《实变函数与泛函分析》教学大纲
教学大纲_实变函数与泛函分析
《实变函数与泛函分析》教学大纲课程编号:120233B课程类型:□通识教育必修课□通识教育选修课□专业必修课□专业选修课□√学科基础课总学时:48 讲课学时:48 实验(上机)学时:0学分:3适用对象:经济统计学先修课程:数学分析、高等代数、空间解析几何毕业要求:1.应用专业知识,解决数据分析问题2.可以建立统计模型,获得有效结论3.掌握统计软件及常用数据库工具的使用4.关注国际统计应用的新进展5.基于数据结论,提出决策咨询建议6.具有不断学习的意识一、课程的教学目标本课程以实变函数与泛函分析基本理论为基础,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。
本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。
本课程基本目标为:能理解、掌握Lebesgue测度和Lebesgue积分,赋范空间和Hilbert空间一些基本概念、基本理论和基本方法。
本课程的难点在于学生初次涉及众多的抽象概念,并且论证的部分很多,教学中应密切结合数学分析中学到的相对来说比较直观的内容讲解,并督促学生下工夫理解。
二、教学基本要求(一)教学内容及要求《实变函数与泛函分析》在理解数学分析思想及基本知识和线性代数的基本知识后将其拓展到实数域上,进而讨论集合,欧氏空间,Lebesgtle测度,Lebesgue 可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,L^p空间,L^2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。
其中要求同学们:1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。
实变函数与泛函分析概要
实变函数与泛函分析概要第一章 集合 基本要求:1、 理解集合的包含、子集、相等的概念和包含的性质。
2、 掌握集合的并集、交集、差集、余集的概念及其运算性质。
3、 会求已知集合的并、交、差、余集。
4、 了解对等的概念及性质。
5、 掌握可数集合的概念和性质。
6、 会判断己知集合是否是可数集。
7、 理解基数、不可数集合不可数集合不可数集合、、连续基数连续基数的概念。
8、了解半序集和Zorn 引理。
第二章 点集 基本要求基本要求:1、 理解n 维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。
2、 掌握内点、聚点的概念、理解外点、界点、孤立点的概念。
掌握聚点的性质。
3、 掌握开核、导集、闭区间的概念及其性质。
4、 会求己知集合的开集和导集。
5、 掌握开核、闭集、完备集的概念及其性质,掌握一批例子。
6、 会判断一个集合是非是开(闭)集,完备集。
7、 了解Peano 曲线概念。
主要知识点主要知识点::一、基本结论:1、 聚点性质§2 中T 1聚点原则:P 0是E 的聚点⇔ P 0的任一邻域内,至少含有一个属于E 而异于P 0的点⇔存在E 中互异的点列{P n },使P n →P 0 (n →∞) 2、 开集、导集、闭集的性质§2 中T2、T3T2:设A ⊂B ,则Aɓ⊂Bɓ, A⊂ B,-A⊂-B。
T3:(A ∪B )′=A ′∪ B ′.3、 开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E ⊂R ⁿ,ö是开集,E ´和―E都是闭集。
(ö称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E 是开集,则CE 是闭集;设E 是闭集,则CE 是开集。
T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。
T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。
T5:(Heine-Borel 有限覆盖定理)设F 是一个有界闭集,ℳ是一开集族{U i }i єI 它覆盖了F (即F с ∪iєIU i ),则ℳ中一定存在有限多个开集U 1,U 2…U m ,它们同样覆盖了F (即F ⊂m∪ U i )(i єI )4、 开(闭)集类、完备集类。
实变函数与泛函分析课程教学大纲
《实变函数与泛函分析》课程教学大纲一、课程基本信息课程代码:110047课程名称:实变函数与泛函分析英文名称:Real variable analysis And Functional analysis课程类别:专业基础课学时:50学分:3适用对象:信息与计算科学专业本科考核方式:考试,平时成绩30%,期末成绩70%先修课程:数学分析和高等代数二、课程简介中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。
它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。
泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。
英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning.三、课程性质与教学目的本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。
深圳大学数学与计算科学学院
主要内容
1. 内积空间 2. 泛函延拓定理 3. Hilbert 空间的规范正交系 4. 共轭算子
教学要求
(1) 掌握 Banach 空间的定义与基本例子(n 维欧氏空间 Rn、连续函数空间 C(A)、有 界数列空间 l∞ 、 p 次 收敛数列空间 lp、 p 方可积函数空间 Lp 等都是 Banach 空间) ;知道非 Banach 空间是存在的:C[a,b]在 Lp 范数下不是 Banach 空间; (2) 掌握内积与内积空间的定义与基本例子;熟练掌握内积的正定性、首元线性性与 共轭对称性;掌握内积诱导范数的思想;熟练掌握内积诱导范数的基本性质、和 的范数恒等式;掌握内积满足 Schwarz 不等式并且是二元连续函数的事实;掌握 内积空间的特征:范数满足平行四边形法则; (3) 掌握 Hilbert 空间的定义与基本例子;知道在同构的意义下,可分的 Hilbert 空间 只有 Rn 与 l2; (4) 掌握正交向量的定义;知道正交向量满足勾股定理,而且在实内积空间中,勾股 定理是两个向量正交的充分必要条件;了解极小化向量定理与正交分解定理(投 影定理) ; (5) 了解正交系、规范(标准)正交系、完全规范正交系或规范(标准)正交基的概 念与基本例子;掌握 Gram-Schmidt 正交化过程;知道每个非零的可分 Hilbert 空 间 X 必存在规范(标准)正交基; (6) 了解 Fourier 系数、Fourier 级数的定义; 了解最佳逼近定理; 知道 Bessel 不等式、 Parseval 恒等式;知道向量可以展成 Fourier 级数的条件; (7) 掌握 Banach 空间基本定理之 Hahn-Banach 定理;掌握 Hilbert 空间之 Riesz 表示 定理。 注:根据各课程的具体情况编写,但必须写明各章教学目的、教学要求、主要内容。
实变函数与泛函分析I课程教学大纲
实变函数与泛函分析I课程教学大纲(总学时数:48,学分数:3)一、课程的性质、任务和目的实变函数是数学专业必修课之一,是近代分析数学领域的基础。
本课程数学思想与方法密集,是进一步掌握现代数学理论,开展理论和应用研究必不可少的基础课程。
通过本课程的学习,使学生掌握实变函数的基本理论、基本知识与基本方法,为以后进一步的深入学习打下坚实的基础。
二、课程基本内容和要求(一)集合1.集合(1)集合的概念(理解)(2)集合的表示(掌握)(3)集合的运算(掌握)2.对等与基数(1)集合的对等(理解)(2)集合的基数(理解)(3)Bernstein定理(掌握)3.可数集合(1)可数集合的概念(理解)(2)可数集合的性质(掌握)(3)常见的可数集合(掌握)4.不可数集合(1)不可数集合的概念(理解)(2)常见的不可数集合(了解)重点:对等、基数、可数集合、不可数集合难点:对等(二)点集1.度量空间(1)距离的概念(理解)(2)度量空间的概念(理解)(3)邻域及性质(掌握)(4)n维欧氏空间(掌握)2.聚点、内点、界点(1)聚点的概念(理解)(2)内点的概念(理解)(3)界点的概念(理解)3.开集、闭集、完备集(1)开集的概念(理解)(2)闭集的概念(理解)(3)完备集的概念(理解)(4)有限覆盖定理(掌握)4. 直线上开集、闭集及完备集的构造(1)直线上开集的构造(掌握)(2)直线上闭集及完备集的构造(掌握)(3)康托尔三分集(了解)重点:聚点、内点、界点、开集、闭集难点:完备集(三)测度论1.外测度(1)外测度的概念(理解)(2)外测度的性质(掌握)2.可测集(1)可测集的概念(理解)(2)可测集的性质(掌握)3.可测集类重点:外测度、可测集的概念及相关理论难点:不可测集的构造。
(四)可测函数1.可测函数及性质(1)可测函数的概念(理解)(2)可测函数的性质(掌握)2.叶果洛夫定理(掌握)3.可测函数的构造(掌握)4.依测度收敛(1)依测度收敛的概念(理解)(2)依测度收敛的性质(掌握)重点:可测函数、依测度收敛难点:可测函数的构造(五)积分论1.非负简单函数的勒贝格积分(1)非负简单函数勒贝格积分的概念(理解)(2)非负简单函数勒贝格积分的性质(掌握)2.非负可测函数的勒贝格积分(1)非负可测函数勒贝格积分的定义(理解)(2)非负可测函数勒贝格积分的性质(掌握)(3)Levi定理(掌握)(4)Foutou引理(掌握)3.可测函数的勒贝格积分(1)可测函数勒贝格积分的概念(理解)(2)可测函数勒贝格积分的性质(掌握)(3)Lebesgue积分的绝对连续性(掌握)(4)Lebesgue控制收敛定理(掌握)重点:非负函数的积分的定义,可积函数的性质难点:一般可积函数的积分定义、性质。
实变函数与泛函分析教学大纲-数学与信息科学学院
《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。
2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。
二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。
“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。
三、课程教学内容第一章 集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。
2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。
熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。
熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。
教学大纲_实变函数与泛函分析
教学大纲_实变函数与泛函分析实变函数与泛函分析是高级数学中的一门重要课程,主要涉及实变函数的性质及其应用,以及泛函分析中的函数空间与算子的概念和性质。
本教学大纲旨在培养学生对实变函数与泛函分析的基本理论和方法的理解与应用能力。
一、课程目标通过本课程的学习,学生应该能够:1.了解实变函数的定义、性质和基本的分析方法;2.掌握实数的完备性和实变函数的连续性、可微性等基本概念与定理;3.熟悉重要的实变函数序列收敛的理论和方法;4.理解一元多项式空间及其上的内积、范数等概念;5.了解泛函分析的基本概念,如线性算子、单射、满射、闭算子等;6.掌握泛函分析中重要的泛函空间和赋范向量空间的性质与应用。
二、教学内容1.实变函数的性质与基本分析方法(12学时)1.1实数的完备性与实变函数的极限概念1.2实变函数的连续与可导性质1.3实变函数的积分与微分概念与定理2.实变函数的序列收敛理论与方法(16学时)2.1一致收敛性与收敛级数理论2.2函数项级数的收敛理论与方法2.3 Weierstrass逼近定理的证明与应用2.4傅里叶级数的概念、性质及展开方法3.一元多项式空间与泛函分析基础(14学时)3.1一元多项式空间及其上的内积与范数3.2一元多项式空间中的正交多项式与勒让德多项式3.3泛函分析的基本概念与定理4.泛函空间与线性算子(18学时)4.1泛函空间的定义与性质4.2无穷维度空间的收敛性与紧性4.3线性算子的基本性质与分类4.4线性算子的连续性与有界性5.算子的谱理论与泛函方程(20学时)5.1线性算子的谱理论与应用5.2巴拿赫空间的定义与性质5.3泛函方程的基本理论与应用5.4泛函方程的解的存在唯一性定理三、教学方法1.理论教学:通过讲述与讲解基本概念与定理,引导学生掌握基本原理和方法。
2.解题指导:通过典型例题和习题,引导学生独立思考问题,掌握解题方法和技巧。
3.讨论与交流:鼓励学生参与讨论,提问和回答问题,促进学生之间的交流与合作。
实变函数与泛函分析 讲义
教学
基本内容
一、勒贝格积分极限定理
定理1勒贝格控制收敛定理
定理2列维定理
定理3 L逐项积分定理
定理4积分的可数可加性
定理5 Fatou引理
定理6积分号下求导
二、定理7 R反常积分与L积分的关系定理
例1
三、勒贝格控制收敛定理,列维定理与Fatou引理之间的关系
授ห้องสมุดไป่ตู้方式方法手段
教学方法:以课堂教学为主要形式,启发式教学,重点突出,安排一定的师生互动的内容和时间.
教学手段:使用多媒体课件与板书相结合的方法教学.
参考资料
1.夏道行等编《实变函数与泛函分析》,高等教育出版社,1980.
2.程其襄等编《实变函数与泛函分析基础》,高等教育出版社,1983.
课后小结
本节课主要是介绍勒贝格积分极限定理的系列内容,对勒贝格积分的特有性质作了具体的分析,并且比较了R积分相应的结论.
临沂师范学院数学系教案纸
教学章节
第5章5节积分极限定理
教学目的
教学要求
目的:掌握勒贝格积分极限定理的系列内容.
要求:掌握勒贝格控制收敛定理、列维定理、逐项积分定理、可数可加性、法都定理的基本内容.
教学重点
教学难点
教学重点:勒贝格积分极限定理.
教学难点:勒贝格积分极限定理.
授课学时
4
授课时间
课后作业
P142 15、16、17
实变函数与泛函分析泛函分析教案
§1 柯西点列和完备度量空间 教学内容(或课题):目的要求: 掌握柯西点列、完备度量空间的概念,学会使用概念和完备度量空间的充要条件判别完备度量空间. 教学过程:设{}∞=1n n x 是1R 中的点列,若>∀ε0,()N ∈=∃εN N ,s.t.当Nn m >,时,有()m n x x d ,=m n x x -<ε,则称{}∞=1n n x 是1R 中的柯西点列.Def 1 设X =(X ,d )是度量空间,{}∞=1n n x 是X 中的点列. 若>∀ε0,()N ∈=∃εN N ,s.t.当N n m >,时,有()m n x x d ,<ε,则称{}∞=1n n x 是X 中的柯西点列或基本点列. 若度量空间(X ,d )中每个柯西点列都收敛,则称(X ,d )是完备的度量空间.有理数的全体按绝对值距离构成的空间不完备,如点列1, 1.4, 1,41,,412.1 在1R 中收敛于2,在有理数集中不收敛.但度量空间中每一个收敛点列都是柯西点列.实因若x x n →,则>∀ε0, ()N ∈=∃εN N ,s.t.当N n m >,时,都有()x x d n ,<2ε.因此当N m n >,时,有()m n x x d ,≤()x x d n ,+()x x d m ,<2ε+2ε. 所以{}∞=1n n x 是柯西点列.例2 ∞l (表有界实或复数列全体)是完备度量空间.证明 设{}∞=1m m x 是∞l 中的柯西点列,其中m x =() ,,21ξξ.>∀ε0,()N ∈=∃εN N ,s.t.当N n m >,时,都有()n m x x d ,=()()n j m j jξξ-sup <ε (1)因此对每个固定的j ,当N n m >,时,成立()()n j m j ξξ-<ε (2) 于是()k j ξ, ,2,1=k 是柯西数列. 由于实数集或复数集按差的绝对值定义距离是完备的,故存在实或复数j ξ,s.t. ()n j ξ→j ξ(∞→n )令x =() ,,21ξξ,往证x ∈∞l 且m x →x . 在(2)中,令∞→n ,得N m >∀时,成立()j m j ξξ-≤ε (3)因为m x =()()()(),,,,21m j m m ξξξ∈∞l ,所以∃m K >0,s.t.j ∀∈N ,成立()m j ξ≤m K (不同的数列,界可能不一样). 所以 ()≤-≤m j j j ξξξε+m K . 所以x ∈∞l . 由(3)知,N m >∀时,成立()=x x d m ,()εξξ≤-j m j jsup .所以x x m →. 所以∞l 是完备度量空间.例2 令C 表示所有收敛的实或复数列的全体,∀x =() ,,21ξξ∈C ,∀y =() ,,21ηη∈C ,令 ()y x d ,=j j jηξ-sup . 则 01()y x d ,≥0且x =y时,()y x d ,=0. 又j j ηξ-≤j j jηξ-sup =()y x d ,=0 ⇒ j ξ=j η(N ∈j ).于是()y x d ,=0 ⇔ x =y . 02z ∀=() ,,21ςς∈C ,则由于对∀N ∈j ,成立 j j ηξ-≤j j ςξ-+j j ςη-≤j j jςξ-sup +j j jςη-sup =()z x d ,+()z y d ,. 所以j j jηξ-su p ≤()z x d ,+()z y d ,. 即()y x d ,≤()z x d ,+()z y d ,. 所以()y x d ,可定义为C 中∀两点间的距离. 于是C 按距离()y x d ,成为度量空间(实际上是∞l 的一个子空间). 欲证C 是完备度量空间,先证Th 1 完备度量空间X 的子空间M 是完备度量空间 ⇔ M 是X 中的闭子空间.证明 设M 是完备子空间,对每个x ∈M ',∃M 中点列{}∞=1n n x ,使x x n →. 所以{}∞=1n n x 是M 中柯西点列. 所以它在M 中收敛. 由极限的唯一性,所以x ∈M . 所以M '⊂M . 即M 是X 中的闭子空间. 反之,若{}∞=1n n x 是M 中柯西点列,因X 是完备度量空间,则在X 中收敛. 即∃x ∈X ,s.t. x x n →.因为M 是X 中的闭子空间,所以x ∈M ,所以{}∞=1n n x 在M 中收敛. 于是M 是完备度量空间.例2的证明 由Th 1 只证C 是∞l 中的闭子空间即可. ∀x =() ,,21ξξ∈C '(要证k j ξξ-<ε,从而x ∈C ),∃n x =()()() ,,21n n ξξ∈C ( ,2,1=n ),s.t. x x n →. 所以>∀ε0,N ∈∃N ,s.t.当N n ≥时,成立()j n j ξξ-≤()j n j jξξ-sup =()x x d n ,<3ε. 特别取N n =,则对j ∀∈N ,成立 ()j N j ξξ-<3ε.因为N x ∈C , 所以当∞→j 时,()N j ξ收敛. 故∃1N ∈N ,s.t. j ∀,≥k 1N 时,成立()()N k N j ξξ-<3ε. 所以j ∀,≥k 1N 时,成立 k j ξξ-≤()N j j ξξ-+()()N k N j ξξ-+()k N k ξξ-<3ε+3ε+3ε=ε. 所以{}∞=1j j ξ是柯西数列,因而收敛. 所以x =() ,,21ξξ∈C . 所以C 是∞l 中的闭子空间. 由Th 1,C 是完备度量空间. 证毕. 作业: P 206. 14. 15中的()A B S ,.作业题解: 14 ε=1,N ∈∃N ,s.t.当N n m >,时,有()m n x x d ,<1,特别当N n >时,有()1,+N n x x d <1. 又N n ≤时,()1,+N n x x d 只有有限个值故>∃M 0,s.t. ()1,+N n x x d ≤M . 因此N ∈∀m n ,,成立()m n x x d ,≤()1,+N n x x d +()m N x x d ,1+≤{}M M 2,1,2max +. 所以{}∞=1n n x 是有界点列.15设{}∞=1n n x 是S 中的柯西点列,n x =()()(),,21n n ξξ. 即>∀ε0,N ∈∃N , s.t.∀N n m >,时,成立()m n x x d ,=()()()()∑∞=-+-1121k m k n k m kn k k ξξξξ<ε (*) 所以k ∀∈N ,∀N n m >,时,成立()()()()m k n k m k n k ξξξξ-+-1<εk 2.因为∀给σ>0, 对于每个固定的k ,∃ε:0<ε<σσ+121k ,然后由这个ε,按不等式(*),N ∈∃N . 所以∀N n m >,时,对这个固定的k ,成立()()()()m k n k m k n k ξξξξ-+-1<σσ+1. 所以 ()()m k n k ξξ-<σ (N n m >,). 所以{}∞=1j j ξ是实(复)数集中的柯西点列. 而实(复)数集完备, 所以(){}∞=1n n k ξ收敛,设()n k ξ→k ξ(∞→n ). 记x =() ,,21ξξ,则x x n →. 而x ∈S ,所以S 完备. 设{}∞=1n n x 是()A B 中的柯西点列,n x =()t f n ,A t ∈.>∀ε0,N ∈∃N ,s.t.当∀N n m >,时,成立()()t f t f m n At -∈sup <ε. 所以∀N n m >,及A t ∈,成立()()t f t f m n -<ε. (**) 因此在集A 上,函数列(){}∞=1n n t f 收敛,设()t f n ()t f →. 由(**)式,令∞→m 得N n >时,()()ε≤-t f t f n . 所以N n >时,()t f ≤()()t f t f m n -+()t f n ≤ε+M (由于(){}∞=1n n t f 收敛,从而M 存在).所以()()A B t f ∈,又已证()t f n ()t f →所以()A B 是完备度量空间.§2柯西点列和完备度量空间(续)教学内容(或课题):目的要求: 再次巩固上次课学习的概念与定理,进一步掌握使用概念及定理判别完备度量空间的常用方法. 教学过程:[]b a C ,是完备的度量空间.证明 设 n x , ,2,1=n 是[]b a C ,中的柯西点列. >∀ε0,N ∈∃N ,s.t.当∀N n m >,时,成立bt a ≤≤max ()()t x t x n m -<ε. (4)所以t ∀∈[]b a ,,有()()t x t x n m -<ε. 于是当t 固定时,(){}∞=1n n t x是柯西数列.由实(复)数集的完备性,∃()t x ,s.t.()t x n →()t x . 往证()t x ∈[]b a C ,,n x →x 实因在(4)中令∞→m ,得知N n >时,成立bt a ≤≤max ()()t x t x n -≤ε. (5)所以()t x n 在[]b a ,上一致收敛于()t x ,从而()t x ∈[]b a C ,. 由(5),当N n >时,()x x d n ,=bt a ≤≤max ()()t x t x n -≤ε.所以 n x →x ,故[]b a C ,是完备度量空间. 令[]b a P ,表示闭区间[]b a ,上实系数多项式全体,[]b a P ,作为[]b a C ,的子空间是不完备的度量空间. 实因多项式列∞=⎭⎬⎫⎩⎨⎧+++++132!621n n n x x x x 在闭区间[]b a ,上一致收敛于连续的指数函数x e ,但x e 非多项式. 即[]b a P ,不是[]b a C ,的闭子空间. 由Th 1,[]b a P ,不是完备度量空间. 证毕. 设X 表示闭区间[]1,0上连续函数全体,对y x ,∀∈X ,令 ()y x d ,=()()⎰-10dt t y t x .易知()d X ,成为度量空间. 实因01 显然 ()y x d ,≥0. 若t ∈[]1,0时,()t x ≡()t y ,从而()y x d ,=0. 反之若()y x d ,=0,即()()⎰-10dt t y t x =0. 因()()t y t x -≥0,故()t x =()t y ..e a 于[]1,0. 又因..e a 相等的连续函数必然处处相等,故y x =. 总之()y x d ,≥0且()y x d ,=0⇔y x =.02 ()y x d ,=()()⎰-1dt t y t x ≤()()⎰-1dt t z t x +()()⎰-1dt t y t z=()z x d ,+()z y d ,. 所以()d X ,是度量空间.例5 上面定义的度量空间()d X ,不完备.证明 令 ()t x m =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+<<≤≤+210,012121,121,11t mt t m 线性 先证{}∞=1n n x 是()d X ,中的柯西点列. 实因ε∀0>,当 n >m >ε1时,()m n x x d ,=()()⎰-10dt t x t x m n =()()⎰+-m m n dt t x t x 12121 =⎪⎭⎫ ⎝⎛-n m 1121≤<m 1<ε. 所以点列{}∞=1n n x 是()d X ,中的柯西点列.再证点列{}∞=1n n x 在()d X ,中不收敛. 实因对每个x ∈X ,()x x d n ,=()()⎰-1dt t x t x n =()⎰21dt t x +()()⎰+-m n dt t x t x 12121+()⎰+-11211mdt t x . 若()x x d n ,→0, 必有 ()⎰210dt t x =()⎰-1211dt t x =0.但由于()t x 在闭区间[]1,0上连续,得()t x 在⎥⎦⎤⎢⎣⎡21,0恒为0,在⎥⎦⎤⎢⎣⎡1,21恒为1. 与在t =21间断相矛盾. 故()d X ,是不完备的度量空间.作业: P 206. 15.()X M 、离散空间.作业解答: 设{}∞=1n n x 是()X M 中的基本点列,>∀σ0,有[]σσσ≥-+m n x x mX 1≤()()()()[]⎰≥=-+-σm n x x X m n m n dt t x t x t x t x 1≤()()()()⎰-+-Xmnm n dt t x t x t x t x 1=()mnx x d ,. ∀ε>0,∃N ∈N ,s.t. ∀n ,m >N ,有()m n x x d ,<ε. 从而[]σ≥-m n x x mX <σσ+1ε. 所以[]σ≥-m n x x mX →0 ()∞→m n ,. 由此可找到自然数列:1n <2n < <3n < <k n ,s.t. ()⎥⎦⎤⎢⎣⎡≥-+k n n k k x t x mX 211<k 21对,2,1=k 都成立.记k X =()⎥⎦⎤⎢⎣⎡≥-+k n n k k x t x X 211, 再令0X = ∞=∞=1m mk k X ,则X -0X =() ∞=∞=-1m mk k X X ⊂() ∞=-mk k X X ,()0X X m -≤∑∞=mk k21=121-m . 令m →∞,得()0X X m -=0. 所以0mX =mX .显见在0X 上(){}∞=1k n t x k处处收敛于一个极限函数,记这个极限函数为()t x . 令()t x 0=()⎩⎨⎧-∈∈0,0,X X t X t t x则()t x 0为X 上的可测函数,故()t x 0∈()X M . 当N n n k >,时,由 ()()()()⎰-+-Xn n n n dt t x t x t x t x k k 1=()k n n x x d ,ε<,令∞→k ,由勒贝格有界收敛定理,得 ()ε≤0,x x d n ()N n ≥. 所以0x x n →()∞→n . 故()X M 是完备的度量空间.§3.度量空间的完备化教学内容(或课题):目的要求: 使学生掌握度量空间的完备化定理的条件、结论及其证明方法.教学过程:Der 1 设(X ,d ),(X ~,d ~)是两个度量空间,若存在X 到X ~上的保距映照T (∀1x ,2x ∈X ,有d ~(T 1x ,T 2x )=d (1x ,2x )),则称(X ,d )和(X ~,d ~)等距同构,此时称T 为X 到X ~上的等距同构映照(既映上又保距).等距同构映照是1-1映照. 实因设∀1x ,2x ∈X ,且1x ≠2x ,则因d (1x ,2x )>0及d ~(T 1x ,T 2x )=d (1x ,2x )>0,知T 1x ≠T 2x . 在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一个度量空间.Th 1 (度量空间完备化定理) 设X =(X ,d )是度量空间,那么一定存在一完备度量空间X ~=(X ~,d ~),使X 与X ~的其个稠密子空间W 等距同构,并且X ~在等距同构意义下是唯一的,即若(Xˆ,d ˆ)也是一完备度量空间,且X 与X ˆ的其个稠密子空间W 等距同构,则(X ~,d ~)与(Xˆ,d ˆ)等距同构. 证明 分4步完成.(1)构造X ~=(X ~,d ~).令X ~为X 中柯西点列x ~={}∞=1n n x 全体,对X ~中任意两个元素x ~={}∞=1n n x 和y ~={}∞=1n n y ,若 ∞→n lim ()n n y x d ,=0, (1) 则称x ~与y ~相等,记为x ~=y ~,或{}∞=1n n x ={}∞=1n n y . ∀x ~={}∞=1n n x ,y ~={}∞=1n n y ∈X ~,定义d ~(x ~,y ~)=∞→n lim ()n n y x d ,. (2)首先指出(2)式右端极限存在. 实因由三点不等式()n n y x d ,≤()m n x x d ,+()m m y x d ,+()n m y y d ,,所以 ()n n y x d ,-()m m y x d ,≤()m n x x d ,+()n m y y d ,. 同理 ()m m y x d ,-()n n y x d ,≤()m n x x d ,+()n m y y d ,. 所以 |()m m y x d ,-()n n y x d ,|≤()m n x x d ,+()n m y y d ,. (3) 因为{}∞=1n n x 和{}∞=1n n y 是X 中的柯西点列,所以(){}∞=1,n n n y x d 是1R中柯西数列,所以(2)式在端极限存在.其次指出:若{}∞=1n n x ={}∞='1n nx ,{}∞=1n n y ={}∞='1n n y ,则 ∞→n lim ()n n y x d ,=∞→n lim ()n ny x d '',, 即d ~(x ~,y ~)与用来表示x ~,y ~具体柯西点列{}∞=1n n x ,{}∞=1n n y 无关. 实因仿(3)式之证法,得|()n n y x d ,-()n ny x d '',|≤()n n x x d ',+()n n y y d ',. 由 ∞→n l i m ()nn x x d ',=0和∞→n lim()nn y y d ',=0, 可得 ∞→n lim ()n n y x d ,=∞→n lim ()n ny x d '',. 最后证明 ()y x d ~,~~ 满足关于距离条件01及02:显然 ()y x d ~,~~=∞→n lim ()n n y x d ,≥0. 又()y x d ~,~~=0 ⇔ ∞→n lim ()n n y x d ,=0⇔x ~=y ~. ∀x ~={}∞=1n n x ,y ~={}∞=1n n y ,z ~={}∞=1n n z ∈X ~, 则 ()n n y x d ,≤()+n n z x d ,()n n z y d ,,故∞→n lim ()n n y x d ,≤∞→n lim ()+n n z x d ,∞→n lim ()n n z y d ,,即 ()y x d ~,~~≤()+z x d ~,~~()z y d ~,~~. 所以X ~按d ~成度量空间. (2)作X ~的稠密子空间W 及X 到W 的等距映照T∀b ∈X ,令b ~={}∞=1n n b ,其中n b =b , ,2,1=n ,显然b ~∈X ~. 令T b =b ~,W =T X . 因为 d ~()Ta Tb ,=d ~()a b ~,~=∞→n lim ()a b d ,,所以T 是X 到W 上的等距映照.在X 与W 等距同构之下往证W 是X ~中的稠密子集. ∀x ~={}∞=1n n x ∈X ~, 令n x ~={}∞=1j jx ,其中j x =n x , ,2,1=j ,则n x ~∈W .因n x ~={}∞=1j j x 是X 中的柯西点列,故>∀ε0,N ∈∃N ,s.t. ∀N n >时,有 ()N n x x d ,<2ε. 于是 ()N x x d ~,~~=∞→n lim ()N n x x d ,≤2ε<ε. 即在 ∀()ε,~x U 中必有W 中的点, 故W 在X ~中稠密. (3)证明X ~是完备的度量空间设(){}∞=1~n n x 是X ~中的柯西点列,因为W 在X ~中稠密,所以对每个()n x ~,∃n z ~∈W ,s.t. ()()n n z x d ~,~<n1. (4) 所以 ()n m z z d ~,~~≤()()+m m x z d ~,~~()()()+n m x x d ~,~~()()n n z x d ~,~~≤+m1 ()()()+n m x x d ~,~~n1,所以(){}∞=1~n n x 是W 中柯西点列. 因为T 是X 到W 上的等距映照,所以{}∞=1m m z 是X 中柯西点列. 令x ~={}∞=1m m z ,则x ~∈X ~. 由(4)式,有 ()()x x d n ~,~~≤()()+n n z x d ~,~~()x z d n ~,~~ <n 1+()x z d n ~,~~=n 1+∞→n lim ()m n z z d ,→0 (∞→n ). 所以 ∞→n lim ()()x x d n ~,~~=0,所以X ~是完备度量空间.(4) 证明X ~的唯一性设()d Xˆ,ˆ是另一个完备度量空间,且X 与()d X ˆ,ˆ中稠密子集W ˆ等距同构. 作X ˆ到X ~上映照T 如下:对∈∀xˆX ˆ,由于W ˆ在X ˆ中稠密,∃W ˆ中点列(){}∞=1ˆn n x ,s.t.()n xˆ→x ˆ.但由于W ˆ与X 等距同构,W 也与X 等距同构,从而W ˆ与W 也等距同构. 设ϕ为W ˆ到W 上等距同构映照,由()n xˆ→x ˆ知()(){}∞=1ˆn n x ϕ是X ~中柯西点列,由X ~完备性,X x ~~∈∃,s.t.()()x x n ~ˆ→ϕ. 令xT ˆ=x ~. 首先,这样定义的T 与(){}∞=1ˆn n x无关, 即若另有(){}∞=1ˆn n y ,()W y n ˆˆ∈, ,2,1=n ,()x y n ~ˆ→,则 ∞→n lim ()()n xˆϕ=∞→n lim ()()n y ˆϕ. 实因 ()()()()()n n n n y xd ˆlim ,ˆlim ~ϕϕ∞→∞→=∞→n lim ()()()()()n n y x d ˆ,ˆ~ϕϕ=∞→n lim ()()()n n y x d ˆ,ˆˆ=()x x d ˆ,ˆˆ=0. 所以∞→n lim ()()n xˆϕ=∞→n lim ()()n y ˆϕ. 下证T 是X 到X ~上的等距同构映照, 对∀∈x ~X ~,由于W 是X ~的稠密子集,所以存在W 中点列(){}∞=1~n n x ,s.t.()x x n →~. 同前证明可知()(){}∞=-11~n nx ϕ为X ˆ中的柯西点对,有∈x ˆX ˆ,s.t.()()xx n ˆ~1→-ϕ. 易知T x ˆ=x ~,即T 映照Xˆ到X 上. 又对∀∈y x ˆ,ˆX ˆ,有W ˆ中点列(){}∞=1ˆn n x 和(){}∞=1ˆn ny, s.t. ()x xn ˆˆ→,()y y n ˆˆ→. 所以 ()y x dˆ,ˆˆ=∞→n lim ()()()n n y x d ˆ,ˆˆ=∞→n lim ()()())ˆ(),ˆ(~n n y x d ϕϕ=()y T x T d ˆ,ˆ~, 所以T 是一个等距同构映照. 所以X ˆ与X ~等距同构. 证毕.若将彼此等距同构的度量空间视为同一空间,则有Th 1' 设X =()d X ,是度量空间,那么存在唯一的完备度量空间X ~=()d X ~,~使X 为X ~的稠密子空间.作业:P 206.16.证明∞l 与(]1,0C 的一个子空间等距同构. 作业提示:作∞l 到(]1,0C 内的映照T :() ,,,,21k ξξξ→()t x ,其中()k t x =k ξ,,2,1=k ; t 取(]1,0的其它值时,()t x 是线性的. 后面证明略.§4压缩映照原理及其应用(1) 教学内容(或课题):目的要求: 掌握压缩映照概念,掌握不动点概念,掌握压缩映照定理的证明方法,学会用压缩映照定理解决隐函数存在性、微分方程解之存在性的方法.教学过程: Def 1. 设X 是度量空间,T 是X 到X 中的压映照,若存在一个数α:0<α<1,s.t. ∀x 、y X ∈,成立()Ty Tx d ,≤α()y x d , (1) 则称T 是X 到X 中的压缩映照(简称压缩映照).Th 1.(压缩映照定理) 设X 是完备度量空间,T 是X 上的压缩映照,则T 有且只有一个不动点(即方程x Tx =有且只有一个 解).证: 固定∀0x X ∈,令 1x =0Tx ,2x =1Tx =02x T ,n x , =1-n Tx = ,0x T n , 则{}∞=1n n x 是X 中的柯西点列, 实因()m m x x d ,1+=()1,-m m Tx Tx d ≤α()1,-m m x x d=α()21,--m m Tx Tx d ≤2α()21,--m m x x d ≤()01,x x d m α≤ . (2) 由三点不等式,当m n >时,()n m x x d ,≤()++1,m m x x d () +++21,m m x x d ()n n x x d ,1-+≤(m α1-+m α+1-+n α)()01,x x d =mα⋅--⋅-αα11mn ()01,x x d . 因为0<α<1,所以11<--m n α,所以()n m x x d ,≤αα-1m()01,x x d (m n >) (3)所以当∞→m ,∞→n 时,()n m x x d ,0→. 所以{}∞=1n n x 是X 中的柯西点列.由X 完备性, 存在x X ∈,s.t. m x →x . 由三点不等式和条件(1),有 ()Tx x d ,≤()+m x x d ,()Tx x d m ,≤()+m x x d ,α()x x d m ,1-→0 (∞→m ). 所以()Tx x d ,=0,所以 x =Tx .往证唯一性. 若又有X x ∈~,s.t. x x T ~~=,则由条件(1),得()x x d ~,=()x T Tx d ~,≤α()x x d ~,,()α-1()x x d ~,≤0. 又因为α-1>0,所以()x x d ~,=0,所以x =x ~. 证毕. Th 2. 设函数()y x f ,在带状域b x a ≤≤,+∞<<∞-y 中处处连续,且处处有关于y 的偏导数()y x f y ,',若存在常数m 和M , 满足 m <M ,0<m ≤()y x f y ,'≤M , 则方程 ()y x f ,=0 在区间[]b a ,上必有唯一的连续函数()x y ϕ=作为解:()()≡x x f ϕ,0,∈x []b a ,.证 在完备度量空间[]b a C ,中作映照A ,s.t.∀()x ϕ∈ []b a C ,,有()()x A ϕ=()x ϕM1-()()x x f ϕ,. 因为()y x f ,连续,所以()()x A ϕ也连续,所以ϕA ∈[]b a C ,. 所以A 是[]b a C ,到自身的映照. ∀取21,ϕϕ∈[]b a C ,,()()()()x A x A 12ϕϕ-=()()()()()()x x f Mx x x f M x 1122,1,1ϕϕϕϕ+--= ()()()()()()[]()()()x x x x x x f Mx x y 1212112,1ϕϕϕϕθϕϕϕ--+'-- =()()()()[]()()x x x x x x f My 12121,11ϕϕϕϕθϕ-⋅-+'-(0<θ<1), 0<M m <()()()()()x x x x f My 121,1ϕϕθϕ-+'≤M M =1. 令α=1-Mm,则0<α<1,且 12ϕϕA A -≤α12ϕϕ-. 所以[]b a x Sup ,∈12ϕϕA A -≤α[]b a x Sup ,∈12ϕϕ-,所以()12,ϕϕA A d ≤α()12,ϕϕd . 所以A 是压缩映照. 由Th 1,存在唯一的ϕ∈[]b a C ,,满足()x ϕ≡()x ϕM1-()()x x f ϕ,,即 ()()x x f ϕ,≡0,b x a ≤≤. 证毕. Th 3.(Picard) 设()x t f ,是矩形 R =(){}b x x a t t x t ≤-≤-00,,上的二元连续函数,设()x t f ,≤M ,()x t ,∈R . 又()x t f ,在R 上关于x 满足Lipschitz 条件,即存在常数K ,s.t.∀()x t ,、()v t ,∈R ,有 ()()v t f x t f ,,-≤K v x - (4) 则方程dtdx=()x t f , 在区间J =[]ββ+-00,t t 上有唯一的满足条件()0t x =0x 的连续函数的解,其中β<⎭⎬⎫⎩⎨⎧K M b a 1,,min . (5)证 连续函数空间[]ββ+-00,t t C 是完备度量空间,用C ~表示[]ββ+-00,t t C 中满足条件|()0x t x -|≤M β (∈t J ) (6)的连续函数全体所成的子空间,显然C ~是闭子空间. 由§4.Th 1, C ~是完备度量空间. 令()t Tx =()()⎰+tt ds s x s f x 0,0, (7)则T 是C ~到C ~中的映照. 实因 M β<b ,若∈x C ~,则当∈t []ββ+-00,t t 时,()()t x t ,∈R ,又因()x t f ,在R 上二元连续,所以(7)式右边积分有意义. 又对J t ∈∀,成立()0x t Tx -=()()⎰tt ds s x s f 0,≤M 0t t -≤M β,所以当∈x C ~时,Tx ∈C ~.T 是压缩映照. 实因由Lipschitz 条件(4),对C ~中任意两点x 和v ,有 ()()t Tv t Tx -=()()()()[]⎰-ttds s v s f s x s f 0,,≤0t t -K []()()t v t x b a t -∈,max≤βK ()v x d ,. 令α=βK ,则0<α<1,且()Tv Tx d ,=[]()()t v t x b a t -∈,max ≤α()v x d ,. 即T 是C ~上的压缩映照.由Th 1,存在唯一∈x C ~,s.t.Tx x =,即()t x =()()⎰+tt ds s x s f x 0,0, (8)且()00x t x =. 两边对t 求导,得()()()t x t f dtt dx ,=. 故()t x 是方程 dtdx=()x t f ,的解. 若又有()t x ~也是方程 dtdx=()x t f , 满足初值条件()00~x t x =的解,则因()t x ~=()()⎰+t t ds s x s f x 0~,0,所以x ~C ~∈且x ~是的T 不动点,所以x ~=x . 作业: P 206.17.有界闭集n R F ⊂,A 是F 到自身映照,∀x ,y ∈F ()y x ≠,有()Ay Ax d ,<()y x d ,. 证明映照A 在F 中存在唯一的不动点.作业提示:令 ()x ϕ=()Ax x d ,,x ∈F . ∀x ,0x ∈F ,因为()()=-0x x ϕϕ()Ax x d ,()00,Ax x d -≤()()()-++Ax Ax d Ax x d x x d ,,,0000()00,Ax x d=()()Ax Ax d x x d ,,00+<()0,2x x d . 所以0x x →时必有()()0x x ϕϕ→. 即()x ϕ在F 连续. 所以存在x ∈F ,s.t. ()x ϕ=()x Fx ϕ∈min a ∆=. 显然a ≥0.往证a =0.用反证法,设a >0,则由x A ∈F ,()x A x A d 2,<()x A x d ,=()x ϕ=a 与a =()x Fx ϕ∈min 矛盾. 所以a =0. 于是()x A x d ,=()x ϕ=0,有x =A x . 即x为A 之不动点. 因为F y x ∈∀,,有 ()Ay Ax d ,<()y x d ,, 只要x Ax =,就有()Ay x d ,<()y x d ,,从而必有y Ay ≠()时y x ≠,所以不动点唯一.§5.压缩映照原理及其应用(2).教学内容(或课题):习题课目的要求: 在掌握压缩映照原理之后,重点掌握应用压缩映照原理的常用方法.教学过程:1、 设X 为完备度量空间,A 是X 到X 中的映照,记n α=x x Sup'≠()()x x d x A x A d n n '',,,若∑∞=1n n α<∞,则映照A 有唯一不动点. 证 因为n α=x x Sup '≠()()x x d x A x A d n n '',,,所以x x '≠时,()x A x A d n n ',≤n α()x x d ',. 又x x '=时,上式也成立. 因此对X x x ∈'∀,,恒有()x A x A d n n ',≤n α()x x d ',.因为∑∞=1n n α<∞,所以>∀ε0,N ∈∃N ,s.t.m n ,∀:N m n >>时,有 11-++++n m m ααα ε<. 又至少有一个1<k α. ∀固定0x ∈X ,依次令 1x =A 0x ,2x =A 1x =2A 0x ,3x =A 2x =3A 0x ,m x , =A 1-m x =m A ,0x则 ()1,+m m x x d =()10,x A x A d m m ≤m α()10,x x d ,()21,++m m x x d =()1101,x A x A d m m ++≤1+m α()10,x x d , ,()n n x x d ,1-=()1101,x A x A d n n --≤1-n α()10,x x d . 所以 ()n m x x d ,≤()1,+m m x x d +()21,++m m x x d ++ ()n n x x d ,1-≤ (m α+1+m α++ 1-n α)()10,x x d ⋅<ε()10,x x d . 所以{}∞=1m m x 是X 中的柯西点列. 因为X 是完备度量空间,所以∃x X ∈,s.t.m x →x . 所以()Ax x d ,≤()()Ax x d x x d m m ,,+=()()Ax Ax d x x d m m ,,1-+≤()()→+-x x d x x d m m ,,11α0 ()∞→m . 所以 ()Ax x d ,=0, 所以Ax x =,且x A x k =.再设又有x ~X ∈,s.t. x ~=x A ~,则x A x k ~~=()x x d ~,=()x A x A d k k ~, k α≤()x x d ~,. 因为0≤k α1<,所以()x x d ~,=0,所以=x x ~. 证毕. 2、 设A 为完备度量空间X 到X 中的映照, 若在开球()r x B ,0()0>r 内适合 ()x A Ax d ',<()x x d ',,0<θ<1,又在闭球()r x S ,0=(){}r x x d x ≤0,A 连续,且 ()00,Ax x d ≤θ()r θ-1. 证明A 在()r x S ,0中有唯一的不动点.证 因为∈'∀x x ,()r x B ,0,有()x A Ax d ',<θ()x x d ',. 设x ~在球面上:()x x d ~,0=r . 令n x ~→x ~且n x ~∈()r x B ,0, ,2,1=n ,所以()n x A Ax d ~,<θ()n x x d ~,. 因为A 连续,所以x A Ax n ~→. 又因距离连续,所以于上式令∞→n ,得()x A Ax d ~,≤θ()x x d ~,. 同理当x 在球面上:()x x d ,0=r ,而x '∈()r x B ,0时,也有()x A Ax d ',≤θ()x x d ',.再设x ,x ~均在球面上,取n x →x ,n x ~→x ~且n x ,n x ~∈()r x B ,0,由()n n x A Ax d ~,≤θ()n n x x d ~,,令n →∞,得()x A Ax d ~,≤θ()x x d ~,. 到此已证出∈'∀x x ,()r x S ,0,均有 ()x A Ax d ~,≤θ()x x d ~,. 因()r x S ,0是X 中的一个闭子集,而X 为完备度量空间,故()r x S ,0也是X 中的一个完备的子空间. 往下只要证明在()r x S ,0中A 央()r x S ,0到自身的映照. 设x ∈()r x S ,0,则()x x d ,0≤r .()Ax x d ,0≤()+00,Ax x d ()00,Ax Ax d≤ θ()r θ-1+θ()x x d ,0≤()22θθ-r =()[]211θ--r ≤r ,所以A x ∈()r x S ,0. 毕.3、设jk a ,j ,k =n ,,2,1 为一组实数,适合条件()∑=-nj i ij ij a 1,2δ<1,其中j =k 时,jk δ=1,否则jk δ=0. 证明代数方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* 对任何一组固定的n b b b ,,,21 必有唯一的一组解n x x x ,,,21 .证 在完备度量空间n R 中,令 T b =(n b b b ,,,21 ),T x =(n x x x ,,,21 ),T x '=(n x x x ''',,,21),方程组的系数矩阵记作A ,则方程组可改写为 A x =b 或 A x '=b . 又可改写为x =b ()E A --x 或 x '=b ()E A --x '.令映照ϕ:ϕx =b ()E A --x ,ϕx '=b ()E A --x ',则 ()x x d 'ϕϕ,=()()()x E A b x E A b d '----, =(()()()()[]21221211111n n n x x a x x a x x a '-++'-+'-- +()()()()[]22222211211n n n x x a x x a x x a '-++'--+'- + +()()()()[]22221111x x a x x a x x a n nn n n '--++'-+'- )21.利用柯西不等式,得()x x d 'ϕϕ,≤()()[(21222222212121221111n n n a a a a a a a++++-+++++- ()]2221-+++nn n a a ()()()])⎢⎣⎡'-++'-+'-21222211n n x x x x x x=()211,2⎥⎦⎤⎢⎣⎡-∑=nj i ij ij a δ()x x d ',. 记常数()211,2⎥⎦⎤⎢⎣⎡-∑=nj i ij ij a δ=α, 由已知条件,有0<α<1. 于是对n R x x ∈'∀,,有()x x d 'ϕϕ,≤α()x x d ',,即ϕ为压缩映照. 由压缩映照原理,存在唯一x ,s.t. x =ϕx ,即x =b ()E A --x 或A x =b .附注: 如果和P 225.题与联起来,那么d 是由⋅诱导的距离,有()x x d 'ϕϕ,=()()()x E A b x E A b d '----,=()()[]x E A b x E A b '-----=()()x x E A '--≤E A -x x '-=()211,2⎥⎦⎤⎢⎣⎡-∑=nj i ij ij a δ()x x d ',=α()211,2⎥⎦⎤⎢⎣⎡-∑=nj i ij ij a δ()x x d ',,这就简便多了.作业: 4、设()t f ∈[]1,0C ,求方程()()()⎰+=tds s x t f t x 0λ的连续解.作业提示: 若()t f 可导,则由 ()t x '=()+'t f λ()t x , 得()t x =t e λ()()⎪⎭⎫ ⎝⎛'+⎰-t s ds s f e f 00λ=t e λ()()⎪⎭⎫ ⎝⎛+⎰-t s ds s f e f 00λλ()t f +=()+t f ()()⎰-ts t ds s f e 0λλ.若()t f 不可导,则令()t x 0=()t f ,()t x n =()t f ()⎰-+tn ds s x 01λ迭代而得()=t x 1()t f ()⎰+tds s f 0λ,()=t x 2()t f ()⎰+t ds s x 01λ=()t f ()()⎰⎰⎪⎭⎫ ⎝⎛++tsds d f s f 00ττλλ =()t f ()⎰+tds s f 0λ()⎰⎰⎪⎭⎫ ⎝⎛+tsds d f 002ττλ =()t f ()⎰+tds s f 0λ()⎰⎰+t tds d f 02τττλ=()t f ()⎰+t ds s f 0λ()()⎰-+td f t 02τττλ=()t f ()⎰+t ds s f 0λ()()⎰-+tds s f s t 02λ.()t x 3=()t f ()⎰+tds s x 02λ=()t f ()()()()⎰⎰⎰⎥⎦⎤⎢⎣⎡-+++ts sds d f s d f s f 0002τττλττλλ=()t f ()⎰+tds s f 0λ()()⎰-+tds s f s t 02λ()()⎰-+tds s f s t 023!2λ(理由同上). 一般地有 ()t x n =()t f ()⎰+ts f 0λ()()()()ds n s t t s t n n ⎥⎦⎤⎢⎣⎡--++-+-+--!1!211122λλλ→()t f ()()⎰-+ts t ds s f e 0λλ. 所以 ()=t x =()t f ()()⎰-+ts t ds s f e 0λλ.。
泛函分析教学大纲_2
泛函分析课程教学大纲第一部份前言一、课程基本信息1.课程类别:专业选修课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4.备选的教材:《实变函数与泛函分析基础(第二版)》,程其襄,张奠宙,魏国强,胡善文,王漱石编,高等教育出版社,2004.二、课程性质和目标本课程性质是数学与应用数学专业的一门专业选修课。
本课程的教学目的是通过泛函分析的教学,使学生了解和掌握赋范线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为进一步学习数学的有关学科和从事数学学科的教学打下一定的理论基础。
三、课程学时与学分教学时数: 64 学时学分数: 4 学分教学时数具体分配:第二部份教学内容及其要求第七章度量空间和赋范线性空间1.教学目标:要求学生理解度量空间、稠密集、可分空间、连续映射、赋范线性空间等概念,并掌握压缩映射原理。
2..教学重点:压缩映照原理、度量空间、线性赋范空间3.教学难点:稠密集、可分空间4.教学时数5.教学内容纲要第一节度量空间的进一步例子第二节度量空间的极限,稠密集,可分空间一、度量空间中的点列二、某些具体空间中收敛点列三、稠密集与可分空间第三节连续映射一、连续映射的定义二、连续映射的性质第四节柯西点列和完备度量空间一、柯西点列二、完备度量空间第五节度量空间的完备化第六节压缩映射原理及其应用一、压缩映射定理二、压缩映射定理应用第七节线性空间第八节赋范线性空间和Banach空间一、赋范线性空间二、Banach空间6. 课程资源(1)程其襄,张奠宙等. 实变函数与泛函分析基础, 高等教育出版社,2004.(2)郭大钧等.实变函数与泛函分析,山东大学出版社,1986.(3)胡适耕. 泛函分析,高等教育出版社,2001。
(4)江泽坚,吴智泉. 实变函数论,高等教育出版社,1994。
(5)W. Rudin, Functional Analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.(6)江泽坚,孙善利. 泛函分析,高等教育出版社,1994。
《实变函数与泛函分析》教学大纲-数学专业
实变函数与泛函分析教学大纲应用数学与信息计算等专业使用修订单位:山东财政学院统计与数理学院修订时间:2009年8月修订课程中文名称:实变函数与泛函分析课程英文名称:Real Analysis and functional Analysis 课程号:30001001学时数:68学分数:4先修课程:数学分析、线性代数适用专业:应用数学与信息计算等专业。
一、课程的性质和任务1. 课程性质《实变函数与泛函分析》是数学专业的一门专业基础课程。
《实变函数》课程结合抽象测度与积分理论, 介绍Lebesgue测度与Lebesgue积分的理论。
通过本课程的学习, 应使学生掌握测度论和实变函数论的基本理论和方法, 并且应用所学知识, 解决一些相关的理论和应用问题, 解决一些具有一定难度的习题。
同时, 通过本课程的学习, 要加深学生对数学分析课程中知识的理解, 培养学生严密的逻辑思维能力。
《泛函分析》课程是现代教学中的一门较新的数学分支,它综合地运用分析的,代数和几何的观点,方法研究分析数学中的许多问题,由它把具体的分析问题,由于它把具体的分析问题抽象到一种更加纯粹的代数拓扑结构的形式中进行研究,因此逐步形成了综合运用代数,几何平段处理问题的新方法,正因为这种纯粹形式的代数,拓扑结构是跟植于肥沃的经典分析和数学物理土壤之中的,所以由此发展起来的基本概念,定理和方法也就显的更为广泛,更为深刻,现在泛函分析已成为一门内容丰富,方法系统,体系完备,应用广泛的独立分支,通过该课程的学习,学生不仅能学到泛函分析的基本理论和方法,而且对学习其他数学分支以及把他应用到数理经济,现代控制论,量子场论,统计物理,工程技术等领域有很大帮助。
学生通过学习本课程,既能从较高的观点总结一、二年级学过的分析、代数中的有关概念、理论和方法,又能获得抽象思维和逻辑论证的进一步训练,为今后深入学习拓扑、微分方程、随机过程、最优化等现代数学各个学科提供基础。
实变函数与泛函分析-教学大纲
实变函数与泛函分析-教学大纲第一篇:实变函数与泛函分析-教学大纲实变函数与泛函分析教学大纲Functions of Real Variables and Functional Analysis一、基本信息适用专业:信息技术专业课程编号:教学时数:72学时学分:4 课程性质:专业核心课开课系部:数学与计算机科学院使用教材:《实变函数论与泛函分析》(上、下册)第2版曹广福.高等教育出版社参考书[1]夏道行《实变函数论与泛函分析》(上、下册)第2版修订本.高等教育出版社;[2] W.Rudin ,Real and Complex Analysis, 3rd Edition; [3] W.Rudin,Functional Analysis, 3rd Edition; [4]周民强《实变函数论》第2版.北京大学出版社.二、课程介绍《实变函数与泛函分析》以掌握Lebesgue测度空间,Lebesgue 积分,Hilbert空间和Banach空间的基本知识,培养学生从几何、拓扑上来认识抽象函数空间,以抽象空间为工具来研究、解决实际问题的能力。
三、考试形式考试课程,考试成绩由平时成绩和期末考试组成,平时作业占百分之二十,期末考试百分之八十。
期末考试是闭卷的形式,重点考察学生的解题能力和基础理论。
四、课程教学内容及课时分配第一章集合与点集要求1、掌握集合的势,可数集2、熟悉欧氏空间上的拓扑,Cauchy收敛原理主要内容集合的势,可数集,n维欧氏空间上的拓扑,Canchy收敛原理重点集合的势,可数集课时安排(4学时)1、集合的势,可数集2学时2、欧氏空间上的拓扑,Cauchy收敛原理2学时第二章 Lebesgue测度要求1、熟练掌握外测度、可测集以及它们的性质2、掌握可测函数及其性质,以及非负可测函数的构造3、熟练掌握可测函数的收敛性主要内容:Lebesgue外测度,可测集(类),可测函数及其性质,可测函数的收敛性重点外测度、可测集以及它们的性质、可测函数的收敛性课时安排(12学时)1、外测度、可测集以及它们的性质4学时2、可测函数及其性质,以及非负可测函数的构造4学时3、可测函数的收敛性4学时第三章Lebesgue积分要求:1、熟练掌握可测函数的积分及性质2、熟练掌握Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件3、弄清重积分与累次积分的关系,Fubini定理主要内容:可测函数的积分及性质,Lebesgue积分的极限定理,Riemann 可积的充要条件,重积分与累次积分的关系,Fubini定理重点可测函数的积分及性质,Lebesgue积分的极限定理课时安排:(16学时)1、可测函数的积分及性质6学时2、Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件6学时3、重积分与累次积分的关系,Fubini定理4学时第四章L空间要求:1、熟练掌握L空间的范数、完备性、收敛性、可分性2、熟悉L空间的内积,标准正交基3、了解卷积与Fourier变换 ppp主要内容:pLp空间的范数、完备性、收敛性、可分性,L空间的内积,标准正交基,卷积与Fourier变换重点Lp空间的范数、完备性、收敛性、可分性课时安排(10学时)1、L空间的范数、完备性、收敛性、可分性4学时2、L空间的内积,标准正交基,正交化方法4学时3、卷积与Fourier变换2学时 pp第五章 Hilbert空间理论要求:1、熟练掌握距离空间的定义与紧致性的定义,Riesz表示定理2、熟悉Hilbert空间上线性算子的有界性和连续性3、熟悉共轭算子、投影算子,紧算子性质及其谱主要内容:距离空间的定义,紧致性,Hilbert影算子,紧算子性质及其谱。
《实变函数与泛函分析》教学大纲
《实变函数与泛函分析》教学大纲前言实变函数是数学科学学院的重要基础课,也是近代数学中最重要,最基本的一个分分支,同时这门课程又是许多后续课程如泛函分析,概率论,微分几何等的基础,泛函分析是数学与信息科学学院高年级学生分析专业方向的选修课程。
本课程是一门重要的数学选修课程,作为数学分析和实变函数课程的深化,具有承上启下的作用,是现代数学最重要的入门课程。
通过这一课程,使学生了解许多数学问题可以通过赋范线性空间的理论而一般地解决。
它一方面为后继课程提供所需的理论基础,同时还为培养学生的抽象思维能力和独立工作能力提供必要的训练。
因而该课程是学习其他数学分支与进一步地科研工作的重要基础和工具。
设置本课程的目的是:通过本学科的学习,培养学生逻辑思维能力及论证能力,并用所学的知识解决某些数学分析中遗留下的问题,为日后更高阶段的学习,特别是研究生阶段的实分析学习打下坚实的基础。
本课程的学习要求是:使学生掌握实变函数与泛函分析的基本概念,基本知识,诸如集合,欧氏空间,Lebesgue测度,Lebesgue可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,空间,空间,Hilbert空间理论,Hilbert空间,Banach空间,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。
先修课程要求:学生修完《数学分析》、《高等代数》等基础课本课程计划:90学时,5学分,选用教材:王声望,郑维行著,《实变函数与泛函分析概要》,高等教育出版社,1998年教学手段:课堂讲授考核方法:闭卷考试教学进程安排表第一章集合一、学习目的熟练掌握集合的代数运算和极限运算,能应用Bernstein定理确定一些集合的势,熟悉R n的点集拓扑中关于开集、闭集、稠密与疏朗等基本概念。
二、课程内容§1集合及其运算集合的表示法;集合的基本运算;一些常用集合的符号;集合序列的上、下限集。
实变函数与泛函分析-教学大纲
实变函数与泛函分析-教学大纲实变函数与泛函分析教学大纲Functions of Real Variables and Functional Analysis一、基本信息适用专业:信息技术专业课程编号:教学时数:72学时学分:4课程性质:专业核心课开课系部:数学与计算机科学院使用教材:《实变函数论与泛函分析》(上、下册)第2版曹广福.高等教育出版社参考书[1]夏道行《实变函数论与泛函分析》(上、下册)第2版修订本.高等教育出版社;[2]W. Rudin ,Real and Complex Analysis, 3rd Edition;[3] W. Rudin,Functional Analysis, 3rd Edition;[4]周民强《实变函数论》第2版.北京大学出版社.二、课程介绍《实变函数与泛函分析》以掌握Lebesgue测度空间,Lebesgue积分,Hilbert空间和Banach 空间的基本知识,培养学生从几何、拓扑上来认识抽象函数空间,以抽象空间为工具来研究、解决实际问题的能力。
三、考试形式考试课程,考试成绩由平时成绩和期末考试组成,平时作业占百分之二十,,期末考试百分之八十。
期末考试是闭卷的形式,重点考察学生的解题能力和基础理论。
四、课程教学内容及课时分配第一章集合与点集要求1、掌握集合的势,可数集2、熟悉欧氏空间上的拓扑,Cauchy收敛原理主要内容集合的势,可数集,n维欧氏空间上的拓扑,Canchy收敛原理重点集合的势,可数集课时安排(4学时)1、集合的势,可数集2学时2、欧氏空间上的拓扑,Cauchy收敛原理2学时第二章Lebesgue测度要求1、熟练掌握外测度、可测集以及它们的性质2、掌握可测函数及其性质,以及非负可测函数的构造3、熟练掌握可测函数的收敛性主要内容:Lebesgue外测度,可测集(类),可测函数及其性质,可测函数的收敛性重点外测度、可测集以及它们的性质、可测函数的收敛性课时安排(12学时)1、外测度、可测集以及它们的性质4学时2、可测函数及其性质,以及非负可测函数的构造4学时3、可测函数的收敛性4学时第三章Lebesgue积分要求:1、熟练掌握可测函数的积分及性质2、熟练掌握Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件3、弄清重积分与累次积分的关系,Fubini 定理主要内容:可测函数的积分及性质,Lebesgue积分的极限定理,Riemann可积的充要条件,重积分与累次积分的关系,Fubini定理重点可测函数的积分及性质,Lebesgue积分的极限定理课时安排:(16学时)1、可测函数的积分及性质6学时2、Lebesgue积分基本定理,Fatou引理,控制收敛定理,Riemann可积的充要条件6学时3、重积分与累次积分的关系,Fubini定理4学时L空间第四章p要求:1、熟练掌握p L空间的范数、完备性、收敛性、可分性2、熟悉p L空间的内积,标准正交基3、了解卷积与Fourier变换主要内容:pL空间的范数、完备性、收敛性、可分性,p L 空间的内积,标准正交基,卷积与Fourier变换重点p L空间的范数、完备性、收敛性、可分性课时安排(10学时)1、p L空间的范数、完备性、收敛性、可分性4学时2、p L空间的内积,标准正交基,正交化方法4学时3、卷积与Fourier变换2学时第五章Hilbert空间理论要求:1、熟练掌握距离空间的定义与紧致性的定义,Riesz表示定理2、熟悉Hilbert空间上线性算子的有界性和连续性3、熟悉共轭算子、投影算子,紧算子性质及其谱主要内容:距离空间的定义,紧致性,Hilbert空间上线性算子的有界性和连续性,共轭算子、投影算子,紧算子性质及其谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实变函数与泛函分析》教学大纲课程编码:110840课程名称:实变函数与泛函分析学时/学分:72/4先修课程:《数学分析》、《复变函数》适用专业:信息与计算科学开课教研室:分析与程教研室一、课程性质与任务1.课程性质:《实变函数与泛函分析》是大学数学系的重要专业方向课之一,它是数学分析的延续和发展。
2.课程任务:通过这门课程的教学应使学生掌握近代抽象分析的基本思想,培养学生综合运用分析数学的几何观点和方法,理解和研究分析数学中的许多问题,为进一步学习现代数学理论和理解现代科学技术提供必要的基础。
二、课程教学基本要求实变函数与泛函分析包括两部分内容:“实变函数”与“泛函分析”。
“实变函数”主要学习测度论、可测函数论、积分论、微分与不定积分;“泛函分析”是通过在集合中引入各种结构,包括代数结构,拓扑结构、测度结构、序结构以及这些基本结构的各种复合,形成了各种各样的抽象空间,本课程主要研究这些抽象空间中的距离空间,赋范线性空间,内积空间的性质及其映射(线性算子和线性泛函)性质。
三、课程教学内容第一章 集合1.教学基本要求通过本章的系统学习,使学生熟悉集合列的上极限集、下极限集、极限集的定义与交、并运算表示,集合的对等、基数概念;掌握有限集、可数集、不可数集的概念,可数集是最小的无限集的结论以及可数集的基本运算性质,自然数集、整数集、有理数集等的可数性,有理数集在实数轴上的稠密性。
2.要求学生掌握的基本概念、理论通过本章教学使学生熟悉集合列的上、下极限集、极限集的定义与交、并运算表示;掌握单调集合列{Ak}的概念及其极限集的求法。
熟悉集合的对等概念,熟悉对等是一个等价关系;熟悉集合对等的Cantor-Bernstein定理; 掌握集合对等的夹挤定理。
熟悉集合的基数概念;掌握有限集、可数集、不可数集的概念;掌握可数集是最小的无限集的结论以及可数集的基本运算性质; 掌握自然数集、整数集、有理数集等的可数性;掌握有理数集在实数轴上的稠密性;熟悉无理数集、实数集、区间点集等的不可数性。
熟悉对角线法;会建立正有理数集与自然数集等常见的可数集之间的对等关系;会建立开区间、闭区间、半开半闭区间等常见的不可数集之间的对等关系。
3.教学重点和难点教学重点是集合对等的概念,可数集及可数集的性质。
教学难点是可数集,不可数集,集合列的上、下极限集。
4.教学内容第一节 集合的表示1.集合的定义2.集合的表示第二节 集合的运算1.集合的交和并2.集合的差3.集合的上、下极限第三节 对等与基数 集类1.映射和集合的对等2. Bernstein定理第四节 可数集合1.可数集合的定义及性质2.常用的可数集合第五节 不可数集合1.常用的不可数集合2.不可数集合的基数第二章 点集1.教学基本要求通过本章学习使学生了解度量空间和 n维欧氏空间的概念。
掌握内点、极限点、开集、闭集等拓扑概念及其性质,Cantor集的构造及其性质。
2.要求学生掌握的基本概念、理论通过本章教学使学生深刻理解和熟悉掌握内点、极限点、开集、闭集等拓扑概念及其性质、并能熟练运用这些概念进行逻辑推理。
掌握Cantor集的构造及其性质。
了解连续性、覆盖等概念。
3.教学重点和难点教学重点是聚点等价定理;开集,闭集的定义及性质;开集,闭集的构造定理;Cantor 三分集。
教学难点是线性变换的矩阵表示和矩阵的Jordan标准形的方法及求出相应的相似变换矩阵的方法。
4.教学内容第一节 度量空间和 n维欧氏空间1.度量空间与度量函数2.度量空间中关于点集的相关概念第二节 内点,聚点,界点1.内点,聚点,界点的定义,聚点的等价条件2.开核、边界、导集定义及性质3.Weierstrass定理第三节 开集,闭集,完备集1.开集、闭集的定义及性质2.完备集第四节 直线上开集,闭集,完备集的构造1.开集的构造定理2.闭集、完备集的构造定理第五节 Cantor三分集1.Cantor三分集2. Cantor三分集的性质第三章 测度论1.教学基本要求通过本章学习使学生深刻理解和掌握外测度与测度的概念,掌握测度的基本性质。
了解从Rn 上的外测度与测度推广到一般集合上的基本思路。
2.要求学生掌握的基本概念、理论通过本章的系统学习,使学生熟悉测度的基本性质,深刻理解和掌握外测度与测度的概念。
掌握可测集的运算封闭性,可测集的逼近性质。
了解博雷尔及定义,掌握可测集和博雷尔集的关系。
3.教学重点和难点教学重点是可测集的概念与性质、测度的性质、可测集的逼近性质。
教学难点是可测集的概念与性质、可测集的逼近性质。
4.教学内容第一节 外测度1.外侧度的定义及性质2.例子第二节 可测集1.可测集的定义2.可测集的性质第三节 可测集类1.几个简单的可测集合2.博雷尔集3.可测集的逼近性第四章 可测函数1.教学基本要求通过本章学习使学生掌握可测函数的定义及其基本性质,可测函数列的几种不同的收敛概念及其相互关系。
2.要求学生掌握的基本概念、理论通过本章教学使学生掌握可测函数的定义及其基本性质。
掌握可测函数列的几种不同的收敛概念及其相互关系,了解Egorou定理、Lebesgue定理、Riesz定理、Luzin定理的证明思路。
3.教学重点和难点教学重点是可测函数的性质、可测函数与简单函数的关系、Egoroff定理、Riesz定理、Lusin定理、依测度收敛、几种收敛之间的关系。
教学难点是Lusin定理,依测度收敛。
4.教学内容第一节 可测函数及其性质1.实数域的推广2.可测函数的定义及举例3.可测函数的性质4.可测函数与简单函数第二节 Egoroff定理1.Egoroff定理第三节 可测函数的构造1.L usin定理2. L usin定理的另外表述第四节 依测度收敛1.依测度收敛的定义及举例2.依测度收敛与几种收敛的关系第五章 Lebesgue积分1.教学基本要求通过本章学习使学生理解Lebesgue积分的定义,掌握Lebesgue积分的基本性质,Lebesgue积分的定理(包括这些定理的条件结论),弄懂其证明思路。
2.要求学生掌握的基本概念、理论通过本章教学使学生深入理解Lebesgue积分的定义,掌握Lebesgue积分的基本性质。
牢固掌握Lebesgue积分的定理:Levi定理、逐项积分定理、Fatou引理、控制收敛定理及其若干推论,包括这些定理的条件结论,弄懂其证明思路。
了解Lebesgue积分与Riemann 积分的关系,Riemann可积的充要条件。
3.教学重点和难点教学重点是各类可测函数勒贝格积分的性质、Levi定理、逐项积分定理、Fatou引理、控制收敛定理及其若干推论、截面定理、Fubini定理、Riemann可积的充要条件、Lebesgue 积分与Riemann积分的关系。
教学难点是控制收敛定理及其若干推论。
4.教学内容第一节 黎曼积分的局限性和勒贝格积分简介1.黎曼积分可积的条件2.黎曼积分的局限性3.勒贝格积分简介第二节 非负简单函数的勒贝格积分1.非负简单函数的勒贝格积分的定义2.非负简单函数的勒贝格积分的性质第三节 非负可测函数的勒贝格积分1.非负可测函数的勒贝格积分的定义2.非负可测函数的勒贝格积分的性质3. Levi定理、逐项积分定理、Fatou引理第四节 一般可测函数的勒贝格积分1.一般可测函数的勒贝格积分的定义2.一般可测函数的勒贝格积分的性质3. 控制收敛定理及其若干推论第五节 Lebesgue积分与Riemann积分1. Riemann可积的充要条件第六节 Lebesgue积分的几何意义和 Fubini定理1.截面定理、2.非负可测函数的勒贝格积分的几何意义3.Fubini定理第六章 度量空间和赋范线性空间1.教学基本要求通过本章学习使学生了解度量空间、赋范空间的基本概念,掌握度量(距离)、度量空间、完备度量空间、可分空间、范数、赋范线性空间的定义。
2.要求学生掌握的基本概念、理论通过本章教学使学生了解度量(距离)与度量空间的定义与基本例子;熟悉度量(距离)的非负性、对称性和三角不等式;会验证某些函数是距离函数;掌握完备度量空间的定义与基本例子(欧氏空间、有界数列空间、收敛数列空间、连续函数空间C[a,b]等都是完备度量空间);掌握完备度量空间的压缩映射原理;知道一个空间是否完备与它被赋予的度量是密切相关的:C[a,b]在Lp范数下是不完备的;掌握可分空间的定义与基本例子(欧氏空间、连续函数空间C[a,b]都是可分空间);熟悉可分空间中任意一点都可以通过它的一个确定的可数稠密子集来逼近的特点;知道不可分空间是存在的:有界数列空间是不可分空间;知道一个空间是否可分与它被赋予的度量是密切相关的;掌握线性空间、线性空间的维数的定义与基本例子(欧氏空间、可测函数空间、连续函数空间、具有k阶连续导函数的空间等都是线性空间;掌握范数、赋范线性空间的定义与基本例子;熟练掌握范数的非负性、齐次性和三角不等式;掌握范数||x||关于x的连续性;掌握范数诱导出距离的思想;知道在拓扑同构的意义下,有限维赋范线性空间只有欧氏空间。
3.教学重点和难点教学重点是压缩映照原理、度量空间、线性赋范空间。
教学难点是度量空间的可分性、压缩映照原理及应用。
4.教学内容第一节 度量空间的进一步例子1.函数空间2.序列空间第二节 度量空间中的极限、稠密集、可分空间1.度量空间点列的收敛及不同空间点列收敛的不同含义2.稠密集、可分空间的定义及例第三节 连续映照1.度量空间中连续映射的定义2.连续的充要条件第四节 完备度量空间和度量空间的完备化1.完备空间的定义及性质2.常见的完备空间3.度量空间的完备化定理第五节 压缩映射原理1.压缩映射原理2. 压缩映射原理的应用第六节 线性赋范空间和Banach空间1.线性空间的基本概念和例2.范数的定义及相关收敛3.两个重要的Banach空间第七章 线性有界算子和线性连续泛函1.教学基本要求通过本章学习使学生理解线性算子和线性泛函的概念,理解连续性与有界性的等价,理解算子范数和算子空间。
2.要求学生掌握的基本概念、理论通过本章教学使学生理解线性算子、泛函及其连续性、有界性的定义与刻画;掌握线是连续算子当且仅当T是有性算子、泛函及其连续性、有界性的定义与刻画:T:X Y界算子。
3.教学重点和难点教学重点是压缩映照原理、度量空间、线性赋范空间。
教学难点是线性变换的矩阵表示和矩阵的Jordan标准形的方法及求出相应的相似变换矩阵的方法。
4.教学内容第一节 线性有界算子和线性连续泛函1.线性算子和线性泛函的定义及例2.有界线性算子3.线性有界算子和线性连续泛函的举例第二节 线性算子空间和共轭空间1.有界线性算子所成的空间2.共轭空间第八章 内积空间和希尔伯特空间1.教学基本要求通过本章学习使学生掌握Banach空间、内积与内积空间、Hilbert空间的定义,了解正交系、规范(标准)正交系、完全规范正交系或规范(标准)正交基的概念。