、沉积岩的多元命名涵意也是如此。 (5)最后应注意的是在肉眼鉴定岩石标本时,常常有许多矿物成份难于辨认。如具隐晶质结构或玻璃质结构的火成岩,泥质或化学结构的沉积岩,以及部分变质岩,由结晶细微或非结晶的物质成份组成,一般只能根据颜色深浅、坚硬性、比重大小和“盐酸反应”等进行初步的判断,火成岩中深色成份为主的,常为基性岩类:浅色成份为主的常为酸性岩类。沉积岩中较坚硬的多为硅质胶结的或硅质成分的岩

三大岩石的主要特征以及类型

地球科学概论 地球上的岩石千变万化,它是一种或多种矿物的集合体,它是构成地壳的基本部分。按其成因可分为三大类:岩浆岩(火成岩)、沉积岩和变质岩。 一、三大岩石的主要特征以及类型 (一)、岩浆岩 岩浆岩又称火成岩,是由地壳下面的岩浆沿地壳薄弱地带上升侵入地壳或喷出地表后冷凝而成的。岩浆是存在于地壳下面高温、高压的熔融状态的硅酸盐物质(它的主要成分是SiO2,还有其他元素、化合物和挥发成分)。岩浆内部的压力很大,不断向压力低的地方移动,以至冲破地壳深部的岩层,沿着裂缝上升,喷出地表;或者当岩浆内部压力小于上部岩层压力时迫使岩浆停留下,冷凝成岩。 1、岩浆岩的主要特征 ①构造特征:岩浆岩中有一些自己特有的结构和构造特征,比如喷出岩是在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩等; ②冷凝特征:岩浆岩是由岩浆直接冷凝形成的岩石,因此,具有反映岩浆冷凝环境和形成过程所留下的特征和痕迹,与沉积岩和变质岩有明显的区别。2、岩浆岩的分类 依冷凝成岩时的地质环境的不同,将岩浆岩分为三类: 喷出岩(火山岩):岩浆喷出地表后冷凝形成的岩浆岩称为喷出岩。在地表的条件下,温度下降迅速,矿物来不及结晶或者结晶差,肉眼不易看清楚。如流纹岩、安山岩、玄武岩等; 浅成岩:岩浆沿地壳裂缝上升至距地表较浅处冷凝形成的岩浆岩。由于岩浆压力小,温度下降较快,矿物结晶较细小。如花岗斑岩、正长斑岩、辉绿岩等; 深成岩:岩浆侵入地壳深处(约距地表3公里)冷凝形成的岩浆岩。由于岩浆压力大,温度下降缓慢,矿物结晶良好。如花岗岩、正长岩、辉长岩等。 其中,深成岩和浅成岩又统称侵入岩。

三大类岩石的比较

三大类岩石的比较 自然界中矿物以一定的规律由一种或多种组成的集合体,称为岩石。有些岩石是由一些矿物组成,如纯大理岩是由方解石组成;而多数是由两种以上矿物组成,如花岗岩是由正长石、云英和云母等多种矿物组成。 岩石是组成地壳的主要物质成分。自然界的岩石种类很多,按不同的成因可分为三类,即岩浆岩、沉积岩和变质岩。 岩浆岩是由高温熔融的岩浆在地表或地下冷凝所形成的岩石,也称火成岩或喷出岩。沉积岩是在地表条件下由风化作用、生物作用和火山作用的产物经水、空气和冰川等外力的搬运、沉积和成岩固结而形成的岩石;变质岩是由先成的岩浆岩、沉积岩或变质岩,由于其所处地质环境的改变经变质作用而形成的岩石。 地壳深处和上地幔的上部主要由火成岩和变质岩组成。从地表向下16公里范围内火成岩和变质岩的体积占95%。地壳表面以沉积岩为主,它们约占大陆面积的75%,洋底几乎全部为沉积物所覆盖。 1、三大类岩石的形成成因及其相关作用: (1)、岩浆岩 岩浆在地下深处有很高的压力和温度。当构造运动使岩石圈局部压力降低时,岩浆就向岩石圈压力降低的方向运移。由于运移途中物理、化学条件的变化,岩浆也不断改变自己的性质和成分,最后岩浆上升到地壳上部或喷出地表,冷凝成岩石。包括岩浆的形成、运移和冷凝成岩的整个活动过程,称为岩浆作用。由岩浆冷凝而成的岩石叫岩浆岩,岩浆岩约占地壳总质量的95%,是三大类岩石的主体。岩浆作用包括喷出作用(火山活动)和侵入作用,分别生成喷出岩(火山岩)和侵入岩。 岩浆喷出地表的活动称为喷出作用,由岩浆喷出作用形成的岩石称为喷出岩。岩浆喷出物有气体、液体和固体三类: ○1气体喷出物。岩浆在向上运移的过程中,由于压力逐渐降低,溶解在岩浆中的挥发物就以气体形式分离出来而成为岩浆喷发的前导。气体喷出物以水蒸气为主(一般占60%~90%),还有CO2、S、硫化物以及少量的HCl、HF、NaCl、NH4Cl等。

认识几种常见的岩石》

《认识几种常见的岩石》教学设计 一、本课时所属单元教学内容概述,本课时在单元中的位置 《认识几种常见的岩石》是四年级下册第四单元的第二课,第四单元可分两块内容“岩石”和“矿物”,前三节课主要探究“岩石”后三节课主要探究“矿物”,前三节探究“岩石”课是相互联系,逐步深入的。第一课“各种各样的岩石”就是让学生基于生活经验和已有知识水平,运用多种感官方法对岩石进行观察,获取岩石在表面的信息和一些有关岩石外部的特征,能根据一定的特点对岩石进行简单的分类。第二课“认识几种常见的岩石”是在学生学会运用多种方法观察岩石外部特征基础上深入观察岩石的结构和颗粒,并采用不同的方法(借助工具和实验)来观察岩石,初步认识常见的几种岩石的显著特征,并利用这些显著的特征,根据资料能够对岩石进行识别,初步了解构成岩石的颗粒,为第三课“岩石的组成”打下学习基础,第三课则更深入地让学生分析构成岩石的颗粒即岩石构成岩石的矿物。 本节课围绕两个探究活动展开:一是进一步观察岩石。对页岩、花岗岩、大理岩、石灰岩等几种常见的岩石进行进一步的观察,以了解岩石的结构和构造为主要的观察目的,通过新的观察方法和简单的实验,认识几种常见岩石的显著特征,关注岩石的本质特征。二是怎样识别岩石。要求学生在进一步观察岩石的基础上,综合概括不同编号岩石的显著特征,并根据岩石的显著特征,对照岩石资料来识别岩石,最后验证自己的判断。 二、学情分析 科学概念方面:学生在生活中已经积累了部分对岩石的了解,并且通过第一课的学习,知道需要用多种方法观察岩石,如何比较准确地描述岩石的特征,知道岩石在颜色、花纹、手感等方面有各自的特点,并能根据特点对岩石进行分类。 科学探究方面:通过近两年的科学课的学习,学生已初步具有观察、描述、交流能力;已有初步收集信息和处理信息(特别是通过观察与实验获取信息)的能力,理解收集、处理信息的技术对科学探究的意义;能具有表达和交流的能力,认识表达和交流对科学发展的意义。学生初步形成描述能力和综合概括的能力。然而在实际过程中,让学生真正去正确描述岩石的特征,关注岩石本质特征是困难的,学生的观察很容易只停留在对岩石外在特点的观察和描述上。如何悉心指导学生使用新的观察方法和简单的实验,引导学生要关注岩石本质特征就是本课教学设计的关键所在。 情感态度方面:四年级学生初步具有勇于创新,独立思考,敢于提出自己的新见解;尊重反映客观事实和客观规律的科学原理;依据客观事实的出结论,能够根据科学事实修正自己的观点;有一定的合作意识。但还往往容易以原有的经验判断甚至想象来代替实际科学实验情况,因此要在课堂中强调科学活动的实证精神的培养。 三、教学目标 科学概念: 1.初步认识页岩、砂岩、花岗岩、大理岩、石灰岩、砾岩、等几种常见岩石的显著特征及用途。 2.不同成因的岩石在结构和构造上有不同的特征。岩石的特征和他的成因有关。 过程与方法: 1.观察、记录、描述几种常见岩石的颜色、结构、构造。 2.根据岩石的显著特征对照有关资料识别岩石。 3.根据需要对岩石进行观察、比较、及查阅相关资料。 情感态度价值观: 1.认识到认真细致地观察、比较、记录、描述的重要性。 2.通过组内分工合作,描述汇报,培养学生合作、交流、质疑意识。 3.培养收集、研究岩石的兴趣。培养学生仔细观察、比较、认真记录的科学态度,以及积极探究的精神。 四、教学重、难点 教学重点:观察、记录、描述几种岩石的特征。 教学难点:根据岩石的特征对照资料识别岩石。

东北大学岩石力学讲义第二章岩石破坏机制及强度理论.

第二章 岩石破坏机制及强度理论 第一节 岩石破坏的现象 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种 一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力方向平行的裂隙。 二、剪切破坏:岩石试件单向抗压的X 形破坏。从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。 (a ) (b )

三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。 对岩石破坏的研究: 在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系 123(,)f σσσ= 研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。 第二节 岩石拉伸破坏的强度条件 一、最大线应变理论 该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。强度条件为 c εε≤ (2-1) c ε—拉应变的极限值,ε—拉应变。

若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。按弹性力学有3 3E E σμ εσσ= -12(+),即33E εσμσσ=-12(+)。若3ε<0则产生拉应变。由于E >0,因此产生拉应变的条件是 3σμσσ-12(+)<0,3μσσσ12(+)> 若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t E σε=?0t E σε=。 按最大线应变理论30εε≥破坏,即 312()t σμσσσ-+≥ (2-2) 式中0ε是允许的拉应变。 二、格里菲斯理论 格里菲斯理论的主要观点是:材料内微小裂隙失稳扩展导致材料的宏观破坏。 格里菲斯理论的主要依据是:1)、任何材料中总有各种微小微纹;2)、裂纹尖端的有严重的应力集中,即应力最大,并且有拉应力集中的现象;3)、当这种拉应力集中达到拉伸强度时微裂纹失稳扩展,导致材料的破坏。 格里菲斯理论的来源:由玻璃破坏得到的启示。 格里菲斯理论的基本假设为: 1、岩石的裂隙可视为极扁的扁椭圆裂隙; 2、裂隙失稳扩展可按平面应力问题处理; 3、裂隙之间互不影响。 按格里菲斯理论,裂纹失稳扩展条件为 1)、当1330σσ+>时,满足 21313()8()0t σσσσσ-++= (2-2)

(完整版)三大类岩石的区别

三大类岩石的区别 一、三大类岩石的概念: 岩浆岩是由高温熔融的岩浆在地表或地下冷凝所形成的岩石,也称火成岩或喷出岩。沉积岩是在地表条件下由风化作用、生物作用和火山作用的产物经水、空气和冰川等外力的搬运、沉积和成岩固结而形成的岩石;变质岩是由先成的岩浆岩、沉积岩或变质岩,由于其所处地质环境的改变经变质作用而形成的岩石。 地壳深处和上地幔的上部主要由火成岩和变质岩组成。从地表向下16公里范围内火成岩和变质岩的体积占95%。地壳表面以沉积岩为主,它们约占大陆面积的75%,洋底几乎全部为沉积物所覆盖。 二、三大类岩石概述 变质岩是在地球内力作用,引起岩石构造的变化和改造产生的新型岩石。这些力量包括温度、压力、应力变化、化学成分。固态岩石因地球内部压力和温度作用,发生物质成分迁移和重结晶形成新矿物组合,占地壳总体积约27.4%。变质岩的家族非常庞大,其种类远多于火成岩和沉积岩。以表征可分为板岩、千枚岩、片岩、片麻岩、粒状岩石等5大类。通过研究变质岩,可了解地球早期历史,研究各种地下深处的信息,推测出地球内部岩石和结构状况,以及地壳热历史、变质原岩的面貌等许多科学信息。同时,研究变质岩,可指导人们找寻相关矿产资源。其主要作用有建筑及装饰材料、工艺品原料、非金属工业原料等,另外变质岩中直接产出金属矿产,可说我们人类的生存是离不开变质岩的。 岩浆岩主要由硅酸盐矿物组成,还常含微量磁铁矿等副矿物。根据岩石SiO2含量,可分为四大类:SiO2<45%的超基性岩;SiO2=45~52%的基性岩;SiO2=52~65%的中性、碱性岩;SiO2>65%的酸性岩。岩石碱度指岩石中碱的饱和程度,岩石碱度与碱含量多少有一定关系。另外矿物成分也是岩浆岩分类的依据之一,因为岩浆岩中常见的一些矿物的成分和含量由于岩石类型不同而随之发生有规律的变化。另外,根据岩石侵入到地下还是喷出地表,岩浆岩又可以分为侵入岩和喷出岩。每个大类的侵入岩和喷出岩在化学成分上一致,仅由于形成环境不同,

几种常见岩石的辨别和描述

几种常见岩石的辨别和描述(野外编录) 三种常见的岩浆岩: 1.花岗岩是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。 2.橄榄岩侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。 3.玄武岩一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。 (沉积岩) 又叫“水成岩”。是在常温常压条件下岩石遭受风化作用的破坏产物,或生物作用和火山作用的产物,经过长时间的日晒、雨淋、风吹、浪打,会逐渐破碎成为砂砾或泥土。在风、流水、冰川、海浪等外力作用下,这些破碎的物质又被搬运到湖泊、海洋等低洼地区堆积或沉积下来,形成沉积物。随着时间的推移,沉积物越来越厚,压力越来越大,于是空隙逐渐缩小,水分逐渐排出,再加上可溶物的胶结作用,沉积物便慢慢固结而成岩石,这就是沉积岩。沉积岩分布极广,占陆地面积的75%,是构成地壳表层的主要岩石。四种常见的沉积岩: 1.砾岩一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。 2.砂岩颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,主要成分是石英、长石等,颜色常为白色、灰色、淡红色和黄色。

3.页岩由各种黏土经压紧和胶结而成的岩石。是沉积岩分布最广的一种岩石,层理明显,可以分裂成薄片,有各种颜色,如黑色、红色、灰色、黄色等。 4.石灰岩俗称“青石”,是一种在海、湖盆地中生成灰色或灰白色沉积岩。主要由方解石的微粒组成,遇稀盐酸会发生化学反应,放出气泡。石灰岩的颜色多为白色、灰色及黑灰色,呈致密块状。 变质岩:地壳中的火成岩或沉积岩,由于地壳运动、岩浆活动等所造成的物理、化学条件的变化,使其成分、结构、构造发生一系列改变,这种促成岩石发生改变的作用称为变质作用。由变质作用形成的新岩石叫做变质岩,例如由石英砂岩变质而成的石英岩,由页岩变质而成的板岩,由石灰岩、白云岩变质而成的大理岩。变质岩常有片理构造。三种常见的变质岩: 1.大理岩由石灰岩或白云岩重结晶变质而成。颗粒比:石灰岩粗,矿物成分主要为方解石,遇酸剧烈反应,一般为白色,如含不同杂质,就有各种不同的颜色。大理岩硬度不大,容易雕刻,磨光后非常美观,常用来做工艺装饰品和建筑石材。 2.板岩由页岩和黏土变质而成。颗粒极细,矿物成分只有在显微镜下才能看到。敲击时发出清脆的响声,具有明显的板状构造。板面微具光泽,颜色多种多样,有灰、黑、灰绿、紫、红等,可用做屋瓦和写字石板。 3.片麻岩多由岩浆岩变质而成。晶粒较粗,主要矿物成分为石英、长石、黑云母、角闪石等。矿物颗粒黑白相间,呈连续条带状排列,形成片麻构造。岩性坚,但极易风化破碎。 C、(矿物) 是地壳内外各种岩石和矿石的组成部分,是具有一定的化学成分和物理性质的自然均一体。大部分矿物是固体,也有的是液体(如自然汞、石油)或气

火成岩常见的几种岩石

火成岩常见的几种岩石 1. 纯橄榄岩 颜色:深绿、黄绿、褐绿色。 结构构造:全自形或他形粒状结构,块状构造 矿物组成:几乎全部(90~100%)由橄榄石组成,间或有少量(<10%)的辉石和角闪石。副矿物多为铬铁矿、尖晶石和磁铁矿。 其它:新鲜的纯橄岩少见,通常遭受不同程度的蛇纹石化,若部分蛇纹石化,称蛇纹石化纯橄榄岩;若全部蛇纹石化,则叫蛇纹岩。 2. 橄榄岩 结构:具细粒-粗粒结构,常呈包含结构和海绵陨铁结构(明显它形的金属矿物,胶结了自形较高的橄榄石和辉石)。 矿物组成:主要由橄榄石(40~90%)和辉石构成,含少量角闪石、黑云母或斜长石。副矿物常为铬铁矿、磁铁矿。 其它特点:如果岩石中角闪石较多,则可形成角闪橄榄岩。橄榄岩也易遭受次生变化,其中橄榄石变为蛇纹石,辉石和角闪石变为绿泥石等。 3.辉石岩 颜色:浅褐色、暗黑色或灰绿色。 结构:全自形粒状结构,也可有包含结构或海绵陨铁结构。 矿物组成:主要由辉石组成,可含少量橄榄石、角闪石及磁铁矿、钛铁矿、铬铁矿等。 4.角闪石岩 颜色:黑色或墨绿色。 矿物组成:主要由角闪石组成(>90%),有时含少量辉石、橄榄石和磁铁矿。 其它:常呈脉状产出,穿插于其他超基性岩体中。 5.苦橄岩 颜色:呈淡绿色至黑色。 结构构造:隐晶质结构、块状构造,有时具气孔或杏仁构造。 矿物组成:主要由橄榄石(50~70%)和辉石(<40%)组成,可含少量基性斜长石、普通角闪石。副矿物有钛铁矿、磁铁矿、磷灰石等。 产状:往往产出于玄武岩的底部或与超基性侵入岩伴生 6.金伯利岩 颜色:多呈黑、暗绿、绿、灰等,而以绿色常见 结构构造:常见斑状结构和角砾状构造。 矿物成分:在斑状结构中斑晶成分主要是橄榄石、金云母。在角砾状构造中,角砾成分十分复杂,有早期形成的金伯利岩、橄榄岩、辉石岩破碎而成的岩块,也有来自围岩的岩块,角砾之间的胶结物为金伯利岩浆物质。 7.斜长岩 几乎全部由斜长石(基性)组成,其含量占90%以上,暗色矿物很少,含量小于10%,主要为辉石、角闪石、橄榄石。岩石具半自形或他形粒状结构。一般为白色、灰色,有时因次生变化(纳黝帘石化)而颜色稍深些。块状构造。它既可呈独立的岩体产出,也可与辉长岩共生,在层状侵入体中常构成“ 浅色层”。 8. 辉绿岩 (1) 颜色:暗绿色,黑绿色

认识几种常见的岩石

《认识几种常见的岩石》教学设计 【设计意图】 自然界的岩石种类是数不胜数的,面对这些岩石,学生该如何去辨别呢?这节课的标题是《认识几种常见的岩石》,通过观察,对比资料,这节课认识了这几种常见的岩石,但是时间一久,学生又马上会忘记。所以,这节课我在设计时把核心目标定位在“方法”上——通过观察几种常见的岩石,初步尝试像科学家那样用科学系统的方法来辨别岩石。希望通过活动,学生能认识其中的几种岩石,但最重要的还是学生尝试并初步学会这种方法的使用。 【教材分析】: (一)背景和目标 本课指导学生认识几种常见的岩石一页岩、砂岩、花岗岩、石灰岩、大理岩的特征。在观察上,不再只停留在颜色、光滑还是粗糙、是否透明等这些常见的物质属性方面,而是要进一步从岩石的结构、构造等方面进行观察。这是由于岩石是在各种不同地质条件作用下产生的,是按一定的结构和构造构成的,由矿物组合而成的矿物集合体。页岩、砂岩、花岗岩、石灰岩、大理岩这几种岩石从成因上分类分别属于沉积岩、岩浆岩、变质岩,在结构和构造上有显著的不同。通过本课教学,不仅认识这几种岩石的特性,还要进一步提高学生的观察能力和探究能力。这将为今后理解岩石的特性和成因之间的关系奠定一定的基础。 本课内容分为两部分:一是“进一步观察岩石”,二是“怎样识别它们”。 (二)教学准备: 1、分组实验器材:标签或记号笔。 2、教师演示器材:页岩、砂岩、花岗岩、石灰岩、大理岩,滴管、稀盐酸、放大镜、岩石标本,滴管、稀盐酸,有关岩石用途的课件。 (三)教材说明 本课的重点是观察、记录几种岩石的特征。难点是根据岩石的特征对照资料识别它们。 第一部分:进一步观察岩石 在第一课初步了解到岩石的外部特征后,本课通过对几种常见岩石的观察和识别,指导学生进一步学习观察岩石的方法。教材选用的是页岩、砂岩、石灰岩、砾岩、花岗岩、大理岩。为什么选用这几种岩石呢,因为这几种岩石比较普遍又容易找到,还被人们在生产和生活中广泛应用。从成因上分类,它们分属沉积岩、岩浆岩、变质岩,在结构和构造上特征明显。 “进一步观察岩石”的活动有两个目的:一是指导学生学习新的观察方法,二是引导学生关注岩石的本质特征,比如结构、构造等。结构主要指组成岩石的矿物颗粒的颜色、形状、大小,以及相互关系等。构造主要指各组成岩石的矿物的排列方式和充填方式所赋予

东北大学岩石力学讲义第二章岩石破坏机制及强度理论

精品文档 第二章岩石破坏机制及强度理论 岩石破坏的现象第一节 在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。特点出现与最大应力一、拉破坏方向平行的裂隙。

) (b) (a 形破坏。从应力分析可知,单向压缩下某一剪二、剪切破坏:岩石试件单向抗压的X 切面上的切向应力达到最大引起的破坏。

精品文档. 精品文档 三、重剪破坏:即沿原有的结构面的滑动、重剪破坏 主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。 并可归纳从小到几厘米的岩块到大的工程岩体,破坏形式雷同,从岩石破坏的现象看,为两种,

拉断与剪坏,因此有一定的规律可寻。对岩石破坏的研究:不同应力的组合在单向条件下可以从实验得到破坏的经验关系。但是三向受力条件下,对岩石破因此在一般应力状态,有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,坏的研究需要结合理论分析和试验研究两个方面。现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系???)(,?f321、理论研究结合试验研究。、试验研究;3研究的方法有:理论分析;2 岩石拉伸破坏的强度条件第二节 一、最大线应变理论岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力该理论的主要观点是,状态无关。强度条件为(2-1) ???c—拉应变的极限值,—拉应变。??c 精品文档. 精品文档 ?是最小主应力。σ下,σ>σ>若岩石在破坏之前可看作是弹性体,在受压条件下3123??????3,E>0<0则产生拉应变。由于,即。若按弹性力学有?????)?(?+)E?(?+32312133EE因此产生拉应变的条件是 ????????)>((?++)<0,312132??????t?E==。若则产生拉破坏,此时抗拉强度为= <0

常见岩石的辨别

学会用肉眼或借助于放大镜来鉴定火成岩,是野外地质旅行的基本功之一。特别在填绘地质图、测制剖面图、研究侵入体及其相互穿插关系,观察侵入体与其围岩的关系,以及各种火成岩与成矿的关系等方面,均具有重要意义。 学会野外鉴定火成岩,大体上应从以下几项步骤入手。 首先观察岩石的颜色、含石英的分量、含铁镁矿物的分量这三项指标,估计遇到的火成岩应归属于哪一个大类。比如淡红色、浅灰色,含石英晶体的颗粒较多,而含铁镁矿物的分量较少的,大体上是属于酸性火成岩。如果岩石呈灰色、灰绿色,铁镁矿物的含量相当明显,而石英晶体的颗粒大为减少,或偶尔可见者,大体应属于中性火成岩。如果岩石的颜色黝黑,并略带橄榄绿,完全看不到石英颗粒,铁镁矿物几乎成为岩石的全部组分,则应属于基性岩类。 基本上分辨出酸性、中性和基性三大类岩石以后,接着就应该鉴定其具体的名称了。这时候,认识岩石中所含的矿物名称是鉴定的关键,因此,熟悉一下最基本的几种造岩矿物很有必要。 石英:晶体多为六方柱体及菱面体的聚形,晶面有横纹。颜色多种多样,纯净者无色透明,称之为水晶。常见者有白色、灰色乃至暗灰色。如含锰质,呈紫色;含有机质,呈烟黄色、烟褐色、墨色。玻璃光泽。断口不平,有如贝壳状。硬度7,超过铁器,故刀口针尖均难以刻画。

正长石:晶体短柱状,常呈粒状或块状。表面可见解理裂缝。颜色多呈肉红色、浅黄色。玻璃光泽。硬度6,与铁器相近。 斜长石:板状、板柱状晶体,多为白色、浅灰色,有时为浅绿色、浅红色。常为不规则的粒状。玻璃光泽。硬度6~6.5。 黑云母:晶体常呈板状、柱状。片状解理发育,极易剥落成薄片,故可用小刀、指甲拨开。具玻璃-珍珠光泽。硬度低,2~3。薄片富有弹性。颜色呈黑、褐色。易风化,成为绿泥石。 白云母:晶体形状与黑云母相同。片状解理亦发育,极易剥成薄片。玻璃-珍珠光泽。硬度2~3,颜色白、浅黄,浅灰、浅绿。不易风化。 普通角闪石:晶体常呈柱状,横断面为假六边形,颜色为黑色。绿色、褐色。玻璃光泽。有时可见金属光泽。其解理裂缝的交角为60°。硬度5.5~6。 普通辉石:晶体呈短柱状。其横剖面为假八面形。颜色多为黑色、墨绿色及褐黑色。玻璃光泽。硬度5~6。解理裂缝的交角呈90°。 橄榄石:它的颜色比较特殊,通常呈橄榄绿、黄绿色,有些则呈黑色。有较强的玻璃光泽。断口呈贝壳状。硬度6~7,因其极

岩石矿物的分类及鉴别特征[详细]

岩石矿物的分类及鉴别特征 概述:岩石(rock)是由一种或多种矿物或者岩屑组成的集合体.按照岩石的成因,分为三大类:沉积岩、岩浆岩、变质岩. 沉积岩:是由各种外力地质作力形成的沉积物在地表或近地表条件下,经过固结成岩作用形成的岩石.按成因又可分为四大类: 表2-1 沉积岩分类简表 砾状结构>2米米、砂状结构2~0.05米米、粉砂状结构0.05~0.005米米、粒径>100米米粒径2~100米米粒径65%强烈过饱和游离石英>20% 造岩元素含量的变化:Fe 米g Cu → Fe 米g Cu Al → Fe Ca Al Na → Ca Na K Al + SiO2 岩石颜色的变化:深(绿黑)→暗(绿灰)→中色(灰色)→浅色(肉红、灰白). 矿物组合变化、橄榄石、辉石(无石英)辉石、富钙斜长石、角闪石(基本无石英) 钙钠中等的斜长石、角闪石(少石英、黑云母) 富钠斜长石、正长石,石英大量出现 . 变质岩(米eta米orphic rock)是地壳中已形成的岩石(岩浆岩、沉积岩等)在高温、高压及化学活动性流体的作用下,使原来岩石的成分、结构、构造等发生改变而形成的岩石.岩浆岩变质形成的变质岩称正变质岩; 沉积岩变质形成的岩石称副变质岩. 三大类岩石的分布及产状 岩石类型主要分布位置重量百分比地表分布面积产出状态陆地海洋

沉积岩地表或近地表 5% 75% 少量层状 岩浆岩地下深处 89% 25% 占大多数块状或脉状 变质岩构造运动剧烈地带或岩体周围 6% 几乎没有介于二者之间 第一节常见矿物的肉眼鉴定 目的:1、学会常见矿物的肉眼鉴定方法; 2、加深对地壳的物质组成的认识. 一、矿物的形态 矿物的形态有单体形态和集合体形态之分. (一)单体形态 由于矿物具一定的化学成分和结晶构造,在适宜的条件下,可形成具一定外形的几何多面体,称为晶体(crystal).完好晶体的自然表面称晶面(crystal face),它相当于结晶格架上质点较密集或联结力较强的网面.晶体的形态称为晶形(crystal for米).各种矿物都有其独特的晶形,它是鉴别矿物的重要依据之一.尽管矿物的晶形多种多样,但归纳起来,矿物单体晶形可分为三种类型: 一向延长型呈柱状或针状,如石英、辉锑矿、角闪石等; 二向延长型呈片状或板状,如石膏和云母等; 三向等长型呈粒状,如黄铁矿等. 矿物的晶体大小与生长环境有关,在适宜条件下某些晶体可生长成巨大的个体,例如,曾发现巨大的白云母晶体,其晶面可达7米2,但有些矿物的晶体极小,如高岭石的晶体仅为10~n×10μ米,需在电子显微镜下才能观察到.同一种岩石中不同矿物的结晶顺序也有先后,先结晶的矿物晶形较完好,后结晶的则受先结晶的矿物限制,常形成扇形不甚规则的“他形”晶. (二)集合体形态

关于岩石爆破破碎机理及影响爆破作用的因素

关于岩石爆破破碎机理及影响爆破作用的因素 班级:____________ 姓名:____________ 学号:____________ 指导教师:__________

关于岩石爆破破碎机理及影响爆破作用的因素 摘要:岩石爆破破坏是一个高温、高压、高速的瞬态过程,在几十微秒到几十毫秒之内即完成。使得研究岩石爆破破碎机理变得困难,所提出的各种破岩理论还只能算是假说。 关键词:岩石爆破、压力膨胀、冲击波 1.岩石爆破破碎机理研究的问题 1.1岩石爆破破碎机理研究的主要内容 (1)炸药爆炸释放的能量是通过何种形式作用在岩石上; (2)岩石在这种能量作用下处于什么样的应力状态; (3)岩石在这种应力状态中怎么发生破坏、变形和运动的。 (4)影响岩石破坏的因素。 (5)炸药装药量和爆破效果关系。 1.2岩石爆破破碎机理研究存在的主要困难 (1)炸药爆炸荷载复杂性:高速、高温、高压、高能量密度荷载 (2)岩体本身的复杂性:不均质性,各向异性,非连续,非线性 (3)爆破施工工艺多样性 2.岩石爆破破碎的主因 破碎岩石时炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。但是,岩石破碎的主要原因是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。 2.1爆炸气体产物膨胀压力破坏理论 2.1.1爆炸气体产物膨胀压力破坏理论基本观点

1953年以前,该派观点在爆破界极为流行。从静力学观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同径向位移,导致在岩石中形成剪切应力。当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。它在很大程度上忽视了冲击波的作用。后来经过村田勉等人的努力,利用近代观点重新做了解释,形成了一个完整的体系。 2.1.2理论依据 (1)炸药爆炸→气体产物(高温,高压)→在岩中产生应力场→ 引起应力场内质点的径向位移→径向压应力→切向拉应力→岩石产生径向裂纹 (2)如果存在自由面,岩石质点速度在自由面方向上最大,位移阻

相关文档
最新文档