智能高分子及水凝胶的响应性及其应用
水凝胶的温度响应机理

水凝胶的温度响应机理1.引言1.1 概述水凝胶是一种具有特殊温度响应特性的材料,它在不同温度下会发生体积变化,从而使其在温度调控和敏感探测等方面具有广泛应用的潜力。
水凝胶材料的温度响应机理是指其对温度变化的敏感性和响应方式的研究,通过探究水凝胶材料在不同温度下的变化规律和机制,可以深入了解其独特的温度响应行为。
水凝胶的温度响应特性主要体现在其体积随温度变化而发生的收缩或膨胀现象。
通常情况下,当温度上升时,水凝胶会发生体积收缩,而温度下降则会引起其膨胀。
这种特殊的温度响应行为使得水凝胶在温度传感器、智能控制系统以及医药领域等方面具有很大的应用潜力。
因此,深入研究水凝胶的温度响应机理对于推动其应用和开发具有重要意义。
在探究水凝胶的温度响应机理时,研究人员通常采用一系列实验手段和理论分析方法。
实验手段包括温度控制、体积测量和力学性质测试等,通过这些手段可以获得水凝胶在不同温度下的体积变化数据。
同时,理论分析方法如热力学模型、分子动力学模拟和理论计算等也被广泛运用于水凝胶的温度响应机理研究中,以深入理解其背后的原理和机制。
通过研究水凝胶的温度响应机理,我们可以更好地理解其在温度调控领域的应用潜力。
水凝胶的温度响应性质可以被应用于智能材料和传感器的开发,进而实现温度敏感材料在医疗、环境监测、食品安全等领域的广泛应用。
此外,水凝胶的温度响应机理的深入了解还为设计和合成具有更优温度响应性能的新型水凝胶材料提供了重要的理论指导和技术支持。
综上所述,水凝胶的温度响应机理是探究其温度响应特性和变化规律的重要研究内容。
通过实验手段和理论分析方法的综合应用,我们可以深入了解水凝胶在不同温度下的体积变化行为,并探索其在温度调控和敏感探测方面的应用前景。
该研究对于推动智能材料和温度敏感器的发展具有重要意义,并为设计和合成性能优越的新型水凝胶材料提供了理论指导和技术支持。
因此,深入研究水凝胶的温度响应机理具有重要的科学和应用价值。
智能高分子及水凝胶的响应性及其应用

2、挑战
2、挑战
仿生智能高分子水凝胶材料仍面临以下挑战:首先,材料的物理化学性质需 要进一步优化,以提高其生物相容性和细胞黏附性;其次,材料的机械性能需要 进一步提高,以适应更为复杂和严苛的应用环境;最后,材料的降解性能需要进 一步调控,从而实现材料的可降解性和生物相容性的平衡。
3、未来发展方向
智能高分子及水凝胶的响应 性及其应用
01 引言
03 应用领域
目录
02 响应性分析 04 参考内容
引言
引言
智能高分子和水凝胶是一类能够对外界刺激产生响应的特殊材料。它们具备 优越的适应性、敏感性和智能性,因此被广泛应用于各个领域。本次演示将重点 探讨智能高分子和水凝胶的响应性及其在组织工程、药物传输、传感器和结构改 性等方面的应用,并对未来发展进行展望。
五、结论
五、结论
仿生智能高分子水凝胶材料的设计制备及其生物应用具有重要的意义。这种 材料具有良好的生物相容性、细胞黏附性和智能响应性,可以作为药物载体、细 胞培养基质和组织工程支架等。未来,随着科学技术的不断发展和进步,仿生智 能高分子水凝胶材料将有望在生物医学领域发挥更为重要的作用。
谢谢观看
4、结构改性
2、拓展刺激种类:目前,大多数智能高分子和水凝胶主要对一种刺激产生响 应。未来可以研究能够同时对多种刺激产生响应的材料,提高其应用范围。
4、结构改性
3、实现多级响应:未来的智能高分子和水凝胶可以实现在不同层次上的响应, 例如微观结构和宏观形状的双重响应。这将有助于进一步拓展其应用领域,例如 在软机器人制造和仿生工程中发挥作用。
三、仿生智能高分子水凝胶材料 的生物应用
1、细胞培养
1、细胞培养
仿生智能高分子水凝胶材料可以作为细胞培养基质,提供细胞生长所需的营 养和环境。这种材料可以模拟生物组织的结构和功能,有利于细胞的黏附、增殖 和分化。同时,通过调节材料的物理化学性质,可以控制细胞的生长和分化,从 而应用于药物筛选和疾病治疗研究。
智能材料——pH响应高分子材料

在生活中,我们发现牵牛花的颜色不是固定不变的,牵牛花的颜色在每天的早晨是紫蓝色的,而到了中午和傍晚却慢慢地变成了红色。
这是为什么?植物学家研究发现,牵牛花含有的花青素在碱性溶液里呈蓝色,在酸性溶液里呈红色。
同时空气中的二氧化碳可以提高牵牛花的酸性。
因此一天当中随着牵牛花对二氧化碳吸收量的逐渐增火,牵牛花里的酸性也随之提髙,这样,人们在一天之中看见牵牛花的颜色是由紫色逐渐变红色的。
“pH是化学、生物和生理系统中比较重要的环境因素,作为刺激信号的操作具有便携性。
”Part.1/ pH响应材料pH响应性材料(pH-responsive materials)是一种刺激响应型聚合物,能够响应溶液pH的变化发生结构和性能变化(例如表面活性、链构象、溶解度和构型)。
“pH响应聚合物”通常用于描述具有可电离的酸性或碱性残基的聚合物,其电离度取决于溶液的pH值。
pH响应聚合物可以具有线性、支化或网络结构。
它们可能会根据自身结构对溶液条件表现出不同的响应和自组装行为。
例如,pH 值变化可能会导致聚合物链中官能团的(去)质子化。
某些情况下,pH值变化可能会引起均聚物絮凝、链塌陷、延伸和沉淀。
也可能导致自组装,形成胶束、单体、凝胶、囊泡、(去)溶胀等。
具有pH响应嵌段的嵌段(共)聚合物,支链(共)聚合物和星形(共)聚合物在pH改变时表面活性会发生变化。
此外,水凝胶和树状聚合物的结构在pH变化时表现出(去)溶胀行为。
用聚合物改性的表面在pH值变化时能得到离子表面和薄/厚涂层[1]。
Part.2/ pH响应材料的分类通常,含有碱性单体的pH响应聚合物在酸性条件下表现为阳离子聚合物,含酸性单体的聚合物在碱性条件下表现为阴离子聚合物。
1.阴离子型:pH响应性阴离子基团[伯胺基(-NH2),仲胺基(- NRH),叔胺基(-NR2)]2.阳离子型:pH响应性阳离子基团[羧酸类(如海藻酸),磷酸类(磷脂类细胞膜)]有必要根据不同的应用,选择这两种类型之一的单体或将它们结合使用。
智能高分子凝胶的应用 ppt课件

ppt课件
9
2. 智能高分子凝胶的体积相转变
外界环境变化
溶胀相
收缩相
体积不连续变化 内因: 范德华力、氢键、疏水作用 及静电作用力----相互组合和竞争
Robert, P. Appdtv课an件ce in Colloid and Interface Sci , 2000 , 85 ,32 -3310
及 智能高分子 选择性渗透、选择性 选择透过膜材、传感膜材、
应
膜
吸附和分离等;膜的 仿生膜材、人工肺
组成、结构和形态的
用
变化--智能化
ppt课件
7
8.2 智能高分子凝胶
定义 体积相转变 刺激响应性与分类 制备 应用
ppt课件
8
1. 智能高分子凝胶定义
三维高分子网络与溶剂组成的体系 含有亲溶剂性基团,可被溶剂溶胀 最大的特点:体积相转变 “软湿”材料,强度低,有特殊功能 水凝胶、有机凝胶
scienceandtechnologyofadvancedmaterials2002395102智能高分子凝胶的应用化学机械器件polynipaamcorubpy3循环提供的动力自振动凝胶作成毛状传动装置17ppt课件智能高分子凝胶的应用智能药物释放系统释放机理刺激响应脉冲释放网孔的可控性18ppt课件葡萄糖响应高分子配合物形成的胰岛素释放微囊聚乙二醇感知葡萄糖浓度交换键合释放药物患者的血糖浓度维持正常水平19ppt课件凝胶用于污泥脱水过程智能高分子凝胶的应用环境工程溶胀收缩循环20ppt课件智能高分子凝胶的应用人工肌肉利用高分子凝胶的溶胀收缩设计具有肌肉功能的装置制成的机械手21ppt课件智能高分子凝胶的应用智能膜智能型高分子的构象会因外部某种条件的微小变化而发生突变而且这种变化可因外部条件变化的消失而消失
生物分子识别响应性水凝胶及其智能给药系统

第 2卷 第 6期
2 0 年 1 月 07 2
智 能 系 统
学
报
Vo . № . 12 6
De .2 7 c 00
CAAITr ns c i ns o nt li e s e a a to n I e lg ntSy t ms
t e r u e a nt li e t d u e i e y s s e s h i s s i e lg n r g d lv r y t m
ZH A u s n 。LI Ziwe Ii — he g U — i
( . t t y L b r t r o o i c t n o e c lF b r n o y e a e i l , n h a Un v r i ,S a g a 2 1 2 1 S a e Ke a o a o y f r M d f a i fCh mia i e s a d P lm r M t ras Do g u ie st i o y h n h i 0 6 0,
Chn ;2 Re e r h Ce t rf rAn l ssa d M e s r me t i a . s a c n e o ay i n a u e n ,Do g u i e st n h a Un v r i y,S a g a 2 1 2 h n h i 0 6 0,Ch n ) i a
关键 词 : 能水 凝胶 ; 物 分 子 识 别 ; 能 给药 系 统 ; 激 响 应 性 智 生 智 刺 中 图 分 类 号 : 1 文 献 标 识 码 : 文 章 编 号 :6 34 8 (0 7 0 —0 81 Q8 1 A 1 7—7 5 2 0 )60 3一0
Bi m ol c ar r c nii n n r s o e ul e og to i e pons v dr g l nd i e hy o e s a
pH敏感性凝胶的作用原理,制备及应用领域

等。在交联聚合中常用化学引发剂为一般常用型引发剂,
— —— —— —— —— —— —— —— —— —— —— ——
分为油溶性引发剂和水溶性引发剂。油溶性引发剂有偶氮
作者简介:李一凡(1991-),女,河南鹤壁人,郑州大学材料科学与 类,氢过氧化物与有机金属化合物等构成的氧化还原体系
工 程 学 院 本 科 在 读 , 研 究 方 向 为 高 分 子 ; 徐 永 新 类。水溶性引发剂有过硫酸盐类与无机还原剂或有机还原
感性的水凝胶。
阴阳离子型超滤 pH 敏感性凝胶膜来实现。Carroll 等 将 [10]
丙烯酸在是制备 pH 敏感性凝胶时一种最常用的单 pH 敏感性 PP 微滤膜用于过滤饮用水的原始有机物质
体。近年来,通过对一些聚合物功能膜进行处理,例如利用 (NOM)。结果表明,根据进料水 pH 的不同来控制接枝率
2.2 接枝共聚 通过接枝共聚,可以将一些亲水的和 具有对溶液 pH 值敏感的可逆溶解性,以 NSC 为载体固定
亲油的,酸性和碱性等具有特殊性能的互不相容的两链段 化纤维素酶(NSCC),以银杏叶为模式材料,用 NSCC 水解
键接在一起。用接枝共聚法制备的 pH 敏感性凝胶的性能 提取黄酮类化合物,并确定了 NSCC 水解的最适温度和
相变,智能凝胶得到了广泛的应用。
情况下较高。中间 pH 值处,同样可以发生溶胀,但是溶胀
Tanaka 把诱导凝胶体系发生相转变的分子间作用归 率小。
纳为四类:疏水作用、范德华力、氢键、离子间作用[3]。其中
2 制备方法
以离子键作用力最为显著。一般来说,pH 响应性高分子凝
2.1 交联聚合 水凝胶的交联聚合是由一种比较常用
根据敏感性基团的不同,可分为阴离子、阳离子和两
水凝胶在诊断中的应用

水凝胶在诊断中的应用
水凝胶在诊断中的应用主要体现在以下几个方面:
1.生物传感器:水凝胶可用于制造生物传感器,这些传感器能够响应生物分
子(如酶、抗体、核酸等)并产生可测量的信号。
这种应用利用了水凝胶的吸水性能和生物相容性,使其能够作为生物分子的载体,并在生物分子与目标分析物结合时产生响应。
生物传感器在疾病诊断、环境监测和食品安全等领域具有广泛应用。
2.诊断试剂:水凝胶可以作为诊断试剂的载体,用于制备各种免疫诊断试剂、
酶联免疫吸附试剂等。
这些试剂在临床诊断中用于检测生物样本(如血液、尿液等)中的目标分析物,如蛋白质、激素、病原体等。
水凝胶的吸水性能和稳定性使其成为理想的诊断试剂载体。
3.组织工程:水凝胶在组织工程中具有广泛应用,可用于制备人工皮肤、软
骨、心脏瓣膜等生物材料。
在诊断方面,组织工程水凝胶可以用于模拟体内环境,为细胞提供三维生长空间,从而研究细胞的生长、分化和功能。
这种应用有助于理解疾病的发生机制和发展过程,为疾病诊断和治疗提供新思路。
4.药物递送系统:水凝胶还可以作为药物递送系统的载体,用于将药物递送
至体内特定部位。
在诊断方面,药物递送系统可以用于将造影剂或标记物递送至目标组织或器官,以增强医学影像的对比度或提高诊断准确性。
例如,将水凝胶与磁共振成像(MRI)造影剂结合使用,可以实现对肿瘤等病变组织的精确诊断和定位。
总之,水凝胶在诊断中的应用主要利用了其吸水性能、生物相容性和稳定性等特点。
随着科技的不断发展和进步,相信未来会有更多创新性的应用方式出现。
《多功能水凝胶设计及其在伤口敷料中的应用研究》

《多功能水凝胶设计及其在伤口敷料中的应用研究》一、引言随着医疗技术的不断发展,伤口敷料的设计与性能成为了研究的重要方向。
其中,多功能水凝胶因其独特的物理化学性质,在伤口敷料领域展现出巨大的应用潜力。
本文旨在探讨多功能水凝胶的设计原理及其在伤口敷料中的应用研究。
二、多功能水凝胶的设计1. 材料选择多功能水凝胶主要由天然或合成的高分子材料构成,如聚乙烯醇、壳聚糖、透明质酸等。
这些材料具有良好的生物相容性和可降解性,适合用于伤口敷料。
2. 结构设计为了实现多功能性,水凝胶的结构设计至关重要。
通过引入交联、共聚等手段,可以制备出具有不同性质和功能的水凝胶。
例如,引入亲水性基团可以提高水凝胶的吸水性能;引入药物分子或生物活性分子,可以实现药物的缓释和生物活性的传递。
3. 功能性修饰为了满足伤口敷料的需求,多功能水凝胶需要进行功能性修饰。
例如,引入抗菌、抗炎、促愈合等功能的分子或基团,以提高水凝胶的生物活性和治疗效果。
此外,还可以通过添加导电材料、光敏材料等,实现水凝胶的智能响应和光热治疗等功能。
三、多功能水凝胶在伤口敷料中的应用研究1. 创面愈合促进作用多功能水凝胶可以有效地促进创面愈合。
其具有独特的保湿性能和温和的生物相容性,可以提供一个有利于创面愈合的湿润环境。
同时,通过添加促愈合成分,如生长因子、细胞因子等,可以进一步加速创面愈合过程。
2. 抗菌和抗炎作用多功能水凝胶具有良好的抗菌和抗炎作用。
通过引入抗菌剂或抗炎药物,可以有效地抑制创面感染和炎症反应,降低患者的痛苦和风险。
此外,水凝胶的缓释性能可以保证药物在创面局部持续释放,提高治疗效果。
3. 智能响应和光热治疗功能多功能水凝胶还可以实现智能响应和光热治疗功能。
通过添加导电材料或光敏材料,可以实现水凝胶对外部刺激的响应和光热转换功能。
这有助于实现伤口敷料的智能监测和治疗,提高治疗效果和患者的生活质量。
四、结论与展望本文介绍了多功能水凝胶的设计及其在伤口敷料中的应用研究。
智能高分子及水凝胶的响应性及其应用

智能高分子及水凝胶的响应性及其应用一、本文概述随着科技的飞速发展,智能高分子及水凝胶的响应性及其应用已经引起了全球科研人员的广泛关注。
智能高分子,作为一类具有特殊响应性能的高分子材料,能够在外部刺激下发生可逆或不可逆的物理或化学变化,从而展现出独特的性质和功能。
水凝胶,作为一种特殊的智能高分子,能够在水溶液中吸收并保持大量水分,同时保持其三维网络结构。
智能高分子及水凝胶的响应性使得它们在许多领域,如药物传递、生物传感器、组织工程、环境治理等,具有广泛的应用前景。
本文旨在全面介绍智能高分子及水凝胶的响应性及其应用。
我们将对智能高分子及水凝胶的基本概念、分类和性质进行阐述,以便读者对它们有一个清晰的认识。
接着,我们将深入探讨智能高分子及水凝胶的响应机制,包括温度响应、pH响应、光响应、电响应等,以及这些响应机制在实际应用中的优势与挑战。
我们将详细介绍智能高分子及水凝胶在药物传递、生物传感器、组织工程、环境治理等领域的应用案例,展望其未来的发展趋势。
通过本文的阅读,我们期望读者能够对智能高分子及水凝胶的响应性及其应用有一个全面而深入的了解,同时也为相关领域的科研人员提供有益的参考和启示。
二、智能高分子的响应性智能高分子,作为一种新型的功能高分子材料,其最显著的特征在于其独特的响应性。
这种响应性源自高分子链上的特定官能团或结构,使其能在外界环境刺激下发生物理或化学性质的变化。
这些刺激源广泛而多样,包括温度、pH值、光照、电场、磁场以及化学物质等。
温度响应性高分子是最常见的智能高分子之一。
这类高分子通常含有温敏性基团,如聚(N-异丙基丙烯酰胺)(PNIPAM),其在低于最低临界溶解温度(LCST)时呈现亲水性,而在高于LCST时则转变为疏水性。
这种温敏性质使得这类高分子在药物控释、生物传感器和智能纺织品等领域具有广泛的应用。
pH响应性高分子则能在不同pH值环境下发生性质变化。
这些高分子通常含有可电离的基团,如羧基、氨基等,其电离状态随pH值的变化而变化,从而改变高分子的溶解性、电荷状态和亲疏水性。
偶氮苯的多响应性超分子水凝胶

环境监测、光电器件等其他领域应用
环境监测
偶氮苯多响应性超分子水凝胶可以作为环境监测材料,通过对外界环境参数(如温度、湿度、光照等 )的响应,实现对环境变化的实时监测和报警。
光电器件
利用偶氮苯多响应性超分子水凝胶的光电性能,可以制备出具有特殊光电功能的器件,如光开关、光 调制器等,为光电信息技术的发展提供新的材料基础。
影响因素分析
偶氮苯衍生物结构的影响
不同结构的偶氮苯衍生物会对超分子 水凝胶的性能产生影响,如光响应速 度、稳定性等。
高分子化合物种类的影响
不同种类的高分子化合物会影响超分 子水凝胶的形成和性能,如凝胶强度、 透明度等。
制备条件的影响
制备过程中的温度、浓度、pH值等 条件会对超分子水凝胶的结构和性能 产生影响。
药物控释、生物传感器等生物医学领域应用
药物控释
偶氮苯多响应性超分子水凝胶可以作 为药物载体,通过外界刺激控制药物 的释放速率和剂量,实现精准治疗, 提高药物疗效和降低副作用。
生物传感器
利用偶氮苯多响应性超分子水凝胶的 敏感性和可逆性,可以制备出具有高 灵敏度和选择性的生物传感器,用于 生物分子的检测和分析。
外部环境的影响
如光照强度、温度等外部环境因素也 会对超分子水凝胶的性能产生影响。
03 偶氮苯多响应性超分子水 凝胶的光响应行为研究
光致变色现象及机理探讨
光致变色现象
偶氮苯及其衍生物在特定波长的光照射下,会发生可逆的顺反异构化反应,导 致颜色变化。
机理探讨
光致变色现象主要归因于偶氮苯分子中N=N双键的π-π*电子跃迁。在光照下, 偶氮苯从稳定的反式结构转变为不稳定的顺式结构,同时伴随着颜色的变化。
智能窗户、调光玻璃等建筑领域应用
“智能”水凝胶研究进展及其在医药与生物工程中的应用

“智能”⽔凝胶研究进展及其在医药与⽣物⼯程中的应⽤“智能”⽔凝胶研究进展及其在医药与⽣物⼯程中的应⽤第18卷第6期2001年11⽉沈阳药科⼤学JournalofShenyangPharmaceutica1.UniversityV0I_18No.6Nov.2001p.447⽂章编号:1006—2858(2001)06—0447—05"智能"⽔凝胶研究进展及其在医药与⽣物⼯程中的应⽤祁荣何仲贵(沈阳药科⼤学药学院.辽宁沈阳110016)摘要:"智能"⾼分⼦⽔凝胶是⼀娄对T-~ITM界环境傲⼩的物理和化学刺激(如:温度,pH等),其⾃⾝性质会发⽣明显改变的聚合物,具有传感,⽣}理和执⾏功能.本⽂综述了"智能⾼分⼦⽔凝胶的各种类型,研究进展以及它们在医药与⽣物⼯程中的应⽤和良好的发展前景.关键词:"智能"⾼分⼦⽔凝胶;研究进展;应⽤前景中围分类号:R94⽂献标识码:A⽔凝胶可以定义为在⽔中溶胀并保持⼤量⽔分⽽⼜不溶解的聚台物.根据⽔凝胶对外界刺激的应答情况,⽔凝胶可分为两⼤类:(I)"传统"⽔凝胶,这类⽔凝胶对环境的变化不特别敏感;(2)"智能"⽔凝胶.这类⽔凝胶在相当⼴的程度上对于环境微⼩的物理化学刺激,如温度,电场,磁场,光,pH,离⼦强度,压⼒等,能够感知,处理并可作功来响应外界环境刺激.它们这种对环境刺激的响应性使之作为新型功能材料成为当今研究的热点,并⼴泛应⽤于固定化酶,物料萃取,细胞培养, 温敏开关和药物的控制释放等领域.作者对"智能"⽔凝胶近年来的研究情况作了分类综述.I单⼀Ⅱ向应"智能"⽔凝胶I.I温敏性⽔凝胶温敏⽔凝胶通常由N⼀取代的丙烯酰胺AAm和甲基丙烯酰胺(MAAm)或相类似的单体合成. 温敏⽔凝胶溶胀与收缩强烈地依赖于温度,⼀般在低温下溶胀度⾼,在较⾼温度下溶胀度低.然⽽溶胀度随温度的变化并不是连续的,在某⼀温度下凝胶体积会发⽣突然收缩与膨胀,我们将该温度称为相变温度.这⼀温度具有聚合物溶液的下部临界温度(LCST)性质.温敏性⽔凝胶的这⼀特殊性质.我们可⽤于⼤分⼦稀溶液(如蛋⽩质和多糖)的浓缩和分离.在低于相变温度时.在⼤分⼦溶液中的凝胶⼤量吸收⽔份使溶液得以浓缩;将溶胀的凝胶与浓缩液分开,并升温⾄相变温度时.凝胶⼜重新释⽔收缩,从⽽可重复使⽤.此外.还可制成功能膜,⽤于温控药物酶的包埋与固定化酶促反应等.由于⾮离⼦型温敏⽔凝胶聚N⼀异丙基丙烯酰胺(PNIPA)的LCST在32℃左右,且当调节聚合物⾻架中的亲⽔或疏⽔组分时,LCST可以上移或下降.因此PNIPA受到了⼈们的⼴泛重视.⾦曼蓉等…研制了5种聚N⼀烷基丙烯酰胺类温敏凝胶,并系统研究了这些凝胶的温敏相变特性.考察了单体,交联剂浓度对凝胶相变温度的影响.发现凝胶的相变温度随总单体浓度的增加⽽略有提⾼,⽽相变区则随总单体浓度的增加⽽缩⼩.他们以PNIPA凝胶相变特性为基础的凝胶萃取过程对⽜⾎清⽩蛋⽩和兰葡聚糖溶液的浓缩实验表明.凝胶萃取对于浓缩和制各贵重⽣化制品是很有效的.为了增加PNIPA凝胶⽹络的亲⽔性,可在凝胶中引⼊阴离⼦单体,王昌华等【2曾报道含碘酸钾阴离⼦单体的NIPA共聚体凝胶,证明是具有很⼤溶胀⽐的热缩温敏⽔凝胶.瘳叶华等_3使甲基丙烯酸钠与N⼀异丙基丙烯酰胺(NIPA)共聚.得到了性能较好的温敏共聚凝胶P(NIPA—MNa),同其他凝胶溶胀性能⽐较,该温敏凝胶的溶胀性能明显优于其他温敏凝胶.且其相变温度居中,再⽣性能也相当好.具有较⼤实际应⽤价值.含有阳离⼦单体的温敏⽔凝胶研究较少.王昌华等【4报道了含有⼄烯基吡啶盐的阳离⼦NI—PA温敏⽔凝胶的制各.并对其性质进⾏了研究.收稿⽇期:2001—01—26通讯作者:何仲贵,Tel:(024)23843711—3832.沈阳药科⼤学第墙卷发现随阳离⼦单体含量增加,溶胀⽐增加,敏感温度提⾼;凝胶的溶胀⽐随交联剂⽤量增加⽽迅速减⼩.敏感温度改变不⼤.1.2pH敏感⽔凝胶这类⽔凝胶的溶胀或去溶胀是随pH值的变化⽽发⽣变化的.⼀般来说,具有pH响应性的⽔凝胶都是通过交联⽽形成⼤分⼦⽹络,⽹络中含有酸性(碱性)基团,随着介质pH值,离⼦强度改变,这些基团发⽣电离,导致⽹络内⼤分⼦链段闻氢键的解离,引起不连续的溶胀体积变化.当酶被固定于⼀种pH敏感的⽔凝胶上时.酶与底物的反应会使⾃⾝环境的pH值发⽣改变,导致凝胶膨胀和收缩的实际上的"刺激"是底物的浓度.这种类型的凝胶能⽤作⽣物传感器或作为⼀种渗透性开关加以应⽤.Horbett等_5报道了⼀种胰岛素的可控释放体系.葡萄糖氧化酶和胰岛素⾸先被包埋在由碱性化合物N,N.⼆甲基⼄醇胺甲基丙烯酸酯和甲基丙烯酸2.羟⼄酯(HEMA)共聚得到的凝胶膜中.葡萄糖扩散到凝胶中与葡萄糖氧化酶发⽣反应⽣成葡萄糖酸,酸使凝胶中的碱性功能团质⼦化.随着反应的进⾏和凝胶中带电位点的增多,静电排斥作⽤使凝胶溶胀,结果增加了膜的渗透性,因此胰岛素可以扩散出来,当不存在葡萄糖时.凝胶则处于不溶胀不渗透状态.此外.DH敏感⽔凝胶还能保护药物不被破坏,并可使药物控制释放.在聚(N.Ⅳ⼀⼆甲基丙烯酸羟⼄酯)与岩藻糖胺中加⼊偶氮芳⾹交联剂. 制备含有5⼀氨基⽔杨酸的pH敏感凝胶,避免了药物在胃及⼩肠中受到破坏.当共聚物被结肠细菌降解后5.氨基⽔杨酸才被释放出来J.Lee等研究了以羟⼄基甲基丙烯酸甲酯和甲基丙烯酸或马来酸酐合成的pH敏感的⽔凝胶⽤于茶碱,茶丙醇胺和⼼得平盐酸盐的控制释放J.Siegal等_9】研究了从亲⽔性的阳离⼦聚胺共聚物凝胶中释放咖啡因,当pH值降低时,聚合物中的氨基离⼦化,导致凝胶膨胀释放咖啡因.Shah等研究了从聚羟⼄基甲基丙烯酸酯⼀羟基苯⼄烯共聚物凝胶中释放茶碱和抗惊厥药氨甲苯卓,随着羧基基团离⼦化程序的增加药物释放速度加快.当⼝H值为11时,零级释药.1.3电场敏感⽔凝胶1982年.Tanaka_l"发现部分⽔解的聚丙烯酰胺凝胶浸⼊⽔.丙酮溶液中,在接触电场下.凝胶呈现⾮连续的体积变化.当撤除电场后.凝胶可恢复⾄初始状态.从⽽促进了电场驱动的⾼分⼦凝胶的研究进展.电场驱动的药物释放体系可根据电场的开关.⾃动地控制药物释放的通断.载胰岛素的PMMA凝胶对胰岛素的释放受电场开⼀关的控制,具有通断特性,这种凝胶可作为⼀种不带活动部件的可植⼊的胰岛素泵的基础【12].Kv~a[13,14]合成了2.丙烯酰胺⼀2⼀甲基丙磺酸与甲基丙烯酸正丁酯共聚物凝胶.包载带正电荷的依酚氯铵,当外加电场后,带正电荷的溶质与阳极⽔解产⽣的⽔合离⼦交换释药.实现完全的开⼀关控制作⽤.⽤聚⼄烯嘿唑啉与聚甲基丙烯酸制成胰岛素的⾻架型给药系统,在⽣理盐⽔中通电后,近阴极处溶液p}I值增加,⾻架向阴极处释放胰岛素.其释放速度近于恒定[I5l.1.4光敏感⽔凝胶⽔凝胶的光刺激溶胀体积变化是由于聚合物链的光刺激构型的变化.即其光敏性部分经光辐照转变成异构体.这类反应为光异构化反应,⽽其光敏部分即为光敏变⾊分⼦.反应常伴随此类发⾊团物理和化学性质的变化如偶极矩和⼏何结构的改变,这就导致具有发⾊团聚合物性能的改变.在紫外光辐射时,凝胶溶胀增重,⽽膨胀了的凝胶在⿊暗中可退溶胀⾄原来的重量.1.5压敏⽔凝胶1990年Lee等⼈发现了PNIPA凝胶的压⼒敏感性,⾦曼蓉等[16】为了寻找凝胶压敏性与温敏性问的联系对聚Ⅳ.正丙基丙烯酰胺(PNNPA).聚N.N⼀⼆⼄基丙烯酰胺(PND】£A)及PNIPA3种温敏凝胶溶胀性研究后发现了PNNPA和PNDEA凝胶的压敏性,并发现这3种温敏凝胶的压敏性均是其相转变温度随压⼒改变的结果.凝胶之所以表现出明显的压敏性,⾸先是因为它们具有温敏性,另外还因其相转变温度随压⼒的增加⽽有所升⾼.于是,当温度不变时,如果常压下处于收缩态的凝胶因为压⼒的增加⽽使其所处温度低于相转变温度的话,凝胶将发⽣⼤幅度的溶胀.从⽽证实了凝胶温敏性与压敏性的内在联系.随着"智能"材料研究⼯作的深⼊开展.研究和发展具有双(多)重响应功能的"杂交型""智能"材料已成为这⼀前沿领域的重要发展⽅向.如"温,pH双重敏感凝胶"."温,光敏凝胶","热敏,磁响应性⾼分⼦凝胶微球"等.第6期祁荣等:"智能"⽔凝胶研究进展及其在医药与⽣物⼯程中的应⽤2双重响应"智能"⽔凝胶2.1温度,pH敏感⽔凝胶此类"杂交型"⽔凝胶是近年来研究较多的,为了使⽔凝胶具有⼝H敏感性,需要⽤酸性单体如丙烯酸(AAC),⼆甲基丙烯酸胺基⼄酯(AE—MA)来制备⽔凝胶.因此可以⽤NIP 和AAC(或AEMA)合成兼具pH和温度敏感的⽔凝胶.含有AAC组分的⽔凝胶在酸性条件下处于去溶胀状态.⽽在碱性条件下为溶胀状态.利⽤这个特点,Hoffman等n']将对胃有刺激作⽤的吲哚美⾟药包埋在⼝H和温度敏感⽔凝胶中,在pH1.4(胃液的pH值)时,只有少量药物释放,但在pH7.4(肠液的pH值)时,药物很快释放.因此减少了药物的副作⽤⽽⼜达到了治疗⽬的. 卓仁禧等_l通过共聚得到聚(丙烯酸)⼀CO⼀(丙烯腈)⽔凝胶,它同时具有温度及pH双重敏感特性.通过对这种新型⽔凝胶的性能研究,发现在12℃下,它在不同pH条件下的溶胀率相差很⼤;在较⾼温度下(62℃),其在⽔中的溶胀率随着时阿的延长⽽逐渐增加,⽽在弱碱性和酸性条件下溶胀率变化则不太明显,属于"热胀型"⽔凝胶.李福绵等[]报道了甲基丙烯酸⼀N,N⼀⼆甲氨基⼄酯及其聚合物P(DMAEMA)⽔凝胶的热和DH响应性.表明轻度交联的⽔凝胶的吸⽔倍率随温度升⾼⽽下降,在温度下降后,⽔凝胶吸⽔倍率⼜复增加,且呈现很好的重复性,在碱性中, 随温度上升⽽P(DMAEMA)吸⽔倍率下降,与酸性中相反,交联P(DMAEMA)⽔凝胶随温度的伸缩,随pH值的变化的性质使之有望成为药物吸附,释放的功能材料.⽔凝胶可以由交联的均聚物或共聚物构成,也可以由共混物构成,在后者中包括⼀类特殊的共混物,即⾼分⼦配合物,它是由两种⾼分⼦通过次级价键⼒(如静电相互作⽤,氢键以及范德华⼒等)发⽣缔合⽽构成.通过在配合物体系中引⼊交联,可以使两种⾼分⼦在发⽣缔合的同时分别形成交联⽹络,构成全互穿聚合物⽹络(full—IPN),也可以使⼀种⾼分⼦填充在另⼀种⾼分⼦的交联⽹中.构成半互穿聚合物⽹络(semi—IPN)+IPN内的次级价键可以随环境变化可逆的⽣成或破坏,从⽽导致IPN 的溶胀体积发⽣不连续的变化.由于IPN中各聚合物⽹络具有相对的独⽴性,因此可以以pH敏感的聚合物⽹络为基础,利⽤IPN技术引⼊另⼀种具有温度敏感的聚合物⽹络,制得具有温度及pH双重敏感的IPN型⽔凝胶.同时,由于各聚合物⽹络之间的交织互穿必然会产⽣相互影响,相互作⽤,使各聚合物⽹络之间⼜具有⼀定的依赖性.这种既相互独⽴⼜相互依赖的特性将最终决定IPN⽔凝胶的溶胀性能.卓仁禧等_2.⽤IPN技术合成了温度及pH敏感聚(丙烯酸)/聚(N⼀异丙基丙烯酰胺)⽔凝胶,并对其性能进⾏了研究.其结果表明:这种⽔凝胶在弱碱性条件下的溶胀率远⼤于酸性条件下溶胀率.在酸性条件(pH=1.4,I=0.1)下,随着温度的提⾼,凝胶的溶胀率也随之上升,这与传统温度敏感⽔凝胶的热缩型溶胀性能恰好相反,属于"热胀型"⽔凝胶.这种特性对于⽔凝胶的应⽤,尤其是在药物的控制释放领域中的应⽤具有较重要的意义;在弱碱性条件(pH=7.4,I=0.1)下,当温度在PNIPA⽔凝胶的较低临界溶解温度(LCST,32℃)以下时,其溶胀率随温度的上升⽽上升.当温度达到LCST时,其溶胀率突然急剧下降,并随着温度的上升⽽下降.2.2热,光敏感⽔凝胶以含少量⽆⾊三苯基甲烷氢氧化物或⽆⾊氰化物与⽆⾊⼆(N,N⼀⼆甲基酰替苯胺)⼀4⼀⼄烯基苯基甲烷衍⽣物,丙烯酰胺和N,N.亚甲基.双丙烯酰胺共聚可得光热刺激响应聚合物凝胶_2".其相变机理有两种:⼀是利⽤紫外线的离⼦化,如以热响应性异丙基丙烯酰胺(PIPAAm)和光敏性分⼦合成凝胶,它可藉紫外线⽽电离,引起凝胶溶胀,在32℃凝胶体积相转变,紫外线遮蔽时凝胶可逆地不连续收缩回复.另⼀种机理为光吸收时局部⾼分⼦温度上升,如⽤IPAAm和叶绿酸的⽹络组成凝胶,它可响应可见光产⽣相转变,此时因光照引起⾼分⼦温度上升,呈现凝胶体积收缩的相转变,⽽未光照时凝胶体积在32℃时随温度连续变化【.对含有⽆⾊三苯基甲烷氰基的聚N.异丙基丙烯酰胺凝胶的平衡溶胀体积变化的温度依赖性.表明在⽆紫外线辐照时.30.0"C产⽣连续的体积变化;紫外光辐照时⽆⾊氰基产⽣光离解,凝胶产⽣不连续体积转变,温度由25℃逐渐升⾼,在32.6℃凝胶体积突变减少90%.在此转变温度450沈阳药科⼤学第l8卷以上.凝胶也在31.5℃发⽣不连续溶胀达10倍. 如果将温度固定于32℃,凝胶在紫外线辐照与去除辐照时可起不连续的溶张⼀收缩开关功能. 2.3磁性,热敏⽔凝胶磁性⾼分⼦微球由于其在外加磁场作⽤下简单,快速易⾏的磁分离特性,其在细胞分离,固定化酶,靶向药物等领域的应⽤研究⽇益活跃,并显⽰出较好的应⽤前景.丁⼩斌等采⽤分散聚合法,在醇/⽔体系中,在Fe3.d磁流体存在下,通过苯⼄烯(st)与N异丙基丙烯酰胺(NIPAM)共聚,合成出Fe3/P(St—NIPAM)微球+该微球除具有⼀般磁性微球快速,简便的磁分离特性外,同时,还具有热敏特性,使该热敏性磁性微球可望⽤于蛋⽩质和酶的纯化,回收以及酶的固定化等领域.他们将此凝胶微球⽤于⼈⾎清⽩蛋⽩(HAS)的吸附/解吸研究.考察了温度,pH值,蛋⽩质浓度以及保温时间等因素对蛋⽩蛋吸附/解吸的影响,结果显⽰微球对蛋⽩质的吸附/解吸具有明显的温度依赖性;pl-t值增⼤使蛋⽩质的吸附量减⼩;延长保温时间和增⼤蛋⽩质的初始浓度均有利于增加蛋⽩质的吸附量.⽽且微球在分离过程中⽆凝集现象,可循环使⽤_2.其过程如图1所⽰,当温度⾼于LCST时.微球可吸附⼤量蛋⽩质.通过磁分离,将吸附的蛋⽩质在低于LCST的温度下解吸,如此反复,可迅速,⽅便地分离蛋⽩质.2.4pH,离⼦刺激响应⽔凝胶T>LCST.o0oQ…‰./...~o.?ProtEin●.T<LCSTFig.1Proteinseparationschemeforthermo~emitivemag' nelkp~tieles(TMP)李⽂俊等[]以天然⾼分⼦甲壳素的脱⼄酰基产物壳聚糖(cs)以及聚丙烯酸(PAA)为原料,制成了⼀种新型的以壳聚糖和聚丙烯酸之间所形成的聚电解质配合物为基础的Semi—IPN⽔凝胶膜.Semi—IPN电交联组分为CS,它不仅对pH的变化⾮常敏感.对离⼦也显⽰出特殊的刺激响应性.CS-PAASemi—IPN⽔凝胶膜在强酸条件(pH<2)下强烈溶胀.随着pH值的上升,溶胀度迅速下降,在⼀个很宽的pH值区域(3<pH<8)内,溶胀度都⼩于100%,当pH>8时.溶胀度⼜重新开始上升.在phi--11附近,溶胀度达到最⼤值,继续增加pH值,由于渗透压的关系.溶胀度⼜开始下降,Semi—IPN之所以在酸碱条件下都发⽣溶胀是由于酸碱可以破坏其中的静电作⽤.考察se—mi—IPN在各种盐溶液中的溶胀度(SW).发现在相同⾦属离⼦价态和离⼦强度条件下,SW基本处于同⼀⽔平,在⼀定离⼦强度条件(I=1.5mol/L)下+SW在⼀价,⼆价和三价盐溶液中的SW呈跳跃式增加,CS-PAAsemi—IPN配合物的这种特殊离⼦响应性相反于⼀般的离⼦交换树脂和单链聚电解质凝胶,它对pH和离⼦的敏感性及受环境刺激发⽣可逆溶胀和收缩的功能为其在DDS,分离等⽅⾯的应⽤提供了可能."智能"聚合物⽔凝胶在组成,分⼦结构和物理性质上的设计存在多种可能性,随着⼈们对⽔凝胶的制备⽅法和应⽤领域研究的⽇益深⼊,必将使这⼀类聚合物在医学,⽣物技术领域具有⼴阔的应⽤前景.使其在医⽤⽣物材料的⼤家族中占有重要地位.参考⽂献:[1]⾦曼蓉,吴长发,张桂英,等.聚N⼀烷基丙烯酰胺类凝胶及其温敏特性[J].⾼分⼦.1995,3:321—325.f2]王昌华曹维孝.新型阴离⼦型温敏⽔凝胶fJ].⾼等学枝化学,1996,17(2):332—333[3]廖叶华,董汝秀,范正.⼀种温敏萃取凝胶[J]⾼分⼦,1993,6:672—677.[4]王昌华,卢英先,曹维孝.阳离⼦型温敏⽔凝胶的合成与性质[J]⾼分⼦,1998,2:236—239.[5]刘峰,卓仁禧⽔凝胶的制备及应⽤【J].⾼分⼦通报.1995.4:205—215[6]KopecekJ,KopecekovaP,BrondstedH,alPoly—mersforcon]on-spe~fiedrugdelivery[J】.JCorttr Re],1992,19(3):121—130. [71KouJH,AmidonGL,LeePI.pH-dependentswelling andsolutediffusioncharacteristicsofpoly(hydrox—yethylmethacrylate~o-methacrylicacid)hydrcgels [J].PhamRes.1988.5(9):592—597[8]KimCJ,LeePJ.Hydrophobicanionicgelbeadsof swelling-controlleddrugdelivery[J]PharmRe*, 1992.9(2):195—199[9]SiegelRA.FalamaraianM,FirestoneBA,efa/pl-I-controlledreleasefromhydrophobic/polydectrolyte第6期祁荣等:"智能"⽔凝胶研究进展及其在医药与⽣物⼯程中的应⽤451 copolymerhydrogels[J].JCtmtrRel,1988,8(3): 179—182.[10]ShahSs,KulkarniMG,MashelkarRA,etalpH Dependentzeroorderreleflsefromglassyhydrogels:penetrationvs.Diffusioncontrol[J】JContrRel,1991,15(2):121—132【11】TarmkaT.CollapseofGelsinanElectricFidd[J]Science,1982,218(29):467—469.[12]SaWakataKHaraM,YasunagaH.a1.Electrical-lycontrolleddrugdeliv~ysystemngpolyeleetrolytegels[J].JControlRe],199014(3):253—262[13]KwonIC,BzeYH,OkanoTeta1.Drugrdease fromelectriccurrentsensitivepolymers[J]JControlRe1.1991.17(2):149—156.[14]KwonIC,BzeYH,KimSWalElectrically erodiblepolymergelforcontrolledreleaseofdrugs[J].Nature,1991.354(28):291—299[15]Y0shidaR.SakaiK,SakurelY,eta1.PuIsatiledrugdeliverysyste~lsusinghydrogels[J]AdvDrll~DelivRev.l993.1l(1):85—108[16]钟,王宇新,王世昌,等温敏凝肢体积相转变温度的压敏性[J].⾼分⼦,1994,l:113—1l6.[17]DongIX;HoffmanASAnovelapproachforprepara-tionofpH-semitivehydr0geforentericdrugdegvery[J]JCont~lledRelease1991,15(2):141—152[18]卓仁禧张先正温度及pH敏感聚(丙烯酸)⼀CO⼀(丙烯腈)⽔凝驶的合成及性能研究[J]⾼分⼦.1997,4:500—503.[19]陈双基.薛梅,李福绵.甲基丙烯酸N,N⼆甲氨基⼰酯及其聚合物的热和pH响应性[J].⾼分⼦学报.1995,3:373—376[20]卓仁禧,张先正.温度及pH敏感聚(丙烯酸),聚(N.异丙基丙烯酰胺)互穿聚合物⽹络⽔凝胶的合成及性能研究[J].⾼分⼦,1998,1:39—42【2lJlrieMPropertiesandapplicationsofphotoresptmsivepolymem[J].Pure&ApplChem1990,62(8):14991502.[22]SuzakiA,TanakeT.Phasetrar~tioninpolymergelsinducedbyvizihielight[J]Nattwe,1990346(26):345~357.[23]丁⼩斌,孙宗华,万国祥.等.热敏性⾼分⼦包裹的磁性微球的合成[J]⾼分⼦,19985:628—631.[24]丁⼩斌,孙宗华,万国祥等.热敏性磁性⾼分⼦徽球同蛋⽩质的相互作⽤[J]⾼分⼦,2000,1:9—12[25]李⽂俊,王汉夫,卢五华,等.壳聚糖-聚丙烯酸配合物半互穿聚合物⽹络膜及其对pit和离⼦的刺激响应[J】⾼分⼦,1997,I:106⼀I10. Advancementof"intelligent"polymerhydrogelsand theirapplicationstomedicinesandbi0techn0l0gyQIRong,HEZhong—gui(SchoolofPharmacy,ShenyangPharmaceuticalUniversity,Shenyang110016,China)Abstract:"Intelligent''polymerhydrogelswerethosepolymerswhichcouldrespondwithlar geproperty changestosmallphysicalorchemicalstimulationssuchastemperatureandpH,andcouldperf ormsensing, processingandactuatingfunctionsThisarticlereviewedtheclassificationandrecentprogres sof"intelli—gent"polymerhydtogelsandapplicationsof''intelligent'hydrogelstomedicinesandbiotech nologyand theirpromisingpotentialityofdevelopment Keywords:"intelligent"polymerhydmgels;studyingprogress;promisingapplication。
水凝胶的制备及应用进展

水凝胶的制备及应用进展一、本文概述水凝胶是一种由亲水性聚合物形成的三维网络结构,其能够在水中吸收并保留大量的水分而不溶解。
这种独特的性质使得水凝胶在众多领域具有广泛的应用前景。
本文旨在全面概述水凝胶的制备技术及其在各领域的应用进展。
我们将首先介绍水凝胶的基本概念和性质,然后详细讨论其制备方法,包括物理交联、化学交联和生物交联等。
接着,我们将重点综述水凝胶在生物医学、环境科学、农业和工业等领域的应用情况,并探讨其面临的挑战和未来的发展趋势。
通过本文的阐述,我们期望能为读者提供一个关于水凝胶制备与应用全面而深入的理解,并为其在相关领域的研究和应用提供有益的参考。
二、水凝胶的制备方法水凝胶的制备方法多种多样,这些方法的选择通常取决于所期望的水凝胶性质、应用需求以及可用的原材料。
以下将详细介绍几种常见的水凝胶制备方法。
物理交联法是一种简便且常用的水凝胶制备方法。
该方法主要通过物理相互作用,如氢键、离子键、疏水作用或链缠结等,使高分子链交联形成三维网络结构。
例如,利用聚电解质之间的静电相互作用,可以在水溶液中制备出具有优异溶胀性能和离子敏感性的水凝胶。
化学交联法是通过共价键的形成来实现高分子链之间的交联。
常用的化学交联剂包括丙烯酰胺、甲基丙烯酸甲酯等,它们可以通过自由基聚合、缩聚或逐步聚合等方式与高分子链发生反应,形成稳定的交联结构。
化学交联法制备的水凝胶通常具有较高的机械强度和稳定性。
生物交联法利用生物酶或生物分子的催化作用,使高分子链在温和条件下发生特异性反应,形成水凝胶。
例如,利用酶促反应制备的透明质酸水凝胶具有良好的生物相容性和可降解性,因此在生物医学领域具有广泛的应用前景。
微凝胶聚合法是一种将单体在微乳液或微悬浮液中进行聚合的方法。
通过控制聚合条件和引发剂用量,可以制备出粒径均结构稳定的微凝胶。
这些微凝胶可以通过进一步的交联或组装形成宏观尺度的水凝胶,具有良好的力学性能和溶胀性能。
辐射交联法利用高能辐射(如紫外线、伽马射线等)引发高分子链之间的交联反应。
智能水凝胶

另一种光响应性的机理是利用光敏分
子遇光分解产生的离子化作用来实现响应 性。这种凝胶见光后,凝胶内部产生大量 离子,使凝胶内外离子浓度差改变,造成 凝胶渗透压突变,促使凝胶发生溶胀作出 光响应。第三种响应机理是水凝胶材料中 引入了发色基团,由于光照,这些发色团 的理化性质发生变化,因而导致具有发色 团的聚合物链的构型的变化,从而导致水 凝胶的溶胀性能也发生改变。
凝胶溶胀或收缩过程主要为高分子网络的吸 收或释放溶剂, 这是一个慢的扩散过程, 而且接近 临界点时更慢。但对于一个具有相互连接的孔结 构的网络来说, 溶剂的吸收或释放通过孔由对流产 生, 这一过程比非孔凝胶中的扩散过程快。并且合 成具有孔结构的凝胶, 由于有效扩散距离由相邻孔 间的距离平均值控制, 所以含孔结构的凝胶可加快 体积的变化。而多孔凝胶相对于无孔凝胶其溶胀 性能有较大提高, 孔结构的存在大幅度提高了水凝 胶的响应速率, 尤其是退胀速率。
可见, 水凝胶的溶胀特征与溶质、溶 剂的性质、温度、压力及凝胶的交联度有 关, 渗透压由大分子链-水相互作用(第 1 项) , 大分子网络的橡胶弹性(第 2 项)及 聚合物水凝胶内、外离子浓度差 ( 第 3 项) 构成。
水凝胶的溶胀-收缩行为通常用凝胶溶 胀前后的质量百分比表示, 对于膜的溶胀 也常用膜面积的变化表示。
3 光响应性凝胶
光响应性水凝胶是由热敏性材料中引入 对光敏感的基团制成的。光敏材料的响应 性机理有三种,一种是热敏性材料中的特 殊感光分子,将光能转化为热能,使材料 局部温度升高,当凝胶内部温度达到热敏 性材料的相转变温度时,则凝胶产生响应。 例如:N-异丙基丙烯酰胺和光敏性分子合成 凝胶,它可借紫外线而电离,引起凝胶溶 胀,在32℃时凝胶发生体积相转变,紫外 线遮蔽时凝胶可逆地不连续收缩回复。
智能型高分子水凝胶的应用研究现状

智能型高分子水凝胶的应用研究现状①房 喻② 胡道道 崔亚丽(陕西师范大学化学系 西安710062)提 要 介绍了智能型高分子和高分子水凝胶在分子器件、调光材料、生物医学等高新技术领域的应用研究现状。
0 引言1996年,美国麻省理工学院(M IT)的物理学家Toyoichi Tanaka因发现智能型水凝胶(Intelligent Hydrogels或Smart Hydrogels)而获当年探索者杂志新技术发现奖。
所谓智能型水凝胶是指对外来刺激具有可逆响应性、在水中可以溶胀的凝胶。
由于这类材料对外来刺激的可逆响应性使其在分子器件,调光材料,生物活性物质的温和、高效分离,酶和细胞的智能固定化以及药物可控释放等高新技术领域有广泛应用。
基于这样的认识,1992年美国著名风险投资商G eorge W Mc K inney与Tanaka合作创办了G el Sciences公司,致力于智能型水凝胶的工业应用开发。
两年后,Mc K inney联合另一位风险投资商Eyal S Ron创建了由G el Sciences控股的G elMed公司,该公司致力于智能型水凝胶的生物医学应用开发。
由于在随后的几年里G elMed的业务发展较之前者更快,因此两公司又合并为G el Sciences/ G elMed公司,以集中力量推进智能型水凝胶的生物医学应用。
智能型水凝胶的合成和应用研究涉及学科众多,具有显著的多学科交叉特点,是当今最具挑战的高新技术研究前沿领域之一。
关于智能型水凝胶的合成和性能研究已有多篇综述发表[1-4],本文重点介绍智能型水凝胶及与之密切相关的智能型大分子在高新技术领域的应用研究现状。
1 化学膜和化学阀大分子在溶液中的构象除了取决于大分子自身的结构本性外,还与大分子与大分子、大分子与溶剂之间的相互作用以及大分子溶液所处的外部环境条件有关。
对智能型大分子而言,其构象会因外部某种条件的微小变化而发生突变,而且这种变化可因外部条件变化的消失而消失。
智能高分子凝胶

此类凝胶的研究始于1982年,Tanaka发现:
部分水解的聚丙烯酰胺凝胶浸入水-丙酮溶 液中,在接触电场下,凝胶可呈现非连续的体 积变化,当排除电场后,凝胶可恢复至初始状 态。
自此,促进了电场驱动的高分子凝胶的研究进展
光敏感性凝胶
定义:由于光辐射(光刺激)而发生体积相转 变的凝胶。 特点:高分子的主链或侧链上具有受光异构化 性能的光敏基团。
电场敏感性凝胶
特点:大多由聚电解质高分子组成,在直 流电场作用下可发生形变。
响应性与溶液中自由离子在直流电场下 的定向移动有关。
原因
(1)、自由离子定向移动造成凝胶内外离子 浓度不均,产生渗透压变化引起凝胶变 形;
(2)、自由离子定向移动造成凝胶内不同部 位pH值不同,影响凝胶中聚电解质电离 状态,凝胶结构发生变化,造成形变。
70年代,Tanaka T等对交联的聚丙烯酰胺及经过水解 处理的离子化凝胶进行了一系列研究,利用激光散射技 术,发现了陈化的聚丙烯酰胺水凝胶的溶胀性质,即能 在某一临界温度附近,随温度的微小变化而发生急剧的 突跃性变化,也就是发生了体积相变
80年代,Tanaka T建立起凝胶溶胀和收缩的理论模型, 并申请了专利。自此,智能性高分子凝胶引起了科研人 员的极大兴趣
pH敏感性凝胶
此类凝胶的溶胀或去溶胀是随pH值的变 化而发生变化
特点:通过交联形成大分子网络,网络中 含大量易水解和质子化的酸、碱基团 (如羧基或氨基)
pH敏感性凝胶
原理:外界pH值变化时,凝胶中的基团的 解离程度相应改变,造成凝胶内外离子 浓度改变; 另外,解离还会破坏凝胶内相关的 氢键,使凝胶网络的交联点减少,凝胶 网络结构发生变化,引起溶胀。
态; (2) 、当温度高于LCST时,凝胶处于膨胀
高分子材料第三章第五节智能高分子凝胶

有些凝胶的溶胀行为会因特定物 质(如糖类)的刺激而发生突变, 例如药物释放体系可依据病灶引 起的化学物质(或物理信号)的 变化进行自反馈,通过凝胶的溶 胀与收缩调控药物释放的通、断。 另外,可在相转变附近将生理活 性酶、受体或细胞包埋入凝胶中, 使其在目标分子等近旁诱发体积
相转变而起作用。
化学物质
高分子凝胶是由三维网络结构(交联结构)的高聚物和溶胀剂组成的, 网络可以吸收溶胀剂而溶胀。根据溶剂的不同,凝胶又分为高分子水凝 胶和高分子有机凝胶。智能高分子凝胶是其结构、物理性质、化学性质 可以随外界环境改变而变化的高分子凝胶。当这种凝胶受到环境刺激时 其结构和特性(主要是体积)会随之响应,如当溶剂的组成、pH值、离 子强度、温度、光强度和电场等刺激信号发生变化时,或受到特异的化 学物质的刺激时,凝胶的体积会发生突变,呈现体积相转变行为(溶胀 相—收缩相)。即当凝胶受到外界刺激时,凝胶网络内的链段有较大的 构象变化,呈现溶胀相或收缩相,因此凝胶系统发生相应的形变;一旦 外界刺激消失时,凝胶系统有自动恢复到内能较低的稳定状态的趋势。
pH值
电活性凝胶是其溶胀易受电场(或电流)影响的凝胶。此类刺激响应凝胶是由交联聚 电解质(分子链上带有可离子化基团的高聚物)网络组成,在此类凝胶中,荷电基团 的抗衡离子在电场中迁移,使凝胶网络内外离子浓度发生变化,导致凝胶体积或形状 改变。例如聚[(环氧乙烷—共—环氧丙烷)—星形嵌段—聚丙烯酰胺]/交联聚丙烯酸 互穿网络聚合物凝胶,在碱性溶液(NaOH和Na2CO3)中经非接触电极施加直流电场时, 试样弯向负极。
凝胶光栅
02
刺激响应聚合物和生物大分子(如抗体蛋白酶、A蛋白质、细胞 色素)以及链霉素偶联将使
P.S. Stayton、Chen Guohua和A.S. Hoffman等合成了一种蛋白 质链霉素突变体(N49C)。在此N49C链霉素突变体中聚合物偶 联位点邻近生物素结合口袋的外缘,半胱氨酸于49位为天冬酰 胺所取代。为使温度响应性聚异丙基丙烯酰胺与49位的半胱氨 酸的疏基有效偶联,他们合成了乙烯砜(VS)端基的PNIPAM衍 生物(VS—PNIPAM),并以三(2—羧乙基)膦为二硫化物还原 剂使VS—PNIPAM和N49C链霄素在pH=7.0的磷酸盐缓冲液中偶联, 然后再将此偶联物固定化在多孔聚四氟乙烯膜上。