微波技术与天线试题1

合集下载

微波技术与天线总复习题及其答案

微波技术与天线总复习题及其答案

微波技术与天线基础总复习题一、填空题1、微波是一般指频率从 至 范围内的电磁波,其相应的波长从 至 。

并划为 四个波段;从电子学和物理学的观点看,微波有 、 、 、 、 等重要特点。

2、无耗传输线上的三种工作状态分别为: 、 、 。

3、传输线几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为 。

(2) 特性阻抗: ,或 ,Z 0=++I U 其表达式为Z 0= ,是一个复数; 其倒数为传输线的 .(3) 输入阻抗(分布参数阻抗): ,即Z in (d)= 。

传输线输入阻抗的特点是: a) b) c) d)(4) 传播常数:(5) 反射系数:(6) 驻波系数:(7) 无耗线在行波状态的条件是: ;工作在驻波状态的条件是: ;工作在行驻波状态的条件是: 。

4、负载获得最大输出功率时,负载Z 0与源阻抗Z g 间关系: 。

5、负载获得最大输出功率时,负载与源阻抗间关系: 。

6、史密斯圆图是求街均匀传输线有关 和 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 的等值线簇与反射系数的 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。

阻抗圆图上的等值线分别标有 ,而 和 ,并没有在圆图上表示出来。

导纳圆图可以通过对 旋转180°得到。

阻抗圆图的实轴左半部和右半部的刻度分别表示 或 和 或 。

圆图上的电刻度表示 ,图上0~180°是表示 。

7、阻抗匹配是使微波电路或系统无反射运载行波或尽量接近行波的技术措施,阻抗匹配主要包括三个方面的问题,它们是:(1);(2);(3)。

8、矩形波导的的主模是模,导模传输条件是,其中截止频率为,TE10模矩形波导的等效阻抗为,矩形波导保证只传输主模的条件是。

9、矩形波导的管壁电流的特点是:(1)、(2)、(3)。

10、模式简并现象是指,主模也称基模,其定义是。

单模波导是指;多模传输是。

11、圆波导中的主模为,轴对称模为,低损耗模为。

微波技术与天线考试试卷与答案

微波技术与天线考试试卷与答案

0 L 0λ 微波技术与天线考试试卷〔A 〕一、填空〔 2分⨯10 =20分〕1、 天线是将电磁波能量转换为高频电流能量的装置。

2、 天线的方向系数和增益之间的关系为G = D η 。

3、 对称振子越粗,其输入阻抗随频率的变化越_缓慢_,频带越宽。

4、 分析电磁波沿传输线传播特性的方法有场和路两种。

5、 半波对称振子的最大辐射方向是 与其轴线垂直;旋转抛物面天线的最大辐射方向是其轴线。

6、 λ / 4 终端短路传输线可等效为电感的负载。

7、 传输线上任一点的输入阻抗 ZinZ、特性阻抗 以及负载阻抗 Z L满足。

Z = Z Z + jZ tan βz Lin 0+ jZ tan βz8、 微波传输线按其传输的电磁波波型,大致可划分为TEM 传输线,TE 传输线和TM 传输线。

9、 传输线终端接一纯感性电抗,则终端电抗离最近的电压波腹点的距离为φ 。

4π 110、等反射系数圆图中,幅角转变 π 时,对应的电长度为 0.25;圆上任意一点到坐标原点的距离为λ / 4 。

二、推断〔 2分⨯10 =20分〕1. 同轴线在任何频率下都传输TEM 波。

√2. 无耗传输线只有终端开路和终端短路两种状况下才能形成纯驻波状态。

〤3. 假设传输线长度为3厘米,当信号频率为20GHz 时,该传输线为短线。

╳4. 二端口转移参量都是有单位的参量,都可以表示明确的物理意义。

√5. 史密斯圆图的正实半轴为行波系数K 的轨迹。

╳6. 当终端负载与传输线特性阻抗匹配时,负载能得到信源的最大功率。

√7. 垂直极化天线指的是天线放置的位置与地面垂直。

√8. 波导内,导行波的截止波长肯定大于工作波长。

√Z9.驻波天线是宽频带天线。

╳10.天线的效率越高,其辐射力量越强。

√三、简答题〔5分⨯6=30分〕答案仅作为参考1.何谓阻抗匹配?分为哪几类?实现阻抗匹配的方法是什么?答:阻抗匹配即信号传输过程中负载阻抗和信源内阻抗之间满足特定协作关系,从而使信号源给出最大功率,负载能够吸取全部的入射波功率。

题库-微波技术与天线

题库-微波技术与天线

题库-微波技术与天线微波技术与天线题库⼀、填空题1. 驻波⽐的取值范围为;当传输线上全反射时,反射系数为,此时驻波⽐ρ等于。

2. γ=α+jβ称为,其中α称为,它表⽰传输线上的波,β称为,它表⽰传输线上的波。

3. 特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50欧和20欧时,传输线上分别形10cm,如图所⽰:Z in=;Z in=;在z=5cm处的输⼊阻抗Z in=;2.5cmρ=。

5. ⽆耗传输线的终端短路和开路时,阻抗分布曲线的主要区别是终端开路时在终端处等效为谐振电路,终端短路时在终端处等效为谐振电路。

6. ⼀段长度为l(07. 阻抗匹配分为阻抗匹配、阻抗匹配和阻抗匹配,它们反映Z0,根据各点在下图所⽰的阻抗圆( );( );⑤R<Z0,X=0 ( ); ⑥R=Z0,X=0 ( );⑦Г=0 ( ); ⑧SWR=1 ( );⑨=1Γ( ); ⑩ SWR=∞( ).9. 在导⾏波中, 截⽌波长λc最长的电磁波模称为该导波系统的主模。

矩形波导的主模为模, 因为该模式具有场结构简单、稳定、频带宽和损耗⼩等特点, 所以实⽤时⼏乎毫⽆例外地⼯作在该模式。

10. 与矩形波导⼀样,圆波导中也只能传输TE波和TM波;模是圆波导的主模,模是圆波导第⼀个⾼次模,⽽模的损耗最低,这三种模式是常⽤的模式。

11. 在直⾓坐标系中,TEM波的分量E z和H z为零;TE波的分量为零;TM波的分量为零。

12. 低频电路是参数电路,采⽤分析⽅法,微波电路是参数电路,采⽤分析⽅法。

13. 简并模式的特点就是具有相同的和不同的。

14. 微带线的弯区段、宽度上的阶变或接头的不连续性可能会导致电路性能的恶化,主要是因为这种不连续性会引⼊。

15. 写出下列微波元件的名称。

(a) (b) (c) (d)16. 下图(a)为微带威尔⾦森功分器,特性阻抗等于,其电长度L等于。

图(b)的名称是,1端⼝和2端⼝之间功率相差,2端⼝和3端⼝之间相位相差,4端⼝为隔离端⼝,是使⽤时该端⼝如何处理?。

河北工业大学微波技术与天线期末复习题

河北工业大学微波技术与天线期末复习题

一、填空题1、微波的频率范围是从300MHz 到3000GHz 赫兹,波长范围是从1米到0.1毫米。

2、矩形波导尺寸a=20mm,b=10mm,其主模是TE10 模,主模截止波长为40mm 。

3、无耗传输线的三种不同工作状态分别是行波状态、纯驻波状态和驻波状态。

4、矩形波导不可以(选填:可以、不可以)传输TEM波。

5、微波网络中的S矩阵也叫散射矩阵。

6、天线是发射或接收电磁波的装置。

二、单项选择题1 下面哪种应用未使用微波( B )。

A、雷达B、调频(FM)广播C、GSM移动通信D、GPS卫星定位2 微波通常采用哪种传输方式( C )。

A、天波传播B、地波传播C、视距传播3 下列哪种传输线可以传输TEM波(B )A、矩形波导B、平行双线C、圆波导D、介质波导4 一段均匀无耗传输线特性阻抗100Ω,终端负载50Ω,所传输信号频率为150MHz,距离终端0.5米处的输入阻抗为(C )A、50ΩB、100ΩC、200ΩD、150Ω5 当终端负载为( D ),传输线不工作在纯驻波状态。

A 、开路B 、短路C 、纯电抗元件D 、等于特性阻抗6 电场矢量除有横向分量外还有纵向分量,而磁场矢量只有横向分量的波称为横磁波,又称为( A )。

A 、TM 波B 、H 波C 、TE 波D 、TEM 波7 由于波导只能传播一定频率电磁波,因此,可以说波导具有( A )特性。

A 、高通滤波器B 、低通滤波器C 、带通滤波器D 、带阻滤波器8 带状线的损耗不包括( D )A 、由中心导带和接地板导体引起的导体损耗B 、两接地板间填充的介质损耗C 、辐射损耗D 、周围媒质的损耗9 二端口网络[S]矩阵中,S 11表示( A )。

A 、端口1匹配时,端口1的电压反射系数B 、端口2匹配时,端口1的电压反射系数C 、端口1匹配时,端口2的电压反射系数D 、端口2匹配时,端口2的电压反射系数10 下列关于近区场说法不正确的是( D )。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。

1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。

1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

(完整版)微波技术与天线考试试卷

(完整版)微波技术与天线考试试卷
4、在一个均匀无耗传输线上传输频率为3GHz的信号,已知其特性阻 ,终端接 的负载,试求:
(1)传输线上的驻波系数 ;(5分)
(2)离终端 处的反直 相同
4、 5、馈源 轴 方向
一、填空题(每题2分,共20分)
1、对于低于微波频率的无线电波的分析,常用电路分析法;对于微波用场分析法来研究系统内部结构。
(2)计算这些模式相对应的 及 。(9分)
解:(1)利用矩形波导的截止波长的计算公式,计算各波型的截止波长;然后由传输条件λ< 来判断波导中可能存在的波形。
2、设双端口网络 已知,终端接有负载 ,如图所示,求输入端反射系数。(8分)
3、设矩形波导宽边 ,工作频率 ,用 阻抗变换器匹配一段空气波导和一段 的波导,如图所示,求匹配介质的相对介电常数 及变换器长度。(8分)
2、微波传输线大致可分为三种类型:双导体传输线、波导和介质传输线。
3、无耗传输线的阻抗具有 /2重复性和 /4阻抗变换特性两个重要性质。
4、共轭匹配的定义为:当 时,负载能得到最大功率值 。
5、高波导的宽边尺寸a与窄边尺寸b之间的关系为b>a/2.
6、微带传输线的基本结构有两种形式:带状线和微带线,其衰减主要是由导体损耗和介质损耗引起的。
5、微带线在任何频率下都传输准TEM波。(错)
6、导行波截止波数的平方即 一定大于或等于零。(错)
7、互易的微波网络必具有网络对称性。(错)
8、谐振频率 、品质因数 和等效电导 是微波谐振器的三个基本参量。(对)
9、天线的辐射功率越大,其辐射能力越强。(错)
10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。(错)
(5)散射特性(6)抗低频干扰特性
2、HE11模的主要优点?

微波技术与天线思考题1

微波技术与天线思考题1

微波技术基础思考题1、微波是一般指频率从300M至3000G Hz范围内的电磁波,其相应的波长从1m至0.1mm。

从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。

2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。

这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。

3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。

若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。

对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。

一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。

以上划分主要是从减少损耗和结构工艺等方面考虑。

传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。

横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。

《微波技术与天线》题集

《微波技术与天线》题集

《微波技术与天线》题集一、选择题(每题2分,共20分)1.微波的频率范围是:A. 300 MHz - 300 GHzB. 300 kHz - 300 MHzC. 300 GHz - 300 THzD. 300 Hz - 300 kHz2.微波在自由空间传播时,其衰减的主要原因是:A. 散射B. 反射C. 绕射D. 折射3.下列哪种天线常用于微波通信?A. 偶极子天线B. 螺旋天线C. 抛物面天线D. 环形天线4.微波传输线中,最常用的传输线是:A. 同轴线B. 双绞线C. 平行线D. 光纤5.微波器件中,用于反射微波的器件是:A. 微波晶体管B. 微波二极管C. 微波反射器D. 微波振荡器6.在微波电路中,常用的介质材料是:A. 导体B. 绝缘体C. 半导体D. 超导体7.微波集成电路(MIC)的主要优点是:A. 高集成度B. 低功耗C. 低成本D. 大尺寸8.微波通信中,用于调制微波信号的常用方法是:A. 调幅B. 调频C. 调相D. 脉冲编码调制9.下列哪种效应是微波加热的主要机制?A. 热辐射效应B. 电磁感应效应C. 介电加热效应D. 光电效应10.在雷达系统中,发射天线的主要作用是:A. 接收目标反射的微波信号B. 发射微波信号照射目标C. 处理接收到的微波信号D. 放大微波信号二、填空题(每空2分,共20分)1.微波的波长范围是_____至_____毫米。

2.微波在自由空间传播时,其传播速度接近光速,约为_____米/秒。

3.抛物面天线的主要优点是具有较高的_____和_____。

4.微波传输线中,同轴线的内导体通常采用_____材料制成。

5.微波器件中,用于产生微波振荡的器件是_____。

6.微波加热中,被加热物体必须是_____材料。

7.微波集成电路(MIC)是在_____基片上制作的微波电路。

8.雷达系统中,接收天线的主要作用是_____。

9.微波通信中,为了减小传输损耗,通常采用_____方式进行传输。

微波技术与天线复习题

微波技术与天线复习题

微波技术与天线复习题一、填空题1微波与电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段,其频率范围从300MHz至3000GHz,通常以将微波波段划分为分米波、厘米波、毫米波和亚毫米波四个分波段;2对传输线场分析方法是从麦克斯韦方程出发,求满足边界条件的波动解,得出传输线上电场和磁场的表达式,进而分析传输特性;3无耗传输线的状态有行波状态、驻波状态、行、驻波状态;4在波导中产生各种形式的导行模称为波导的激励,从波导中提取微波信息称为波导的耦合,波导的激励与耦合的本质是电磁波的辐射和接收,由于辐射和接收是互易的,因此激励与耦合具有相同的场结构; 5微波集成电路是微波技术、半导体器件、集成电路的结合;6光纤损耗有吸收损耗、散射损耗、其它损耗,光纤色散主要有材料色散、波导色散、模间色散;7在微波网络中用“路”的分析方法只能得到元件的外部特性,但它可以给出系统的一般传输特性,如功率传递、阻抗匹配等,而且这些结果可以通过实际测量的方法来验证;另外还可以根据微波元件的工作特性综合出要求的微波网络,从而用一定的微波结构实现它,这就是微波网络的综合;8微波非线性元器件能引起频率的改变,从而实现放大、调制、变频等功能;9电波传播的方式有视路传播、天波传播、地面波传播、不均匀媒质传播四种方式;10面天线所载的电流是沿天线体的金属表面分布,且面天线的口径尺寸远大于工作波长,面天线常用在微波波段;11对传输线场分析方法是从麦克斯韦方程出发,求满足边界条件的波动解,得出传输线上电场和磁场的表达式,进而分析传输特性;12微波具有的主要特点是似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性;13对传输线等效电路分析方法是从传输线方程出发,求满足边界条件的电压、电流波动解,得出沿线等效电压、电流的表达式,进而分析传输特性,这种方法实质上在一定条件下是“化场为路”的方法;14传输线的三种匹配状态是负载阻抗匹配、源阻抗匹配、共轭阻抗匹配;15波导的激励有电激励、磁激励、电流激励三种形式;16只能传输一种模式的光纤称为单模光纤,其特点是频带很宽、容量很大,单模光纤所传输的模式实际上是圆形介质波导内的主模HE,11它没有截止频率;17微波网络是在分析场分布的基础上,用路的分析方法,将微波元件等效为电抗或电阻元件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络;18微波元件是对微波信号进行必要的处理或变换,微波元件按变换性质可以分为线性互易元器件、非线性互易元器件、非线性元器件三大类;19研究天线的实质是研究天线在空间产生的电磁场分布,空间任意一点的电磁场都满足麦克斯韦方程和边界条件,因此求解天线问题实质是求解电磁场方程并满足边界条件;20横向尺寸远小于纵向尺寸并小于波长的细长结构天线称为线天线,它们广泛地应用于通信、雷达等无线电系统中,它的研究基础是等效传输线理论;21用口径场方法求解面天线的辐射场的方法是:先由场源求得口径面上的场分布,再求出天线的辐射场,分析的基本依据是惠更斯――菲涅尔原理;二、问答题1、抛物面天线的工作原理是什么8分答:置于抛物面天线焦点的馈源将高频导波能量转变成电磁波能量并投向抛物反射面,如果馈源辐射理想的球面波,而且抛物面口径尺寸为无限大时,则抛物面就把球面波变为理想的平面波,能量沿Z轴正向传播,其它方向的辐射为零,从而获得很强的方向性;2、什么是视距传播简述其特点;8分1) 发射天线和接收天线处于相互能看得见的视线范围内的传播方式叫视距传播;……………………….3 2)特点为: (5)a.())(1012.4321m h h r V ⨯+=b.大气对电波将产生热吸收和谐振吸收衰减;c.场量:F re f a E E jkr-=)(θθθ 3.什么是微波其频率范围是多少它分为几个波段答:微波在电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段,其频率范围从300MHz 至3000GHz,通常以将微波波段划分为分米波、厘米波、毫米波和亚毫米波四个分波段;7分 4.什么是波导的激励和耦合激励与耦合的本质是什么激励与耦合的场结构是否相同5分答:在波导中产生各种形式的导行模称为波导的激励,从波导中提取微波信息称为波导的耦合,波导的激励与耦合的本质是电磁波的辐射和接收,由于辐射和接收是互易的,因此激励与耦合具有相同的场结构;5.微波具有的哪些主要特点6分答:微波具有的主要特点是似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性;6.天线研究的实质是什么 并阐述抛物面天线的工作原理9分答:①研究天线的实质是研究天线在空间产生的电磁场分布,空间任意一点的电磁场都满足麦克斯韦方程和边界条件,因此求解天线问题实质是求解电磁场方程并满足边界条件;②置于抛物面天线焦点的馈源将高频导波能量转变成电磁波能量并投向抛物反射面,如果馈源辐射理想的球面波,而且抛物面口径尺寸为无限大时,则抛物面就把球面波变为理想的平面波,能量沿Z 轴正向传播,其它方向的辐射为零,从而获得很强的方向性; 7.什么是天波传播天波静区的含义是什么5分答:1发射天线发射出的电波,在高空中被电离层反射后到达接收点的传播方式叫天波传播;……….2 3)当min 0θθ<时,以发射天线为中心的一定半径内不能有天波到达,从而形成一个静区,这个静区叫天波的静区;………..3 四、解答题1、已知工作波长mm 5=λ,要求单模传输,试确定圆波导的半径,并指出是什么模式 10分解:1明确圆波导中两种模式的截止波长: a a CTM CTE 6127.2;4126.30111==λλ (4)2题意要求单模传输,则应满足:a a 4126.36127.2<<λ (3)3结论:在mm a mm 91.147.1<<时,可保证单模传输,此时传输的模式为主模TE11 (3)2、一卡塞格伦天线,其抛物面主面焦距:m f 2=,若选用离心率为5.2=e 的双曲副反射面,求等效抛物面的焦距;5分 解:1写出等效抛物面的焦距公式: (3)f e e Af f e 11-+== (2) 将数据代入得: (2)m f e 67.4=3、已知圆波导的直径为5cm,填充空气介质,试求 1) TE11、TE01、TM01三种模式的截止波长2) 当工作波长分别为7cm,6cm,3cm 时,波导中出现上述哪些模式; 3)当工作波长为cm 7=λ时,求最低次模的波导波长;12分解:1求截止波长.................3 TE11:mm a CTE 3150.854126.311==λ TM01:mm a CTM 3175.656127.201==λ TE01:mm a CTE 9950.406398.101==λ 2判断. (6)a .当工作波长1170CTE mm λλ<=时,只出现主模TE11;b .当工作波长0111,60CTM CTE mm λλλ<=,便出现TE11,TM01;c .当工作波长01,0111,30CTE CTM CTE mm λλλλ<=,便出现TE11,TM01,TE01;3求波导波长 (3)mm cg 4498.122)(122=-==λλλβπλ4、一卡塞格伦天线,其抛物面主面焦距:m f 2=,若选用离心率为4.2=e 的双曲副反射面,求等效抛物面的焦距;5分 解:1写出等效抛物面的焦距公式: (3)f e e Af f e 11-+== 2将数据代入得: (2)m f e 86.4=五.计算题共 61分,教师答题时间30分钟例 1- 4设无耗传输线的特性阻抗为50Ω, 工作频率为300MHz, 终端接有负载Zl=25+j75Ω, 试求串联短路匹配支节离负载的距离l1及短路支节的长度l2;解: 1求参数由工作频率f=300MHz, 得工作波长λ=1m;终端反射系数101111Z Z Z Z e j +-=Γ=Γφ =+=1071.1j e 驻波系数 8541.61111=Γ-Γ+=ρ2求长度第一波腹点位置 0881.0411max ==φπλl m调配支节位置 1462.01arctan 21max 1=+=ρπλl l m 调配支节的长度 1831.01arctan 22=-=ρρπλl 图 2 - 3 给出了标准波导BJ-32各模式截止波长分布图;例2-1 设某矩形波导的尺寸为a=8cm,b=4cm; 试求工作频率在3GHz 时该波导能传输的模式; 解:λλλλλλλ<=+=<==>====∴=)(0715.02)(08.02)(16.022)(1.03)122c c c 110110m ba ab m b m a m fcGHzf TM TE TE )计算模式波长并判断求波长3结论可见,该波导在工作频率为3GHz 时只能传输TE10模 例 6 -3确定电基本振子的辐射电阻;解: 1电基本振子的远区场设不考虑欧姆损耗, 则根据式6 -2 -4知电基本振子的远区场为kr r IlE j e sin π60j-=θλθ 2求辐射功率将其代入式6 -3 -7得辐射功率为∑∑=⎪⎭⎫ ⎝⎛=⎰⎰R I r Il r P 2π20π22221d d sin sin 60π240ϕθθθλπ 3 所以辐射电阻为22π80⎪⎭⎫⎝⎛=∑λl R例6-4一长度为2hh<<λ中心馈电的短振子, 其电流分布为:)1()(0hz I z I -=, 其中I0为输入电流, 也等于波腹电流Im 试求:① 短振子的辐射场电场、 磁场; ② 辐射电阻及方向系数; ③ 有效长度;解: 1此短振子可以看成是由一系列电基本振子沿z 轴排列组成的, 如图 6 -9 所示;2z 轴上电基本振子的辐射场为:z z I r E r k d )(e sin 60jd j '-'=θλπθ 3整个短振子的辐射场为z r z I E hh r jk d e )(sin 60j ⎰-''=θλπθ 由于辐射场为远区, 即r>>h, 因而在yOz 面内作下列近似:θcos z r r -≈'rr 11≈' λπ/2=k所以dz e hz I re k j E hhjkz jkr⎰---=θθθcos 0)1(sin 304进一步变换整个短振子的辐射场 令积分:ϑθθcos )cos sin(2cos 1k kh dz e F hh jkz ==⎰-θθθθθ222cos 2cos )2cos (sin 4cos )cos sin(2hk kh k kh dz e h z F hhjkz +-==⎰- 则221cos )2cos sin(21⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+θθk kh h F F 因为h<<λ, 所以F1+F2≈h 因而有)sin (300θθkh r e I j E jkr-=jkr e rkhI jE H -==θπηθϕsin 405求辐射电阻 辐射功率为ϕθθϕππθd d H E p sin 21200*∑⎰⎰=将θE 和θH 代入上式, 同时考虑到∑∑=R I p 2021 短振子的辐射电阻为22)(80λπhR =∑6方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D由此可见, 当短振子的臂长h >>λ时, 电流三角分布时的辐射电阻和方向系数与电流正弦分布的辐射电阻和方向系数相同, 也就是说, 电流分布的微小差别不影响辐射特性;因此, 在分析天线的辐射特性时, 当天线上精确的电流分布难以求得时, 可假设为正弦电流分布, 这正是后面对称振子天线的分析基础; 7有效长度现在我们来讨论其有效长度; 根据有效长度的定义, 归于输入点电流的有效长度为hdz hz I I h hhein =-=⎰-)1(0这就是说, 长度为2h 、电流不均匀分布的短振子在最大辐射方向上的场强与长度为h 、电流为均匀分布的振子在最大辐射方向上的场强相等, 如图 6 -10 所示; 由于输入点电流等于波腹点电流, 所以归于输入点电流的有效长度等于归于波腹点电流的有效长度, 但一般情况下是不相等的;接收天线理论例8-4画出两个平行于z 轴放置且沿x 方向排列的半波振子, 在d=λ/4、ζ=π/2时的H 面和E 面方向图;解:1 H 面方向图函数将d=λ/4、ζ=-π/2 代入式8-2-11,得到H 面方向图函数为)1(cos 4πcos )(H -=ϕϕF 8-2-14天线阵的H 面方向图如图8-11,在由图8-11可见,在0=ϕ时辐射最大,而在πϕ=时辐射为零,方向图的最大辐射方向沿着阵的轴线这也是端射阵;请读者自己分析其原因;2 E 面方向图函数将d=λ/4、ζ=π/2代入式8-2-10 ,得到E 面方向图函数为)1(sin 4πcos sin cos 2cos )(-⎪⎭⎫ ⎝⎛=θθθπθE F 8-2-15 显然,E 面的阵方向图函数必须考虑单个振子的方向性;图8-12示出了利用方向图乘积定理得出的E 面方向图;由图8-12可见, 单个振子的零值方向在θ=0°和θ=180° 处, 阵因子的零值在θ=270°处, 所以, 阵方向图共有三个零值方向, 即θ=0°、θ=180°、θ=270°, 阵方向图包含了一个主瓣和两个旁瓣;例 9 -1设有一矩形口径a ×b 位于xOy 平面内, 口径场沿y 方向线极化, 其口径场的表达式为:axE S y 21-= , 即相位均匀, 振幅为三角形分布, 其中|x|≤2a ; 求:① xOy 平面即H 平面方向函数; ② H 面主瓣半功率宽度; ③ 第一旁瓣电平; ④ 口径利用系数; 解:1远区场的一般表达式 根据远区场的一般表达式:1)求?=H EaxE E Sy S 21-==和s s dy dx dS =一并代入上式, 并令ϕ=0得 : (sin cos sin sin 1cos 2S S jkR jk x y S M Se E j E e ds R θϕθϕθλ-++=⋅⎰⎰最后积分得22/2/sin 21ψψ⋅⋅=S A E H其中,2cos 1e j θλ+⋅=-R A jkRab S = 2sin θψka =3求H 面方向函数 所以其H 面方向函数为2cos 12/sin )2/sin sin()(2θθθθ+=ka ka F H 4求主瓣半功率波瓣宽度 由求得主瓣半功率波瓣宽度为/2sin sin 01cos 2(1)2S S jkR a jkx jkx S Se j b x e e dx R aθθθλ--+⎡⎤=⋅-+⎣⎦⎰/2/sin /2/1cos 212S jkR a b s jkx SH S S a b s e x E j e dx dy R a θθλ---+⎡⎤=⋅-⎢⎥⎣⎦⎰⎰sin(sin )4sin 4kaka θθ=aH λθ7325.0=5第一旁瓣电平为 )(2605.0log 2010dB -= 6求方向系数 将λR S E 2max=和πη720)21(2122222Sdy dx a x P bb S S a a S =-=⎰⎰--∑代入9-2-12得方向系数:4342⋅=λπS D 所以口径利用系数 υ=;可见口径场振幅三角分布与余弦分布相比,主瓣宽度展宽, 旁瓣电平降低, 口径利用系数降低;1 综合类设无耗传输线的特性阻抗为50Ω, 工作频率为300MHz, 终端接有负载Zl=25+j75Ω, 试求串联短路匹配支节离负载的距离1l 及短路支节的长度2l 只需要求一种情况16分;解: 1求参数由工作频率f=300MHz, 得工作波长λ=1m;终端反射系数101111Z Z Z Z e j +-=Γ=Γφ =+=1071.1j e 驻波系数 8541.61111=Γ-Γ+=ρ2求长度第一波腹点位置:0881.0411max ==φπλl m 调配支节位置: 1462.01arctan 21max 1=+=ρπλl l m 调配支节的长度:1831.01arctan 22=-=ρρπλl 2三基类试证明工作波长λ, 波导波长λg 和截止波长λc 满足以下关系10分: 22cgc g λλλλλ+=证明:1明确关系式kπλ2=1 22β+=c k k 2cc k λπ2=3 gλπβ2=42结论将23、4代入1中得结论2222)2()2(22gcc g gckλλλλλπλπππλ+=+==3 一般综合试求图示网络的A 矩阵, 并确定不引起附加反射的条件12分;附:解:1将网络分解成两个并联导纳和短截线网络的串接,于是网络的A 矩阵为:[][][][]321A A A A =2查表得到网络的A 矩阵为:[]⎥⎥⎦⎤⎢⎢⎣⎡--+-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=θθθθθθθθθθθθsin cos sin sin cos 2sin sin cos 101cos sin sin cos 10120000000000B jB Z j jB jZ Z B jB Z j jZ jBA000Z DCZ BAZ Z in =++=则:θcot 200Y B =4一般综合一长度为2hh<<λ中心馈电的短振子, 其电流分布为:)1()(0hz I z I -=, 其中I0为输入电流, 也等于波腹电流Im , 已知短振子的辐射场电场、 磁场表达式为:)sin (300θθkh r e I j E jkr-= 、 jkr e rkhI jE H -==θπηθϕsin 40试求: ①辐射电阻 ②方向系数; ③ 有效长度;15分 解: 1求短振子的辐射电阻 由于短振子的辐射场为:)sin (300θθkh r e I j E jkr-=jkr e rkhI jE H -==θπηθϕsin 40则辐射功率为ϕθθϕππθd d r H E p sin 212200*∑⎰⎰=将θE 和θH 代入上式, 同时考虑到∑∑=R I p 2021 短振子的辐射电阻为22)(80λπhR =∑2方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D3有效长度归于输入点电流的有效长度为h dz hz I I h hhein =-=⎰-)1(05三基类有两个平行于z 轴并沿x 轴方向排列的半波振子, 已知半波振子的方向函数为:;sin )cos 2cos(θθπ阵因子为:2cos ψ,其中ξϕθψ+=cos sin kd ;当d=λ/4, ζ=π/2时,试分别求其E 面和H 面方向函数, 8分解:1由方向图乘积定理:二元阵的方向函数等于元因子和阵因子方向函数之乘积,于是有:;2cos sin )cos 2cos()(ψθθπθ=F其中:ξϕθψ+=cos sin kd 2当00=ϕ时,得到E 面方向函数:;)sin 1(4cos sin )cos 2cos()(θπθθπθ+=E F3当090=θ时,得到H 面方向函数:;)cos 1(4cos)(ϕπθ+=H F1 综合类 一均匀无耗传输线的特性阻抗为70Ω,负载阻抗为Zl=70+j140Ω, 工作波长λ=20cm;试计算串联支节匹配器的位置和长度16分;解:1求终端反射系数 0010145707.0∠=+-=ΓZ Z Z Z 2求驻波比8.51111=Γ-Γ+=ρ3求串联支节的位置cm l 5.21arctan 2411=+=ρπλφπλ 4调配支节的长度: cm l 5.31arctan 22=-=ρρπλ 2三基类设某矩形波导的尺寸为a=8cm,b=4cm; 试求工作频率在3GHz 时该波导能传输的模式;10分 解:λλλλλλλ<=+=<==>====∴=)(0715.02)(08.02)(16.022)(1.03)122c c c 110110m ba ab m b m a m fcGHzf TM TE TE )计算模式波长并判断求波长3结论可见,该波导在工作频率为3GHz 时只能传输TE10模 3一般综合试求如图所示并联网络的S 矩阵;14分解:1写出参数方程21u u = )(221i u Y i -+=2根据入射波、反射波与电压、电流的关系:111b a u +=,111b a i -= 222b a u +=,222b a i -=3由1、2变换得到:211222a Ya Y Yb +++-=212222a YYa Yb +-+=4结论[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+++-=Y Y YY YY S 222222 4一般综合长度为2hh<<λ沿z 轴放置的短振子, 中心馈电, 其电流分布为Iz=Im·sinkh-|z|, 式中k=2π/λ, 知短振子的辐射场电场、 磁场表达式为:θθsin 3022h k r e I j E jkr m -≈ 、πηθθϕ120E E H == 试求短振子的 ① 辐射电阻; ② 方向系数;③ 有效长度归于输入电流;13分 解:1求短振子的辐射电阻 由于短振子的辐射场为:θθsin 3022h k re I j E jkr m-≈ 、 πηθθϕ120E E H == 将θE 和θH 代入上式,则辐射功率为42022max2200)(10sin sin 240sin 21kh d d E r d d H E p ===⎰⎰⎰⎰*∑ππϕππθϕθθθπϕθθ同时考虑到∑∑=R I p m 221短振子的辐射电阻为4)(20kh R =∑2方向系数为5.1sin ),(4202==⎰⎰ππϕθθϑθπd d F D3有效长度归于输入点电流的有效长度为h dz z h k I I h hhmm ein =-=⎰-)(sin5 三基类六元均匀直线阵的各元间距为λ/2, 求: ① 天线阵相对于ψ的归一化阵方向函数;② 分别求出工作于边射状态和端射状态的方向函数; 8分 解:1由公式;2sin2sin1)(ψψψN NA =当N=6时则得天线阵相对于ψ的归一化阵方向函数:;2sin3sin 61)(ψψψ=A 其中ξϕθψ+=cos sin kd2求工作于边射状态和端射状态的方向函数 ①当0=ξ时为边射阵的归一化方向函数;)cos 2sin()cos 3sin(61)(ϕπϕπψ=A②当πξ==kd 时为端射阵的归一化方向函数;))1(cos 2sin ))1(cos 3sin 61)(++=ϕπϕπψA1综合类设某一均匀无耗传输线的特性阻抗为Ω=500Z ,终端接有未知负载1Z 现在传输线上测得电压最大值和最小值分别是100mV 和20mV ,第一电压波节位置离负载31min λ=l ,试求该负载的阻抗1Z ;16分解:15minmax ==V V ρ (3)232111=+-=Γρρ…………3 33;344111min πφλλφπλ==+=l ……….3 431132πφj j e e =Γ=Γ…………..3 501101010113.644.8211;∠=Γ-Γ+=+-=ΓZ Z Z Z Z Z …………4 2、一般综合如图求双端口网络的[]Z 矩阵和[]Y 矩阵12分解:1由[]Z 矩阵的定义:…………….6 C A I Z Z I V Z +===01111221021121Z Z I V Z C I ====C B I Z Z I V Z +===022221则:[]⎥⎦⎤⎢⎣⎡++=C B C C C A Z Z Z Z Z Z Z2求[]Y (6)[][]⎥⎦⎤⎢⎣⎡+--+++==-C A C C C B C B A B A Z Z Z Z Z Z Z Z Z Z Z Z Y )(11 3、一般综合设矩形波导宽边cm a 5.2=,工作频率为:GHz f 10=,用4gλ阻抗变换器匹配一段空气波导和一段56.2=r ε的波导,如图求匹配介质的相对介电常数'r ε及变换器的长度;12分解:1各部分的等效特性阻抗如图2根据传输线的四分之一波长阻抗变换性:r r Z Z Z εε0020•=⎪⎪⎪⎭⎫⎝⎛',得6.1=='r r εε;………………5 3求波导波长:cm cm fcr 37.2;3='='==ελλλ波导波长为:cm ag 69.2)2(12='-'=λλλ……………..4 4求变换器的长度:cm l g67.04==λ (3)4三基类型直立振子天线的高度m h 10=,其电流分布表达式为:)(sin )(z h I z I m -=β,当工作波长m 300=λ,求它归于波腹电流的有效高度10分解:1写出表达式2sin2)(sin )(2hI dzz h I dz z I h I mhm hen m βββ=-==⎰⎰2求有效高度m hh en 12sin 22≈=ββ1、综合类设有一无耗传输线,终端接有负载)(30401Ω-=j Z ,求:1、要使传输线的驻波比最小,则该传输线上的特性阻抗是多少 2、此时的最小反射系数及驻波比是多少 3、离终端最近的波节点位置在何处19分 解:1求?0=Z (7)a.2202200101130)40(30)40(+++-=+-=ΓZ Z Z Z Z Z b.求?01=∂Γ∂Z030402022=-+Z ,得:Ω=500Z 2求反射系数及驻波比 (7)a.230101131πj e Z Z Z Z =+-=Γb.21111=Γ-Γ+=ρ3求?1min =z (5)⎪⎪⎩⎪⎪⎨⎧=-=πφλφπλ2344001min z ,代入得:λ811min =z2、一般综合如图求终端接匹配负载时的输入阻抗,并求出输入端匹配条件;14分解:1、求?=in Z (8)2由匹配条件: (6)0Z Z in =求得:BZ B X 21202+=;一般取:001,Z B Z X ==;3、一般综合如图,有一驻波比为的标准失配负载,标准波导的尺寸为2012cm b a ⨯=⨯,当不考虑阶梯不连续性电容时,求失配波导的窄边尺寸1b ;14分解:1根据等效传输线理论,设波导的主模为TE10,则其等效特性阻抗: (4)000)1()12()1(1)1(1jBZ BX B X j BX Z jBjX Z jX jB Z jB Z in +--+-=++++=10121001;TE e TE e Z abZ Z a b Z ==2求反射系数…………5 10102121b b b b Z Z Z Z e e e e +-=+-=Γ3求?1=b ……………5 2727.011=+-=Γρρ,求出:57.01=b 4、三基类确定沿Z 轴放置的电基本振子的方向系数10分 解:1写出电基本振子的归一化方向函数 θϕθsin ),(=F ……………..3 2求D 5.1sin sin 4202==⎰⎰ππϕθθθπd d D (7)2、B 综合类设有一无耗传输线,终端接有负载)(30401Ω-=j Z ,求:1、要使传输线的驻波比最小,则该传输线上的特性阻抗是多少 2、此时的最小反射系数及驻波比是多少 3、离终端最近的波节点位置在何处19分 解:1求0=Z (7)a.2202200101130)40(30)40(+++-=+-=ΓZ Z Z Z Z Z b.求1=∂Γ∂Z030402022=-+Z ,得:Ω=500Z 2求反射系数及驻波比 (7)a.230101131πj e Z Z Z Z =+-=Γb.21111=Γ-Γ+=ρ3求?1min =z (5)⎪⎪⎩⎪⎪⎨⎧=-=πφλφπλ2344001min z ,代入得:λ811min =z2、一般综合如图求双端口网络的[]Z 矩阵和[]Y 矩阵15分解:1由[]Z 矩阵的定义:…………….6 C A I Z Z I V Z +===01111221021121Z Z I V Z C I ====C B I Z Z I V Z +===022221则:[]⎥⎦⎤⎢⎣⎡++=C B C C CA Z Z Z Z Z Z Z2求[]Y (6)[][]⎥⎦⎤⎢⎣⎡+--+++==-C A C C C B C B A B A Z Z Z Z Z Z Z Z Z Z Z Z Y )(113、一般综合设矩形波导宽边cm a 5.2=,工作频率为:GHz f 10=,用4gλ阻抗变换器匹配一段空气波导和一段56.2=r ε的波导,如图求匹配介质的相对介电常数'r ε及变换器的长度;12分解:1各部分的等效特性阻抗如图 2根据传输线的四分之一波长阻抗变换性:r r Z Z Z εε0020•=⎪⎪⎪⎭⎫ ⎝⎛',得6.1=='r r εε; (5)3求波导波长:cm cm f c r 37.2;3='='==ελλλ 波导波长为:cm a g 69.2)2(12='-'=λλλ……………..4 4求变换器的长度:cm l g67.04==λ (3)4三基类型直立振子天线的高度m h 10=,其电流分布表达式为:)(sin )(z h I z I m -=β,当工作波长m 300=λ,求它归于波腹电流的有效高度10分解:1写出表达式2sin 2)(sin )(200hI dz z h I dz z I h I mh m h en m βββ=-==⎰⎰2求有效高度 m hh en 12sin 22≈=ββ。

微波与天线技术复习题

微波与天线技术复习题

微波与天线技术复习题
1、天线辐射场可以分成哪些类别?分别有什么特点?
2、发射天线的电参数主要有哪些?
3、微波传输线大致可以分成哪几种类型?
4、无损耗传输线有哪些工作状态?
5、传输线具有哪些不同的阻抗匹配状态?
6、负载阻抗匹配的方法有哪些?
7、常用的对称振子天线是哪两类天线?
8、折合天线的特点?
9、增大普通鞭天线(单极天线)的电流矩,使天线的辐射电阻变大的方法有哪些?
10、同轴电缆线平衡器馈电技术的方法有哪些?
11、请简述天线阵的定义和作用。

12、什么是边射式天线阵?什么是端射式天线阵?形成的条件分别是什么?
13、天线阵方向图乘积定理是什么?
14、请简述引向天线的结构。

15、背射式引向天线有什么特点?
16、我国的电视发射天线对天线的方向性有什么要求?可以通过什么方法满足方向性要求?
17、解决主波束下倾及零点填充问题的方法有哪些?
18、串馈共轴型移动通信基站天线的关键技术是什么?
19、智能天线是通过什么方法提高信道资源的利用率?
20、智能天线的关键技术是什么?
21、智能天线的定义。

22、宽频带天线?
23、电磁波在自然环境中的传播有哪几种基本传播方式?中短波广播主要靠什么方式传播?
24、为什么夜间听到的电台数目多?
25、每章的作业题。

《微波技术与天线》习题答案

《微波技术与天线》习题答案

Z1 (200 j300 ) ,始端接有电压为 500V00 ,内阻为 Rg 100 的电源求:
① ② ③ 解:
传输线始端的电压。 负载吸收的平均功率.。 终端的电压。

Zin ( 8 )
Z0
Zl Z0
jZ 0 jZ l
tan(z) tan(z)
100
200 j300 Z100
jZ100 j200
I1 Y11V1 Y12V2
I2 Y21V1 Y22V2
Y11
I1 V1
V2 0
YA YA YB YA YA YB
YA2 YA YB 2YA YB
Y22 Y11
1
Y12
I1 V2
V1 0
YA
YA YB 1 1
YA YA YB
V2
V2
YA
YA YB YA
YA2
1
4
1
2.5cm
串联支节的长度为:
l2
2
arctan
1
3.5cm
1.16 解:
由题意可得:Rmin=4.61 ,Rmax=1390
特性阻抗 Zo R min R max = 4.611390 =80.049
pp76 题 3 3.设有标准矩形波导 BJ—32 型,a =72.12mm,b=34.04mm。
0.961
输入反射系数为:
in
1e j2l
49 51
0.961
根据传输线的 4 的阻抗变换性,输入端的阻抗为:
Z in
Z02 R1
2500
1.5 试证明无耗传输线上任意相距λ/4 的两点处的阻抗的乘积等于传输线特性阻抗的平
方。

期中考试

期中考试

西安电子科技大学考试时间 120 分钟微波技术与天线 试 题(卷)班级 学号 姓名 任课教师 一、填空题:(每空1分,共25分)1、微波是指波长从 到 的电磁波。

2、长线和短线都是相对于 而言的;对长线的分析一般采用 ,而短线是集中参数电路。

3、简并模式的特点就是具有相同的 和不同的 。

4、无耗传输线的特性阻抗为: ;相位常数为: 。

5、已知无耗传输线的特性阻抗0Z 和负载阻抗L Z ,则无耗传输线的终端反射系数 。

6、已知无耗传输线的终端反射系数ΓL ,无耗传输线驻波系数 ρ= 。

7、已知无耗传输线的驻波系数ρ,则反射系数的模值Γ= 。

8、均匀无耗传输线工作在纯驻波状态时,其反射系数、驻波系数、行波系数分别是: 、 、 。

9、微波传输线按其传输电磁波的性质可分为三类: 、 、 。

10、匹配有两种:一是 匹配,使传输线两端所接的阻抗等于传输线的特性阻抗;另一种是 匹配,使信号源给出最大功率。

11、阻抗匹配的方法就是在 与 之间加入一阻抗匹配网络。

12、长度p l λ/8<终端短路的传输线可实现 ;长度p l λ/8<终端开路的传输线可实现 。

13、均匀无耗传输线工作在行波状态时,其反射系数Γ= 、驻波系数ρ= 、行波系数K = 。

14、由于微波具有 特性,其携带信息的能力远远超过中短波及超短波,因此现代多路无线通信几乎都工作在微波波段。

二、判断正误:(每小题2分,共20分)1、均匀无耗传输线工作在行波状态时,沿线各点的电压和电流均 不变。

( )2、传输线的特性阻抗Z 0是传输线上的电压和电流的比值。

( )3、4/λ阻抗变换器是常见的阻抗匹配器件,可以用在各种宽带匹配 系统中。

( )4、波导系统中的相速度小于光速,群速度大于光速,都是频率的 函数,都是色散波。

( )5、矩形波导传输的模式为mn TM ,mn TE ,其中m 表示场分布沿波导 宽边方向的半驻波分布的个数,n 表示场分布沿波导窄边方向的 半驻波的个数。

微波技术与天线试卷答案A(1)

微波技术与天线试卷答案A(1)

课程名称:微波技术与天线答案共 4 页试卷:A、考试形式:闭卷一、填空题(每空1分,共10分)1、300MHz 3000GHz。

2、相等,λ/2。

3、TE104、TE015、电激励、磁激励、电流激励6、越强二、选择题(每题2分,共20分)1、B2、D3、A4、A5、C6、B7、C8、D9、D 10、B三、简答题(每题6分,共24分)1、有一三端口元件,测得其[S]矩阵为:00.9950.1 []0.995000.100s⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦问:此元件有那些性质?它是一个什么样的元件?答:(1)由S11=S22=S33=0知,此元件的三个端口均匹配。

1分(2)由S23=S32=0知,此元件的端口2和端口3是相互隔离的。

1分(3)S ij=S ji(i、j=1,2,3)知,此元件是互易的。

1分(4)由S11=S22=S33知,此元件是对称的。

1分(5)由[S]+[S]≠[I]知,此元件是有耗的。

1分此元件是一个不等分的电阻性功率分配元件。

1分2、智能天线将在那几个方面提高移动通信系统的性能?答:1.提高通信系统的容量和频谱利用率; 1.5分2.增大基站的覆盖面积; 1.5分3.提高数据传输速率; 1.5分4.降低基站发射功率,节省系统成本,减少了信号干扰与电磁环境污染。

1.5分3、解释对称振子的波长缩短效应,分析产生的原因。

答:对称振子的相移常数β大于自由空间的波数k,亦即对称振子上的波长短于自由空间波长,称为波长缩短想象。

2分原因:(1)对称振子辐射引起振子电流衰减,使振子电流相速减小,相移常数β大于自由空间的波数k,致使波长缩短。

2分(2)由于振子导体有一定半经,末端分布电容增大,末端电流实际不为零,4、某定向耦合器的耦合度为33dB ,定向度为24dB ,端口①的入射功率为25W ,计算直通端②和耦合端口③输出功率。

(6分)解:C=10lgP 1/P 3=33dB P 1/P 3=10-3.3 P 3=P 1×10-3.3=0.0125W 2分 D=10lgP 3/P 4=24dB P 4=0.00005W=50μW 2分 则直通端的输出为: P 2=24.9875W 2分5、画出两个沿x 方向排列间距为λ/2且平行于z 轴放置的振子天线在等幅同相激励时的H 面方向图。

微波技术与天线A卷答案

微波技术与天线A卷答案

河南理工大学万方科技学院 2008-2009 学年第 1 学期《微波技术与天线》试卷(A 卷)考试方式:开卷 本试卷考试分数占学生总评成绩的 70 %复查总分 总复查人(本题20 分,每空2分)一、填空题(1)微波是电磁波谱中介于超短波与红外线之间的波段,其频率范围为300MHZ-----3000MHZ 。

(2)微波传输线大致可以分为三种类型: 双导体传输线、金属波导管和介质传输线 。

(3)阻抗圆图的正实半轴为 电压波腹点 的轨迹,负实半轴为 电压波节点 的轨迹。

(4)对于无耗传输线,负载阻抗不同则波的反射也不同,从而导致传输线的工作状态不同,通常其工作状态可以分为 行波状态、纯驻波状态和行驻波状态 。

(5)在无线通信系统中,天线的主要功能是实现 导波能量 和 无线电波 的转换。

(6)由于天线和馈线系统的联系十分紧密,有时把天线和馈线系统看成是一个部件,统称为 天馈系统 。

(7)对于各种天线而言,在离天线相同距离不同方向上,天线辐射场的相对值与空间方向的关系称为 天线的方向性 。

(8)天线的基本功能是能量转换和定向辐射,天线的 电参数 就是能定量表征其能量转换和定向辐射能力的量。

(本题20分,每小题5分)二、简答题1.描述光纤传输特性的主要参数有哪些,它们分别会影响什么?描述光纤传输特性的主要参数有光波波长、光纤芯与包层的相对折射率差、折射率分布因子以及数值孔径等。

① 光波波长λg同描述电磁波传播一样, 光纤传播因子为e j(ωt -βz),其中ω是传导模的工作角频率,β为光纤的相移常数。

对于传导模, 应满足21n k n k β<<,式中2/k πλ=,对应的光波波长为2/g λπβ=。

② 相对折射率差Δ光纤芯与包层相对折射率差Δ定义为121n n n -∆=,它反映了包层与光纤芯折射率的接近程度。

当Δ<<1时,称此光纤为弱传导光纤,此时β≈n2k ,光纤近似工作在线极化状态。

(完整word版)微波技术与天线考试试卷

(完整word版)微波技术与天线考试试卷

一、填空1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。

(同轴线的单位分布电容和单位分布电感分别()()70120104,F 1085.8,ln 2ln 2--⨯==⨯===πμμεπμπεm a b L abC 和mH ) 2、 匹配负载中的吸收片平行地放置在波导中电场最___________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。

3、平行z 轴放置的电基本振子远场区只有________和________ 两个分量,它们在空间上___________(选填:平行,垂直),在时间上_______________(选填:同相,反相)。

4、已知某天线在E 平面上的方向函数为()⎪⎭⎫⎝⎛-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。

5、旋转抛物面天线由两部分组成,___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来的球面波沿抛物面的___________向反射出去,从而获得很强___________。

二、判断1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时,该传输线为短线。

( 错)2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。

(错 )3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°,它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。

( 对)4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大功率。

( 错)5、微带线在任何频率下都传输准TEM 波。

( 错)6、导行波截止波数的平方即2c k 一定大于或等于零。

( 错) 7、互易的微波网络必具有网络对称性。

(错)8、谐振频率0f 、品质因数0Q 和等效电导0G 是微波谐振器的三个基本参量。

微波技术与天线题库

微波技术与天线题库

简答:简答:1、 什么是TE 波,波,TM TM 波和TEM 波。

在同轴线当中通常传播哪种波,在金属波导中通常传输哪种波?金属波导中通常传输哪种波?2、 反射系数、电压驻波比(反射系数、电压驻波比(VSWR VSWR VSWR)的概念,并写出它们两者间的关系)的概念,并写出它们两者间的关系式?式?3、 散射矩阵úûùêëé=22211211S S S S S 中,各参数的意义是什么?中,各参数的意义是什么? 4、 什么是微波的相速和群速?在同轴线中,相速与群速一致吗?金属波导中,相速与群速一致吗?波导中,相速与群速一致吗?5、 画一张Smith 圆图的草图,要求:圆图的草图,要求:(1)说明圆图的横、纵坐标的含义;)说明圆图的横、纵坐标的含义;(2)在图中标注短路点、开路点和匹配点的位置;)在图中标注短路点、开路点和匹配点的位置;(3)标注纯电阻线()标注纯电阻线(x=0x=0x=0))、纯电抗圆(、纯电抗圆(r=0r=0r=0)的位置。

)的位置。

)的位置。

6、均匀传输线、均匀传输线? ?7、什么是插入损耗?写出无耗传输线上的插入损耗与电压反射系数的关系式。

什么是回波损耗系式。

什么是回波损耗??无耗传输线上的回波损耗与电压反射系数的关系是什么是什么? ?8、什么是负载匹配?什么是源匹配?什么是共轭匹配?、什么是负载匹配?什么是源匹配?什么是共轭匹配?9、试说明为什么在金属波导内不能传播TEM 波?波?10、电磁波波长、频率及波速的关系?微波在自由空间中传播的速度?、电磁波波长、频率及波速的关系?微波在自由空间中传播的速度?1111、写出短路线输入阻抗与反射系数的关系式?、写出短路线输入阻抗与反射系数的关系式?、写出短路线输入阻抗与反射系数的关系式?1212、试说明、试说明λ/4传输线的阻抗变换特性。

传输线的阻抗变换特性。

1、 一特性阻抗为75W 的均匀传输线,终端接负载Z l =150W ,求负载反射系数,在离负载0.25l 及0.5l 处的反射系数又分别为多少?处的反射系数又分别为多少?2、 一条1.5m 长的传输线。

《微波技术与天线》试题真题(A卷)

《微波技术与天线》试题真题(A卷)

任课教师
考场教室
准考证号:
2. BJ-100 型矩形波导( a b 22.86 10.16mm 2 )填充相 订 对介电常数 r 2.1 的介质,信号频率 f 10GHz ,求
班级:
―――――――――――――――装
TE10 波的相波长 P 和相速度 vP 。
姓名:
第 6页 共 7页
1. 微波是指频率范围为 300MHz~3000GHz 的电磁波,它 有着不同于其它无线电波的特点,诸如 _____________________ 、 ____________________ 、 ______________________、_____________________、








3. 求电长度为 ,特性阻抗为 Z 0 的传输线段的散射参量矩阵。
4. 今 有 一 段 矩 形 波 导 , 当 终 端 短 路 时 , 测 得 某 一 波 节 位 置 d1 15cm ,相邻另一个波节位置 d 3 17cm ;当终端接喇叭天线后, 从 d1 向波源方向测得最近波节点位置 d 2 16.5cm ,驻波比 2 ,
线―――――――――――――――――――――――-
第 5 页 共 7页





院 考 试 专 用 纸
三、计算题(每题 10 分,共 40 分)
1. 均匀无耗传输线终端接 Z L 100 ,测得终端电压反射 系数的相角 2 180 和电压驻波比 1.5 。 计算终端电 压反射系数 2 和传输线特性阻抗 Z 0 。
其中11te模的场分布和矩形波导中的场分布很相似因此圆波导中11te模很容易通过矩形波导中过渡得到而且11te模的最长容易实现单模传输

微波技术与天线期末复习

微波技术与天线期末复习

11、在导行波中 截止波长λc最长的 导行模称为该 导波系统的主模。矩形波导的主模为 TE10 模, 因为该模式具有场结构简单、 稳定、频带宽和损 耗小等特点, 所以实用时几乎毫无例外地工作在该 模式。 12、与矩形波导一样,圆波导中也只能传输TE波和TM波; TE11 模是圆波导的主模, TM01 模是圆波导第一 个高次模,而 TE01 模的损耗最低,这三种模式 是常用的模式。 13、在直角坐标系中,TEM波的分量 Ez 和 Hz 为零;TE 波的分量Ez 为零;TM波的分量 Hz 为零。
3、(10分)无耗传输线有哪三种不同的工作状态?当无耗 传输线终端接哪三种负载时,传输线为纯驻波状态? 当无耗传输线终端接哪三种负载时,传输线为行驻波 状态? 行波状态传输线的特点? 无耗传输线有三种不同的工作状态: ① 行波状态; ② 纯驻波状态; ③ 行驻波状态。 行波状态传输线的特点: (1)沿线电压和电流的振幅不变,驻波比ρ=1 (2)线上任意点的电压和电流都同相 (3)传输线上各点输入阻抗均等于传输线的特性阻抗
一、填空题(不写解答过程,将正确的答案写在每小题的 空格内。每小空格1分,大空格2分。错填或不填均无分。 共30分): 1、传输线的工作特性参数主要有 特性阻抗 、 常数 、 相速 和波长 。

传播
2、驻波比的取值范围为 1≤ρ<∞ ;当传输线上全 反射时,反射系数 1 ,此时驻波比ρ= ∞ 。 3、 中称为 传播常数 , 称为衰减常数、它表示 传输线上波行进单位长度幅值的变化 , 称为 相移常 数,它表示传输线上波行进单位长度相位的变化。 4、特性阻抗50欧的均匀传输线终端接负载Z1为20j欧、50 欧,20欧时,传输线上分别形成① 纯驻波 ② 纯 行波 ③ 行驻波 。
在低频短路中,常常忽略元件连接线的分布参数效 应,认为电场能量全部集中在电容器中,而磁场能量全 部集中在电感器中,电阻元件是消耗电磁能量的。由这 些集总参数元件组成的电路称为集总参数电路。 随着频率的提高,电路元件的辐射损耗、导体损耗 和介质损耗增加,电路元件的参数也随之变化。 当频率提高到其波长和电路的几何尺寸可相比拟时, 电场能量和磁场能量的分布空间很难分开,而且连接元 件的导线的分布参数不可忽略,这种电路称为分布参数 电路。

【技术】微波复习题答案1

【技术】微波复习题答案1

【关键字】技术微波技术与天线复习提纲(2010级)一、思考题1.什么是微波?微波有什么特点?答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从到;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。

2.试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述?答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数、和驻波系数。

3.微波技术、天线与电波传播三者研究的对象分别是什么?它们有何区别和联系?答:微波技术、天线与电磁波传播史无线电技术的一个重要组成部分,它们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。

微波技术主要研究阴道电磁波在微波传输系统中如何进行有效的传输,它希望电磁波按一定要求沿传输系统无辐射地传输;天线是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变成微波设备中的导行波;电波传播研究电波在空间的传播方式和特点。

4.试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长)答:传输线的工作特性参数主要有特征阻抗Z0,传输常数,相速及波长。

1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为,它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数是描述传输线上导行波的衰减和相移的参数,其中,和分别称为衰减常数和相移常数,其一般的表达式为;3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即;4)传输线上电磁波的波长与自由空间波长的关系。

5.传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系答:输入阻抗:传输线上任一点的阻抗Zin定义为该点的电压和电流之比,与导波系统的状态特性无关,反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。

uestc微波技术与天线复习题

uestc微波技术与天线复习题

(1 分)
是二次辐射源。
惠更斯元远区辐射场特点为: 1)远区辐射场为 TEM 波(球面波); 2)为单向辐射,辐射方向图绕法线轴旋转对称; 3)最大辐射方向为其正法线方向;
5、 简述双反射面天线(卡赛格伦天线)结构,并简述其工作原理。 答: 双反射面天线由主反射器(旋转抛物面)、副反射器(双 曲面)和辐射器(馈源)三部分组成。(2 分,图形上标示也可) 主反射面焦点与副反射面一个焦点重合,馈源置于福反 射面另一焦点位置。(1 分) 馈源发射的电磁波经副反射面反射后,所有射线反向延 长线汇聚于 P2,即可等效为馈源位于 F2 点的抛物面天线; 反射波再经主反射面反射,到达口 径面时经过的波程相等,从而获得平面波。(3 分)
Z0
l2
Z0
Z0
l1
ZL = RL + jX L
答:1、将负载阻抗归一化后,在圆图上确定对应点 A(在圆图上方);(1分) 2、以圆图中心 OA 为半径作等反射系数圆,与匹配圆交于 B 点;(1分) 3、l1 段实现负载阻抗变换,使得变换后的阻抗实部等于传输线特性阻抗(归一化阻抗实部等于
1);(1 分) 4、 l2 段抵消变换后的阻抗电抗部分,使总的阻抗等于传输线特性阻抗,实现匹配;(1 分) 3、在图上标出 l1,l2 。(正确在图上标出 l1,l2 各 1 分)
1、均匀无耗传输线上任意位置处的驻波系数都相等。
(√)
2、矩形波导中不能传输 TEM 波。
(√)
3、扼流式法兰盘可以用于宽带应用需求的情况下。
(×)
4、当发射天线为左旋圆极化时,用右旋圆极化天线接收也可以接收到信号。 ( × )
5、将任意两种天线按照一定规律排列起来,并进行馈电,即可形成二元天线阵。( × )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(每题2分,共20分)
1、对于低于微波频率的无线电波的分析,常用电路分析法;对于微波用场分析法来研究系统内部结构。

2、微波传输线大致可分为三种类型:双导体传输线、波导和介质传输线。

3、无耗传输线的阻抗具有λ/2重复性和λ/4阻抗变换特性两个重要性质。

4、共轭匹配的定义为:当*g in Z Z =时,负载能得到最大功率值
g E P R g 41212max =。

5、高波导的宽边尺寸a 与窄边尺寸b 之间的关系为b>a/2.
6、微带传输线的基本结构有两种形式:带状线和微带线,其衰减主要是由导体损耗和介质损耗引起的。

7、建立在等效电压、等效电流和等效特性阻抗基础上的传输线称为等效传输线。

8、极化方式主要有椭圆极化、圆极化和线极化三种方式。

9、横向尺寸远小于纵向尺寸并小于波长的细长结构的天线称为线天线。

10、 在无线电波传输过程中,产生失真的原因主要有媒质的色散效应和随机
多径传输效应。

二、判断题(每题1分,共10分)
1、TE 波和TM 波的最低次模分别为11TE 和 10TM (错)
2、将0≠z E 而0=z H 的波称为TE 波 (错)
3、描述光纤传输特性主要是色散和损耗 (对)
4、辐射电阻越大,有效长度越短,天线的辐射能力越强 (错)
5、天线通信的最佳功率max 85.0f f opt = (对)
6、智能天线技术使得空分多址(SDMA )成为可能 (对)
7、若无耗线处于行波状态时,则终端反射系数为11=Γ,且0Z Z in =(错)
8、相速度可以用来表示波能量的传输速度 (错)
9、多径效应造成了天线系统传输过程中信号的衰落 (对)
10、天线接收的功率可分为三个部分:接收天线的再辐射功率、负载吸收的功率
和媒质的损耗功率。

(对)
(a) 微波是介于 超短波 与 红外线 之间的波,频率范围从 300 MHz 到 3000
GHz 。

光波属于电磁波谱的 可见光 段,工作波长为 纳米 量级。

(5分)
(b) 由于微波在电磁波谱中的特殊位置,所以具有以下特性 似光性和似声性、穿透性、非电离性、信息性、宽频带特性、热效应特性、散射特性、抗低频
干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染等
(请列举5种以上,5分)。

(c) 某矩形波导中的信号能够单模传输,那么它一般工作于 10TE 模式,截止波
长为_2a _,其中a 为波导宽边尺寸。

如果转接成圆型波导馈入基站仍然为单
模,那么它此时工作于11TE 模式。

圆柱波导传输场一般可采用 分离变量 法
求解,由于匹配边界条件的缘故,如果支撑场解中的第一类贝塞尔函数带有
求导符号,那么必定为TE 模,其余场分量利用支撑场和 纵横关系 求出。

(5
分)
(d) 圆型波导虽然损耗比矩形波导小,但是由于其中存在固有的 极化简并 等问
题,一般不用于长距离传输系统。

对于腔式谐振器器件,由于损耗主要来源
于 腔体的金属壁和腔内填充的介质 ,所以采用 开放式或半开放式谐振器
有利于获得更小的损耗。

作为封闭谐振体的改进版,可以采用 由两块平行金
属板构成开式 结构的法布里——珀罗谐振器,这种谐振器稳定工作的条件是
120111d d R R ⎛⎫⎛⎫≤--≤ ⎪ ⎪⎝
⎭⎝⎭。

(5分) (e) 空心波导的激励可以通过 探针激励、环激励、孔或缝激励、直接过渡 等方
法获得。

(3分)
(1)传输线上存在驻波时,传输线上相邻的电压最大位置和电压最小位置的距离相差( 4/λ ),在这些位置输入阻抗共同的特点是( 纯电阻 )。

(2) 当横截面尺寸相同时,填充不同介电常数的介质的矩形波导的截止波长是( 相同 )的,而截止频率是( 不同 )的。

(3)全反射负载位于SMITH 圆图的( 1=Γ )圆上。

SMITH 圆图的( 实轴 )位置阻抗为纯电阻。

(4)当用单并联短截线对负载进行阻抗匹配时,并联短截线应该接在输入导纳满足( 0in Y G = )位置。

当改变并联短截线的长度时,输入导纳在SMITH 圆图
上的变化轨迹是( 沿等G 圆 )。

(5)无耗传输线谐振器串联谐振的条件是( 0Z in = ),并联谐振的条件是( ∞=in Z )
1.从传输线方程看,传输线上任一点处的电压和电流都等以该处相应的
( 入射 ) 波和 ( 反射 ) 波的叠加 。

2.终端短路的传输线的输入阻抗等于 ( j Zc tg βl ) ,
终端开路的传输线的输入阻抗等于 (-j Zc ctg βl )
3.电磁波的波长和频率满足( λ<λ c ) 或 ( f>fc ) 条件才能在波导中
传输。

4. 圆波导的三种主要工作模式(TE11 ) ( TE01 ) (TM01) 。

5. 无耗网络的Z 和Y 参数是 ( 纯虚数 ) ,A 参数的(A11) 、和 ( A22 ) 是实数。

6. 微波网络的工作特性参量有(电压传输系数T ) 、(插入衰减A )(插入相移θ ) 、 ( 输入驻波比ρ ) 。

7.分支调配器可调电纳范围 ( −∞~+∞ ) ,螺钉调配器可调容性电纳范围 ( 0~+∞ ) 。

8.微波谐振器有那两个主要功能 ( 储能 ) 、 ( 选频 ) 。

1、传输线某参考面的输入阻抗定义为该参考面的( 总 )电压和( 总 )电流的比值;传输线的特征阻抗等于( 入射 )电压和( 入射 )电流的比值;传输线的波阻抗定义为传输线内( 横向电场 )和( 横向磁场 )的比值。

2、矩形波导传输的基模是( TE 10 模 );宽度为a ,高度为b (a>b )的空气填充矩形波导,当工作波长大于( 2a ),电磁波不能在波导中传播。

3、在SMITH 圆图中,原点代表的传输线工作状态是( 行波状态(或匹配状态) ),上半平面的阻抗性质是( 感性 )。

1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为mm b mm a 72,22==,
传输线上的特性阻抗Ω=__________
0Z 。

(同轴线的单位分布电容和单位分布电感分别
()()70120104,F 1085.8,ln 2ln 2--⨯==⨯===πμμεπμπε
m a b L a b C 和m H )
2、 匹配负载中的吸收片平行地放置在波导中电场最___________处,在电场作用下
吸收片强烈吸收微波能量,使其反射变小。

3、 平行z 轴放置的电基本振子远场区只有________和________ 两个分量,它们在
空间上___________(选填:平行,垂直),在时间上_______________(选填:同相,反相)。

4、 已知某天线在E 平面上的方向函数为()⎪⎭⎫ ⎝⎛-=4sin 4
sin πθπθF ,其半功率波瓣宽度_________25.0=θ。

5、 旋转抛物面天线由两部分组成,___________ 把高频导波能量转变成电磁波能量
并投向抛物反射面,而抛物反射面将其投过来的球面波沿抛物面的___________向反射出去,从而获得很强___________。

答案
1、50
2、强
3、θE ϕH 垂直 相同
4、180
5、馈源 轴 方向。

相关文档
最新文档