《数值分析》期末复习题(1)

合集下载

数值分析复习题及答案

数值分析复习题及答案

数值分析复习题一、选择题1. 3.142和3.141分别作为π的近似数具有〔 〕和〔 〕位有效数字.A .4和3B .3和2C .3和4D .4和42. 求积公式()()211211()(2)636f x dx f Af f ≈++⎰,那么A =〔 〕A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足〔 〕A .()00l x =0,()110l x = B .()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,那么它具有〔 〕敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程〔 〕.A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=-二、填空1. 设2.3149541...x *=,取5位有效数字,那么所得的近似值x=.2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===-- 那么二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 那么2||||X = ,=∞||||X 。

4.求方程 21.250x x --= 的近似根,用迭代公式x =01x =, 那么 1______x =。

5.解初始值问题 00'(,)()y f x y y x y =⎧⎨=⎩近似解的梯形公式是 1______k y +≈。

数值分析期末考试和答案

数值分析期末考试和答案

数值分析期末考试和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 插值法B. 迭代法C. 直接法D. 拟合法答案:C2. 以下哪个数值方法是用于求解非线性方程的?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 拉格朗日插值法答案:B3. 在数值积分中,梯形法则的误差与下列哪个因素无关?A. 被积函数的二阶导数B. 积分区间的长度C. 积分区间的划分数量D. 被积函数的一阶导数答案:D4. 以下哪个数值方法是用于求解常微分方程的?A. 欧拉方法B. 牛顿迭代法C. 拉格朗日插值法D. 高斯消元法答案:A5. 在数值分析中,下列哪个方法用于求解特征值问题?A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形法则答案:B6. 以下哪个数值方法是用于求解线性最小二乘问题的?A. 高斯消元法B. 梯形法则C. 正交分解法D. 牛顿迭代法答案:C7. 在数值分析中,下列哪个方法用于求解非线性方程组?A. 高斯消元法B. 牛顿迭代法C. 线性插值法D. 欧拉方法答案:B8. 在数值分析中,下列哪个方法用于求解偏微分方程?A. 有限差分法B. 牛顿迭代法C. 线性插值法D. 梯形法则答案:A9. 在数值分析中,下列哪个方法用于求解优化问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 单纯形法答案:D10. 在数值分析中,下列哪个方法用于求解插值问题?A. 高斯消元法B. 梯形法则C. 牛顿迭代法D. 拉格朗日插值法答案:D二、填空题(每题2分,共20分)1. 在数值分析中,求解线性方程组的直接法包括______消元法和______消元法。

答案:高斯;LU2. 牛顿迭代法的收敛速度是______阶的。

答案:二3. 梯形法则的误差与被积函数的______阶导数有关。

答案:二4. 欧拉方法是一种求解______阶常微分方程的数值方法。

答案:一5. 幂迭代法是求解______特征值问题的数值方法。

数值分析_期末总复习-习题课.

数值分析_期末总复习-习题课.

2 0 2
矩阵A的特征值为 1 0, 2 1, 3 3
所以谱半径 A max0,1,3 3
简述题
1. 叙述在数值运算中,误差分析的方法与原则 是什么?
解:数值运算中常用的误差分析的方法有:概 率分析法、向后误差分析法、区间分析法等。
误差分析的原则有:1)要避免除数绝对值远 远小于被除数绝对值的除法;2)要避免两近数 相减;3)要防止大数吃掉小数:4)注意简化 计算步骤,减少运算次数。
,
(
x( A) 2
0).
1. 下列各数
都是经过四舍
五入得到的近似值,试指出它们有几位有效数字,
并给出其误差限与相对误差限。
解: 有 5 位有效数字,其误差限
,相对
误差限
有 2 位有效数字,
有 5 位有效数字,
例2 设有三个近似数 a 2.31,b 1.93,c 2.24,
它们都有三位有效数字。试计算 p=a+bc 的误差界, 并问 p 的计算结果能有几位有效数字?
n
Ln( x) f (xk) l k( x) k0
Rn(x)
f (x) Ln(x)
f (n1) ( ) (n 1)!
n1(
x),
其中lk(x)
n
j0
x xj xk xj
(k 0,1,...n)
jk
显然,如此构造的L(x) 是不超过n次多项式。当n=1时,称为线性插值。当n=2时,
称为抛物线插值。
解 pA 2.311.93 2.24 6.6332, 于是有误差界
(pA)
(a
A)
(bAc

A
(aA) bA (cA) cA (bA)
0.005 0.00( 5 1.93 2.24) 0.02585

数值分析期末考试题带答案

数值分析期末考试题带答案

湖北民族学院2012年秋季期末试卷A或BA卷课程数值分析使用班级0210403、4、5、6 制卷份数86 考生姓名命题人刘波课程负责人单位审核人答题纸数班级题号一二三四五六七八九十合计学号评分分数阅卷人注意:所有答案必须填写在答题纸上! 一、填空题(4分⨯10=40分)1、向量T x )3,2,1(-=的范数1x = ,∞x = ,2x 。

2、已知,3)2(,1)1(==f f 那么)(x f y =以2,1=x 为节点的拉格朗日线性差值多项式为 。

3、设矩阵A 是对称正定矩阵,则用 迭代法接线性方程组,b AX =其迭代解数列一定收敛。

4、辛普森公式: 。

5、牛顿-柯特斯求积分公式的系数和=∑=nk n k C 0)( 。

6、,1)(2+=x x f 则=]3,2,1[f ,=]4,3,2,1[f 。

7、积分公式)42(32)21(31)41(32)(10f f f dx x f +-≈⎰具有 次代数精度。

二、计算题(10分⨯3=30分) 1、求01162=+-x x 的小正根。

2、给定形如)0()1()0()('01010f B f A f A dx x f ++≈⎰的求积公式,试确定系数,,,010B A A 使公式具有尽可能高的代数精确度。

3、求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=242422221A 的特征值及普半径。

三、证明题(20分⨯1=20分) 1、用直接三角分解法解⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛201814513252321321x x x四、讨论题(10分⨯1=10分)1、用4点(n=3)的高斯——勒让德求积公式计算xdx x I cos 22⎰=π答案:一:1: 6,3,14 解: ∞x=||max 1i ni x ≤≤;1x =∑=n i i x 1||;2x =2112)(∑=ni ix ;向量的p 范数:p x =pni p ix 11)||(∑=2: 2x-1 3、高斯-赛德尔4、)]()2(4)([6)(b f b a f a f a b dx x f b a +++-≈⎰5、16、1,07、3二:1:解:6381+=x ,*2206.094.78638x x ==-≈-=,*2x 只有一位有效数字,若改用0627.094.15163816382≈≈+=-=x ,具有三位有效数字。

数值分析练习题加答案(一)

数值分析练习题加答案(一)

数值分析期末考试一、 设80~=x ,若要确保其近似数的相对误差限为0.1%,则它的近似数x 至少取几位有效数字?(4分)解:设x 有n 位有效数字。

因为98180648=<<=,所以可得x 的第一位有效数字为8(1分) 又因为21101011000110821--⨯=<⨯⨯≤n ε,令321=⇒-=-n n ,可知x 至少具有3位有效数字(3分)。

二、求矩阵A 的条件数1)(A Cond (4分)。

其中⎥⎦⎤⎢⎣⎡=4231A 解:⎥⎦⎤⎢⎣⎡--=-5.05.1121A (1分) 1A =7(1分) 2711=-A (1分)249)(1=A Cond (1分)三、用列主元Gauss 消元法法求解以下方程组(6分)942822032321321321=++-=++--=+-x x x x x x x x x解:→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.245.2405.35.230914220321821191429142821120321 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---8175835005,245.24091425.33.2305.245.2409142(4分) 等价三角方程组为:⎪⎪⎩⎪⎪⎨⎧-=-=+-=++,8175835,5.245.24,942332321x x x x x x (1分)回代得1,3,5123==-=x x x (1分)四、设.0,2,3,1,103)(3210234=-===-+-=x x x x x x x x f 1)求以3210,,,x x x x 为节3次Lagrange 多项式;(6分) 2)求以3210,,,x x x x 为节3次Newton 多项式;(6分)3)给出以上插值多项式的插值余项的表达式(3分)解:由0,2,3,13210=-===x x x x 可得10)(,34)(,1)(,11)(3210-==-=-=x f x f x f x f即得: +------+------=))()(())()(()())()(())()(()()(312101320130201032103x x x x x x x x x x x x x f x x x x x x x x x x x x x f x L=------+------))()(())()(()())()(())()(()(23130321033212023102x x x x x x x x x x x x x f x x x x x x x x x x x x x f+-+--+-⨯-+-+--+-⨯-)03)(23)(13()0)(2)(1()1()01)(21)(31()0)(2)(3(11x x x x x x326610.)20)(30)(10()2)(3)(1()10()02)(32)(12()0)(3)(1(34x x x x x x x x x -+--=+--+--⨯-+---------⨯2)计算差商表如下:i x )(i x f 一阶差商 二阶差商 三阶差商1 -11 3 -1 5 -2 34 -7 4 0-10-225-1则=+-----+-+-=)2)(3)(1()3)(1(4)1(511)(3x x x x x x x N326610x x x -+--3))2)(3)(1())()()((!4)()(3210)4(3+--=----=x x x x x x x x x x x x f x R ξ五、给定方程组b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100131w w w w A 。

数值分析学期期末考试题与答案(A)

数值分析学期期末考试题与答案(A)

期末考试试卷(A 卷)2007学年第二学期考试科目: 数值分析考试时间:120分钟学号 姓名 年级专业、判断题(每小题 分,共分)100011.用计算机求z —100■时,应按照n 从小到大的顺序相加。

n 3n3 .用数值微分公式中求导数值时,步长越小计算就越精确。

()4 .采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

()5 .用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。

()二、填空题(每空 2分,共36分)1 .已知数a 的有效数为0.01 ,则它的绝对误差限为 ,相对误差限为 .10 -11 一0]2 .设 A= 0-2 1 ,x= -5,则| A 1 =, ||^|2 =Ax L =.-1 3 0J3 .已知 f (x) =2x 5 +4x 3—5x,则 f[—1,1,0] =, f[-3,-2,-1,1,2,3] =.13 34 .为使求积公式 f f (x)dx 定A f (———)+ A 2 f (0) + A 3 f (」一)的代数精度尽量局,应使t 3 3A =, A =, A =,此时公式具有 次的代数精度。

5 . n 阶方阵A 的谱半径P (A)与它的任意一种范数| A 的关系是.6 .用迭代法解线性方程组以=8时,使迭代公式 X(k41)=MX (k) + N (k=0,1,2,|||)产生的向量序列{X(k)}收敛的充分必要条件是 .7 .使用消元法解线性方程组 AX =8时,系数矩阵A 可以分解为下三角矩阵 L 和上三角矩2. 为了减少误差 ,应将表达式 J2001 - J1999改写为22001 ,1999进行计算。

4 -2阵U的乘积,即A = LU .若米用图斯消兀法解AX = B,其中A= 1 ,则一1 2 3 4 1 L = , U = ;若使用克劳特消元法解AX = B ,则u11 =;若使用平方根方法解AX = B,则111与u11的大小关系为 (选填:>, <,=,不一'定)。

《数值分析》期末复习题(1)

《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A)21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-6 2. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦(B)10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦ (D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.10 4. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字; 2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为( ); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x 其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。

数值分析期末复习题

数值分析期末复习题

数值分析期末复习题⼀、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数,绝对误差为,相对误差为。

2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为。

3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。

4.设f(x)可微,求⽅程x=f(x)根的⽜顿迭代法格式是。

5.设⽅程x=?(x)有根x *,且设?(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=?(x k )收敛的充要条件为。

6.求解线性⽅程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为。

7.=011001001001....A ,||A||∝= ,cond(A)∝= 。

8.n 次Legendre 多项式的最⾼次项系数为。

9.中矩形公式:)()2()(a b b a f dx x f b a -+=?的代数精度为。

10.求积公式:)1(21)0()(10f f dx x f '+≈?的代数精度为。

11.在区间[1,2]上满⾜插值条件??==3)2(1)1(P P 的⼀次多项式P(x)= 。

12.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= 。

13.梯形公式和改进的Euler 公式都是阶精度的。

⼆、计算题1.利⽤矩阵的⾼斯消元法,解⽅程组=++=++=++2053182521432321321321x x x x x xx x x2.设有函数值表试求各阶差商,并写出Newton 插值多项式。

3.求解超定⽅程组= ?43231211121x x的最⼩⼆乘解。

4.给定下列函数值表:求3次⾃然样条插值函数5.给定x x f =)(在x=100, 121, 144 三点处的值,试以这三点建⽴f(x)的⼆次(抛物)插值公式,利⽤插值公式求115的近似值并估计误差。

江浦数值分析复习题 (1)

江浦数值分析复习题 (1)

一、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数 ,绝对误差为 , 相对误差为 。

2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为 。

3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。

4.设f(x)可微,求方程x=f(x)根的牛顿迭代法格式是 。

5.设方程x=ϕ(x)有根x *,且设ϕ(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 。

6.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 。

7.⎪⎪⎭⎫⎝⎛=011001001001....A ,||A||∝= ,cond(A)∝= 。

8.n 次Legendre 多项式的最高次项系数为 。

9.中矩形公式:)()2()(a b ba f dx x f ba-+=⎰的代数精度为 。

10.求积公式:)1(21)0()(10f f dx x f '+≈⎰的代数精度为 。

11.在区间[1,2]上满足插值条件⎩⎨⎧==3)2(1)1(P P 的一次多项式P(x)= 。

12.设∑==nk k kn x f Af I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则∑=nk kA= 。

13.已知x *1=x 1±0.5×10-3,x *2=x 2±0.5×10-2,那么近似值x 1,x 2之差的误差限是 14 用列主元消去法解线性方程组A X =b 时,在第k -1步消元时,在增广矩阵的第k 列取主元)1(-k rk a ,使得=-)1(k rk a .15. 已知函数f (0.4)=0.411, f (0.5)=0.578 , f (0.6)=0.697,用此函数表作牛顿插值多项式,那么插值多项式x 2的系数是 .16. 牛顿-科茨求积公式中的科茨系数),...,1,0()(n k C n k=满足的两条性质是 .17.用牛顿法求方程f (x )=0在[a ,b ]内的根,已知f '(x )在[a ,b ]内不为0,f "(x )在[a ,b ]内不变号,那么选择初始值x 0满足 ,则它的迭代解数列一定收敛到方程f (x )=0的根.18.梯形公式和改进的Euler 公式都是 阶精度的。

数值分析期末试卷

数值分析期末试卷

装订线年 级 学 号 姓 名 专 业一、填空题(本题40分, 每空4分)1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 。

2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 。

3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。

4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bxx k k 收敛的充分必要条件是 。

5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 。

6.正方形的边长约为100cm ,则正方形的边长误差限不超过 cm 才能使其面积误差不超过12cm 。

(结果保留小数)7.要使求积公式)()0(41)(111x f A f dx x f +≈⎰具有2次代数精确度,则=1x , =1A 。

8. 用杜利特尔(Doolittle )分解法分解LUA =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=135 9 45- 279 126 0 945- 0 45 1827- 9 18 9A 其中,则=L =U 。

二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。

2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期一 二 三 四 五 六 七 八 九 十 总分年 级2011级研究生 份 数 拟题人 王吉波 审核人装 订线年 级 学 号 姓 名 专 业三、计算题(15分)试导出计算)0(1>a a的Newton 迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。

四、计算题(15分)已知43,21,41210===x x x 。

(1)推导出以这3个点作为求积节点在[0,1]上的插值型求积公式; (2)指明求积公式所具有的代数精确度;(3)用所求公式计算⎰12dx x 。

现代数值分析复习题

现代数值分析复习题

复习题(一)一、填空题:1、求方程的根,要求结果至少具有6位有效数字o已知,则两个根为________________________ ,__________________ . _______________ (要有计算过程和结果)2、,则A的LU分解为。

3、,则_____ ,二4、已知,则用抛物线(辛卜生)公式计算求得,用三点式求得5、,则过这三点的二次插值多项式中的系数为______ ,拉格朗日插值多项式为____________ . _________二、单项选择题:1、Jacobi迭代法解方程组的必要条件是()•A・A的各阶顺序主子式不为零 B.C. D.2、设,均差=().B. -3C. 53、设,则为().A. 2B. 5C. 7D. 34、三点的高斯求积公式的代数精度为()•A. 2B.5C. 3D.45、幕法的收敛速度与特征值的分布()0A. 有矢B. 不一定C.无另三、计算题:1、用高斯•塞德尔方法解方程组,取,迭代四次(要求按五位有效数字计算)•2、求A、B使求积公式的代数精度尽量高,并求其代数精度;利用此公式求(保留四位小数)。

3、已知132 6 5 4分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)•4、取步长,用预估■校正法解常微分方程初值问题求的二次拟合曲线,并求的近似值。

6、证明方程=0在区间(0,1 )内只有一个根,并用迭代法(要求收敛)求根的近似值五位小数稳定。

复习题(一)参考答案—、1,2、3 、,84、5求积公式为当时 > 公式显然精确成立;当时,左二,右二。

所以代数精度为3 2、差商表为4、解:即5、解:正规方程组为复习题(二)一、填空题:1近似值尖于真值有()位有效数字;2、的相对误差为的相对误差的()倍;设可微,求方程的牛顿迭代格式是()4、对,差商(),();5、计算方法主要研究()误差和()误差;6、用二分法求非线性方程f (x)二0在区间(a, b)内的根时,二分n次后的误差限为0 ;7、求解一阶常微分方程初值问题=f(X, y),y(xo)=yo的改进的欧拉公式为0 ;8已知f⑴二2, f (2)二3, f(4)=,则二次Newton插值多项式中好系数为();9、两点式高斯型求积公式~ ( ) ,代数精度为0 ;10、解线性方程组Ax=b的高斯顺序消元法满足的充要条件为() 。

数值分析报告期末考试复习题及其问题详解

数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。

(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。

数值分析(计算方法)期末试卷及参考答案

数值分析(计算方法)期末试卷及参考答案

7,,3]= ,,3]=8个节点的牛顿-柯特斯公式代数精度是。

标准答案一. 填空1. 舍入误差2. 729,1,03. 54.21cos 2sin k kk k k kx x x x x x +-=-+ 5. 6,3二. 计算1. 构造重节点的差商表:所以,要求的Hermite 插值为:222()2(1)23H x x x x =+-=-+2(1.5)(1.5) 2.25f H ≈=2.2()()(1)(2)3!f R x x x ξ'''=-- 证明:由题意可知2()()()R x f x H x =-由插值条件知:(1)0,(1)0,(2)0,R R R '===所以,可设:2()()(1)(2)R x k x x x =-- (#) 构造函数:22()()()()(1)(2)t f t H t k x t t ϕ=----易知:,1,2t x =时,()0t ϕ=,且(1)0ϕ'=()0t ϕ'''⇒=至少有一个根ξ,即()0ϕξ'''⇒= 对(#)式求三阶导,并代入得:()()3!f k x ξ'''= 所以,2()()(1)(2)3!f R x x x ξ'''=-- 2. 解:设2()ln 4,f x x x =+-则1()2,f x x x'=+ 牛顿迭代公式为:1()()k k k k f x x x f x +=-'2ln 412k k k k kx x x x x +-=-+325ln 21k k k k k x x x x x +-=+将0 1.5x =代入上式,得1 1.8667x =,2 1.8412x =,3 1.8411x =3230.000110x x --=<所以,方程的近似根为:3 1.8411x =3.解:设()1f x =时,左10()1f x dx ==⎰,右A B C =++,左=右得:1A B C ++=()f x x =时,左101()2f x dx ==⎰,右1Bx C =+,左=右得:112Bx C += 2()f x x =时,左101()3f x dx ==⎰,右21Bx C =+,左=右得:2113Bx C += 3()f x x =时,左101()4f x dx ==⎰,右31Bx C =+,左=右得:3114Bx C += 联立上述四个方程,解得:11211,,,6362A B C x ==== 4()f x x=时,左101()5f x dx ==⎰,右41425Bx C =+=,左≠右 所以,该求积公式的代数精度是3 4.解:Euler 公式是:100(,)()n n n n y y hf x y y x y +=+⎧⎨=⎩ 具体到本题中,求解的Euler 公式是:10.1()0.90.1(0)0n n n n n ny y x y y x y +=+-=+⎧⎨=⎩代入求解得:10y =20.01y = 30.029y =5.解,设A 可以三解分解,即111213212223313233111u u u A LU l u u ll u ⎛⎫⎛⎫⎪⎪== ⎪⎪ ⎪⎪⎝⎭⎝⎭由矩阵的乘法及矩阵相等可得:121351L ⎛⎫⎪= ⎪ ⎪-⎝⎭,1231424U ⎛⎫⎪=- ⎪ ⎪-⎝⎭令,L ,Ux y Ax b y b Ux y ====则可转化为两个等价的三角方程组: 求解三角方程组:Ly b =,得:(14,10,72)y T =-- 求解三角方程组:Ux y =,得:(1,2,3)x T = 所以,原方程组的解为:(1,2,3)x T = 三. 证明证明:分别将1n y -,1n y -',1n y +'在n x 处用Taylor 公式展开得:2331()2!3!nn n n ny y y y y h h h o h -''''''=-+-+ 221()2!n nn n y y y y h h o h -'''''''=-++ 221()2!nn n n y y y y h h o h +'''''''=+++将以上三式代入线性二步法中,得:23315()2!6nn n n ny y y y y h h h o h +''''''=++++ 又方程的真解的Taylor 展式为:2331()()()()()()2!3!n n n n n y x y x y x y x y x h h h o h +''''''=++++ 所以,局部截断误差为:331112()()3n n n n T y x y y h o h +++'''=-=-+ 所以,该方法是二阶的,局部截断误差首项为:323n y h '''-。

数值分析期末复习题

数值分析期末复习题

一、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数 ,绝对误差为 , 相对误差为 。

2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为 。

3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。

4.设f(x)可微,求方程x=f(x)根的牛顿迭代法格式是 。

5.设方程x=ϕ(x)有根x *,且设ϕ(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 。

6.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 。

7.⎪⎪⎭⎫ ⎝⎛=011001001001....A ,||A||∝= ,cond(A)∝= 。

8.n 次Legendre 多项式的最高次项系数为 。

9.中矩形公式:)()2()(a b b a f dx x f b a -+=⎰的代数精度为 。

10.求积公式:)1(21)0()(10f f dx x f '+≈⎰的代数精度为 。

11.在区间[1,2]上满足插值条件⎩⎨⎧==3)2(1)1(P P 的一次多项式P(x)= 。

12.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= 。

13.梯形公式和改进的Euler 公式都是 阶精度的。

二、计算题1.利用矩阵的高斯消元法,解方程组⎪⎩⎪⎨⎧=++=++=++2053182521432321321321x x x x x xx x x2.设有函数值表试求各阶差商,并写出Newton 插值多项式。

3.求解超定方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛43231211121x x的最小二乘解。

4.给定下列函数值表:求3次自然样条插值函数5.给定x x f =)(在x=100, 121, 144 三点处的值,试以这三点建立f(x)的二次(抛物)插值公式,利用插值公式求115的近似值并估计误差。

《数值分析》2019-2020学年第一学期期末试卷

《数值分析》2019-2020学年第一学期期末试卷

吉林大学《数值分析》2019-2020学年第一学期期末试卷一、单项选择题(每小题3分,共15分) 1. 已知近似值1x ,2x ,则()12,x x ()=A. ()()2112x x x x +B. ()()12x x +C. ()()1122x x x x +D. ()()12x x2. 已知求积公式()()211211()(6362)f x dx f Af f ≈++∫,则A =( ) A . 16 B. 13 C. 12 D. 233. 已知,则化为2112A ⎡⎤=⎢⎣⎦⎥A 为对角阵的平面旋转变换角θ=( ) A .6πB.4πC.3πD.2π4. 设求方程()0f x =的根的切线法收敛,则它具有( )敛速。

A . 线性 B. 超越性 C. 平方 D. 三次5. 改进欧拉法的局部截断误差为( )A . B. ()5O h ()4O h C. ()3O h D. ()2O h二、填空题(每小题3分,共15分)1. π的近似值3.1428是准确到 近似值。

2. 满足()a a f x x =,()b b x x =,()c f c f x x =的拉格朗日插值余项为 。

3. 用列主元法解方程组时,已知第2列主元为()142a 则()142a = 。

4.乘幂法师求实方阵 的一种迭代方法。

5. 欧拉法的绝对稳定实区间为 。

三、计算题(每小题12分,共60分) 1. 用已知函数表x 0 1 2y 1 2 5求抛物插值多项式,并求1()2f 的近似值。

2. 用紧凑格式解方程组 123410114130141x x x −⎡⎤⎡⎤⎢⎥⎢⎥−−=⎢⎥⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎤⎥3. 已知方程组123210113110121x x x ⎡⎤⎡⎤⎡⎢⎥⎢⎥⎢=−⎢⎥⎢⎥⎢⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎥⎥⎦) (1) 证明高斯-塞德尔法收敛;(2)写出高斯-塞德尔法迭代公式; (3) 取初始值,求出()(00,0,0TX=()1X4. 用复化辛卜公式计算积分4n =1011dx x +∫,并估计误差。

(完整word版)《数值分析》期末复习题(1)

(完整word版)《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A) 21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-62. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦ (B) 10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦(D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.104. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字;2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为(); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。

西安理工大学研究生《数值分析》复习题

西安理工大学研究生《数值分析》复习题
-1 0 1 3 2 2
.。
x y
(4)设 I ( f )
则其 2 次 Lagrange 插值多项式为
.,2 次拟合多项式为 。
.。

1
0
1 e x dx ,则用梯形公式所得近似值为
y f ( x, y ), y (a) a xb
(5)求解常微分方程处值问题
6 4 2
b 的经验公式。 x
四、利用矩阵的三角分解法,解方程组 五 给定方程 x Lnx 2 0 。 (1)分析该方程存在几个根,找出每个根所在的区间; (2)构造求近似根 的迭代公式,并证明所用的迭代公式是收敛的。
1 1 1 2 1 3 1 x1 1 x2 六 求解矛盾方程组 2 5 2 1 x3 2 3 1 5
ax 2 bx ,求证:用欧拉法以 h 为步长所得近似解 2
yn 的整体截断误差为 n y( xn ) yn
八 给定线性方程组 Ax b ,其中 A
1 ahxn 。 2
3 2 3 , b ,用迭代公式 x(k 1) x(k ) (b Ax(k ) ) 1 2 1
b 的经验公式。 x
ax 2 bx ,求证:用欧拉法以 h 为步长所得近似解 2
yn 的整体截断误差为 n y( xn ) yn
八 给定线性方程组 Ax b ,其中 A
1 ahxn 。 2
(k 0,1,2 )
3 2 3 , b ,用迭代公式 x( k 1) x( k ) (b Ax( k ) ) 1 2 1
x2
. 试在 M

重庆大学《数值分析》期末考试真题及答案讲课讲稿

重庆大学《数值分析》期末考试真题及答案讲课讲稿

重庆大学《数值分析》期末考试真题及答案一.填空题:1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次.2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;.主元素的绝对值太小会发生 误差增大 .3. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.4. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4 阶格式.5. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有n+1 次代数精度.6. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题: 1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 2) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x3) 此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l 2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f (1.5)的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6 -0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2) 求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:1) 试用一次多项式拟合出经验公式bx a y +=;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之: 0006101811.,.ab =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:1)试用一次多项式拟合出经验公式x ba y +=;bX a y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a 解之: 59953043864.,.ba ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为2.6米,试估计此时出水量?67183864462953059.../.=-=y9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤0.2;(0.6,0.8)1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x10 方程x e x-=1) 证明它在(0,1)区间有且只有一个实根; 2) 证明Λ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析》期末复习题
一、单项选择题
1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).
(A) 21×10-3 (B) 2
1×10-4 (C) 21
×10-5 (D) 21
×10-6
2. 设矩阵A =10212104135⎡⎤
⎢⎥⎢⎥⎣⎦
,那么以A 为系数矩阵的线性方程组A X =b 的雅可比
迭代矩阵为( )
(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦ (B) 10.20.10.210.40.20.61⎡

⎢⎥⎢⎥⎣⎦
(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦
(D)
021204130⎡⎤
⎢⎥⎢⎥⎣⎦
3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )
(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.10
4. 抛物形求积公式的代数精度是( )
A. 1,
B. 2 ,
C. 3,
D. 4
5. 改进欧拉格式的 局部截断误差是( )
. (),A O h 2. (),B O h 3. (),C O h 4. ().D O h
二、填空题
1、以722
作为π的近似值,它有( )位有效数字;
2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为(
); 3、用高斯-赛德尔迭代法解方程组
⎩⎨⎧-=+-=+,
10,
232121x bx bx x
其中b 为实数,则方法收敛的充分条件是b 满足条件( );
4、取步长为1.0=h ,用欧拉法计算初值问题
22',(0)0,y x y y ⎧=+⎨=⎩
的解函数)(x y ,它在3.0=x 的近似值为( );
5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于
4102
1-⨯的近似解至少需要经过( )次迭代。

(已知lg 20.3010=)
6、已知近似数a 的相对误差限为0.5%,则a 至少有 位有效数字。

7、已知0.2010是经过四舍五入得到的近似数,则其相对误差限是 。

8、已知(1.21) 1.1,(1.44) 1.2f f ==,则用拉格朗日线性插值求得(1.3)f 的近似值为 。

9、设函数()f x ,则求方程()x f x =的根的牛顿迭代公式是 。

10、用欧拉公式求解初值问题5,(0)0,y y x y '=-+⎧⎨=⎩
,其绝对稳定域是 。

11、取n =2,用复化辛普森公式计算1
011I dx x =+⎰的近似值为 。

12、有5个节点的插值型求积公式的代数精度为 。

13、设向量123(,,),T x x x x =试问函数123()|||23|f x x x x =++是不是一种范数(回答是或不
是) 。

14、设矩阵1111A -⎛⎫= ⎪⎝⎭
, 则2||||A , ()A ρ 。

15、矩阵21221i A i +⎛⎫= ⎪--⎝⎭
的两个特征值必落在圆盘 和 之中。

16、已知近似数x 的相对误差限为0.05%,则x 至少有 位有效数字。

17、已知2.420是经过四舍五入得到的近似数,则其绝对误差限是 。

18、已知 1.732==,则用拉格朗日线性插值求得的近似值为 。

19、设函数()f x ,则求方程()x f x =的根的牛顿迭代公式是 。

20、设矩阵1247A -⎛⎫= ⎪⎝⎭
, 则1||||A , ||||A ∞ 。

21、有3个节点的插值型求积公式的代数精度至少为 。

22、取n =4,用复化梯形公式计算1
011I dx x =+⎰的近似值为 。

23、设向量123(,,),T x x x x =试问函数123()4||2||3||f x x x x =++是不是一种范数(回答是或不
是) 。

24、矩阵22211i A i +⎛⎫= ⎪-⎝⎭
的两个特征值必落在圆盘 和 之中。

25、用欧拉公式求解初值问题()3()1,(0)1,
x t x t x '=-+⎧⎨=⎩,其绝对稳定域是 。

三、计算题
1、写出求解方程21150x -=的牛顿迭代格式,并用它计算5的值(取011.0x =,计算结果精确到4
位有效数字)。

2、用高斯列主元法解方程组:
⎪⎩⎪⎨⎧=+-=++=++.21.03,01045,132321
321321x x x x x x x x x
3、利用5=n 的复化梯形公式计算积分

+=1
011dx x I 并估计截断误差。

4、已知333487.0)34.0sin( ,314567.0)32.0sin(==有6位有效数字。

(1)用拉格朗日插值多项式求)33.0sin(的近似值;
(2)证明在区间[0.32, 0.34]上用拉格朗日插值多项式计算x sin 时至少有4位有效数字。

5、用列主元高斯消去法求解下列方程组:
123223747718.2121x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭
6、已知函数()f x 在1,0,2x =-的值分别为3,1,3,求二次拉格朗日插值多项式并计算(1)f 的近似值。

7、已知数据表如下:
求拟合曲线2()x a bx ϕ=+。

8、已知矩阵10.50.51M ⎛⎫= ⎪⎝⎭
,取初始向量0(1.00,0.99)T x =,用乘幂法迭代3次求M 模最大的特征值及相应特征向量的近似值。

9、已知线性方程组
1232131312,234x a b x a x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭
问a , b 取何值时,用高斯-赛德尔迭代法是收敛的。

10、已知函数()f x 在1,1,2x =-的值分别为3,1,6-,作差商表求二次牛顿插值多项式并计算(0)f 的近似值。

11、求下列超定方程组的最小二乘解
12121212323,25,2,
3 1.
x x x x x x x x -=⎧⎪+=⎪⎨-=⎪⎪+=⎩ 12、已知线性方程组
112121,243a x b y a z -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
问a ,b 取何值时,可用Cholesky 分解法求解。

四、证明题
1、用欧拉公式求解初值问题3, 01,(0)1,y y x y '=-≤≤⎧⎨=⎩
, (1)证明当0h →时,3x N y e -→,其中x h N
=; (2)当h 为何值时,用欧拉格式求解此问题是绝对稳定的?
2、设012113, , 424x x x =
==,
(1)推导012, , x x x 为求积节点在[0,1]上的插值型求积公式;
(2)指出该求积公式的代数精度。

3
近似值的两个迭代公式如下:
(1)11522k k k x x x +=+;(2)13544k k k
x x x +=+; 证明:公式(1)是二阶收敛的,而公式(2)则只有线性收敛速度。

4、对于初值问题250(), 01,(0)1,y y x x y '⎧=--≤≤⎨=⎩
, (1)用欧拉公式求解,步长h 取什么范围的值才能使计算稳定?
(2)若用梯形公式计算,步长h 有无限制??
5、确定下列数值微分公式的余项: 设12()(0)[(2)()]33f h f f h f h h
''≈+-。

6、设方程32sin 60x x --=的迭代公式如下为12sin 23k k x x +=
+。

(1)证明对任意的0x R ∈,均有*{}()k x x k →→∞,其中*x 是方程的根;
(2)指出此迭代公式的收敛阶。

(3)若改用牛顿法求解该方程,写出其迭代公式并指出收敛阶。

7、证明如下中点公式
1212
1,(,),
(0.5,0.5)n n n n n n y y hK K f x y K f x h y hK +=+⎧⎪=⎨⎪=++⎩, 的局部截断误差为3()O h ,并求其绝对稳定域。

8、确定下列数值微分公式的余项: 设12()(0)[(2)()]33f h f f h f h h
''≈
+-。

相关文档
最新文档