STM32 SPI通信原理及编程步骤

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPI_Cmd(SPI2, ENABLE); //使能SPI外设
SPI2_ReadWriteByte(0xff);//启动传输
} //SPI 速度设置函数 //SpeedSet: //SPI_BaudRatePrescaler_2 2分频 //SPI_BaudRatePrescaler_8 8分频 //SPI_BaudRatePrescaler_16 16分频 //SPI_BaudRatePrescaler_256 256分频
uint16_t SPI_Direction; uint16_t SPI_Mode; uint16_t SPI_DataSize; uint16_t SPI_CPOL; uint16_t SPI_CPHA; uint16_t SPI_NSS; uint16_t SPI_BaudRatePrescaler; uint16_t SPI_FirstBit; uint16_t SPI_CRCPolynomial; }SPI_InitTypeDef;
数据时钟时序图
STM32 的 SPI 功能很强大, SPI 时钟最多可以到 18Mhz,支持 DMA,可以配置为 SPI 协议或者 I2S 协议(仅大容量型号支持,战舰 STM32 开发板是支持的)。
二、库函数讲解
SPI 相关的库函数和定义分布在文件 stm32f10x_spi.c 以及头文件 stm32f10x_spi.h 中。 STM32 的主模式配置步骤如下:
STM32 SPI通信原理及编程步骤
一、简介
SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线。 SPI 接口一般使用 4 条线通信:
MISO 主设备数据输入,从设备数据输出。 MOSI 主设备数据输出,从设备数据输入。 SCLK 时钟信号,由主设备产生。 CS 从设备片选信号,由主设备控制。
GPIO_SetBits(GPIOB,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //PB13/14/15上拉
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工 SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //设置SPI工作模式:设置为主SPI SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //设置SPI的数据大小:SPI发送接收8位帧结构 SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; //串行同步时钟的空闲状态为高电平 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; //串行同步时钟的第二个跳变沿(上升或下降)数据被采样 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制 SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //定义波特率预分频的值:波特率预分频值为256 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始 SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC值计算的多项式 SPI_Init(SPI2, &SPI_InitStructure); //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器
关于管脚的配置,参考下表:
#include "spi.h"
void SPI2_Init(void) {
GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能 RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2, ENABLE );//SPI2时钟使能
void SPI2_SetSpeed(u8 SPI_BaudRatePrescaler) {
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler)); SPI2->CR1&=0XFFC7; SPI2->CR1|=SPI_BaudRatePrescaler; //设置SPI2速度 SPI_Cmd(SPI2,ENABLE);
初始化的范例格式为: SPI_InitTypeDef SPI_InitStructure; SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //双线双向全双工 SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //主 SPI SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; // SPI 发送接收 8 位帧结构 SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;//串行同步时钟的空闲状态为高电平 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;//第二个跳变沿数据被采样 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS 信号由软件控制 SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //预分频 256 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //数据传输从 MSB 位开始 SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC 值计算的多项式
SPI 主要特点有: 可以同时发出和接收串行数据; 可以当作主机或从机工作; 提供频率可 编程时钟; 发送结束中断标志; 写冲突保护; 总线竞争保护等。
SPI 总线四种工作方式 SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性( CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果 CPOL=1,串行同步时钟的空闲状态为高电平。时 钟相位( CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据 被采样;如果 CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。 SPI 主模块和与之通信的外设备时钟相位和极性应该一 致。
SPI_Init(SPI2, &SPI_InitStructure); //根据指定的参数初始化外设 SPIx 寄存器 3) 使能 SPI2 初始化完成之后接下来是要使能 SPI2 通信了, 在使能 SPI2 之后,我们就可以开始 SPI 通讯了。 使能 SPI2 的方法是: SPI_Cmd(SPI2, ENABLE); //使能 SPI 外设 4) SPI 传输数据 通信接口当然需要有发送数据和接受数据的函数,固件库提供的发送数据函数原型为: void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data); 这个函数很好理解,往 SPIx 数据寄存器百度文库入数据 Data,从而实现发送。 固件库提供的接受数据函数原型为: uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx) ; 这个函数也不难理解,从 SPIx 数据寄存器读出接受到的数据。 5) 查看 SPI 传输状态 在 SPI 传输过程中,我们经常要判断数据是否传输完成,发送区是否为空等等状态,这是通过函数 SPI_I2S_GetFlagStatus 实现的,这个函数很 简单就不详细讲解,判断发送是否完成的方法是: SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE);
1) 配置相关引脚的复用功能,使能 SPI2 时钟 我们要用 SPI2,第一步就要使能 SPI2 的时钟。其次要设置 SPI2 的相关引脚为复用输出,这样才会连接到 SPI2 上否则这些 IO 口还是默认的状 态,也就是标准输入输出口。这里我们使用的是 PB13、 14、 15 这 3 个( SCK.、 MISO、 MOSI, CS 使用软件管理方式),所以设置这三个为 复用 IO。 GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );//PORTB 时钟使能 RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE );//SPI2 时钟使能 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PB13/14/15 复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化 GPIOB 2) 初始化 SPI2,设置 SPI2 工作模式 接下来我们要初始化 SPI2,设置 SPI2 为主机模式,设置数据格式为 8 位,然设置 SCK 时钟极性及采样方式。并设置 SPI2 的时钟频率(最大 18Mhz),以及数据的格式( MSB 在前还是LSB 在前)。 这在库函数中是通过 SPI_Init 函数来实现的。void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct);跟其他外设初始化一样,第一个参数是 SPI 标号,这里我们是使用的 SPI2。 下面我们来看看第二个参数结构 体类型 SPI_InitTypeDef 的定义: typedef struct {
从图中可以看出, 主机和从机都有一个串行移位寄存器,主机通过向它的 SPI 串行寄存器写入一个字节来发起一次传输。寄存器通过 MOSI 信 号线将字节传送给从机,从机也将自己的移位寄存器中的内容通过 MISO 信号线返回给主机。这样,两个移位寄存器中的内容就被交换。外设的写 操作和读操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引 发从机的传输。
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //PB13/14/15复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOB
相关文档
最新文档