北京地铁盾构新型同步注浆及其材料的研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京地铁盾构新型同步注浆及其材料的研究

[摘要]北京地铁五号线盾构试验段工程采用了城建集团自行研制的惰性浆液(已申请专利),其注浆效果非常理想,在施工中有效的控制了地表沉降。

[关键词]盾构北京地铁五号线同步注浆惰性浆液

一、概况

北京地铁五号线试验段工程,采用了土压平衡式盾构机进行施工。盾构机配备了盾尾同步单液注浆系统,可在盾构掘进的同时进行壁后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的建筑空隙进行填充,从而起到控制地表沉降和稳定成型隧道的作用。在施工中我们使用的浆液是自行研制的惰性浆液,此浆液通过施工中达到了很好的效果,有效地控制了地表沉降。

二、盾构法施工壁后注浆技术

2.1同步注浆原理

北京地铁五号线盾构试验段工程的施工采取了同步注浆方式。其工作原理是:在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向壁后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。

2.2注浆材料和配比的选择

2.2.1注浆材料应具备的基本性能

根据北京地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能:

1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。

2)具有良好的充填性能。

3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。

4)浆液在地下水环境中,不易产生稀释现象。

5)浆液固结后体积收缩小,泌水率小。

6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。

7)浆液无公害,价格便宜。

2.2.2. 注浆材料

为了保证壁后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种单液浆组成以便进行对比优选:

1)以水泥、粉煤灰为主剂的常规单液浆a

成分:水泥、粉煤灰、细砂、膨润土(钠土)和水;

2)以生石灰、粉煤灰为主剂的惰性浆液b

成分:生石灰、粉煤灰、细砂、膨润土(钠土)和水。

浆液组成a以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成b以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成b 中使用的粉煤灰可以改善浆液的和易性(流动性),生石灰能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。

2.2.

3. 浆液配比及性能测试

在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。按测试配比拌制出的浆液送到试验室进行了主要性能指标的测试。根据配比单和浆液配合比试验报告中的测试数据,绘制出浆液流动度、稠度和分层度随时间变化的对比曲线。

由图2-2中可知,水泥浆液(配比1、2、3)的流动性略优于惰性浆液(配比4、5、6、7、8)。但两类浆液随时间的变化趋势略有不同,水泥浆液的流动性随时间推移下降幅度较大,而惰性浆液的流动性保持平稳。

根据测试结果还可得知,与水泥浆液相比,以生石灰、粉煤灰为主剂的浆液的凝结时间较长,在10~12小时左右。考虑到盾构掘进过程中一些不可避免的停机(如管片拼装、连接电缆、风管安装、机器维护保养、盾构机临时停机、电路故障等),若浆液的初凝时间较短,则增加了停机期间发生堵管的可能性,增加额外的清洗工作,并影响盾构的继续掘进。因此,浆液合理的初凝时间应与盾构掘进施工一个工班的时间接近,这样可以在每班结束时再安排浆液输送管路的清理工作,既不影响盾构连续施工,又保证能及时清理管路,避免堵管现象的发生,选用惰性浆液更为可靠。

惰性浆液在主要成分加量不变的情况下,只需调节添加剂的加量就能有效地控制、调节浆液的性能。在施工过程中,可以比较方便地对浆液的性能进行调整,以适应不同地层、不同掘进进度对浆液性能的要求。

通过上面的分析比较,试验段施工最终选定采用以生石灰、粉煤灰为主料的惰性单液浆作为盾构施工壁后注浆的材料。

2.3注浆工艺参数的确定

2.3.1注浆量的计算

壁后注浆量Q,通常可按下式估算:Q=Vα

式中,V为理论空隙量,α为注入率。

北京地铁五号线试验段采用的土压平衡盾构机刀盘直径6.20m,而预制钢筋混凝土管片外径为6.0m,则理论上每掘进一环,盾构掘削土体形成的空间与管片外壁之间的空隙的理论体积为:V=0.25×π×(6.22-62)×1.2=2.298m3。

注入率α的主要影响因素包括注入压力决定的压密系数α1、土质系数α2、施

工损耗系数α3和超挖系数α4。

则α=1+α1+α2+α3+α4

每环实际注浆量可根据地层和施工损耗等情况选取相应的注入率。

2.3.2注浆压力的确定

北京地铁五号线土压平衡盾构机在盾尾处设有四个浆液注入点,盾尾同步注浆的压力因浆液注入点位置的不同而不同。盾尾四个注浆点的位置和相互关系如图

2-8所示(图中尺寸仅为示意)。

经计算得出盾构拱顶水土压力,管道中的压力损失在盾构机厂内组装时已测定,则A1、A4点处注浆压力理论计算值为

拱顶水土压力+管道中的压力损失

最大注入压力为

(拱顶水土压力+管道中的压力损失)×1.25

最小注入压力为

(拱顶水土压力+管道中的压力损失)×0.75

A2和A3点处注浆压力理论计算值为

拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H

则最大注入压力为:

(拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H)×1.25 最小注入压力为:

(拱顶水土压力+管道中的压力损失+侧压力系数×γ’×H+γ水×H)×0.75 实际操作过程中,可根据以上理论计算所得结果分别设定A1、A2、A3、A4点的注浆压力。

2.3.3注浆量和注浆压力的控制

壁后注浆的注入量受浆液向土体中的渗透、泄露损失(浆液流到注入区域之外)、

相关文档
最新文档