高中数学复习提升线性规划知识点
高中数学简单线性规划复习题及答案(最全面)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
高中数学线性规划的知识点以及例题解析.doc
高中数学线性规划的知识点以及例题解析高考数学考查线性规划类问题,主要基于课本上的基础知识内容,同时又高于课本的知识难度,蕴含大量的数学思想方法,如数形结合思想等等。
加上线性规划问题能与实际生活问题进行良好结合,能很好考查考生运用知识解决实际问题能力水平的高低,所以线性规划问题在高考中的分值越来越大,逐渐受到更多的重视。
简单来说,定义目标函数在线性约束条件下的最大值或最小值问题,就统称为线性规划问题。
今天,为同学们整理了高中数学线性规划的知识点以及例题解析,大家要认真学习!。
最新高中文科数学线性规划部分常见题型整理资料讲解
高中文科数学线性规划部分常见题型整理1.图中的平面区域(阴影部分包括边界)可用不等式组表示为 (A .20≤≤xB .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 3.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( D )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x一、求线性目标函数的取值范围4.若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选 A5.已知变量x 、y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是( A )A.⎥⎦⎤⎢⎣⎡6,59B.[]6,3C.[)∞+⎥⎦⎤⎝⎛∞-,659, D.(][)∞+∞-,63,二、求可行域的面积7.不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4 B 、1 C 、5 D 、无穷大解:如图作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B8.已知R y x ∈,,则不等式组⎪⎩⎪⎨⎧≥+-≤-≥02|||1|x x y x y 表示的平面区域的面积是__45______.9.不等式组⎪⎩⎪⎨⎧<+>>123400y x y x 表示的平面区域的面积是____,平面区域内的整点坐标 .三、求可行域中整点个数10.满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y xy+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围11.已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值12.已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是 ( ) A 、13,1 B 、13,2C 、13,45D、解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选C13.若变量x y 、满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =+的最小值为 (A )A.2B.3C.5D.614.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( C )A . 5 B. 3 C. 7 D. -8六、求约束条件中参数的取值范围19.已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3) 解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七、线性规划的实际应用20.某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m 3,第二种有56m 3,假设生产每种产品都需要用两种木料,生产一只圆桌和一个衣柜分别所需木料如下表所示.每生产一只圆桌可获利6元,生产一个衣柜可获利10元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?产品木料(单位m3)第一种第二种圆桌0.18 0.08衣柜0.09 0.28解:设生产圆桌x只,生产衣柜y个,利润总额为z元,那么⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+5628.008.07209.018.0yxyxyx而z=6x+10y.如上图所示,作出以上不等式组所表示的平面区域,即可行域.作直线l:6x+10y=0,即l:3x+5y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上点M,且与原点距离最大,此时z=6x+10y取最大值解方程组⎩⎨⎧=+=+5628.008.07209.018.0yxyx,得M点坐标(350,100).答:应生产圆桌350只,生产衣柜100个,能使利润总额达到最大.18.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A、B两种规格的金属板,每张面积分别为2m2、3 m2,用A种金属板可造甲产品3个,乙产品5个,用B种金属板可造甲、乙产品各6个,则A、B两种金属板各取多少张时,能完成计划并能使总用料面积最省?( A )A.A用3张,B用6张B.A用4张,B用5张C.A用2张,B用6张D.A用3张,B用5张一、单项选择题1.下列纳税人中应缴纳城建税的是()。
高中数学线性规划知识点汇总
高中数学线性规划知识点汇总高中数学线性规划知识点汇总一、知识梳理1.目标函数:包含两个变量x和y的函数P=2x+y被称为目标函数。
2.可行域:由约束条件表示的平面区域被称为可行域。
3.整点:坐标为整数的点称为整点。
4.线性规划问题:在线性约束条件下,求解线性目标函数的最大值或最小值的问题被称为线性规划问题。
对于只包含两个变量的简单线性规划问题,可以使用图解法来解决。
5.整数线性规划:要求变量取整数值的线性规划问题被称为整数线性规划。
线性规划是一门研究如何使用最少的资源去最优地完成科学研究、工业设计、经济管理等实际问题的专门学科。
主要应用于以下两类问题:一是在资源有限的情况下,如何最大化任务的完成量;二是如何合理地安排和规划任务,以最小化资源的使用。
1.对于不含边界的区域,需要将边界画成虚线。
2.确定二元一次不等式所表示的平面区域的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3.平移直线y=-kx+P时,直线必须经过可行域。
4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域。
此时,变动直线的最佳位置一般通过这个凸多边形的顶点来确定。
5.简单线性规划问题就是求解在线性约束条件下线性目标函数的最优解。
无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:1)寻找线性约束条件和线性目标函数;2)由二元一次不等式表示的平面区域做出可行域;3)在可行域内求解目标函数的最优解。
积累知识:1.如果点P(x0,y0)在直线Ax+By+C=0上,则点P的坐标满足方程Ax0+y0+C=0.2.如果点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+y0+C>0;当B<0时,Ax0+y0+C<0.3.如果点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),则当B>0时,Ax0+y0+C0.注意:在直线Ax+By+C=0同一侧的所有点,将它们的坐标(x,y)代入Ax+By+C=0,所得实数的符号都相同。
高中数学知识要点重温(13)直线及线性规划知识点分析
A O x y 高中数学知识要点重温(13)直线及线性规划1.直线的倾斜角的范围:[0,)π,x 轴及平行于x 轴的直线倾斜角是0而不是π;y 轴及平行于y 轴的直线的倾斜角为2π而不是没有倾斜角(只是斜率不存在);已知斜率(的范围)会求倾斜角(的范围),记住:当倾斜角α是锐角时,斜率k 与α同增同减,当α是钝角时,k与α也同增同减。
斜率的求法:①依据直线方程②依据倾斜角③依据两点的坐标④方向向量(以a =(m,n )(m ≠0)为方向向量的直线的斜率为m n)。
关注斜率在求一类分式函数值域时的运用。
[举例1]已知两点A(-1,-5),B(3,-2),直线l 的倾斜角是直线倾斜角的一半,则直线l 的斜率为: . 解析:记直线l 的倾斜角为α,则直线AB 的倾斜角为2α,其斜率tan2α=43⇒43tan 1tan 22=-αα ⇒tan α=-3或tan α=31而由tan2α=43>0得2α是锐角,则α∈(0,4π),∴tan α=31。
[举例2] 函数θθCos Sin y +-=31的值域为 。
解析:记P (cos θ,sin θ),A(-3,1)则y=kPA ,P 点的轨迹是圆心为原点 的单位圆,如右图:当直线PA 与圆相切时,其斜率分别为0和43-,[ ∴y=kPA ∈[43-,0]。
注:这里存在一个kPA 在0与43-“之间”还是“之外”的问题,原则是其间是否有斜率不存在的情况,若有则在“之外”,若无则在“之间”。
[巩固1] 已知直线l :02cos =++y x θ则l 倾斜角的范围是: 。
[巩固2]实数x,y 满足24,012222--=+--+x y y x y x 则的取值范围为 ( )A .),34[+∞B .]34,0[ C .]34,(--∞ D .)0,34[- [迁移] 点P 是曲线323+-=x x y 上的动点,设点P 处切线的倾斜角为α,则α的取值范围是A 、⎥⎦⎤⎢⎣⎡2,0π B 、⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫⎢⎣⎡πππ,432,0 C 、⎪⎭⎫⎢⎣⎡ππ,43 D 、⎥⎦⎤ ⎝⎛43,2ππ 2.“点斜式”是直线方程的最基本形式,是其它各种形式的源头,但它不能表示斜率不存在的直线;解决“直线过定点”的问题多用“点斜式”。
高中数学必修5 线性规划 课件
调整优值法
由z x y得y z x x z 可知,直线截距越小, z越小 先令z 0, 作过原点的直线 y x 再对直线进行平移,可 知, 当直线经过点M时截距最小,z最小 18 x 2 x y 15 18 39 5 由 , 求得 , 故M( , ) 5 5 x 3 y 27 y 39 5 又x、y只能取正整数, 所以,找离点M最接近并且在区域里的 正整数,得A(3, 9),B(4, 8) 将A(3, 9)代入得z 3 9 12 将B(4, 8)代入得z 4 8 12 答:截第一种钢板 3张,第二种钢板 9张; 或截第一种4张,第二种 8张,总张数最小,为 12张
y x 1 0 x 1 由 y x 1 0 求得 y 0 ,故
A(1,0)
故 z 的最大值为 zmax =2×1+0=2
[例] 设 x,y
x y 1 0 y 2x 1 0 满足约束条件 y x 1 0
线性规划问题的解决步骤数变形为y=kx+b的形式,
找截距与z的关系
3、令z=0, 先作出过原点的直线,定下直线形状
4、对直线进行平移,找出最优的点
5、联立边界直线方程,求出点坐标 6、将点坐标代入,求出最值
线性规划在实际中的应用
——生活中的最优化问题
每生产一件甲产品需要4个A配件,耗时1h;
例(课本87-88页)某工厂用A、B两种配件生产甲、乙两种产品,
每生产一件乙产品需要4个B配件,耗时2h;
该厂每天最多从配件厂获得16个A配件和12个B配件, 而且每天工作时长为不能超过8小时; 若每件甲产品获利2万元,每件乙产品获利3万元, 问每天分别生产甲、乙产品多每天的获利达到最大?
高中数学线性规划知识总结+练习
(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。
当B <0时, 表示直线下方区域; 表示直线的上方区域。
2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。
(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。
首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。
2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。
4。
最后求得目标函数的最大值及最小值.(三)典例分析:1。
二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。
2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。
高中数学 必修5 27.简单的线性规划问题(二)
27.简单的线性规划问题(二)
教学目标 班级______ 姓名____________
1.能熟练运用线性规划求最值.
2.理解线性规划问题中构造的几何意义,体会数形结合思想的奥妙.
教学过程
1.构造几何意义:(数形结合思想)
(1)二元一次式by ax z +=通常构造成“截距”:原式化为b
z x b a y +-=, z 表示直线b
z x b a y +-=在y 轴上的截距“b z ”的b 倍. (2)分式a x b y z ++=通常构造成“斜率”:原式化为)
()(a x b y z ----=, z 表示点),(y x 和),(b a --连线的斜率.
(3)平方和式2
2)()(b y a x z -+-=通常构造成“两点距离”:原式化为222))()((b y a x z -+-=,z 表示点),(y x 和点),(b a 之间距离的平方.
(4)绝对值式||c by ax z ++=通常构造成“点到直线的距离”:2222|
|b a c by ax b a z +++⋅+=,z 表示点),(y x 到直线0=++c by ax 的距离的22b a +倍. 052≤-+y x
例1:变量x ,y 的线性约束条件为 02≤--y x ,求目标函数1
42+-=
x y z 的最大值. 0≥x
052≥-+y x
练1:已知 053≤--y x ,求22)1()1(+++y x 的最大值和最小值.
052≥+-y x
02≤--y x
作业:已知 22≤+y x ,求(1)261022+-+=y y x z 的最小值;(2)11+-=x y z 的 0≥x
取值范围.。
高三线性规划知识点
高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。
本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。
一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。
在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。
线性规划通过建立数学模型,帮助我们找到最优解。
二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。
这个函数被称为目标函数,记作Z。
2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。
3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。
4. 可行解:满足所有约束条件的解称为可行解。
可行解的集合称为可行域。
5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。
三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。
2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。
3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。
4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。
四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。
已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。
工厂每天可以使用材料A 600千克,材料B 200千克。
问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。
目标函数Z表示利润的最大值,即Z=1000x+1200y。
约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高中数学线性规划知识点汇总
高中数学线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
高中数学(理)一轮复习课件:第6章 第40讲 二元一次不等式(组)与简单的线性规划问题
B(3,4) , C(0,3) , D( - 1,1) .由图可知 x2 + y2
的最小值是原点到直线AC:3x+4y-12=0
解析:作出可行域,可见当 动直线x 2y z 0过可行域 上点A 0,1时,z取最大值2.
3.如图所示的阴影部分(包括边界),用不 y x 2y x 2 0 等式组表示为 .
解析: y x 0 两部分是 2 y x 2 0 y x 0 或 , 2 y x 2 0 所以不等式组可表示为
2 2 2
在线性规划中,形如 z = (x - a)2 + (y
-a)2 型的 (或可以化为此类型的 ) 目标函数
都可以转化为求可行域内的点 (x , y) 与点 (a,b)的距离的平方(特别提醒:是“距离 的平方”,而非“距离”)的最值问题,通 过点与点的距离或点到直线的距离公式求
y b 解.而形如 x a 型的则转化为可行域内的
【例2】 2 x y 2 0 已知实数x、y满足 x 2 y 4 0, 3 x y 3 0 求z=x 2+y 2的最大值和最小值.
【解析】根据条件作出可行域(如图). x 2 y 4 0 解 , 3 x y 3 0 2 x y 2 0 解 , 3 x y 3 0
得A点的坐标为 2,3.
得C点的坐标为1,0 . x 2 y 4 0 解 , 2 x y 2 0 得B点的坐标为 0, 2 .
求z=x 2+y 2的最大值和最小值就是求可 行域内的点与原点的距离的平方的最大 值和最小值.显然,原点到A点的距离 的平方最大,而到直线2 x+y-2=0的距 离的平方最小. 所以z的最大值为 OA =22+32=13,最小 | 2 0 1 0 2 | 4 值为d = . 5 22 12
高中数学线性规划
教师辅导教案学员编号:年级:高三课时数:学员姓名:辅导科目: 数学学科教师:授课主题线性规划授课日期及时段教学内容线性规划1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是( )答案 C解析 用特殊点代入,比如(0,0),容易判断为C. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .2 2答案 C解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故|AB |=2,|AC |=22, 其面积为12×|AB |×|AC |=2.4.(2015·北京)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32 D .2答案 D解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨). 答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域 命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34答案 (1)C (2)C解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意. (2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.故选C.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是__________________________________________.答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( ) A .(0,3] B .[-1,1] C .(-∞,3]D .[3,+∞)(2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为( )A .1B .-1C .0D .-2 答案 (1)D (2)A解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).故选D.(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直. ①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求. 题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n 等于( ) A .5 B .6 C .7 D .8答案 B解析 画出可行域,如图阴影部分所示.由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.命题点2 求非线性目标函数的最值例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为|OA |2(取不到),最大值为|OB |2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴|OA |2=(02+12)2=1,|OB |2=(12+22)2=5, ∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方|PQ |2,|PQ |2max =(0-1)2+(2-1)2=2,|PQ |2min =(|1-1+1|12+(-1)2)2=12, ∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离; ②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A .3B .2C .-2D .-3(2)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 (1)B (2)D解析 (1)不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1). 由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A ,故选B.(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件 ⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元答案 D解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).9.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点. 解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来.(2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.A 组 专项基础训练 (时间:25分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个答案 B解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40答案 C解析 画出约束条件的可行域如图阴影,作直线l :x +6y =0,平移直线l 可知,直线l 过点A 时,目标函数z =x +6y 取得最大值,易得A (0,3),所以z max =0+6×3=18,选C.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .5答案 B解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3,故选B.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( ).A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞ 答案 D解析 不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 的取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A .1 800元 B .2 400元 C .2 800元 D .3 100元答案 C解析 设每天生产甲种产品x 桶,乙种产品y 桶, 则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4), ∴z max =300×4+400×4=2 800(元).故选C.6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C.32 D .2答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件, 故m 的最大值为1.7.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是( )A .-2B .2C .-1D .1答案 D解析 作出不等式组对应的平面区域如图,ω=y +1x的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.故选D.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( ) A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则 ⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15.10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0,所以由可行域得,如图,当目标函数线过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升 (时间:15分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是( )A .(-6,-2)B .(-3,2)C .(-103,-2)D .(-103,-3)答案 C解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2,故选C.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为( ) A.55 B.23C.22D .1答案 A解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55,故选A.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( ) A.3π4 B.3π5 C.4π7 D.π2答案 D解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x ≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2,故选D.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49答案 C解析 由已知得平面区域Ω为△MNP 内部及边界. ∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.故选C. 15.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.答案 1解析 ∵x +2y +3x +1=1+2(y +1)x +1的最小值为32,∴y +1x +1的最小值为14,而y +1x +1表示点(x ,y )与(-1,-1)连线的斜率,易知a >0,∴可行域如图中阴影部分所示,∴(y +1x +1)min =0-(-1)3a -(-1)=13a +1=14,∴a =1.16.(2015·浙江)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 答案 3解析 满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部. f (x ,y )=|2x +y -2|+|6-x -3y |21 =|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2. 直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝⎛⎭⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝⎛⎭⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝⎛⎭⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.。
高中数学复习指导:可行域 线性规划问题
可行域是三角形及其内部平面点集的线性规划问题可行域是三角形及其内部的平面点集的线性规划问题,有其特殊的规律,下面我们通过具体的例子来探索其中的规律并加以利用.例题:设 (为常数),其中、满足ky x z +=k x y ⎪⎩⎪⎨⎧≤+≥-≥+.74,232,1y x y x y x (1)当= -2时,求z 的最大值和最小值.k (2) 若,,求的取值范围.=max z k 731423+k z -=2min k 解: 可行域是下图中⊿ABC 及其内部的平面点集.(1)当= -2时,时,z 取k x z 2-=最大值,当直线经过可行域内点B 时, z 取最小值. )73,1423(∴2-2×(-1)=4, ==.=max z min z 7321423⨯-1411规律总结:当直线经过的可行域为⊿ABC 及其内部时,在by ax y x z +=),(),(y x z ⊿ABC 的顶点A 、B 、C 取最值.特别地,若在两个顶点的值相等,那么在这),(y x z 两个顶点确定的边上的每一个点的值都相等,并且是的最大值或最小值.我),(y x z 们用,分别表示直线过A 、B 、C 时z(x,y)的值.因此解答这A z ,B zC z by ax y x z +=),(类题型时可以不作直线,而直接计算,的值,取这三个值中的by ax y x z +=),(A z ,B z C z 最大值作为的最大值,取这三个值中的最小值作为的最小值.),(y x z ),(y x z 根据上面的规律,我们可以这样解答第(1)题:==1-2×0=1, =z ==,A z )0,1(z B z 73,1423(7321423⨯-1411==2-2×(-1)=4.C z )1,2(-z ∴z 的最大值是4,最小值是.1411(2)由已知可得:当直线经过点B 时,z 取最大值;当直线ky x z +=)73,1423(经过点C (2,-1)时,z 取最小值. 记=,=.B z k 731423+C z k -2①当=0时, z=x, 而,显然与已知矛盾.k 21≤≤x ② 当时, 即.0≠k ky x z +=k z x k y +-=1由直线在y 轴上的截距可知:.ky x z +=k z k z C B >(ⅰ) 当>0即<0时,由得: <,与已知矛盾.k 1-k k z k z C B >B z C z (ⅱ) 当<0即>0时,由得: >.k 1-k kz k z C B >B z C z 进一步结合图象可知: -1<0,即 1.≤k 1-k ≥综上所述, 所求的取值范围是[1,+.k )∞规律总结:根据第(1)题总结的规律,我们有下面更具体的结论:㈠ 为最大值,为最小值,A zB z ⇔A z ≥C z ≥B z ㈡ 为最大值,为最小值,B z A z ⇔B z ≥C z ≥A z ㈢ 为最大值,为最小值,A z C z ⇔A z ≥B z ≥C z ㈣ 为最大值,为最小值,C z A z ⇔C z ≥B z ≥A z ㈤ 为最大值,为最小值,B zC z ⇔B z ≥A z ≥C z ㈥ 为最大值,为最小值.C z B z ⇔C z ≥A z ≥B z如果我们利用上面的结论,就可以不必利用直线与已知中三条直线ky x z +=的位置关系,也不必分类讨论,作出可行域后,立即有下面简捷明快的解法:解:由已知 =,=,=1,B z k 731423+C z k -2A z 又为最大值,为最小值,B zC z ∴,即: B z ≥A z ≥C z ⎪⎪⎩⎪⎪⎨⎧-≥≥+.21,1731423k k 解这个不等式组得: 1.k ≥∴ 所求的取值范围是[1,+. k )∞。
高二数学知识点归纳全套
高二数学知识点归纳全套数学是一门理性和逻辑性极强的学科,它涉及了众多的知识点和概念。
在高中数学中,数学知识的深度和广度都得到了迅速的提升。
为了帮助同学们更好地掌握高二数学的知识,本文将对高二数学的各个知识点进行归纳和总结,方便大家复习和巩固。
一、函数与方程1. 函数的概念和性质1.1 函数的定义及表示方法1.2 函数的性质:奇偶性、周期性、单调性等1.3 函数的图像与变换:平移、伸缩、翻折等2. 一元二次函数2.1 一元二次函数的定义和性质2.2 一元二次函数的图像和性质2.3 一元二次函数的应用:最值问题、解析几何等3. 线性规划3.1 线性规划的基本概念和模型3.2 解线性规划的方法和步骤3.3 线性规划的应用:生产调度、资源分配等二、三角函数与解三角形1. 三角函数的概念和性质1.1 三角函数的定义和表示方法1.2 三角函数的周期性和图像特点1.3 三角函数的性质和基本关系2. 解三角形的方法2.1 正弦定理和余弦定理的引入与应用2.2 解直角三角形和一般三角形的方法和步骤 2.3 应用题:高空抛物线、航行导航等三、平面向量1. 向量的概念和表示1.1 向量的定义和基本性质1.2 向量的表示方法和运算规则1.3 向量的共线、共面和垂直的判定方法2. 平面向量的应用2.1 平面向量在几何中的应用:线段中点、四边形性质等 2.2 平面向量在物理中的应用:力的合成、平衡条件等2.3 平面向量的应用题:运动问题、力的分解等四、导数与微分1. 函数的导数与微分1.1 导数的定义和性质1.2 导数的计算方法:基本函数求导法、复合函数求导法等1.3 微分的概念和应用:近似计算、极值问题等2. 函数的导数与函数图像2.1 函数的单调性与极值2.2 函数的图像与导数的关系:增减性、凹凸性等2.3 应用题:最值问题、曲线的切线与法线等五、不等式与极限1. 不等式的基本性质和解法1.1 不等式的性质:加减法则、乘除法则等1.2 不等式组和绝对值不等式的解法1.3 应用题:优化问题、区间判断等2. 极限的概念和性质2.1 极限的定义和基本性质2.2 数列极限和函数极限的计算方法2.3 应用题:无穷大与无穷小、函数的连续性等六、统计与概率1. 统计的基本概念和应用1.1 统计的基本概念:样本、频率等1.2 统计的应用:数据收集、数据分析等1.3 统计图的绘制与解读:直方图、折线图等2. 概率的概念和性质2.1 概率的基本概念和计算方法2.2 事件与概率的关系:互斥事件、独立事件等2.3 应用题:生日悖论、齐次概率等综上所述,高二数学涵盖了函数与方程、三角函数与解三角形、平面向量、导数与微分、不等式与极限以及统计与概率等知识点。
高中数学线性规划考点解析及例题辅导.docx
简单的线性规划及实际应用高考要求1了解二元一次不等式表示平面区域2了解线性规划的意义并会简单的应用知识点归纳1 二元一次不等式表示平面区域:在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P( x0, y0)B> 0 时,① Ax0+By0+C> 0,则点 P(x0,y0)在直线的上方;② Ax0+By0+C<0,则点 P( x0,y0)在直线的下方对于任意的二元一次不等式 Ax+By+C>0(或< 0),无论 B 为正值还是负值,我们都可以把 y 项的系数变形为正数当 B> 0 时,① Ax+By+C>0 表示直线 Ax+By+C=0 上方的区域;② Ax+By+C< 0 表示直线Ax+By+C=0 下方的区域2 线性规划 :求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:( 1)根据题意,设出变量x、 y;( 2)找出线性约束条件;( 3)确定线性目标函数z=f( x,y);( 4)画出可行域(即各约束条件所示区域的公共区域);( 5)利用线性目标函数作平行直线系f( x, y) =t(t 为参数);(6)观察图形,找到直线 f(x, y) =t 在可行域上使 t 取得欲求最值的位置,以确定最优解,给出答案题型讲解例 1 求不等式| x - 1| +| y - 1|≤ 2 表示的平面区域的面积分析:依据条件画出所表达的区域,再根据区域的特点求其面积解:| x - 1| +| y - 1|≤ 2 可化为x 1 x 1 x 1x 1 y 1 或 y 1 或 y 1或 y 1x y 4xy 2x y 2xy 0其平面区域如图∴面积 S= 1×4× 4=82点评:画平面区域时作图要尽量准确,要注意边界 例 2某人上午 7 时,乘摩托艇以匀速 v n mi le/h ( 4≤ v ≤ 20)从 A 港出发到距 50 n mi le的 B 港去,然后乘汽车以匀速w km/h (30≤ w ≤ 100)自 B 港向距 300 km 的 C 市驶去 应该在同一天下午 4 至 9 点到达 C 市 设乘汽车、摩托艇去所需要的时间分别是x h 、 y h( 1)作图表示满足上述条件的x 、y 范围;( 2)如果已知所需的经费 p=100+3×( 5- x ) +2×( 8- y )(元),那么 v 、w 分别是多少时走得最经济 ?此时需花费多少元 ?分析:由 p=100+3 ×( 5-x ) +2 ×( 8- y )可知影响花费的是 3x+2y 的取值范围解:( 1)依题意得 v=50, w=300, 4≤v ≤ 20, 30≤ w ≤100yx∴ 3≤ x ≤ 10, 5 ≤ y ≤25①22y由于乘汽车、 摩托艇所需的时间和 x+y 应在149至14个小时之间,9即 9≤x+y ≤ 14②因此,满足①②的点( x ,y )的存在范围是2.5图中阴影部分(包括边界)o 39 10 14 x( 2)∵ p=100+3 ·( 5- x )+2·( 8-y ),∴ 3x+2y=131- p设 131- p=k ,那么当 k 最大时, p 最小 在通过图中的阴影部分区域(包括边界)且斜率为- 3的直线 3x+2y=k 中,使 k 值最大的直线必通过点(10,4),即当 x=10,y=4 时, p 最小2此时, v=12 5, w=30 , p 的最小值为 93 元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式然后分析要求量的几何意义例 3 某矿山车队有 4 辆载重量为 10 t 的甲型卡车和 7 辆载重量为 6 t 的乙型卡车,有9 名驾驶员 此车队每天至少要运 360 t 矿石至冶炼厂 已知甲型卡车每辆每天可往返 6 次,乙型卡车每辆每天可往返 8次 甲型卡车每辆每天的成本费为252 元,乙型卡车每辆每天的成本费为 160 元 问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解解:设每天派出甲型车x 辆、乙型车 y 辆,车队所花成本费为z 元,那么x y 9y106x 6 8 y 360x4, x N7y7, y Nz=252x+160y,作出不等式组所表示的平面区域,如图作出直线l 0:252x+160y=0,把直线 l 移,使其经过可行域上的整点,且使在距最小观察图形,可见当直线5x+4y=30即可行域,x+y=9向右上方平o4xy 轴上的截252x+160y=t 经过点( 2, 5)时,满足上述要求此时, z=252 x+160 y 取得最小值,即x=2, y=5 时, z min=252× 2+160 ×5=1304答:每天派出甲型车 2 辆,乙型车 5 辆,车队所用成本费最低点评:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系 f(x, y) =t 的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点4 x y6例 4设z2x y ,式中变量x, y 满足条件2 x y4求 z 的最大值和最小值解:由已知,变量x, y 满足的每个不等式都表示一个平面区域,因此①所表示的区域为如图中的四边形ABCD当 z2x y 过点C时,z 取最小值,当 z 2 x y 过点 A 时,z取最大值即当 x3, y1时, z min7 ,当 x 5, y 1时, z max11例 5某糖果公司得一条流水线不论生产与否每天都要支付3000 元的固定费用,它生产 1 千克糖果的成本是 10 元,而销售价是每千克 15 元,试问:每天应生产并销售多少糖果,才能使收支平衡,即它的盈亏平衡点是多少?解:设生产x 千克的糖果的成本函数为y( x) 3000 10x ,销售 x 千克的糖果的收益函数为 R(x)15x ,在同一坐标系中画出它们的图像,交点的横坐标就是反映盈亏平衡的产销量,令 y( x) R( x) ,得 3000 10x 15x得 x600. ,即每天必须生产并销售600 千克糖果,这条流水线才能做到盈亏平衡,从图中可以看出,当x600 时,R( x) y( x),表示有盈利,反之则表示亏本例6某人有楼房一幢,室内面积共180m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18,可住游客 5 名,每名游客每天住宿费为40 元,小房间每间面积为15,可住游客 3 名,每名游客每天住宿费为50 元,装修大房间每间需要1000 元,装修小房间每间需要 600 元,如果他们只能筹 8000 元用于装修,且游客能住满客房,它应隔出大房间和小房间各多少间,能获最大利益?解:设应隔出大房间x 间和小房间y 间,则18 x15 y180 且 1000 x600 y8000,x, y Ny目标函数为z 5 40x 350 y ,10作出约束条件可行域:5根据目标函数z 200x150 y ,作出一组平行线200x150 y to5x 当此线经过直线18x15 y 180和直线 1000 x 600 y8000的交点 C(20,60) ,77此直线方程为 200x150y 13000,7由于 ( 20,60) 不是整数,所以经过整点(3,8)时,才是他们的最优解,同时经过整点(0,12) 7 7也是最优解即应隔大房间 3 间,小房间8 间,或者隔大房间0 间,小房间12 间,所获利益最大如果考虑到不同客人的需要,应隔大房间 3 间,小房间8 间小结:简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标学生练习1下列命题中正确的是A 点( 0,0)在区域x+y≥ 0 内B 点( 0, 0)在区域x+y+1<0 内C 点( 1, 0)在区域 y>2x 内D 点( 0, 1)在区域 x- y+1>0 内解析:将( 0, 0)代入 x+y≥ 0,成立答案: A2 设动点坐标( x, y)满足(x-y+1)(x+y- 4)≥ 0,x≥3,则x2+y2的最小值为A 5B10C 17D 10 2解析:数形结合可知当x=3, y=1 时, x2+y2的最小值为 10答案: D3 不等式组 2 x-y+1≥ 0,x- 2y-1≤0, x+y≤1表示的平面区域为A 在第一象限内的一个无界区域B 等腰三角形及其内部C 不包含第一象限内的点的一个有界区域D 正三角形及其内部答案: B4 点(- 2, t)在直线2x- 3y+6=0 的上方,则 t 的取值范围是 ______解析:(- 2,t)在 2x-3y+6=0 的上方,则2×(- 2)- 3t+6<0,解得 t>2答案: t>2 33x0,5 不等式组y0,表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有4x 3 y12____________个解析:( 1,1),( 1,2),( 2,1),共 3 个答案: 36 ( x-1)2+( y- 1)2=1 是| x- 1| +| y- 1|≤ 1 的__________ 条件A 充分而不必要B 必要而不充分C 充分且必要D 既不充分也不必要答案: B7( x+2y+1)(x- y+4 )≤ 0 表示的平面区域为A B C D答案: B8 画出以 A( 3,- 1)、 B(- 1, 1)、 C(1, 3)为顶点的△ ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x- 2y 的最大值和最小值分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组;③求以所写不等式组为约束条件的给定目标函数的最值解:如图,连结点A、B、 C,则直线AB 、BC、 CA 所围成的区域为所求△ABC 区域直线 AB 的方程为x+2y- 1=0 , BC 及 CA 的直线方程分别为x-y+2=0 , 2x+y- 5=0在△ ABC 内取一点P( 1, 1),分别代入 x+2y- 1, x- y+2, 2x+y- 5得 x+2y -1>0 , x -y+2>0, 2x+y - 5<0因此所求区域的不等式组为x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0作平行于直线 3x -2y=0 的直线系 3x - 2y=t ( t 为参数),即平移直线 y=3x ,观察图形2可知:当直线 y= 3x - 1 t 过 A ( 3,- 1)时,纵截距-1 t 最小 此时 t 最大, t max =3× 3- 222 2× (- 1) =11;当直线 y=3x - 1 t 经过点 B (- 1, 1)时,纵截距- 1 t 最大,此时 t 有最小值为 t min =2223×(- 1)- 2× 1=-5因此,函数 z=3x - 2y 在约束条件x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0 下的最大值为 11,最小值为- 59 某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质 6 个单位,含淀粉 4 个单位,售价 0 5 元,米食每 100 g 含蛋白质 3 个单位,含淀粉 7 个单位,售价 0 4 元,学校要求给学生配制盒饭,每盒盒饭至少有 8 个单位的蛋白质和 10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少 ?解:设每盒盒饭需要面食x (百克),米食 y (百克),所需费用为 S=0 5x+0 4y ,且 x 、 y 满足 6x+3y ≥ 8, 4x+7 y ≥ 10, x ≥ 0,y ≥ 0,由图可知,直线 y=- 5x+ 5 S 过 A ( 13,14 )时 , 纵421515截距5S 最小,即 S 最小2故每盒盒饭为面食13百克,米食14百克时既科学又费用最少151510 配制 A 、B 两种药剂,需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 mg ,乙料 5mg ;配一剂 B 种药需甲料 5 mg ,乙料 4 mg 今有甲料 20 mg ,乙料 25 mg ,若 A 、 B 两种药 至少各配一剂,问共有多少种配制方法?解:设 A 、 B 两种药分别配 x 、y 剂( x 、 y ∈N ),则x ≥ 1,y ≥ 1, 3x+5 y ≤ 20, 5x+4y ≤ 25上述不等式组的解集是以直线x=1 ,y=1, 3x+5y=20 及 5x+4y=25 为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、( 1,3)、( 2,1)、( 2,2)、( 3,1)、( 3,2)、(4, 1)所以,在至少各配一剂的情况下,共有8 种不同的配制方法.11 某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大 已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金 单位产品所需资金(百元) 月资金供应量(百元)空调机 洗衣机成 本30 20 300劳动力(工资)5 10 110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少 ?解:设空调机、洗衣机的月供应量分别是x 、 y 台,总利润是 P ,则 P=6x+8 y ,由题意有30x+20y ≤ 300, 5x+10y ≤110,x ≥ 0, y ≥0, x 、 y 均为整数由图知直线 y=- 3 x+ 1P 过 M ( 4,9)时,纵截距最大 这时 P 也取最大值 P max =6× 4+848×9=96 (百元)故当月供应量为空调机4 台,洗衣机 9 台时,可获得最大利润 9600 元12 实系数方程 f ( x )=x 2 +ax+2b=0 的一个根在(0,1)内,另一个根在( 1, 2)内,求:( 1)b 2的值域;a 1 ( 2)( a - 1) 2+(b - 2) 2 的值域;( 3) a +b -3 的值域解:由题意知f ( 0)> 0, f ( 1)< 0, f ( 2)> 0 b >0, a+b+1< 0, a+b+2> 0 如图所示A (- 3, 1)、B (- 2, 0)、C (- 1, 0)又由所要求的量的几何意义知,值域分别为(1)(1 , 1);( 2)( 8, 17);( 3)(- 5,4-4)。
高中线性规划
高中线性规划线性规划是运筹学中的一种数学方法,用于解决最优化问题。
在高中数学中,线性规划是一种重要的应用题型,涉及到线性不等式、线性函数和最大化或者最小化目标函数等概念。
本文将详细介绍高中线性规划的标准格式,以及如何解决该类问题。
一、线性规划的标准格式线性规划的标准格式通常包括以下几个要素:1. 决策变量(Decision Variables):表示问题中需要决策的变量,通常用字母表示。
例如,假设有两种产品A和B需要生产,可以用x表示产品A的产量,用y表示产品B的产量。
2. 目标函数(Objective Function):表示问题的最大化或者最小化目标,通常用线性函数表示。
例如,假设我们希翼最大化总利润,则目标函数可以表示为z = cx + dy,其中c和d分别表示单位产品A和B的利润。
3. 约束条件(Constraints):表示问题中的限制条件,通常用线性不等式或者等式表示。
例如,假设产品A和B的生产需要的资源有限,则约束条件可以表示为:- 2x + 3y ≤ 10 (资源1的限制)- 4x + 2y ≤ 8 (资源2的限制)- x ≥ 0, y≥ 0 (产量不能为负)二、解决高中线性规划问题的步骤解决高中线性规划问题的普通步骤如下:1. 确定决策变量:根据问题描述,确定需要决策的变量,并用字母表示。
2. 建立目标函数:根据问题的最大化或者最小化目标,建立目标函数,并将决策变量代入其中。
3. 建立约束条件:根据问题的限制条件,建立约束条件,并将决策变量代入其中。
4. 绘制可行域:将约束条件转化为不等式的图形表示,并绘制在坐标系中,得到可行域。
5. 确定最优解:在可行域中确定目标函数的最大值或者最小值的点,即为最优解。
6. 检验最优解:将最优解代入目标函数和约束条件中,验证是否满足所有条件。
三、实例分析为了更好地理解高中线性规划的应用,我们以一个实例进行分析。
假设某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。