电子商务中的数据挖掘

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于数据挖掘与电子商务[摘要] 电子商务正处在蓬勃发展的大好时期,它所产生的丰富的信息资源,为数据挖掘的应用开辟了广阔的应用舞台。本文通过优化企业资源、管理客户数据、评估商业信用、确定异常事件四个方面来阐述数据挖掘在电子商务中的应用,揭示了数据挖掘在电子商务中的广阔的应用前景。

[关键词] 数据挖掘电子商务

目录

1.数据挖掘的简介

2.电子商务的简介

3.数据挖掘在电子商务的应用

4.在电子商务中数据挖掘的过程

5.电子商务中数据挖掘的技术与方法

6.数据挖掘在电子商务的应用方面遇到的问题

7.电子商务中挖掘信息的目标

8.结语

1. 数据挖掘的简介

数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的原始数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。或者说是从数据库中发现有用的知识(KDD),并进行数据分析、数据融合(Data Fusion)以及决策支持的过程。数据挖掘是一门广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行等方面的学者和工程技术人员。数据挖掘是通过挖掘数据仓库中存储的大量数据,从中发现有意义的新的关联模式和趋势的过程。从商业的角度定义,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。数据挖掘最吸引人的地方是它能建立预测模型而不是回顾型的模型。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。数据挖掘与传统的数据分析的不同是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和可实用3个特征

2. 电子商务的简介

电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和

开展商务业务活动。目前国内已有网上商情广告、电子票据交换、网上订购、网上银行、网上支付结算等多种类型的电子商务形式。电子商务正以其成本低廉、方便、快捷、安全、可靠、不受时间和空间的限制等突出优点而逐步在全球流行。服务范围可归类为:①商业一商业(B2B),②商业一消费者(B2C),③商业一政府(B2G)。

随着网络技术和数据库技术的成熟,全球传统商务正经历一次重大变革,向电子商务全速挺进。电子商务是商业领域的一种新兴商务模式,它是以网络为平台,以现代信息技术为手段,以经济效益为中心的现代化商业运转模式,其最终目标是实现商务活动的网络化、自动化与智能化。电子商务的产生改变了企业的经营理念、管理方式和支付手段,给社会的各个领域带来了巨大的变革。随着网络技术的迅猛发展和社会信息化水平的提高,电子商务显示出巨大的市场价值和发展潜力。当电子商务在企业中得到应用时, 企业信息系统将产生大量数据,并且迫切需要将这些数据转换成有用的信息和知识,为企业创造更多潜在的利润,数据挖掘概念就是从这样的商业角度开发出来的。数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。电子商务的发展的带动了商务市场的繁荣,大量的商品、信息在现有的网络平台上得以交易,大大简化了传统的交易方式,节约了时间,提高了效率,但电子市场繁荣背后隐藏的问题,也成为人们关注的焦点,突出表现在海量信息的有效利用上,如何更加有效的管理利用潜在信息,使他们的最大效用得以发挥,成为人们现在研究的重点,数据挖掘技术的产生,在一定程度上解决了这个问题,但它也存在着问题,需要不断改善。

3. 数据挖掘技术在电子商务的应用

一..数据挖掘在客户关系管理(CRM)中的应用

1.潜在客户的获取

在大多数的商业领域中,业务发展的主要指标包括新客户的获取能力。企业的市场部门人员可以采用传统的方法来发展新客户,如开展广告活动;也可以根据所了解的目标客户群,将他们分类,然后进行直销活动。但是,随客户数量不断增长和每位客户的细节因素增多,要得出选择出相关的人口调查属性的筛选条件也会变得很困难。而数据挖掘技术可以帮助完成潜在客户的筛选工作。在对Web 的客户访问信息的挖掘中, 利用分类技术可以在Internet 上找到未来的潜在客户。使用者可以先对已经存在的访问者根据其行为进行分类,并依此分析老客户的一些公共属性, 决定他们分类的关键属性及相互间关系。对于一个新的访问者, 通过在Web 上的分类发现, 识别出这个客户与已经分类的老客户的一些公共的描述, 从而对这个新客户进行正确的分类。然后从它的分类判断这个新客户是有利可图的客户群还是无利可图的客户群,决定是否要把这个新客户作为潜在的客户来对待。客户的类型确定后, 可以对客户动态地展示Web 页面, 页面的内容取决于客户与销售商提供的产品和服务之间的关联。若为潜在客户, 就可以向这个客户展示一些特殊的、个性化的页面内容。2. 客户的保持

随着行业中的竞争愈来愈激烈和获得一个新客户的开支愈来愈大,保持原有客户的工作也愈来愈有价值。在CRM的实施中,企业通过预测,找出可能会流失的客户,并分析出主要有哪些因素导致他们想要离开,在此基础上,有针对性地挽留那些有离开倾向的客户。客户常会迷失在复杂的网站和众多的商品信息中。这就要求电子商务网站应当“以客户为中心”。在电子商务中, 传统客户与销售商之间的空间距离已经不存在, 在Internet 上, 每一个销售商对于客户来说都是一样的, 那么使客户在自己的销售站点上驻留更长的时间, 对销售商来说则是一个挑战。为了使客户在自己的网站上驻留更长的时间, 就应该全面掌握客户的

浏览行为, 知道客户的兴趣及需求所在, 并根据需求动态地向客户做页面推荐, 调整Web 页面, 提供特有的一些商品信息和广告, 以使客户满意, 从而延长客户在自己的网站上的驻留的时间。实施CRM战略,为客户提供与众不同的个性化服务。基于数据挖掘的电子商务推荐系统通过对客户的访间行为、访问频度、访问内容等信息进行挖掘,提取客户的特征.获取客户访问模式。据此创建个性化的电子商店,主动向客户提供商品推荐,帮助客户便捷地找到感兴趣的商品。这是一种全新的个性化购物体验。不仅容易使访问者转变成购买者,而且可根据客户当前购物车中的物品,向客户推荐一些相关的物品,提高站点企业的交叉销售量,甚至还可以根据需求动态地向客户做页面推荐,提供个性化的商品信息和广告,提高客户对访问站点的兴趣和忠诚度,防止客户流失。

3. 客户的细分

细分是指将一个大的消费群体划分为一个个细分群体的动作,同属一个细分群的消费者彼此相似,而隶属于不同细分群的消费者被视为不同的。通过CRM的实施,将产生细分的客户群,企业根据客户提出的要求不断地改善产品和服务,从而使企业不断提高使该客户群满意的能力。

4. 管理客户数据

随着“以客户为中心”的经营理念的不断深入人心, 分析客户、了解客户并引导客户的需求已成为企业经营的重要课题。基于数据挖掘技术,企业将最大限度地利用客户资源,开展客户行为的分析与预测,对客户进行分类。有助于客户盈利能力分析,寻找潜在的有价值的客户,开展个性化服务,提高客户的满意度和忠诚度。通过Web资源的挖掘,了解客户的购买习惯和兴趣,从而改善网站结构设计,推出满足不同客户的个性化网页。

利用数据挖掘可以有效地获得客户。比如通过数据挖掘可以发现购买某种商品的消费者是男性还是女性,学历、收入如何, 有什么爱好,是什么职业等等。甚至可以发现不同的人在购买该种商品的相关商品后多长时间有可能购买该种商品, 以及什么样的人会购买什么型号的该种商品等等。在采用了数据挖掘后, 针对目标客户发送的广告的有效性和回应率将得到大幅度的提高, 推销的成本将大大降低。同时,在客户数据挖掘的基础上,企业可以发现重点客户和评价市场性能,制定个性化营销策略,拓宽销售渠道和范围,为企业制定生产策略和发展规划提供科学的依据。通过呼叫中心优化与客户沟通的渠道,提高对客户的响应效率和服务质量,促进客户关系管理的自动化和智能化。

成功案例:美国的读者文摘(Reader‘s Digest)出版公司运行着一个积累了40年的业务数据库,其中容纳有遍布全球的一亿多个订户的资料,数据库每天24小时连续运行,保证数据不断得到实时的更新,正是基于对客户资料数据库进行数据挖掘的优势,使读者文摘出版公司能够从通俗杂志扩展到专业杂志、书刊和声像制品的出版和发行业务,极大地扩展了自己的业务。

二. 改进系统各项性能,增强系统安全性

对电子商务网站各种数据的统计分析有助于改进系统性能,增强系统安全性.并提供决策支持。Web服务的性能和其他服务质量是衡量客户满意度的关键指标旧。数据挖掘可以通过客户的拥塞记录发现站点的性能瓶颈,以提示站点管理者改进Web缓存策略、网络传输策略、流量负载平衡机制和数据的分布策略。此外,还可通过挖掘分析网络的非法人员数据找到系统弱点并改进,提高站点可靠性,保证电子商务的正常开展。

三. 进行市场预测及实现企业资源优化

通过Web 数据挖掘, 可以分析顾客的将来行为, 容易评测市场投资回报率, 得到可靠的市场反馈信息。不仅大大降低公司的运营成本, 而且便于经营决策的制定。制定产品营销策略,优化促销活动通过对商品访问和销售情况进行挖掘,企业能够获取客户的访问规律,针对不同的产品制定相应的营销策略。如利用数据挖掘技术可实现不同商品优惠策略的仿

相关文档
最新文档