心肌细胞的电生理特性
心肌细胞的电生理特性5篇

心肌细胞的电生理特性5篇以下是网友分享的关于心肌细胞的电生理特性的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇(一)心肌细胞的电生理特性心肌细胞有自律性、兴奋性、传导性和收缩性,前三者和心律失常关系密切。
1.自律性:部分心肌细胞能有规律地反复自动除极(由极化状态转为除极状态),导致整个心脏的电—机械活动,这种性能称为自律性,具有这种性能的心肌细胞,称为自律细胞。
窦房结、结间束、房室交接处、束支和蒲肯野纤维网均有自律性;腔静脉和肺静脉的入口、冠状窦邻近的心肌以及房间隔和二尖瓣环也具有自律性,而心房肌、房室结的房—结区和结区以及心室肌则无自律性。
2.兴奋性(即应激性):心肌细胞受内部或外来适当强度刺激时,能进行除极和复极,产生动作电位,这种性能称为兴奋性或应激性。
不足以引起动作电位的刺激,称为阈值下刺激,能引起动作电位的最低强度的刺激,称为阈值刺激。
心肌在发生兴奋时,首先产生电变化,并由电变化进而引起心肌的收缩反应。
心肌的兴奋性在心动周期的不同时期有很大变化,根据这一变化可将心动周期分为反应期和不应期,后者又可分为绝对不应期、有效不应期、相对不应期和超常期。
(1)绝对不应期和有效不应期:从除极开始,在一段时间内心肌细胞对任何强度的刺激均不起反应,称为绝对不应期。
有效不应期是刺激不能引起动作电位反应的时期,在时间上略长于绝对不应期。
在有效不应期的后期,刺激可引起局部兴奋,但不能传布,从而影响下一个动作电位,形成隐匿传导。
这一时期相当于QRS波群开始至接近T波顶峰这一段时间。
心肌的不应期可保护心肌不至于因接受过频的刺激而发生频繁收缩。
房室结不应期最长,心室肌次之,心房肌最短。
心肌不应期的长短与其前一个搏动的心动周期长短有关。
心动周期越长,不应期越长,反之,则短。
(2)相对不应期:对弱刺激不起反应,对较强的刺激虽可产生兴奋反应,但这种兴反应较弱而不完全,表现在对兴奋传导速度缓慢和不应期缩短,二者均容易形成单向阻滞和兴奋的折返而发生心律失常。
心肌细胞的电生理特性

是心肌细胞具有兴奋性的前提。 除极-复极过程 0mV~-55 mV
精选ppt
8
当膜电位处于正常静息电位( - 90 mV)时,Na+通 道处于备用状态,可在刺激作用下被激活。
膜 电 位
精选ppt
9
当膜电位从-90 mV去极化达阈电位(-70 mV)时, Na+通道几乎全部被激活
膜 电 位
精选ppt
阈电位 静息电位
精选ppt
5
(2)阈电位水平
在静息电位(RP)不变的情况下 ,
– 阈电位水平降低,与RP间距 减小所需刺激阈值减小
——兴奋性升高
– 阈电位水平升高,与RP间距 增大所需刺激阈值增大
阈电位 静息电位
——兴奋性降低
精选ppt
6
(3) Na+通道的状态:
• Na+通道的三种状态:激活、失活、备用
静息电位 -90 mV
备用
阈电位 -70 mV
激活
失活
除极-复极过程
0mV精~选-pp5t5 mV
7
(3) Na+通道的状态:
静息电位
阈电位
Na+通道-处90于mV何种状态,取决于当-7时0 m膜V 电位
水备平用和时间进程,即Na+通道激活的激活、失活
和复活具有电压依从性和时间依从性。
细胞膜上大部禁分用Na+通道处于备用状态,
17
(2)相对不应期
当膜电位复极到 -60→-80 mV, 用阈上强刺激才 能产生动作电位 此期产生的AP复 极时程短,不应 期亦短,易导致 心律失常
精选ppt
18
(3)超常期
mV
-
超 常 期
心肌电生理特性

参与维持静息电位和动作电位的平衡,在各 种类型的心肌细胞中均有分布。
心肌细胞的兴奋性与传导性
01
02
03
兴奋性
心肌细胞受到刺激后能够 产生动作电位,从而触发 肌肉收缩和传导电信号。
传导性
心肌细胞之间能够通过缝 隙连接相互传导动作电位 ,从而将电信号传导至整 个心脏。
传导速度
心肌细胞的传导速度受到 多种因素的影响,如细胞 直径、离子浓度、温度等 。
心肌电生理特性
汇报人: 日期:
目录
• 心肌电生理特性概述 • 心律失常的电生理机制 • 心肌缺血与再灌注的电生理特性 • 心脏起搏与除颤的电生理基础 • 心律失常的诊断与治疗
01
心肌电生理特性概述
心肌细胞的类型与特点
心室细胞
主要负责收缩和泵血功能,分 为工作细胞和自律细胞。
心房细胞
主要负责传导和节律功能,分为传 导细胞和特殊传导细胞。
收缩力增强。
心肌再灌注后,心肌细胞内代谢 恢复正常,能量生成增加,进一
步促进心肌细胞的恢复。
心肌缺血与再灌注的损伤与保护
心肌缺血与再灌注过程中,会产生一系列损伤效应,包括氧 化应激、炎症反应、钙离子过载等,这些因素可导致心肌细 胞坏死和凋亡。
针对心肌缺血与再灌注的损伤效应,可以采取一些保护措施 ,如使用药物(如硝酸酯类药物)、介入治疗(如经皮冠状 动脉介入治疗)等,以减轻心肌细胞的损伤和促进心肌细胞 的恢复。
窦性心律失常
由窦房结异常引起的心律 失常,包括窦性心动过速 、窦性心动过缓等。
房性心律失常
由心房肌异常引起的心律 失常,包括房性早搏、房 颤等。
室性心律失常
由心室肌异常引起的心律 失常,包括室性早搏、室 颤等。
心脏的电生理学基础

心脏的电生理学基础一、心肌细胞的分类心肌细胞按生理功能分为两类:一类为工作细胞,包括心房肌及心室肌,胞浆内含有大量肌原纤维,因而具有收缩功能,主要起机械收缩作用;除此以外,还具有兴奋性、传导性而无自律性;另一类为特殊分化的心肌细胞,包括分布在窦房结、房间束与结间束、房室交界、房室束和普肯耶纤维中的一些特殊分化的心肌细胞,胞浆中没有或很少有肌原纤维,因而无收缩功能,主要具有自律性,有自动产生节律的能力,同时具有兴奋性、传导性;无论工作细胞还是自律细胞,其电生理特性都与细胞上的离子通道活动有关,跨膜离子流决定静息膜电位和动作电位的形成;根据心肌电生理特性,心肌细胞又可分为快反应细胞和慢反应细胞;快反应细胞快反应细胞包括心房肌细胞、心室肌细胞和希-普细胞;其动作电位0相除极由钠电流介导,速度快、振幅大;快反应细胞的整个APD中有多种内向电流和外向电流参与;慢反应细胞慢反应细胞包括窦房结和房室结细胞,其动作电位0相除极由L-型钙电流介导,速度慢、振幅小;慢反应细胞无I k1控制静息膜电位,静息膜电位不稳定、易除极,因此自律性高;有关两类细胞电生理特性的比较见表1;表1 快反应细胞和慢反应细胞电生理特性的比较参数快反应细胞慢反应细胞静息电位-80~-95mV-40~-65mV0期去极化电流I Na I Ca0期除极最大速率200~700V/s1~15V/s超射+20~+40mV-5~+20mV阈电位-60~-75mV-40~-60mV传导速度~4.0m/s~0.05m/s兴奋性恢复时间3期复极后10~50ms3期复极后100ms以上4期除极电流I f I k, I Ca, I f二、静息电位的形成静息电位resting potential, RP是指安静状态下肌细胞膜两侧的电位差,一般是外正内负;利用微电极测量膜电位的实验,细胞外的电极是接地的,因此RP是指膜内相对于零的电位值;在心脏,不同组织部位的RP是不相同的,心室肌、心房肌约为-80~-90mV,窦房结细胞-50~-60mV,普肯耶细胞-90~-95mV;各种离子在细胞内外的浓度有很大差异,这种浓度差的维持主要是依靠位于细胞膜和横管膜上的离子泵;如Na-K泵Na-K pump,也称Na-K-ATP酶,其作用将胞内的Na+转运至胞外,同时将胞外的K+转运至胞内,形成细胞内外Na+和K+浓度梯度;Na-K-ATP酶的磷酸化需要分解ATP,通常每分解一分子ATP 可将3个Na+转运至膜外,同时将2个K+转运至膜内;心肌细胞外Ca2+Ca2+0和细胞内Ca2+Ca2+i相差万倍,维持Ca2+跨膜浓度梯度的转运系统其一是位于细胞膜上的Na+/Ca2+交换体Na+/Ca2+ exchanger,它的活动可被ATP促进,但不分解ATP,因而也不直接耗能;Na+/Ca2+交换体对Na+和Ca2+的转运是双向的,可将Na+转入胞内同时将Ca2+排出胞外正向转运,也可将Na+排出而将Ca2+转运至胞内反向转运;转运的方向取决于膜内外Na+、Ca2+浓度和膜电位;无论是正向还是反向转运,其化学计量学都是3个Na+与1个Ca2+的交换,Na+/ Ca2+交换电流I Na/I Ca为内向电流,电流方向与Na+流动的方向相一致,Na+内流而Ca2+外排;经Na+/ Ca2+交换排出Ca2+的过程是间接地以Na 泵的耗能活动为动力的;另一个维持Ca2+跨膜梯度的转运系统是位于肌质网sarcoplasmic reticulum, SR膜上的Ca泵起着主要作用;Ca泵也称Ca-ATP酶,它每分解一分子ATP可将胞浆中2个Ca2+逆电化学梯度转动至SR内,使Ca2+i降低到μmol·L-1以下;心肌细胞膜上也存在Ca-ATP酶,可逆电化学梯度将胞浆内Ca2+转运至胞外;带电功率离子的跨膜流动将产生膜电位的变化,变化的性质和幅度决定于电流的方向和强度;离子电流的方向是以正电荷移动的方向来确定的;正电荷由胞外流入胞内的电流为内向电流,它引起膜的去极化;正电荷由胞内流出胞外的电流称为外向电流,它引起膜的复极化或超极化;心室肌、心房肌的RP能保持稳定,是由于静息状态下内向电流与外向电流大小相等,电荷在膜两侧的净移动为零;决定RP的离子电流主要是Na+和K+;原因是静息状态下膜对Ca2+几乎没有通透性,其作用可以忽略;Cl-是一个被动分布的离子,它不决定RP,而是RP决定它的分布;以上分析表明一个稳定的RP,其外向的K+电流和内向的Na+电流相等;RP主要取决于膜的K+电导和Na+电导;膜对哪一种离子的电导更大,RP就更接近哪一种离子的平衡电位;静息时,K+电导Na+电导,RP接近于K+平衡电位;三、心肌细胞动作电位的产生机制动作电位action potential, AP是指一个阈上刺激作用于心肌组织可引起一个扩布性的去极化膜电位波动;AP产生的基本原理是心肌组织受到刺激时会引起特定离子通道的开放及带电离子的跨膜运动,从而引起膜电位的波动;由于不同心肌细胞具有不同种类和特性的离子通道,因而不同部位的心肌AP的开关及其它电生理特征不尽相同;一心室肌、心房肌和普肯耶细胞动作电位心室肌、心房肌和普肯耶细胞均属于快反应细胞,AP形态相似;心室肌AP复极时间较长100~300ms,其特征是存在2期平台;AP分为0,1,2,3,4期;0期:除极期,膜电位由-80~-90mV在1~2ms内去极化到+40mV,最大去极化速度可达200~400V/s;产生机制是电压门控性钠通道激活,Na+内流产生去极化;1期:快速复极早期,膜电位迅速恢复到+10±10mV;复极的机制是钠通道的失活和瞬间外向钾通道Ito的激活,K+外流;在心外膜下心肌Ito电流很明显,使AP出现明显的尖锋;在心内膜下心肌该电流很弱,1期几乎看不到;2期:平台期,形成的机制是内向电流与外向电流平衡的结果;平台期的内向电流有I Ca-L,I Na+/ Ca2+,以及慢钠通道电流;其中最重要的是I Ca-L,它失活缓慢,在整个平台期持续存在;I Na+/ Ca2+在平台期是内向电流,参与平台期的维持并增加平台的高度;慢钠通道电流是一个对TTX高度敏感的钠电流,参与平台期的维持;参与平台期的外向电流有I k1,I k和平台钾通道电流I kp;I Ca-L的失活和I k的逐渐增强最终终止了平台期而进入快速复极末期3期;3期:快速复极末期,参与复极3期的电流有I k,I k1和生电性Na泵电流;3期复极的早期主要是I k 的作用,而在后期I k1的作用逐渐增强;这是因为膜的复极使I k1通道开放的概率增大,后者使K+外流增加并加速复极,形成正反馈,使复极迅速完成;4期:自动除极期又称舒张期自动除极期,主要存在于自律细胞,如普肯耶细胞和窦房结细胞;普肯耶细胞4期除极的最重要的内向电流为I f电流;由于它激活速度较慢,故它的4期除极速率较慢;在普肯耶细胞4期除极的后期,稳态的Na+窗电流参与自动除极过程;窦房结细胞参与4期除极的离子有延迟整流钾电流I k,起搏电流I f,电压门控性I Ca-L,I Ca-T;这些离子电流没有一个能独立完成窦房结的4期除极,外向I k衰减,相当于内向电流逐渐加强,在4期除极中起主要作用,也是4期除极的主要机制;I f超极化激活,故在膜电位负值较大的细胞起较大作用;Ca2+内流主要参与4期后半部分的除极;心房肌动作电位与心室肌相比,主要特点是:①1期复极较迅速,平台期不明显,因为心房肌I to电流较强而I Ca-L较弱;②3期复极和静息期有乙酰胆碱激活的钾通道K Ach参与;普肯耶细胞属于快反应自律细胞,其AP与心室肌相比一个显着区别是具有4期自动除极过程;普肯耶细胞I k1电流较强,RP可达-90mV;0期最大除极速率高;它的I to电流较强,1期复极速度较快;它的平台期持续时间长,可达300~500ms;二窦房结和房室结细胞动作电位窦房结细胞属于慢反应细胞,其AP与心室肌相比一个特点是0期去极化幅度小,没有1期和2期,由0期直接过渡到3期,也具有4期自动除极过程;另一个特点是窦房结产生AP各时相的离子电流也与快反应细胞不同;0期去极化是I Ca-L激活引起的,激活过程较慢,故0期的去极化速度低;3期复极主要是由于I Ca-L的失活和I k的激活形成的,I KAch也参与了3期复极;房室结细胞AP的0期除极速度与幅度略高于窦房结,而4期去极化速度较低;四、心肌细胞的电生理特性一兴奋性1.心肌兴奋性的产生机制兴奋性excitability是指心肌细胞受刺激后产生动作电位的能力;包括静息电位去极化到阈电位水平以及有关离子通道的激活两个环节;对快反应细胞来说,形成AP的关键是钠通道的激活;当静息电位绝对值高于80mV时,所有钠通道都处于可开放状态,接受阈刺激即可产生动作电位;随着膜的去极化,电压门控钠通道开放的概率增大,当刺激能使膜电位去极化到某一临界值时,这一临界值称为阈电位threshold potential,内向钠电流的强度充分超过了背景外向电流使膜迅速去极化形成AP的0期;慢反应细胞形成AP的关键是钙通道的激活而产生的;2.影响兴奋性的因素心肌兴奋性主要取决于静息膜电位的大小及阈电位水平;静息膜电位绝对值减小,阈电位水平下降均能提高心肌兴奋性;其中阈电位水平是最重要的;决定阈电位的主要因素是钠通道的机能状态;虽然钠通道的关闭状态和失活状态都是不导通的,但它们对兴奋性的影响却是截然相反的;关闭状态的通道越多,兴奋性越高;而失活状态通道所占的比例越大,细胞就越不容易兴奋;在此处简述一下钠通道的三种机能状态;根据钠通道的Hodgkin-HuxleyH-H工作模型,电压依赖性钠通道受膜电位的影响,在不同电压影响下,通道蛋白发生构象变化而使通道不断转换于静息态resting state、开放状态open state和失活状态inactive state;通道内侧有m激活闸门和h失活闸门来控制通道的开启和关闭图6-1-2;静息时,m门位于通道内,使通道处于关闭状态,即静息态;兴奋时,在去极化作用下,m闸门激活而移出通道外,使通道开放,Na+内流,即为激活态;但在去极化作用下,原来位于通道外的h闸门也被激活,而以稍慢的速度移到通道内部,从而使通道开放瞬间后失活而关闭,即为失活态;随后在膜电位复极化的作用下,m和h闸门又逐渐移到原来的位置,即m闸门位于通道内,h闸门位于通道外,进入静息状态,此时兴奋恢复正常;单从电压依赖性上看,两个闸门几乎没有同时开放的可能性,但两个闸门的动力学参数相关很大,激活门开放的时间常数τm比失活门关闭的时间常数τh小得多,若刺激使膜从静息状态迅速去极化时,激活门迅速开放而失活门还未来得及关闭,钠通道便进入两个闸门都开放的激活状态,此时Na+内流;随着失活门随后的关闭,钠通道便进入失活状态;失活关闭状态的通道不能直接进入开放状态而处于一种不应期;只有在经过一个额外刺激使通道从失活关闭状态进入到静息关闭状态后,通道才能再度接受外界刺激而激活开放;这一过程称为复活recovery;钠通道的膜电位在-80~-90mV时,几乎全部通道都处于关闭状态,一旦迅速去极化,钠通道开放的概率也很高,较低程度的去极化就可以激活钠通道,因而阈电位较低负值较大,兴奋性较高;随着静息电位的减小,失活闸门逐渐关闭或进入失活状态的钠通道越来越多,需较强的去极化才能激活钠通道,阈电位上移,兴奋性逐渐降低甚至消失;即RP的减小超过一定程度时阈电位会上移,使RP与阈电位的差距增大,兴奋性减小甚至消失;高血钾对心肌兴奋性的影响就是一个典型的实例;轻度高血钾使RP略微减小如从-90mV减少至-80mV时,阈电位无显着变化,RP与阈电位差距减少,故兴奋性升高;重度高血钾时RP进一步减小而使阈电位升高,兴奋性则降低;此外,某些因素如药物通过改变钠通道激活和失活过程而影响兴奋性;例如1类抗心律失常药可使钠通道稳态失活曲线左移,阈电位上移,兴奋性降低;3.兴奋性的恢复心肌兴奋后,兴奋性暂时丧失,随着复极过程的进行,兴奋性又逐渐恢复,其机制为随着膜电位的增大,失活状态的钠通道或钙通道逐步进入关闭状态,即复活过程;复活是电压和时间依赖性的,在快反应细胞,钠通道复活过程为电压依赖性,根据复极过程中膜电位的变化,将心肌复极过程中的兴奋性分为以下几期:①绝对不应期,终止于3期复极至-55mV左右,此期钠通道全部处于失活状态,不产生兴奋;②有效不应期,从0期开始终止于3期-66mV左右,比绝对不应期稍长,在此期的后段,强刺激可引起局部兴奋,但不产生扩布性的AP;③相对不应期,3期复极从-60mV至-80mV期间,此期有部分钠通道复活,兴奋性逐渐恢复,较强刺激有可能引起AP;④超常期,相当于3期复极至-80mV~-90mV之间,此期钠通道已近乎全部复活;在慢反应细胞,兴奋性的恢复表现为较大的时间依赖性,兴奋性的恢复滞后于膜电位的恢复;二自律性自律性automaticity是指细胞在没有外界刺激的条件下自动地产生节律性兴奋的特性;通常以单位时间内产生AP的次数来衡量自律性的高低;自律性产生的机制是4期自动除极,参与4期自动除极的离子流前已叙述,最终结果形成一个净内向电流而使膜去极化;在正常心脏,窦房结的自律性最高,70~80次/min;其次是房室交界,40~60次/min;心室传导系统自律性最低,15~40次/min;由于窦房结自律性最高,每当其它自律组织的兴奋还没有发放之前,窦房结的冲动已经扩布下来,而兴奋后的心肌细胞暂时处于不应期状态,导致其它自律组织的起搏活性始终表现不出来,成为潜在起搏点;窦房结为心脏的正常起搏点pacemaker;当窦房结病变,自律性降低到潜在起搏点之下,或是它所发放的冲动不能下传时如窦房阻滞、房室传导阻滞,潜在起搏点有可能成为有效起搏点而发放冲动,形成异位心律室性心律、交界性心律等;潜在起搏点的自律性升高超过窦房结,将出现快速性心律失常;三传导性传导性conductivity心肌细胞膜的任何部位产生的兴奋不但可以沿整个细胞膜扩布,且可通过细胞间缝隙连接gap junction传导到另一个心肌细胞,从而引起整个心脏的兴奋和收缩;窦房结发出的兴奋首先经心房肌和心房肌中的几条细小的传导束房间束和结间束传向房室和整个心房,再经房室交界到达房室束;兴奋进入心室传导系统后,沿走行于心内膜下的左束支和右束支及其进一步分支形成的普肯耶纤维,传导至心内膜下心肌,再传至心外膜侧;兴奋由窦房结发出经上述途径传遍整个心脏,总共约需时;心脏传导性由0期去极化速度和幅度决定;快反应细胞0期除极化速率由钠内流决定,慢反应细胞0期除极化由钙内流决定,因而抑制钠内流或钙内流都可抑制传导;第二节心律失常的发生机制一、心律失常发生的几个基本机制窦房结是心脏的正常起搏点,窦房结的兴奋沿着正常传导通路依次传导下行,直至整个心脏兴奋,完成一次正常的心脏节律;这其中的任一环节发生异常,都会产生心律失常;一自律性提高1.正常自律机制改变正常自律机制改变是指参与正常舒张期自动除极化的起搏电流动力学和电流大小的改变而引起的自律性变化;窦房结起搏电流为钙内流,钙内流增加导致自律性升高,形成窦性心动过速;阻断起搏电流I f或钙电流I Ca均可使4期的去极化速率下降;β受体阻滞剂,迷走神经兴奋均可降低窦房结的自律性;反之,儿茶酚胺释放、激动β受体和心肌缺血等均可使4相斜率提高而增加自律性;2.异常自律机制形成非自律性心肌细胞在某些条件下出现异常自律性称为异常自律机制形成;如工作肌细胞在缺血、缺氧条件下也会出现自律性;异常自律机制的发生可能是由于损伤造成细胞膜通透性增高和静息膜电位绝对值降低;这种异常自律性向周围组织扩布就会产生心律失常;二触发活动触发活动triggered activity指冲动的形成是由于紧接着一个动作电位后的第二次阈值除极化即后除极所造成;触发活动引起新的AP发放,形成异位节律,是一种常见的形成心律失常的机制;后除极可分为:1.早后除极early afterdepolarization, EAD是一种发生在完全复极之前的后除极,通常发生于2、3相复极中;诱发早后除极的因素有药物、低血钾等;早后除极所触发的心律失常以尖端扭转型torades de pointes心动过速常见;2.迟后除极delayed faterdepolarization, DAD是细胞内钙超载情况下,发生在动作电位完全或接近完全复极时的一种短暂的振荡性除极;DAD大都由于心肌细胞内Ca2+浓度增加及由Na+- Ca2+交换而导致Na+内流所致;细胞内钙超载时,激活钠钙交换电流,泵出1个Ca2+,泵入3个Na+,相当于Na+内流,引起膜除极,当达到钠通道激活电位时,引起动作电位;诱发迟后除极的因素有强心苷中毒、细胞外高钙及低钾等;三折返折返reentry是指一次冲动下传后,又可顺着另一环形通路折回而再次兴奋原已兴奋过的心肌,是引发快速型心律失常的重要机制之一;心脏的环行通道有解剖性环行通道和功能性环行通路,故折返就存在上述两类;1.解剖性环行通道在心脏存在构成折返环行通路的形态学基础有3种:①在窦房结附近的心房肌,围绕腔静脉而构成环行的心房肌;可形成心房颤动Af及心房扑动AF;②在房室结附近,若有异常侧支返回心房,在心房、房室结和心室间形成折返,如预激综合征wolff-Parkinson-Write Syndrome, WPW syndrome;③心室壁普肯耶纤维末梢,由心内膜穿入再伸向心外膜心肌,发出二侧支形成三角形,若其中一支发生传导阻滞,可形成三角形结构的环形折返;解剖性折返的发生有三个决定因素:①存在解剖学环路;②环路中各部位不应期不一致;③环路中有传导性减慢的部位;2.功能性环行通路在冲动向前扩布途中,若遇到心肌缺血损害而使传导被阻断,从而改变冲动由另一通道较缓慢的速度扩布,其后再回到原来的位点;功能性折返在无明显解剖环路时即可发生;二、心律失常发生的离子通道靶点学说心肌细胞膜上存在多种离子通道,如I Na,I Ca,I kr,I ks,I kur,I k1,I to,I kATP等,这些通道表达和功能的彼此平衡是心脏正常功能的基础;当某种通道的功能或表达异常时,通道间平衡被打破,将出现心律失常;如上述编码I Na,I kr,I ks通道的基因发生突变,引起Na+内流增加或K+外流减少,使心肌复极减慢,产生Q-T 间期延长综合征;对I Na抑制过强,将出现传导阻滞,易诱发折返激动而致心律失常;I kur钾电流主要存在于心房,I kur的增强与房性心律失常如房颤发生密切相关;房扑及某些快速型室性心律失常发生时,APD 的缩短是L-型钙电流在起主导作用;最佳靶点学说The theory of the best targets认为:I Na,I Ca,I kr,I ks,I kur,I to,I k1等与心律失常发生、发展及消除关系密切,是抗心律失常药物作用的最佳靶点;一个理想的抗心律失常药物应对上述靶点有作用,至少是二种以上;三、心律失常发生的分子机制有关心律失常的许多理论都是基于对心脏电生理的认识;心肌细胞离子通道的结构和功能的改变所引起离子流的变化则是心律失常发生机制中研究的焦点;心律失常的发病机制常常与心肌细胞复极化异常有关;任何离子通道蛋白的变化均有可能导致离子流异常而产生畸形的动作电位,最后体现在心电图上而显示出心律失常特征;QT间期延长综合征long QT syndrome, LQTS是目前第一个被肯定的由基因缺陷引起复极化异常的心肌细胞离子通道疾病,也是第一个从分子水平揭示了心律失常发生机制的疾病;LQTS是以心电图QT间期延长和发生恶性心律失常性晕厥及猝死为特征的一组症候群;如由QT间期延长而产生的尖端扭转型室性心动过速torsade de pointes;迄今为止,至少明确有八个基因的突变可引起心肌细胞离子通道的功能异常而导致心律失常,包括钾通道基因KCNQ1KvLQT1、KCNE1minK、HERG、KCNE2MiRP1和KCNJ2;钠通道基因SCN5A;钙通道基因RYR2和锚蛋白B基因AnkyrinB;心律失常类型涉及到长LQTS、Brugada综合征、特发性室颤、儿茶酚胺性室颤、新生儿猝死、房室传导阻滞及房颤等;一遗传性LQTS1.LQT11996年Wang等用原位克隆的方法证实了LQT1的致病基因为KvLQT1,后被命名为KCNQ1;正常情况下,位于第11号染色体上的KvLQT1基因与位于21号染色体上的minK基因编码的蛋白质共同形成有功能的I ks通道,控制心肌复极化过程;KvLQT1突变时心肌细胞I ks电流减小,心室复极化减慢导致QT 间期延长;KvLQT1突变的类型有错义突变、无义突变、缺失/插入突变、移码突变和剪接突变;这些突变引起氨基酸替换或蛋白质合成中某些氨基酸的终止;基因突变的致病机制目前认为是,正常和突变KvLQT1亚单位的组合可形成异常I ks通道,KvLQT1突变是通过一种负显性机制或功能丧失机制发挥作用的;负显性是指KvLQT1突变型通过一种“毒性”作用干预正常野生型的功能使电流密度降低,而其他电流的动力学特征没有大的改变;功能丧失是指只有突变型失去活性;无论上述哪种机制都导致I ks 减小,心肌复极时间延长,发生心律失常的危险性增加;不同的基因突变类型导致I ks通道功能异常的程度不同;LQT1占LQTS基因型的42%;2.LQT2Jiang等通过候选基因定位法确定了LQT2的致病基因是HERG基因;当位于7号染色体编码I krα亚基的HERG基因突变,导致畸变亚基的合成,畸变亚基不能与正常亚基组装成有功能的I kr通道,导致I kr电流减小或消失,从而使心肌细胞复极化过程减慢,QT间期延长;HERG突变的类型有错义突变、无义突变、缺失/插入突变、移码突变和剪接突变;多为错义突变,其变异的范围极广,几乎跨越整个亚基长度包括N-末端和C-末端区域;HERG变异可导致I kr电流的减少,目前其机制大致可归结为以下几点:一是HERG基因内缺失突变产生的异常亚基不能与正常亚基共同装配形成I kr通道,从而导致功能性野生型I kr通道数量减少,复极化I kr流的减弱;二是HERG错义突变产生的亚基与正常亚基共同装配成I kr通道时,单个突变亚基就能表现出丧失功能的变异通道表型即显性负作用机制,结果造成通道功能丧失,从而复极化I kr流大为减少;三是由于基因突变,通道蛋白表达的数量和质量出现问题,蛋白转运定位障碍,合成的蛋白质滞留在内质网内,表现为表达数量不足,细胞膜通道减少,电流密度降低;LQT2占LQTS基因型的45%;3.LQT3Jiang和Wang等用侯选基因定位法确定了LQT3致病基因是SCN5A,位于3p21-24,是编码钠通道的基因;正常情况下,在心肌细胞动作电位除极时SCN5A编码的钠通道激活,形成动作电位的除极相,然后于复极时失活,通道关闭而突变的SCN5A编码的通道没有失活状态,或从失活状态恢复到静息状。
心脏的电生理特性(完美版)ppt

心肌兴奋(Fen)性的周期性变化
*有效不应期effective refractory period ERP: ①绝对不应期absolute refractory period ARP : 膜电位-55mv以前,钠通(Tong)道失活 ②局部反应 local reaction: 膜电位-55mv~-60mv
第八页,共四十五页。
心肌细(Xi)胞分类
快反应自律细胞
心房肌细胞 心室肌细胞
快反应非自律细胞 慢反应自律细胞
房室束细胞 浦肯野细胞 窦房结细胞 房结区细胞
第九页,共四十五页。
慢反应非自律细胞
结希区细胞 结区细胞
心脏各部(Bu)分心肌细胞的跨膜电位
SAN:窦房结 AM:心房肌
AVN:结区 BH:希氏区
第二十九页,共四十五页。
心肌兴(Xing)奋性的周期性变化
•a,b: 局部反应
•c,d,e: 可扩(Kuo)布的 动作电位
第三十页,共四十五页。
心肌(Ji)兴奋性的周期性变化
概念
兴奋性 与膜电位关系 Na 通道
ARP
ERP
RRP
SP
任何刺激不能引 任何刺激不能引 大于阈值刺激才 小于阈值刺激即
起动作电位
窦房结细(Xi)胞动作电位特征
第二十页,共四十五页。
Pacemaker Potentials
Leaky membrane auto-depolarization
autorhythmicity
the membrane is more permeable to K+ and Ca++
ions
2 期(Qi)
平台期,是心肌动作电位时程较(Jiao)长的主要原因,也
心肌细胞膜电位(静息电位)

兼具有局麻作用。
[临床应用]
对室性、室上性心律失常均有效,注射适 用于利多卡因治疗无效的室性心动过速。
[不良反应]
较奎尼丁少且轻。
1、过敏反应:较常见,皮疹、药热,粒 细胞减少。严重者可见“系统性红斑狼 疮综合征”。 2、中毒剂量时,可致各种心律失常。 3、静注给药,可致低血压。
ⅠB类钠通道阻滞药
⑴轻度阻滞钠通道,轻度抑制4相Na+内流, 降低自律性,对传导的影响较轻;促进 K+外流,缩短APD,相对延长ERP,有膜 稳定作用或局麻作用。 ⑵治疗室性心律失常。
(3)药物:利多卡因、苯妥英钠等
ⅠC类钠通道阻滞药
(1)明显阻滞钠通道,显著降低0相上升速率 和幅度,减慢传导的作用最明显。
传导速度
0相上升速率
V/s
0 相 上 升 速 度
600
静息电位 水平负值
300
-100mv
-75mv
-50mv
静息电位水平
膜反应曲线
七、有效不应期
APD: 动作电位0相至3相的时程。 ERP:在动作电位时程中,从0 相到3相有一段时期,心肌细胞 对外界任何刺激全无反应,或只 有局部反应,不能产生扩布性兴 奋,引起动作电位,这段时间为 有效不应期。
2.对原有传导阻碍或心动过缓者,偶见传导阻
滞或窦性停搏。 相似的药物还有:美西律、妥卡尼 美西律:对利多卡因治疗无效的患者,仍有效。 妥卡尼:口服吸收完全。
苯妥英钠(phenytoin sodium)
[药理作用] 促进K+外流,增加最大舒张电位,降低浦 肯耶纤维自律性 缩短房室结、浦肯耶纤维的APD,相对延长 ERP
联,产生收缩。
《心肌的生理特性》课件

Part One
单击添加章节标题
Part Two
心肌的结构和功能
心肌细胞的形态和结构
心肌细胞呈梭形, 有横纹
心肌细胞有收缩性 和舒张性
心肌细胞有自律性 ,可以自动节律性 收缩
心肌细胞有传导性 ,可以传递兴奋
心肌的功能概述
心肌是心脏的主要组成部分,负责心脏的收缩和舒张 心肌具有自动节律性,能够自主地、有规律地收缩和舒张 心肌具有兴奋性,能够对刺激产生反应,并传导兴奋 心肌具有收缩性,能够产生力量,推动血液流动
心脏起搏点的作用
控制心脏跳动的频率和节奏 产生心脏跳动的电信号 维持心脏的正常功能 调节心脏的收缩和舒张
心肌自动节律性的影响因素
离子通道:心肌细胞膜上的离子通道对心肌的自动节律性有重要影响 细胞内钙离子浓度:细胞内钙离子浓度的变化会影响心肌的自动节律性 神经调节:自主神经系统对心肌的自动节律性有调节作用 激素调节:激素水平对心肌的自动节律性有影响 心肌细胞膜电位:心肌细胞膜电位的变化会影响心肌的自动节律性
心肌的电生理特性
心肌细胞:心肌细胞是心肌的主要组成细胞,具有兴奋性和传导性
心肌电生理特性:心肌细胞具有自动节律性、传导性、兴奋性和收缩性
心肌电生理特性的生理意义:心肌电生理特性是心肌正常生理功能的基 础,也是心肌疾病诊断和治疗的重要依据 心肌电生理特性的研究进展:近年来,心肌电生理特性的研究取得了重 要进展,为心肌疾病的诊断和治疗提供了新的思路和方法。
能量供应
心肌细胞具有较高的线粒体 密度,以适应其高代谢率的
需求
心肌的能量来源
心肌细胞通过氧化磷酸化过程产生能量 主要能量来源是葡萄糖和脂肪酸 心肌细胞通过糖酵解和脂肪酸氧化获取能量 心肌细胞在缺氧状态下,主要通过糖酵解获取能量
心肌的生物电现象-2

(2) 4期自动去极化速度比窦房结细胞的慢,
故自律性低。
小结:快反应自律细胞的电位形成机制
3 期 末 K+ 通 道 的 递 增 性 失 活 K+ 递 减 性 外 流 电 位 复 极 至 -60mV 时 If 通 道 的 递 增 性 激 活 Na+ 递 增 性 内 流
断
自 动 去 极 达 阈 电 位 快 Na+ 通 道 开 放 Na+ 再 生 式 内 流 去 极 化→产 生 AP 的 0 期
自 动 去 极 达 阈 电 位(-40mV) 慢 Ca2+ 通 道(L型)开 放
Ca2+ 内 流 ↑
产 生 AP 的 0 期
(三)浦肯野细胞(快反应自律细胞)的电位
1.机制: 0、1、2、3期:与心室肌细胞基本相似。 4期:递增性Na+为主的内向离子流(If)+ 递减性外 向K+电流所引起的自动去极化 2.特点: (1) 0期去极化速快,幅度大(快反应)
3期(快速复极末期)
慢Ca2+通道失活 + Ik 通道通透性增加 ↓ K+再生式外流 ↓ 快速复极化 至RP水平
4期(静息期)
因膜内[Na+]和[Ca2+] 升高,而膜外[K+]升高 激活离子泵 排出Na+和Ca2+,泵入K+ 恢复正常离子分布。
小结:心室肌RP和AP的形成机制
工作细胞和自律细胞跨膜电位
4期:K+递减性外 流(IK) + Na+递增 性内流(If)+ Ca2+内流(ICa-T型 钙通道激活)→ 缓慢自动去极化
小结:慢反应自律细胞的电位形成机制
心脏电生理

心室肌动作电位及其形成机制
0期:去极化期 1-2ms 1期:快速复极初期 10ms 2期:平台期 100-150ms 3期:快速复极末期
100-150ms 4期:静息期
12
心室肌动作电位及其形成机制
RP:钾平衡电位:-90 mV AP:特点(与骨骼肌和神经纤维比较):
复极过程复杂,持续时间长,升支和降支不对称 0期:钠离子内流 1期:一过性外向电流(钾离子) 2期:慢钙通道(钙离子内流) 3期:钾离子外流 4期:钠泵
3
跨膜离子流
内向电流:正离子由膜外向膜内流动或负离子 由膜内向膜外流动。内向电流造成膜去极化。 外向电流:正离子由膜内向膜外流动或负离子 由膜外向膜内流动。外向电流导致膜复极或超 极化。
4
离子通道
★ Na+通道:激活、失活快、开放时间短 — 快(钠)通道,电压依赖性通道
*阻断剂:河豚毒(tetrodotoxin,TTX) ★ Ca2+通道: 激活、失活都慢、开放时间长— —慢(钙)通道,呈电压依赖性,其阈电位高于 Na+通道
静息、激活、失活;具有电压依从性和时间依从性; 钠通道是否处于静息状态,是快反应心肌细胞在该时 刻是否具有兴奋性的前提。 L型钙通道是否处于静息状态,是慢反应心肌细胞在 该时刻是否具有兴奋性的前提。
25
钠通道的状态
(1)激活状态:开放; (2)失活状态:关闭并不能被再次激活; (3)备用状态:关闭但可被激活. *复活过程:随膜内电位的负值增大,已恢复活
15
2期
平台期,是心肌动作电位时程较长的主要原因, 也区别于骨骼肌细胞的主要特征。 这一期的离子:K+外流(Ik1)和 Ca2+内流。
Ca2+内流,抵消K+外流。 L型钙通道,可被Mn2+、维拉帕米等钙拮抗药 阻断
心肌的生理特性

心肌兴奋时兴奋性变化的主要特点是有效不应期特别长(平均250ms),相当于心肌整个收缩期和舒张早期。 它是骨骼肌与神经纤维有效不应期的100倍和200倍。 这一特性是保证心肌能收缩和舒张交替进行,不出现强直收缩的生理学基础。 有效不应期的长短主要取决于2期(平台期)。
兴奋性的周期性变化与收缩活动的关系
传导速度 浦氏纤维 (4m/s) ↓ 束支 (2m/s) ↓ 心室肌 (1m/s) ↓ 心房肌 (0.4m/s) ↓ 结区 (0.02m/s)
传导时间 心房内---房室交界---心室内 (0.06s) (0.1s) (0.06s)
传导特点:
兴奋由心房传至心室的过程中,因房室交界(尤其是结区)的传播缓慢而需经一个时间延搁,这一现象称为房-室延搁。 意义:使心室收缩发生于心房收缩完毕之后,因而 不致于产生房室收缩的重叠,有利于心室的充 盈和射血。
恢复到备用状态
不能产生
仅能产生局部电位
阈上刺激
阈下刺激
Na+通道基本
1 兴奋性的周期性变化
1
影响兴奋性的因素
静息电位或最大复极电位的水平 阈电位的水平 引起0期去极化的离子通道性状
静息电位或最大复极电位的水平
⑵阈电位的水平
⑶ 0期去极化离子通道的状态
以Na+通道为例,Na+ 通道所处的机能状 态,是决定兴奋性正常、低下和丧失的主要 因素。
期前兴奋也存在有效不应期。当紧接在期前收缩后的一次窦房结的兴奋传至心室时,常恰好落在期前兴奋的有效不应期内,因而不能引起心室肌和心房肌的兴奋,要等再次窦房结兴奋传来时才发生兴奋和收缩。故在一次期前收缩之后,常伴有一段较长的心室舒张期。
期前收缩
代偿间歇
(三)传导性
心脏电生理学基础

表1-1心肌细胞膜内外两侧几种主要离子的浓度 ──────────────────────── 离子 细胞内液浓度(mmol/L) 细胞外液浓度(mmol/L) ───────────────────────── Na+ 30 140 K+ 140 4.0 Ca2+ 10~4 2.0 Cl- 30 104 ─────────────────────
静息电位的形成原理
由于细胞膜内外Na+、K+等离子分布的不均匀及膜对这些离子的通透性不同, 正常情况下膜外Na+多而K+少,膜内K+多而Na+少。 安静状态时膜对K+的通透性高,对Na+的通透性很低,对有机负离子(A-)的通透性最低,此时K+可自由的通透细胞膜而扩散,Na+则不易扩散,A-几乎不通透。K+便顺浓度差经K+通道向膜外侧净扩散,而膜内带负电的A-又不能随之扩散,因此随着K+的外移,就在膜的两侧产生了内负外正的电位差,称浓差电势。
一、心肌细胞的生物电现象
心肌细胞的生物电现象与神经细胞、骨骼肌细胞一样,表现为细胞膜内外两侧存在着电位差及电位差变化,称为跨膜电位(transmembrane potential),简称膜电位。细胞安静时的膜电位称静息电位,也称膜电位;细胞兴奋时产生的膜电位称动作电位,是细胞兴奋的标志。
图2-2 心室肌细胞的动作电位曲线与细胞内外离子运动的关系
(1)心电图 (2)动作电位曲线 (3)细胞内外离子运动 (4)离子通透性
2、心肌细胞动作位与离子流
1.除极(除极)化过程
又称“0”时相。 当心肌细胞受到外来刺激(在体内是来自窦房结产生并下传的兴奋)作用后,心室肌细胞的膜内电位由静息状态下-90mV迅速上升到+30mV左右,构成动作电位的升肢。 “0”时相除极化不仅是原有极化状态的消除,而且膜内外极性发生倒转,超过“0”电位的正电位部分称为超射。“0”时相占时1~2ms,幅度可达120mV。
心肌生理特性包括.

心肌生理特性包括:自律性、兴奋性、传导性和收缩性。
一、心肌的生物电现象(跨膜电位)心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。
另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。
图1 各部分心肌细胞的跨膜电位(一)、工作心肌的跨膜电位:以心室肌为例说明之。
图2 心室肌细胞的跨膜电位及形成机制心肌细胞的跨膜电位包括静息电位和动作电位。
其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。
(1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。
细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。
因此,K顺浓度差由膜内向膜外扩散,达到K的电一化学平衡电位。
(2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期1、去极化:又称为0期。
在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。
0期历时1~2 ms。
其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na 快速内流,使膜内电位急剧上升,达到Na的电一化学平衡电位。
2、复极化:包括l期、2期、3期、4期。
1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。
2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。
记录的动作电位曲线呈平台状,故此期称为平台期。
2期的形成主要是由Ca 内流与K外流同时存在,二者对膜电位的影响相互抵消。
3期:膜内电位由0MV 左右下降到-90 ,3期是Ca内流停止,K外流逐渐增强所致。
4期:此期膜电位稳定于静息电位,所以也称静息期。
4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。
2++2++++++(二)、自律细胞的跨膜电位及其产生机制:以窦房结细胞为例说明之。
心电物理知识

心电物理知识
1.心肌细胞电生理特性:
心脏肌肉细胞(心肌细胞)具有独特的电生理特性,当细胞膜内外离子浓度发生变化时,会产生电位变化。
静息状态下,心肌细胞膜内外存在稳定的电位差,即静息电位,通常是细胞膜外正电,膜内负电。
当细胞受到刺激时,膜电位会发生瞬时的反转,即除极过程,随后通过离子泵的作用回到静息状态,这个过程称为复极。
心肌细胞的这种电位变化会形成一系列的动作电位,依次传播,使得心脏得以有序地收缩和舒张。
2.心电向量:
心脏每次搏动产生的电活动,可以看作是一个三维空间的电流源,形成一个心电向量。
这个向量随着心脏各部位的激动顺序和方向不断变化。
心电向量的合成就是心肌细胞动作电位在空间上的总体表现。
3.心电信号记录:
通过在人体体表放置多个电极,可以检测到心脏电活动在体表的投影。
当心脏各部位依次除极和复极时,体表电位随之变化,形成的心电图波形反映了心脏激动的顺序和时间间隔。
心电图上的P波、QRS波群、T波和U波分别对应了心房除极、心室除极、心室复极早期和晚期复极过程。
4.心电图波形解读:
心电图上的波形提供了丰富的信息,包括心率、心律、心肌除极和复极的顺序、时间、幅度以及各波形间的时间间隔等,这些参数可用于诊断各种心脏疾病,如心律失常、心肌梗死、心室肥大、心肌炎、电解质紊乱等。
5.心电生理传导系统:
心脏内部有一个特化的传导系统,包括窦房结、房室结、希氏束、浦肯野纤维等,这些结构保证了心脏电激动的有序传递。
心电图能反映出这个传导系统的功能状态。
(生理学PPT)心脏的电生理学及生理特性

②膜通透性具选择性:K+
b.钠背景电流
2.心室肌细胞的动作电位
窦房结细胞
心室肌细胞
★
12
0
3
4
1.心室肌细胞AP
0期:
刺激 ↓
去极化 ↓
阈电位 ↓
激活快Na+通道 ↓
Na+再生式内流 ↓
Na+平衡电位 (0期)
(去极化0+复极化1、2、3+恢复4期) 0期
不被河豚毒(TTX)阻断
1期:快速复极初期
快Na+通道失活 +
激活Ito通道
↓ K+一过性外流
↓ 快速复极化
(1期)
Ito通道的特点:
1期
按任意键显示动画2
1.电压K门+ 控通道: 膜电位到-40mv时被激活 2.可N被a+ 四乙基铵和4-氨基吡啶等阻断
‖
‖
‖
‖
‖
产生AP 绝对不应期 局部反应期 相对不应期 超常期
‖
‖
‖
‖
兴奋性正常 兴奋性无
兴奋性低 兴奋性高
LRP ARP
心室肌兴奋性的周期性变化
周期变化 对应位置 机制
新AP产生能力
有效不应期 去极化→复极化-60mV43;通道处于
-55mV 完全失活状态
局部反应期: ↓
代偿间歇compensatory pause:一次期前收缩 之后所出现的一段较长的舒张期称为代偿性间歇。
(1)不发生完全强直收缩
主要特点是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.最大舒张电位水平 “4”时相舒张电位是自 动除极化而不断减小的电位,正常以其最大值为 标准,称为最大舒张电位。最大舒张电位减小(负 度),则和阈电位的差距缩短,自律性增高;最大 舒张电位增大,达到阈电位所需时间增加,则自 律性降低。
3.阈电位水平 如果最大舒张电位和舒张期 自动除极化的速度不变,阈电位增高,则舒张除 极达到阈电位需要的时间延长,自律性降低;反 之,如阈电位水平降低(负度增大),则从最大舒 张电位到达阈电位的差距缩小,自律性增高。
心脏内自律性最高的组织往往决定整个心脏的兴 奋节律,也即在正常情况下,窦房结自动地、有 节律地发出的兴奋向外扩散传导,依次兴奋心房、 房室交界区、房室束、束支、浦肯野纤维和心室 肌,引起整个心脏的收缩(搏动)。因此,窦房结 是心脏内发生兴奋和搏动的起点,称为心脏正常 的起搏点,其所形成的心脏节律称为窦性节律。
易颤期 在相对不应期的前半部分,心肌复极程度、兴奋 性和传导速度常有悬殊差别,处于电异步状态。在此期间 再给予刺激,容易发生多处的折返激动而引起颤动,故称 为易颤期或易损期。心房的易损期相当于R波的下降肢处, 心室的易颤期大致在T波的上升肢处。 超常期 在某些心肌细胞中,从-80mV到复极完毕的这 段期间内,兴奋性会高于该细胞动作电位的第“4”时相。 在这期间,给予阈下刺激也可引起心肌细胞兴奋,但其动 作电位的“0”时相除极化速度和幅度仍小于正常。超常期 (-80~-90mV)期间,膜电位比复极完毕更接近阈电位, 故引起兴奋所需的阈刺激较正常为小。超常期相当于心电 图中的T波末部的U波。
.1.心肌细胞自律性和各自律组织的相互关系 心脏内的特殊传导组织大都含自律细胞,为自律 组织。 自律组织包括:窦房结、心房传导组织(结间束和 房间束)、房室交界(房室结的结区除外)区和心室 内传导组织(房室束、束支及浦肯野纤维)。
正常情况下,以窦房结的自律性最高,每分钟能 兴奋100次左右,向外依次逐渐降低,房室交界区 每分钟兴奋50次,浦肯野纤维每分钟兴奋25次等。
(3)酸硷平衡 当pH值降低,乳酸增多等 酸中毒时,可增加心肌的自律性。 (4)缺血、缺氧 缺血、缺氧可使浦肯 野细胞膜上的钠泵受抑制,最大舒张电位 减小,对儿茶酚胺的敏感性增加,易出现 异位节律。 (5)其他 如温度、甲状腺素等,均可 使自律性增高。
(二)兴奋性
兴奋是指细胞受外来刺激或由内在变化而发生的 膜除极化现象。一般所说的“兴奋”是指膜发生 全面除极化而形成动作电位的“扩布性兴奋”, 亦称“冲动”或“激动”。 兴奋性(Excitability)是指心肌细胞对适当刺激能发 生兴奋,即产生动作电位的特性。正常情况下, 心脏内的窦房结是通过本身内在变化而发生兴奋, 其余部位则是由于窦房结传导的兴奋作为刺激而 发生兴奋。
图2-9 心肌兴奋性的周期变化
2.兴奋性的决定因素 心肌细胞的兴奋是由于在 足够强的刺激下,细胞膜发生部分除极化并从静 息电位达到阈电位,从而激活离子通道引起兴奋 性增高以达到阈电位所需阈刺激的大小为指标, 而阈刺激的大小主要决定于从静息电位到达阈电 位的差距。因此,心肌细胞的兴奋性决定于 静息电位水平和阈电位水平(图2--10), 以前者为多见:
2.影响正常自律性的因素
(1)自主神经及其介质 (2)电解质及其拮抗剂 (3)酸硷平衡 (4)缺血、缺氧 (5)其他
(1)自主神经及其介质 交感神经和儿茶酚胺作用于心肌细胞膜的β受体,激活腺苷环化酶形成CAMP,它在窦房结等慢反应自律组织可 激活慢Ca2+通道,促进Ca2+内流,使“4”时相除极化加速,自律性增 高,形成窦性心动过速;在浦肯野细胞等快反应自律细胞可使慢钾外 流通道失活,K+外流减慢,“4”时相除极化加速,自律性增高,故可 形成室性异位节律。 迷走神经兴奋或乙酰胆碱类药物作用于心肌细胞膜的M2-胆碱受 体可:①可激活一种称为乙酰胆碱激活性钾电流(IK.ACH)使“4”时相 和复极过程中的K+外流增加,前者使“4”时相除极速度减慢,后者使 最大复极电位绝对值增加,从而与阈电位的差距增大,两者均使自律 性降低。②抑制腺苷酸化酶,降低细胞内CAMP浓度,从而抑制钙通 道激活,Ca2+内流减少,使“4”时相自动除极化减慢,自律性降低。 因此迷走神经兴奋和拟胆碱类药物可致心动过缓,甚至心脏停搏。
正常应激期 复极化过程全部结束,兴奋性完全 恢复正常,从这一时间起直到下一次兴奋开始, 属正常应激期。 全不应期 有效不应期和相对不应期合称全不 应期。
一般来说,动作电位和不应期是平行的(图2-9),且与 心率有关。心率加快,不应期缩短,心率减慢,不应期随 之延长。所以提前程度相当的刺激,前周期愈长或基础频 率愈慢,就愈容易遇到不应期。心肌部位不同,不应期亦 不同,房室结不应期最长,且很少受心率的影响,故过早 搏动可在此被阻滞,起到“闸门”作用。窦房结周围及浦 肯野纤维每一终末分支不应期均较长,亦有类似“闸门” 功能,可阻滞过早搏动的传布。 有效不应期缩短,期前兴奋和兴奋折返发生的机会增 多,易于形成心律失常。有效不应期延长,期前兴奋和兴 奋折返的发生机会减少,而且期前兴奋即使发生,因其发 生的膜电位增大,传导加快,可以消除传导阻滞和兴奋折 返,制止心律失常的发生。因此,在动作电位时间内有效 不应期相对延长有抗心律失常作用。
自律性最高的组织主宰整个心脏节律的机制为: (1)抢先占领或夺获 正常情况下,潜在起 搏点自律性低,在其能自发发生兴奋之前已被窦 房结传来的兴奋所激动而被动兴奋。 (2)超速抑制 是指具有自律性的组织受高 于其自律性的刺激频率所兴奋时,其自发的起搏 活动受抑制的现象。
超速抑制发生的机制有三种可能: ①快速兴奋使细胞内Na+浓度增高,以致以舒张 期Na+内流减慢,“4”期自动除极化速度减慢而自 律性降低; ②细胞内Na+浓度增高使Na+─K+泵活动增强,由 于其生电作用使膜发生超极化,自律性降低; ③细胞内Na+浓度增高使膜内外的Na+─Ca2+交换 减少,细胞内的Ca2+浓度增高,以致膜的K电导 增大,使膜发生超极化而自律性降低。
刺激的作用在于使膜部分除极化而达到一种临界 水平—阈电位(心室肌细胞约为-70mV)。当达到阈 电位时,膜的快通道激活开放,Na+迅速内流, 使膜全面除极化而发生兴奋。凡能使膜达到阈电 位而发生兴奋的最小刺激,称为“阈刺激”,可 以作为衡量兴奋性的指标。
1.兴奋性的周期变化 细胞兴奋后,其兴奋性发生 一系列变化,这种变化在快反应细胞是“电位依 从性”的,在慢反应细胞是“时间依从性”的。 现以快反应心室肌细胞为例,根据心肌应激的不 同表现,分为下列时期(图2-8)。
心肌细胞的电生理特性
心肌细胞的电生理特性是以生物电变化,即跨膜 电位变化为基础而形成的心肌细胞的某些生理特 性,包括自动节律性(自律性)、兴奋性和传导性。
(一)自律性 自律性(Autorhythmicity)是指心 肌自律细胞能依靠本身内在的变化而自发有节律 地发生兴奋的性能,它包括自动性和节律性两个 方面。自动性即心肌自律细胞在脱离神经支配的 情况下,通过其本身内在的变化而能自发兴奋的 机能;节律性多指心肌细胞能有节律地发生兴奋 的性能。
3.自律性高低的决定因素 自律性的高低,即自动 兴奋的频率,主要决定于: ①“4”时相(舒张期)自动除极化的速度; ②最大舒张电位水平; ③阈电位水平,其中以“4”时相自动除极化速度 最为重要(图2—7)。
图2-7 心肌细胞自律性高低的决定因素
(
1)“4”时相自动除极化的速度 (2)最大舒张电位水平 (3) 阈电位水平
相对不应期 从有效不应期完毕(-60mV)至复极 化大部分完成(约达-80mV)的期间内,特别强大的 刺激可以产生扩布性兴奋而引起动作电位,提示 能再激活的快Na+通道数量逐渐增多,但由于此 时复极尚未完全,膜反应性低,故其动作电位的 幅度,“0”时相除极速度,冲动在细胞内、细胞 间的传导速度均小于正常,此期称为相对不应期。 在此期内所产生的兴奋称为期前兴奋。此期的兴 奋易发生传导阻滞和兴奋折返而导致心律失常。
图2-6 心房肌细胞的静息电位和窦房结、浦肯野纤维的“4”时相自动除极化
(1)快反应心肌自律细胞 其“4”时相自动除极 化主要因钠内向起搏电流(If)逐渐增强所致,小部 分由IK减弱所形成,故凡能使Na+内流增加或K+ 外流减少的因素,都能使“4”时相除极化加速, 自律性增高。 (2)慢反应自律细胞 其自动除极化是由于 IK的衰退和随后的慢Ca2+内向电流(ICa)的增强所 致,而IF和内向背景电流也起一定作用。
图2--10
影响兴奋性的因素
(1)静息电位的水平 (2)阈 电位水平
(1)静息电位的水平 在其他条件不变的情况下,静息 电位愈大(负值大),它和阈电位之间的差距愈大,引起兴 奋所需的阈刺激也增大,兴奋性降低。如静息电位异常增 大,形成所谓的“超极化”状态,则可造成兴奋抑制或不 发生兴奋反应。反之,静息电位减小,则兴奋性升高。 (2) 阈电位水平 在静息电位恒定的条件下,阈电位上 移(负值变小),则和静息电位之间的差距增大,则引起兴 奋所需的阈刺激增大,故兴奋性降低;反之,阈电位下移 (负值变大),其和静息电位的差距减小,兴奋性增高 。
(2)电解质及其拮抗剂 快反应自律组织的“4“时相自动 除极化及其自律性可受到细胞外K+、Na+浓度的影响。当 细胞外K+浓度升高,膜的K+电导增高,K+外流加速,可 使“4”时相自动除极化速度减慢而自律性降低;反之,当 细胞外K+浓度降低,膜的K+电导降低,K+外流减慢,可 使“4”时相除极化速度加快,自律性升高。当细胞外Na+ 浓度降低,内流减慢,可使“4”时相自动除极化减慢,自 律性降低;反之当细胞外Na+浓度升高,使Na+内流加快, 可使“4”时相自动除极化加速,自律性升高。 在慢反应自律组织,“4”时相自动除极化主要是由 Ca2+内流所形成,故当细胞外Ca2+浓度增高,可使自律 性增高,并可为Ca2+拮抗剂如异搏定所抑制。