最新奥数题精选-教师招考必看

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级行程问题

难度:高难度

甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度。

解题思路:注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!

多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。另外ST图也是很关键。

第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)

第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24

第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504

第四步:收官之战:5048-24=39(千米)

五年级奥数试题及答案:行程问题

1. 骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要()分钟,电车追上骑车人

考点:行程问题。

分析:由题干可知:电车追及距离为2100米.1分钟追上(500-300)=200米,追上2100米要用(2100÷200)=10.5(分钟).但电车行10.5分钟要停两站,电车停2分钟,骑车人又要前行(300×2)=600米,电车追上这600米,又要多用(600÷200)=3分钟.由此即可解决.

解答:解:根据题意可得:

①追上2100米要用:(2100÷200)=10.5(分钟).

②但电车行10.5分钟要停两站,1×2=2(分钟),

③电车停2分钟,骑车人又要前行(300×2)=600米,

电车追上这600米要用:(600÷200)=3分钟.

所以电车追上骑车人共需10.5+2+3=15.5(分钟);

故答案为:15.5.

点评:此题要注意电车到站停车1分钟骑车人还在前行.

2.A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行行42千米,一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,这样一直飞,燕子飞了多少千米,两车才能相遇?

考点:相遇问题.

分析:要求燕子飞了多少千米,就要知道燕子飞行所用的时间和燕子的速度,燕子的速度是每小时50千米,关键的问题是求出燕子飞行所用的时间,燕子飞行的时间就是甲乙两车的相遇时间,甲乙两车的相遇时间是400÷(38+42)=5(小时),求燕子飞了多少千米,列式为50×5,计算即可.

解答:解:燕子飞行的时间就是甲乙两车的相遇时间,即:

400÷(38+42),

=400÷80,

=5(小时);

燕子飞行的距离:

50×5=250(千米);

答:燕子飞了250千米两车才能相遇.

点评:本题解题的关键是要知道燕子飞行的时间就是甲乙两车的相遇时间,同时考查了下列关系式:总路程÷速度和=相遇时间、速度×时间=路程

3.四年级行程问题:二次相遇、追及问题1

难度:中难度

甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?

解答:【分析】甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.AB间的距离是64×3-48=144(千米)

4.四年级行程问题:二次相遇、追及问题2

难度:中难度

甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?

解答:丙遇到乙后此时与甲相距(50+70)×2=240米,也是甲乙的路程差,所以240÷(60-50)=24分,即乙丙相遇用了24分钟,A、B相距(70+60)×24=3120米

小学六年级奥数试题及答案:应用题

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.

解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,

通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,

所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?

解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差,

所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(67.5+75)=5130米。

3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?

解:由于两车同时从A出发,所以

第一次相遇时乙必须行完一全程后又返回才与甲相遇

第二次相遇又在P地,说明第二次相遇时甲行的路程= 乙第一次相遇时多行的路程,即乙是甲的2倍.每相遇一次两车合走了2个全程2×540=1080千米

所以每相遇一次乙车走了1080×2/(1+2)=720千米

所以第三次相遇时,乙车共走了720×3=2160千米始终不明白乙是甲路程的两倍,即速度是2倍,求解释

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?

相关文档
最新文档